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ABSTRACT

In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect
known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does
not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent
cascade to scales at which ohmic dissipation becomes effective, allowing a much faster decay in objects with very
strong fields. On the other hand, it has been found that there are “Hall equilibria,” i.e., field configurations that are
unaffected by Hall drift. Here we address the crucial question of the stability of these equilibria through axially
symmetric (two-dimensional (2D)) numerical simulations of Hall drift and ohmic diffusion, with the simplifying
assumption of uniform electron density and conductivity. We demonstrate the 2D stability of a purely poloidal
equilibrium, for which ohmic dissipation makes the field evolve toward an attractor state through adjacent stable
configurations, around which damped oscillations occur. For this field, the decay scales with the ohmic timescale.
We also study the case of an unstable equilibrium consisting of both poloidal and toroidal field components that
are confined within the crust. This field evolves into a stable configuration, which undergoes damped oscillations
superimposed on a slow evolution toward an attractor, just as the purely poloidal one.
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1. INTRODUCTION

Hall drift, the effect of advection of magnetic flux by
the current-carrying electrons, has long been thought to be
important for the evolution of the crustal fields of neutron
stars. Jones (1988) initially hypothesized that this effect could
transport flux toward the outer regions of the crust, where ohmic
dissipation is much more effective than in the inner regions.
On the other hand, Goldreich & Reisenegger (1992) provided
an order-of-magnitude estimate that implies that magnetar-like
fields could evolve in less than a million years. Since Hall drift
is a conservative effect, their proposed mechanism for the field
decay was based on the production of a turbulent cascade. This
would drive the field to small-scale structures upon which ohmic
dissipation could act effectively.

In order to study the possible presence of instabilities,
Rheinhardt & Geppert (2002) studied a homogeneous plane-
parallel model and performed a perturbation analysis against
a background field that lies on the plane, discovering unstable
modes with exponential growth rates. Using a similar model,
Vainshtein et al. (2000) showed that the evolution through Hall
drift is governed by Burgers’s equation, which develops strong
discontinuities corresponding to current sheets. The inclusion of
ohmic dissipation results in rapid decay of magnetic energy in
these regions. Reisenegger et al. (2007) extended this result to
the case of a purely toroidal (azimuthal) and axially symmetric
magnetic field, showing in this case that the evolution through
Hall drift can again be described with Burgers’s equation, with
analogous implications. They also argued that any small poloidal
perturbation to the toroidal field would end up being amplified.

Although these analytical developments are a big step for-
ward in the understanding of the evolution of the magnetic
field in a neutron star, a full comprehension of this process

seems to require the use of numerical simulations owing to its
complex nonlinear character. Early simulations performed by
Urpin & Shalybkov (1991) for the case of a spatially homoge-
neous resistivity and electron density show that in fact purely
toroidal fields can develop strong discontinuities and experience
fast ohmic dissipation. Also with homogeneous models, but
dealing mostly with predominantly poloidal (meridional) fields,
Shalybkov & Urpin (1997) and Hollerbach & Rüdiger (2002)
observed oscillatory phenomena, without a strong enhancement
of the decay rates through Hall drift, compared to the case of pure
ohmic dissipation. Taking into account a range of models cov-
ering predominantly toroidal and predominantly poloidal fields,
Kojima & Kisaka (2012) showed that the decay rates were con-
sistently higher as the toroidal field increased in importance.
In models that included a simple stratified crust (Hollerbach
& Rüdiger 2004) or with realistic values for electron density
and resistivity (Geppert & Pons 2007), efficient decay is ob-
served associated with the formation of strong current sheets,
and not due to displacement of magnetic field to areas of lower
conductivity as proposed by Jones (1988). Also, as an ordered
component remains for long times, the magnetic field does not
appear to undergo the Hall cascade of Goldreich & Reisenegger
(1992) either.

Recently, elaborate models have been produced that take into
account the full magnetothermal evolution of the neutron star
(though allowing for field evolution only in the crust). Pons
et al. (2009) studied the coupling of the magnetic field to the
thermal evolution using only ohmic decay, while Viganò et al.
(2013) included Hall drift in these models. Their results show
the critical importance of using a fully consistent model in
order to produce a realistic evolution, as feedback between the
magnetic field and the thermal structure is very strong in both
directions.
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We intend to study the magnetic field stability in axial
symmetry for a couple of Hall equilibrium configurations that
can be expressed in closed analytical forms. Gourgouliatos &
Cumming (2014a) already studied the evolution due to Hall
drift using different initial conditions that included a poloidal
equilibrium field. Although the early evolution differed from
case to case, they noted that on long times the field evolved
toward similar configurations that consist of a poloidal field
with a dipole and a counteraligned octupole (meaning that
the dipolar and octupolar components have opposite signs
at the poles), coupled through a weak quadrupolar toroidal
field. Gourgouliatos & Cumming (2014b) further developed this
concept, referring to this final state as an “attractor.”

The structure of this paper is as follows: Section 2 briefly
describes the methods used in our work. Section 3 deals
with the effects of having initial conditions that are initially
dominated by either a poloidal or a toroidal field, essentially
reproducing the results of Kojima & Kisaka (2012) but with
a consistent normalization of the field that allows proper
comparisons between simulations. Section 4 provides a study
of the stability of two different equilibrium fields, one purely
poloidal extending to the vacuum outside the star, and another
one that is a mix of a poloidal and a toroidal field, artificially
constrained to remain confined to the crust. Finally, Section 5
provides our conclusions and discussion of the results.

2. METHODS

2.1. Hall Drift and Ohmic Decay

We restrict ourselves to the magnetic field evolution in the
crusts of neutron stars, ignoring possible effects involving the
fluid core. In the crust, ions are locked into a crystal lattice,
and the only freely moving charged species are the electrons.
This electron fluid should have a negligible acceleration, which
in turn implies that the Lorentz force should be equal to the
time-averaged momentum loss through collisions. Under these
approximations, the evolution of the magnetic field B can be
described by (e.g., Goldreich & Reisenegger 1992)

∂ B
∂t

= −∇ ×
(

c

4πne
[∇ × B] × B + η∇ × B

)
, (1)

where η is the magnetic diffusivity and n the electron density.
For simplicity, in this work we only consider models for which n
and η are constant in both space and time. This equation contains
two different effects that act on two distinct timescales, which
can be estimated as

tHall ≡ 4πneL2

cB0
, tOhm ≡ L2

η
, (2)

where we introduced the characteristic value B0 for the magnetic
field, and L is a characteristic length scale of variation, which
for this work we take to be the thickness of the neutron star
crust. The ratio of these two quantities defines the so-called
magnetization parameter RB (a close analog to the Reynolds
number of fluid mechanics),

RB = tOhm

tHall
= cB0

4πηne
, (3)

which quantifies the relative importance of both effects. As the
value of RB is fundamentally dependent on the meaning we give
to the characteristic field B0, it is desirable to choose this value

in a physically unambiguous way. For the purpose of this work,
we will define the characteristic field B0 as

B2
0 ≡ 8πE

Vcrust
, (4)

where Vcrust is the volume of the crust and E is the total magnetic
energy (including the external vacuum field, if present).

2.2. Axially Symmetric Fields

We restrict ourselves to axially symmetric fields, in which
case B can be written in terms of two scalar functions as (see,
e.g., Chandrasekhar & Prendergast 1956)

B = ∇α(r, θ ) × ∇φ + β(r, θ )∇φ, (5)

where r, θ , and φ are the conventional spherical coordinates.
Using this, and defining χ ≡ c/(4πen
 2) and 
 ≡ r sin θ ,

Equation (1) can be decomposed into a purely poloidal and a
purely toroidal part, from which two scalar equations for the
time derivatives of α and β are obtained (Reisenegger et al.
2007), namely,

∂α

∂t
= 
 2χ [∇α × ∇β] · ∇φ + R−1

B ηΔ∗α,

∂β

∂t
= 
 2∇ ·

(
χ∇φ × [Δ∗α∇α + β∇β] + R−1

B

η∇β


 2

)
, (6)

where tHall and B0 are, respectively, the units of time and
magnetic field. Also, Δ∗ is the Grad–Shafranov operator,
defined as

Δ∗ ≡ 
 2∇ · (
−2∇) = ∂2
r +

sin θ

r2
∂θ

(
∂θ

sin θ

)
. (7)

2.3. Boundary Conditions

In order to avoid the complications of magnetic field evolution
in the core (e.g., Goldreich & Reisenegger 1992; Hoyos et al.
2008, 2010), we assume that the core is a superconductor with a
perfect Meissner effect, and the radius of the crust–core interface
is defined as rmin, which we choose as rmin = 0.75 R, where R
is the radius of the star. The conditions used at this boundary
are then the continuity of the radial component of the magnetic
field and the continuity of the tangential electric field, which we
call “Meissner boundary conditions.”

In order to compare our simulations with those of Hollerbach
& Rüdiger (2002) and Kojima & Kisaka (2012), we will also
simulate the case with “zero boundary conditions” where both
α = 0 and β = 0 are forced at the inner boundary. This
approximation is usually justified by saying that, since RB is
a large number for high field neutron stars, resistive terms can
be ignored, in which case the Meissner boundary conditions
reduce to that. However, even in this limit, there are no physical
reasons to impose this condition, since it implies that there is
no surface current in the θ -direction, whereas surface currents
in the φ-direction are allowed.

For the boundary condition at the surface, we take the exterior
of the star to be a vacuum, with all three field components
continuous across the interface, as surface currents should
dissipate very efficiently.

For a comprehensive description of the boundary conditions
used, refer to Appendix A.
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2.4. Numerical Methods

For the purpose of studying the evolution of an axially sym-
metric field in a neutron star crust, we have developed a forward
time centered space code to solve Equations (6), where the tem-
poral discretization is done via the forward Euler method, which
is first order in time, while spatial derivatives are solved with a
central difference scheme that is second order in space. The pre-
cise details of the implementation are described in Appendix B.
This code is freely available for download at https://github.com/
orlox/hall_evolution.

We also had access to the spectral code developed by
Hollerbach (2000), against which we made comparisons. The
results of these are described in Appendix D.

3. FIELDS WITH DOMINANT POLOIDAL
OR TOROIDAL COMPONENTS

As shown by the models of constant electron density and
resistivity of Kojima & Kisaka (2012), evolution due to Hall drift
is significantly different depending on whether the poloidal or
the toroidal component is dominant. However, their definition of
the characteristic field B0 is simply the strongest value it takes,
which means that their simulations of mixed fields at equal RB
do not share the same total magnetic energy. Here we perform a
similar analysis, but we compare the evolution of different field
configurations that do share the same energy.

Defining B11p and B11t , the fundamental poloidal and
toroidal ohmic modes for zero boundary conditions (see
Appendix C), such that both are normalized to the same
energy, we study combinations of the form

B =
√

EP /EB11p +
√

1 − EP /EB11t , (8)

all of which have the same total energy (and thus the same
characteristic magnetic field B0 as given by Equation (4)), and
for which the relevance of each component is given by the ratio
of poloidal to total energy EP /E.

For most of this section we use zero boundary conditions
at the crust–core interface and compare at the end for some
cases how the results are modified by switching to Meissner
boundary conditions. This is mainly because the Meissner
boundary conditions as implemented here are computationally
expensive to study, running into numerical problems for the case
of large RB. In the normalization used here, the maximum value
of B11t is approximately 1.75B0, which can be compared, for
instance, with the normalization used by Hollerbach & Rüdiger
(2002), which chooses Bmax = B0. The practical meaning of
this is that our simulations with predominantly toroidal fields
done with RB = 100 should be comparable to their simulations
with RB = 200.

In order to properly explore how the poloidally dominated
regime is separated from the toroidally dominated one, we per-
form simulations using the field of Equation (8) with EP /E =
0.9, 0.7, 0.5, 0.3, 0.1 and RB = 100. Figure 1 shows the sim-
ulation with EP /E = 0.9, from which it can be seen that the
current associated with the toroidal field drags poloidal field
lines closer to one of the poles, after which the bending of
poloidal field lines changes the orientation of the toroidal field.
The poloidal field lines are then dragged toward the opposite
pole, where the process is repeated in what appears to be stable
oscillations until the evolution is dominated by ohmic dissipa-
tion with a mixture of the fundamental poloidal Ohm mode and
the n = 1, l = 2 toroidal Ohm mode.

t/tHall : 0.00 t/tHall : 0.800 t/tHall : 1.45

t/tHall : 1.67 t/tHall : 2.09 t/tHall : 3.00

t/tHall : 5.15 t/tHall : 5.50 t/tHall : 7.14

t/tHall : 9.79 t/tHall : 14.2 t/tHall : 20.5

t/tHall : 66.3 t/tHall : 109 t/tHall : 438

Figure 1. Evolution of a poloidally dominated field given by Equation (8)
with EP /E = 0.9. The color plot shows the intensity of β, with the color
scale ranging from −βmax to βmax, where βmax = max(|β|) is computed
independently for each snapshot, and the contours are lines of constant α

(corresponding to poloidal field lines). In these and subsequent plots the
thickness of the crust is doubled to ease visualization, and the exterior is also
rescaled so poloidal field lines do not look discontinuous. We use a resolution of
40 radial and 120 angular steps and a factor of the critical time step kc = 0.005
(refer to Appendix B.2 for a definition of kc).

(A color version of this figure is available in the online journal.)

The opposite case is shown in Figure 2, where the evolution of
a toroidally dominated field with EP /E = 0.1 at the beginning
is shown. In this case, the currents associated with the toroidal
field drag poloidal field lines to one of the poles, just as was the
case with the poloidally dominated field, but afterward the field
forms structures on much smaller scales, with strong associated
currents. This produces fast ohmic dissipation, together with
energy transfer to the poloidal component. The field then
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t/tHall : 0.00 t/tHall : 0.973 t/tHall : 1.43

t/tHall : 1.76 t/tHall : 2.17 t/tHall : 2.49

t/tHall : 2.98 t/tHall : 3.92 t/tHall : 6.20

t/tHall : 8.58 t/tHall : 12.9 t/tHall : 25.0

t/tHall : 41.4 t/tHall : 107 t/tHall : 370

Figure 2. Evolution of a toroidally dominated field given by Equation (8) with
EP /E = 0.1; refer to the caption of Figure 1 for details.

(A color version of this figure is available in the online journal.)

becomes predominantly poloidal, and the evolution continues
as in the initially poloidally dominated case.

The rapid evolution to a poloidally dominant field can be
easily visualized by plotting the evolution of the ratio of poloidal
to total magnetic energy, as is done in Figure 3. For simulations
with progressively stronger toroidal fields, more energy will
be lost in this stage of rapid ohmic dissipation, producing
oscillations with longer periods once they reach the poloidally
dominant regime. In particular, Figures 2 and 3 show that for the
case that starts with EP /E = 0.1 no clear oscillatory behavior
occurs, as ohmic dissipation quickly becomes dominant.

This common evolution toward fields with a low fraction of
the energy contained in the toroidal component is consistent with

0 5 10 15 20
t/tHall

0.0

0.2

0.4

0.6

0.8

1.0

E
P
/E

Figure 3. Evolution of the ratio EP /E for simulations with different initial
ratios, with initial conditions given by Equation (8) with RB = 100.

(A color version of this figure is available in the online journal.)
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Figure 4. Ratio between the radial component of the field corresponding to l = 1
and l = 3 at the pole for different initial values of EP /E. Initial conditions are
given by Equation (8) with RB = 100.

(A color version of this figure is available in the online journal.)

what is found in other studies that include an electron density
gradient and also test initial configurations other than coupled
fundamental Ohm modes (Gourgouliatos & Cumming 2014a;
Geppert & Pons 2007), so it appears to be a general feature.

It is interesting that the final configuration dominated by
ohmic dissipation has a quadrupole toroidal field rather than
a dipole, which has a slower decay rate. This is because the
dominant poloidal dipole field acting on itself due to Hall drift
produces a quadrupolar toroidal field.

Figure 4 displays for some of the simulations how a coun-
teraligned octupole forms after several Hall times. All the cases
studied, except the one with an initial EP /E = 0.1, evolve
with damped oscillations toward a point where the ratio be-
tween the l = 3 and l = 1 components of the radial field at the
poles has a typical value ∼−0.4, after which ohmic dissipation
takes over and the octupole component completely decays. This
point is then similar to the attractor described by Gourgouliatos
& Cumming (2014b), including also a much weaker toroidal
quadrupole as seen in the last frame of Figure 1. The simulation
with an initial EP /E = 0.1 decays very strongly at the begin-
ning, which causes ohmic dissipation to dominate the evolution
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t/tHall

0.90

0.92

0.94

0.96

0.98

1.00
E

P
/E
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Figure 5. Evolution of the ratio EP /E for the field described in Section 3.1 with
RB = 20, (EP /E)i = 0.9, and both Meissner and zero boundary conditions.

(A color version of this figure is available in the online journal.)

at an earlier time, before the octupole component grows
too much.

3.1. Comparison with Meissner Boundary Conditions

To check whether the inclusion of Meissner boundary condi-
tions modifies significantly the evolution, we perform an addi-
tional simulation with RB = 20 for the case of EP /E = 0.9,
with and without Meissner boundary conditions. However, since
combinations of the form given by Equation (8) will not satisfy
the boundary conditions initially, we choose a modified toroidal
field given by

Bt = (r − rmin)B11t . (9)

With this choice the radial derivative of β is zero at the crust–core
interface and thus will satisfy the Meissner boundary conditions
(see Equation (A6)). For the poloidal component we keep the
choice of using the fundamental poloidal Ohm mode.

Figure 5 shows that the evolution on short timescales is
nearly identical for both kinds of boundary conditions. However,
for longer timescales, where ohmic dissipation becomes the
dominant effect, simulations with Meissner boundary conditions
evolve to predominantly toroidal configurations, which consist
of a combination of the fundamental poloidal and toroidal Ohm
modes as shown in Figure 6. This is completely different from
the case with zero boundary conditions, where ohmic dissipation
drives the field to a poloidally dominated configuration. This
is due to the decay of the fundamental poloidal mode being
faster than that of the fundamental toroidal mode under Meissner
boundary conditions (see Table 1 in Appendix C). The toroidal
field here takes a significantly longer time to settle into a
final configuration than the simulations with zero boundary
conditions, because this phase depends on the small difference
between the decay rates of the fundamental toroidal mode and
the toroidal quadrupole.

Unlike the simulations with zero boundary conditions, where
the poloidal field acting on itself caused the toroidal quadrupole
to remain in the later phases, the dominant toroidal mode will
not produce a higher poloidal multipole, since the Hall term
in the equation for ∂α/∂t depends on the intensities of both
the poloidal and the toroidal field and thus it will necessarily
become smaller than the ohmic term given enough time.

t/tHall : 0.00 t/tHall : 1.39 t/tHall : 4.15

t/tHall : 13.2 t/tHall : 26.3 t/tHall : 39.5

t/tHall : 171 t/tHall : 434 t/tHall : 565

Figure 6. Evolution of the poloidally dominated field of Section 3.1 with
Meissner boundary conditions; refer to the caption of Figure 1 for details.

(A color version of this figure is available in the online journal.)

4. STABILITY OF HALL EQUILIBRIA

A Hall equilibrium is defined as a field configuration for
which the nonlinear Hall drift term in Equation (1) is exactly
equal to zero. As shown by Gourgouliatos et al. (2013), the
functions α and β describe a Hall equilibrium field if and only
if β is a function of α and

Δ∗α + ββ ′ = F (α)nr2 sin2 θ, (10)

where β ′ = d β/ d α, for an arbitrary function F (α). In this
work we will only analyze two equilibrium fields, which are
solutions to this equation with the choice F (α) = F0 = constant.

4.1. Stability of Purely Poloidal Equilibrium

For β = 0, Gourgouliatos et al. (2013) obtained a general
analytic solution of Equation (10) for the case of a spherically
symmetric electron density and field contained in a shell. In the
case of uniform electron density, with the boundary condition
α(rmin, θ ) = 0 together with the continuity of the field across
the surface, their equilibrium field is purely poloidal and given
by α = f (r) sin2 θ , where

f (r) = F0nR4

30

([
5x3

min − 3x5
min

]/
x + 3x4 − 5x2

)
, (11)

with x = r/R and xmin = rmin/R. The choice of F0 is
arbitrary and sets the intensity and direction of the field.
We perform simulations for this field with xmin = 0.75 for
RB = 100, 200, 400.
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10−3 10−2 10−1 100 101

t/tOhm

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
τ
/τ

11

Ohm

RB = 100

RB = 200

RB = 400

Figure 7. Evolution of the instantaneous decay timescale τ as defined by
Equation (12) and measured in terms of the decay timescale τ11 of the energy
of the fundamental poloidal Ohm mode. Results are shown for RB = 100, 200
and for evolution through pure ohmic decay.

(A color version of this figure is available in the online journal.)

As this equilibrium field satisfies the zero boundary condi-
tions but not the Meissner ones at the core–crust interface, we
use zero boundary condition when evolving this field. As men-
tioned in Section 3.1, the use of Meissner boundary conditions
does not seem to change the early evolution significantly and
only becomes evident at later stages when ohmic decay be-
comes dominant. Thus, the choice of boundary conditions is not
expected to play an important role in the stability of equilibria.

As the field is affected by ohmic decay, its structure will
be modified, driving it out of equilibrium, and thus acting as a
perturbation. The simplest test that can be done to see if Hall drift
plays an important role in modifying the structure of the field is
comparing its evolution with and without Hall drift and checking
whether this enhances or not the decay of the field. To properly
measure this enhancement, we consider the instantaneous decay
timescale of the magnetic energy, defined as

τ ≡
(

1

E

dE

dt

)−1

,
dE

dt
= − (ηRB)−1

4π

∫
V

j2dV, (12)

where the last expression is from Hollerbach & Rüdiger (2002).
This is shown in Figure 7, where it is seen that Hall drift

provides only a very slight enhancement, which seems to be
almost independent of field strength.

In order to quantify the overall change of the equilibrium
as it evolves, we consider the time-dependent field B(r, t), the
initial equilibrium field Beq(r), and the fundamental poloidal
Ohm mode B11p(r) normalized in terms of their characteristic
fields B0 as

B̂(r, t) ≡ B(r, t)
(

Vcrust∫
V

(B(r, t))2 dV

)1/2

,

B̂eq(r) ≡ Beq(r)

(
Vcrust∫

V
(Beq(r))2 dV

)1/2

,

B̂11p(r) ≡ B11p(r)

(
Vcrust∫

V
(B11p(r))2 dV

)1/2

, (13)

where V is, just as before, the volume of all space. The direction
of the Ohm field is chosen in such a way that it is equal to the

0.00 0.05 0.10 0.15 0.20 0.25
t/tOhm

0.00

0.02

0.04

0.06

0.08

0.10

0.12

δ

δOhm

δeq

Figure 8. Evolution of δOhm and δeq in the case with no Hall drift.

(A color version of this figure is available in the online journal.)

direction of the equilibrium field, i.e., so that B̂11p and B̂eq share
the same magnetic north pole.

In terms of these normalized fields, we define the quantities

δeq ≡
(

1

Vcrust

∫
V

(B̂(r, t) − B̂eq(r))2 dV

)1/2

,

δohm ≡
(

1

Vcrust

∫
V

(B̂(r, t) − B̂11p(r))2 dV

)1/2

, (14)

where V is the volume outside the core. These quantities are
representative of the difference in shape of the time-evolved field
with respect to the initial equilibrium field and the fundamental
poloidal Ohm mode, to which the system will eventually decay.

The first thing to do is to check the evolution of δeq and
δOhm for the equilibrium field subject only to ohmic dissipa-
tion. This is shown in Figure 8, where it can be seen that around
t/tOhm ∼ 0.3 the equilibrium field has essentially decayed to the
fundamental Ohm mode. In this case, the higher modes that com-
pose the field rapidly decay, leaving only the fundamental Ohm
mode. Thus, δOhm starts with an initial nonzero value, while δeq
is equal to zero, and with time δOhm asymptotically goes to zero,
while δeq asymptotically goes to the value δOhm had initially.

Now, adding Hall drift to the picture, Figure 9 shows the
evolution of δeq and δOhm for different values of RB. The most
obvious changes with respect to the previous results are that the
asymptotic evolution to the fundamental Ohm mode takes much
longer, and that a departure from both fields used as reference
happens during the initial stages of evolution. The timescale
for this departure scales with tOhm, which means that, as we
change RB, this part of the evolution remains nearly unchanged
when plotted as a function of t/tOhm, so it is not likely to
be an instability driven by Hall drift. Small oscillations can
be seen on top of this curve, which gradually decrease their
intensity and, most importantly, have periods that scale with
tHall. The departure from the equilibrium is small, as significant
perturbations to the structure would produce values much closer
to unity. By checking the digression of the external field from
a dipole, the change from the purely ohmic evolution can be
understood in terms of a transfer of energy from the initial
dipole to l = 3 modes, as seen in Figure 10.

In order to better understand what this deviation from both the
initial equilibrium field and the final fundamental Ohm mode
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Figure 9. Evolution of δOhm and δeq in the case with Hall drift, for different
values of RB = 200, 400. The bottom plot shows a close-up to the beginning of
the evolution, showing δOhm for RB = 100, 200, 400. The rise scales with
tOhm, while the small oscillations at the beginning of the simulation scale
with tHall.

(A color version of this figure is available in the online journal.)

means, we construct a simplified spectral model of the system
in terms of the first few ohmic modes. To properly describe the
initial equilibrium field, we require at least two l = 1 poloidal
modes, and to take into account the energy transfer to higher
modes, we use one l = 3 mode. In addition, a toroidal mode
is required in order for Hall drift to transfer energy between
different multipoles. Taking all of this into account, we choose
to describe the field as

B(t, r)

B0
� a11(t)B̂11p(r) + a21(t)B̂21p(r)

+ a13(t)B̂13p(r) + b12(t)B̂12t (r), (15)

where B̂nlp and B̂nlt are the ohmic modes for zero boundary
conditions at the core–crust interface, with the p and t subscripts
denoting poloidal and toroidal modes, respectively, n and l
denoting the radial and latitudinal indexes (see Appendix C), and
normalized in the same way as in Equation (13). These modes
are orthogonal, and the energy of each component is simply its
coefficient anl or bnl squared and multiplied by B2

0Vcrust/(8π ).
As a field that initially has α symmetric and β antisymmetric
will preserve those symmetries (Hollerbach & Rüdiger 2002),
we excluded in this model toroidal modes with l = 1 and
poloidal modes with l = 2. These symmetries are explicitly
seen in the simulations, so if any symmetry-breaking instability
exists, which could be induced because the numerical initial

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t/tOhm

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
l=

3,
ex

t/
E

ex
t

RB = 400

RB = 200

Figure 10. Evolution of the ratio of external energy contained in the octupole
to total external energy in the simulations with RB = 100, 200.

(A color version of this figure is available in the online journal.)

conditions will not be perfectly symmetric (or antisymmetric),
it is not observed and thus we ignore it in this analysis.

Just as before, the direction of the fields is relevant, and it
should be defined in an unambiguous way. We will consider all
the poloidal modes chosen in such a way that they are aligned
with the equilibrium field (which means Br (r = R, θ = 0) > 0)
and the toroidal mode in such a way that right below the surface
of the northern hemisphere (0 < θ < π/2) the azimuthal
component Bφ is positive. Decomposing the equilibrium field
in terms of the Ohm modes so defined, we get

Beq(r)

B0
� 0.9975B̂11p − 0.0581B̂21p + 0.0348B̂31p, (16)

where also the third radial dipole mode was included for compar-
ison. Note that this field is very close to the fundamental poloidal
ohmic mode, so the simulations of Section 3 can be thought of
as the evolution of this equilibrium with different perturbations.
From the total energy of this equilibrium ∼99.5% is in the fun-
damental mode, while the other two components shown contain
0.34% and 0.12% of the total energy, respectively. It seems rea-
sonable to assume that the remaining components will not affect
the evolution significantly. For simplicity we also ignore the a31
coefficient in our model.

We now decompose Equation (1) in terms of our ohmic
eigenmodes. The ohmic term is trivial, but the Hall term requires
numerical integrations to obtain all the relevant terms. Since a11
is initially much larger than all other terms, and the simulations
show that the structure of the field does not change substantially,
we ignore all nonlinear terms that do not contain this coefficient.
For the initial values a11,i = 0.9975 and a21,i = −0.0581 the
Hall term is approximately zero under this approximation, which
means that

0 � −a2
11,i∇ × ([∇ × B̂11p] × B̂11p)

−a11,ia21,i∇ × ([∇ × B̂11p] × B̂21p

+ [∇ × B̂21p] × B̂11p). (17)

Using this, and defining δ as

δ ≡
(

a21 − a11
a21,i

a11,i

)
, (18)

7
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the Hall term can be written as

−∇ × ([∇ × B] × B) �
−a11δ∇ × ([∇ × B̂11p] × B̂21p

+ [∇ × B̂21p] × B̂11p)

− a11a13∇ × ([∇ × B̂11p] × B̂13p

+ [∇ × B̂13p] × B̂11p)

− a11b12∇ × ([∇ × B̂12t ] × B̂11p). (19)

We decompose this expression in terms of the ohmic modes,
after which Equation (1) turns into four ordinary differential
equations for the coefficients anl and bnl, namely,

ȧ11 = 0.187a11b12 − 3.10R−1
B a11,

ȧ21 = 2.82a11b12 − 22.9R−1
B a21,

ȧ13 = 1.36a11b12 − 4.66R−1
B a13,

ḃ12 = − 2.70a11δ − 1.10a11a13 − 10.4R−1
B b12, (20)

where the thickness of the crust is used as the unit of length. We
combine the first two equations in order to produce an equation
for δ̇ to use instead of the equation for ȧ21,

δ̇ = 2.83a11b12 − 22.9R−1
B δ + 1.51R−1

B a11. (21)

The final approximation we make is to assume that a11 is
constant, which is justified since simulations show that the field
never digresses significantly from the initial configuration where
most of the energy is contained in this term, and Equation (20)
shows that the timescale associated with the evolution of a11 is
the longest one in both the Hall- and Ohm-dominated regimes.
This leaves us with a 3 × 3 inhomogeneous system of differential
equations, namely,⎛

⎝ δ̇
ȧ13

ḃ12

⎞
⎠ = A

(
δ

a13
b12

)
+ b, (22)

where

A =

⎛
⎜⎝

−22.9R−1
B 0 2.83a11

0 −4.66R−1
B 1.36a11

−2.70a11 −1.10a11 −10.37R−1
B

⎞
⎟⎠,

b =
⎛
⎝1.51R−1

B a11

0
0

⎞
⎠, (23)

and we neglect the time dependence of a11. Note that, without
the ohmic terms (the ones ∝ R−1

B ), the system becomes
homogeneous, in which case, with the time dependence written
as eλt , it has a continuous family of solutions with eigenvalue
λ = 0 describing Hall equilibria,

b12 = 0, δ = −0.407a13, (24)

one of which is the initial equilibrium (a13 = δ = b12 = 0). The
other two eigenvalues are imaginary, representing oscillations
around these equilibria.

When including ohmic diffusion, but keeping only the lowest
orders in the small parameter R−1

B , a particular solution for

the inhomogeneous system can be readily obtained by setting
δ̇ = ȧ13 = ḃ12 = 0, for which we get a simple linear algebraic
equation resulting in

δ = 0.0323a11 + O
(
R−1

B

)
,

a13 = −0.0791a11 + O
(
R−1

B

)
,

b12 = −0.274R−1
B + O

(
R−2

B

)
, (25)

which for RB → ∞ approaches one particular equilibrium of
the family described by Equation (24). For the homogeneous
part, approximate eigenvalues can be obtained to order R−1

B ,

λ1 = − 7.64R−1
B + O

(
R−2

B

)
,

λ± = ± 3.02a11i − 15.1R−1
B + O

(
R−2

B

)
, (26)

where the first eigenvalue corresponds to a decay toward
the particular solution of Equation (25), while the complex
ones correspond to damped oscillations around the different
equilibria described by Equation (24). Using the initial value
of a11, the imaginary part results in a period of 2.09 tHall,
which is very close to the actual period of the oscillations
in the simulation. The coupled effect of Hall drift and ohmic
decay can then be understood as a drift through a continuum
of Hall equilibria, driven by ohmic decay, toward the attractor
configuration given by Equation (25), which allows us to explain
the part of the evolution that scales with tOhm in Figure 9. This
attractor consists of a dominant dipolar poloidal field, coupled to
a counteraligned octupole through a weak toroidal quadrupole
(with amplitude ∝ R−1

B ). These properties are exactly the
same as those described for the attractor of Gourgouliatos &
Cumming (2014b).

4.2. Stability of Poloidal+Toroidal Confined Equilibrium

Gourgouliatos et al. (2013) also provide a solution for
Equation (10) with nonzero toroidal field, which assumes
α = f (r) sin2 θ , a functional dependence β = sα, with s
constant, and field lines contained inside the shell, which is
equivalent to the boundary condition α(R, θ ) = 0. Applying
also the boundary conditions α(rmin, θ ) = 0 and ∂α/∂r = 0
at the surface (r = R), to avoid surface currents, gives the
following solutions for uniform electron density:

f (r) = F0nR4

(
a

[
sin(sr)

sr
− cos(sr)

]

+b

[
cos(sr)

sr
+ sin(sr)

]
− (sr)2

(sR)4

)
, (27)

with s = 20.9R−1 = 5.23L−1, a = 0.00135, and b = 0.00185
being the solution with the smallest value of s for the choice
rmin = 0.75 R. Just as in the purely poloidal case, the choice of
F0 sets the strength and orientation of the field.

We evolve this field, keeping it confined to the crust by
applying zero boundary conditions at both the crust–core
interface and the surface of the star. In principle, we could
allow the field to escape the star owing to ohmic dissipation, but
this turns out to be numerically unstable. Note that the condition
(∂α/∂r)r=R = 0 is not enforced throughout the evolution, so
surface currents can (and do) develop.

Simulations for this initial condition turn out to decay
significantly during the first few tHall, quickly reducing the
value of RB down to a point where ohmic decay becomes

8
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Figure 11. Evolution of the poloidal+toroidal equilibrium field for RB = 100,
applying zero boundary conditions at both the core–crust interface and the
surface. In this simulation, the field is rescaled at each time step in order to keep
it at a constant energy; refer to the caption of Figure 1 for details.

(A color version of this figure is available in the online journal.)

significant compared to Hall drift. This suggests that the initial
field is unstable, but, to further test this, we perform different
simulations, in which we rescale the field at each time step to
keep its energy at its initial value and thus yielding a constant
value of RB (which otherwise would decay ∝ B0 ∝ √

E).
The evolution of this equilibrium field, including the rescaling

of the energy, is shown in Figure 11 for RB = 100, where it is
seen that it evolves to a configuration that is asymmetric with
respect to the equator, but then eventually becomes symmetric
again. In this final configuration both the toroidal and poloidal
fields are in their fundamental modes (see Appendix C), even
though RB is kept high so Hall drift remains the dominant
process. As illustrated in Figure 12, the field first evolves away
from a simple functional relationship β = β(α), which is a
necessary condition for equilibrium, and afterward goes into a
very tight linear relationship with β ∝ α. This suggests that the
field is initially driven away from the equilibrium configuration
and settles into a different one afterward.

In order to check this, we consider that an equilibrium should
be a solution of the Grad–Shafranov equation (Equation (10))
for an arbitrary function F (α). As the field evolves into a
configuration for which β ∝ α, we assume β = sα, and
s is computed in the simulations as

∑
β/

∑
α, where the

summation is done over all points in the grid. Using this, the
Grad–Shafranov equation can be rewritten as

Δ∗α + s2α

nr2 sin2 θ
= F (α). (28)
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Figure 12. Values of β plotted against values of α marked with blue dots for each
grid point for a snapshot in the simulation of the poloidal+toroidal equilibrium
with RB = 100. In this simulation, the field is rescaled at each time step in order
to keep it at a constant energy. The red line represents sα, where s = ∑

β/
∑

α.

(A color version of this figure is available in the online journal.)

In Figure 13, the left-hand side of this equation is plotted against
its value of α for each grid point and for different times. This,
together with Figures 11 and 12, allows us to get a clearer
picture.

1. The initial Hall equilibrium evolves in t ∼ 6 tHall into a
nonequilibrium configuration, meaning that it is unstable
to Hall drift. This can be seen from the lack of functional
dependences β = β(α) and F = F (α).

2. At t ∼ 20 tHall the field has evolved toward a stable equilib-
rium that is asymmetric with respect to the equator. The
toroidal field then satisfies a very tight linear relation-
ship with α, and F also approaches a linear relationship
F (α) = hα.

3. Up to t ∼ 400 tHall = 4 tOhm the field evolves driven by
ohmic dissipation through different stable Hall equilibria
characterized by different values of s and h.

4. In the end, a final configuration is reached, symmetric with
respect to the equator and with h = 0 and s � 3.17 L−1.
This acts as an attractor under the coupled effects of Hall
drift and ohmic dissipation.

This final attractor state can easily be obtained from
Equation (10) with β = sα and F (α) = 0, as that is the same
eigenvalue equation for the ohmic eigenmodes, for which solu-
tions are readily available (see Appendix C). This means that
in this final state, the poloidal and toroidal fields are in their
fundamental ohmic modes, so ohmic dissipation cannot provide
a perturbation to this equilibrium, and the configuration remains
steady, thus acting as an attractor. Note, however, that this final

9
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Figure 13. Value of F (α) = (Δ∗α + s2α)/(nr2 sin2 θ ) marked with blue dots
for each grid point at different times in a simulation of the poloidal+toroidal
equilibrium for RB = 100. In this simulation, the field is rescaled at each time
step in order to keep it at a constant energy. The red solid line is given by the
median values of F (α) in bins of size Δα = max(|α|)/25, and the black dashed
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(A color version of this figure is available in the online journal.)

attractor state has EP /E = 0.50, so half of the energy is con-
tained in the toroidal field, regardless of the value of RB, which
is an important difference with respect to the attractor of the
previous section, for which the amplitude of the toroidal field
scaled as R−1

B .
The coupled evolution of s and h is shown in Figure 14 for

two different values of RB. At the beginning of the simulation,
the field is driven out of equilibrium, so the values of s and h
do not really have a meaning, but once the field approaches an
equilibrium, they start following very closely the same pairs of
values, even though the conditions from which the equilibrium
is reached are different owing to the different choice of RB.
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Figure 14. Evolution of s and h for the poloidal+toroidal equilibrium normalized
at each step to the same energy. The arrow indicates the direction of time
evolution, and only data for t > 6 tHall are shown. Stars indicate the snapshots
shown in Figure 13 for the simulation with RB = 100.

(A color version of this figure is available in the online journal.)

A possible explanation of the one-to-one relation between s
and h can be given in terms of the Grad–Shafranov equation,
which, with β = sα and F (α) = hα, takes the form

Δ∗α + s2α − hαnr2 sin2 θ = 0, (29)

becoming a homogeneous linear partial differential equation
for α. It is to be expected that, given the appropriate boundary
conditions and a fixed value of h, there is a discrete set of
values of s for which nontrivial solutions are possible (of which
the lowest-order one would be chosen by the evolution of the
system). As h is modified, this set of allowed values of s should
change continuously, yielding the behavior seen in Figure 14.

5. CONCLUSIONS

Although Hall drift was proposed as a relevant mechanism for
magnetic field evolution in neutron stars more than two decades
ago, purely analytical studies of its effects have not yet been
very conclusive. The nonlinear nature of this process has made
it very complicated to do so, and numerical simulations have
become essential to acquire a better understanding of it.

In this work we have studied the stability of Hall equilibria in
axial symmetry (two-dimensional), finding that there are both
stable equilibria (such as the purely poloidal equilibrium of
Section 4.1) and unstable ones (the confined equilibrium of
Section 4.2). Even stable equilibria show an evolution, driven
by ohmic dissipation, toward an attractor state (equivalent to the
one identified by Gourgouliatos & Cumming 2014a, 2014b),
which is a particular case of a Hall equilibrium that retains its
structure under ohmic decay. For the unstable case, the field ends
up evolving first toward a stable equilibrium and then toward an
attractor. In both cases, this attractor state is approached through
a slow drift along nearby Hall equilibria, around which damped
oscillations are present.

For the particular case of a field completely contained in
the crust, although the evolution toward an attractor follows
the same pattern, the final state is qualitatively different from the
case of a field that crosses the surface of the star (which is also
the one described by Gourgouliatos & Cumming 2014a, 2014b).
The attractor for the confined field consists of a combination of
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poloidal and toroidal field components with a fixed fraction of
the energy contained in each, in stark contrast with the R−1

B

scaling the toroidal field amplitude has in the case where field
lines can penetrate the surface. Whether similar attractors with
nonnegligible toroidal field components exist when we do not
confine the field to the crust is not clear, though the simulations
of Gourgouliatos & Cumming (2014a, 2014b) seem to indicate
that they do not (or at least the field is unlikely to evolve
toward them).

If stable equilibrium configurations (the same or others) still
exist when the assumption of axial symmetry is removed, it
could have very important consequences for the observational
properties of magnetars, as it was shown for the case of the
purely poloidal equilibrium that Hall drift could produce only a
slight enhancement in the dissipation rate of magnetic energy,
which was independent of the intensity of the magnetic field.
In this way, objects with similar field strengths could be very
different, behaving as very active soft gamma repeaters if the
initial field is far away from an equilibrium configuration,
or as relatively quiescent anomalous X-ray pulsars in the
opposite case.

It is, however, difficult to establish whether the field could
be close to a Hall equilibrium when the neutron star crust
solidifies, since at this time the field is expected to be an MHD
equilibrium, and in general these will not be Hall equilibria
(Gourgouliatos et al. 2013). In particular, the formation of a
purely poloidal field (akin to the equilibrium field of Section 4.1)
is unlikely, as it has been extensively shown that these are MHD
unstable (Markey & Tayler 1973; Flowers & Ruderman 1977;
Braithwaite & Spruit 2006; Marchant et al. 2011), and, although
we found that it is possible to have stable Hall equilibria with an
important toroidal component, these were completely confined
to the interior of the crust. Attempts to construct Hall equilibria
with the field present in the exterior seem to suggest that it is only
possible to find solutions with only a few percent of the total
energy contained in the toroidal field (Lander & Jones 2012;
Gourgouliatos et al. 2013), though Ciolfi & Rezzolla (2013)
claim otherwise. Moreover, a proper treatment of the problem
should also include evolution of the field inside the core of the
neutron star, which might end up being the dominant process.
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APPENDIX A

BOUNDARY CONDITIONS

A.1. Conditions at the Axis (θ = 0, π )

The only requirement at the axis is that the magnetic field is
a single-valued vector field. In axial symmetry, this implies that
Bφ = Bθ = 0, yielding

β(θ = 0, π ) = 0,
∂α

∂r
(θ = 0, π ) = 0, (A1)

which means that α is constant along the axis. Since α has an
arbitrary “zero point,” we choose α = 0 at the axis, which also
makes α → 0 as r → ∞.

A.2. Meissner Boundary Conditions (r = rmin)

At the interface between the solid crust and the fluid core,
we require the normal component of the magnetic field and
the tangential component of the electric field to be continuous,
that is,

Br |in = Br |out, Eθ |in = Eθ |out, Eφ|in = Eφ|out. (A2)

Owing to the (assumed) Meissner effect, the magnetic and
electric fields in the core are zero, and thus these conditions
are simply

Br (r = rmin) = 0, Eθ (r = rmin) = Eφ(r = rmin) = 0. (A3)

These conditions allow for surface charges and currents, which
can make Er, Bθ , and Bφ nonzero at the boundary. The easiest of
these three to apply is the first one. Since Br ∝ ∂α/∂θ , it implies
that α is constant along the boundary, and since we already
fixed α = 0 on the symmetry axis, we must have α = 0 at
r = rmin also.

The condition on the electric field produces a much more
complex boundary condition. In terms of the magnetic field, the
electric field in the crust is given by

−cE = c

4πne
(∇ × B) × B + η∇ × B, (A4)

so requiring the tangential component of the electric field to be
zero at the boundary is equivalent to

0 = [

 2χ (∇ × B) × B + ηR−1

B ∇ × B
]
‖ (A5)

at r = rmin, where ‖ denotes the tangential component. In terms
of α and β, this produces the following two (nonlinear) boundary
conditions in spherical coordinates:

0 =
(

χβ
∂β

∂θ
+ R−1

B

η

sin θ

∂β

∂r

)
r=rmin

,

0 =
(

sin θχ
∂β

∂θ

∂α

∂r
+ R−1

B ηΔ∗α
)

r=rmin

, (A6)

where it has been explicitly used that α(rmin, θ ) = 0. These
“Meissner boundary conditions” have been written in a form
that closely resembles the terms in Equations (B3), allowing us
to see that the time derivative of α is zero at the inner boundary,
and that no toroidal magnetic flux is lost to the core of the star.

A.3. Zero Boundary Conditions

These conditions correspond to taking the limit RB → ∞ for
Equation (A6), namely,

0 =
(

χβ
∂β

∂θ

)
r=rmin

, 0 =
(

sin θχ
∂β

∂θ

∂α

∂r

)
r=rmin

. (A7)

In order for these to be satisfied, together with the condition
at the axis, we must have β(rmin, θ ) = 0, which together with
α(rmin, θ ) = 0 form the boundary conditions. Note that these
conditions are also used at the surface of the star in Section 4.2.

11



The Astrophysical Journal, 796:94 (15pp), 2014 December 1 Marchant et al.

A.4. Matching an External Vacuum Field (r = R)

If outside the star we consider a perfect vacuum, then the
magnetic field there is completely determined by its radial com-
ponent at the surface of the star, which must be continuous. Fur-
thermore, we expect surface currents to dissipate on timescales
much smaller than those of interest to us, so not only the radial
component of the magnetic field must be continuous, but also
the tangential one.

The condition imposed on β because of this is trivial. Since
there are no currents outside the star, we must have β = 0
there, and the continuity of the azimuthal component of the field
immediately gives β = 0 as a boundary condition at r = R.

The condition on α is much more complex, as it is nonlocal.
As shown in Marchant et al. (2011), the continuity of the radial
component of the magnetic field implies that the field outside
the star is given by

B = ∇Ψ, Ψ(r, θ, φ) =
∞∑
l=1

l∑
m=−l

alm

rl+1
Ylm(θ, φ),

alm = − Rl+2

l + 1

∫
4π

(Br )r=RY ∗
lm d Ω, (A8)

where (Br )r=R is the radial field B · r̂ at the surface of the star,
which can be expressed in terms of α as ([r2 sin θ ]−1∂α/∂θ )r=R .
For axially symmetric fields these coefficients can be written in
terms of α as (omitting the unnecessary m = 0 subscript)

al = Rl

l + 1

√
π (2l + 1)

∫ π

0
P 1

l (cos θ )α(R, θ ) d θ. (A9)

This selection of the al coefficients will give a continuous radial
component of the magnetic field, but so far we have not imposed
continuity on its θ component. Equating the value of Bθ just
inside the star, as given by α, and just outside the star, as given
by the combination of the al, we have

(Bθ )r=R =
∞∑
l=1

al

Rl+2

√
2l + 1

4π

∂

∂θ
Pl(cos θ )

= − 1

R sin θ

[
∂α

∂r

]
r=R

. (A10)

Solving for ∂α/∂r at the surface, we have the boundary
condition required for the continuity of the θ component of
the field, namely,

[
∂α

∂r

]
r=R

= −
∞∑
l=1

al

Rl+1

√
2l + 1

4π
sin θP 1

l (cos θ ), (A11)

with al given by Equation (A9). We cannot evaluate these
infinite summations numerically, so we cut them at a maximum
multipole L defined at the beginning of each simulation.

APPENDIX B

NUMERICAL IMPLEMENTATION

We compute Equations (6) in spherical coordinates, i.e.,

∂α

∂t
= sin θχ

(
∂β

∂θ

∂α

∂r
− ∂β

∂r

∂α

∂θ

)
+ R−1

B ηΔ∗α, (B1)

∂

∂t

(
β

sin θ

)
= − ∂

∂r
Fr − ∂

∂θ
Fθ , (B2)

where

Fr = −χΔ∗α
∂α

∂θ
− χβ

∂β

∂θ
− R−1

B

η

sin θ

∂β

∂r
,

Fθ = χΔ∗α
∂α

∂r
+ χβ

∂β

∂r
− R−1

B

η

r2 sin θ

∂β

∂θ
. (B3)

Note that, for completeness, in this section we do not assume
n and η to be constants. The functions α and β are discretized
on a regular spherical grid with Nθ points in the θ -direction
(including the axis) and Nr points in the radial direction
(including the surface and the inner boundary), plus a point just
outside the surface and one just below the inner boundary. These
two additional points are required to set boundary conditions on
the derivatives.

To describe the discretized values of the functions, we use
the notation αk

i,j , where i and j denote the grid points in the
radial and angular directions, respectively (with i going from 0
to Nr + 1 and j going from 0 to Nθ − 1), and k denotes the time
step. The numerical method used for the temporal discretization
of the system of Equations (B1) and (B2) is simply of the form

αk+1
i,j = αk

i,j + Δt

(
∂α

∂t

)k

i,j

, βk+1
i,j = βk

i,j + Δt

(
∂β

∂t

)k

i,j

. (B4)

However, the calculation of the spatial derivatives is done in
fundamentally different ways for the α and β equations. For
Equation (B1) we simply use the usual three-point stencil
approximation to all the spatial derivatives involved, namely,

(
∂α

∂t

)k

i,j

= sin θjχi,j

4ΔrΔθ

[(
βk

i,j+1 − βk
i,j−1

)(
αk

i+1,j − αk
i−1,j

)
− (

βk
i+1,j − βk

i−1,j

)(
αk

i,j+1 − αk
i,j−1

)]
+ R−1

B ηi,j (Δ∗α)ki,j , (B5)

where θj = jΔθ , and (Δ∗α)ki,j is computed as

(
Δ∗α

)k

i,j
= αk

i+1,j + αk
i−1,j − 2αk

i,j

(Δr)2 +
αk

i,j+1 + αk
i,j−1 − 2αk

i,j

(rj )2 (Δθ )2

− cot θj

αk
i,j+1 − αk

i,j−1

2(rj )2Δθ
, (B6)

and rj = rmin + (i − 1)Δr . For Equation (B2) we take advantage
of its flux-conservative properties by using the discretization

(
∂β

∂t

)k

i,j

= − sin θj

Δr

(
[Fr ]ki+1/2,j − [Fr ]ki−1/2,j

)
− sin θj

Δθ

(
[Fθ ]ki,j+1/2 − [Fθ ]ki,j−1/2

)
, (B7)

where (i ± 1/2, j ) and (i, j ± 1/2) denote edge-centered values
of the grid, obtained, for example, as

[
η

sin θ

∂β

∂r

]k

i+1/2,j

= ηi+1/2,j

sin θj

(
βk

i+1,j − βk
i,j

Δr

)
, (B8)
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in which the remaining edge-centered value ηi+1/2,j can be
solved exactly. The main feature of the discretization given by
Equation (B7) is that the time derivative of the toroidal magnetic
flux,

Φtor =
Nr∑
i=1

Nθ−1∑
j=1

βk
i,j

sin θj

ΔrΔθ, (B9)

will depend only on boundary values of the functions and its
derivatives. This embodies the flux-conserving property of the
equation for β.

For the evolution of β, we use Equation (B7) for the grid
points with 2 � i � Nr − 1 and 1 � j � Nθ − 1. For the case
of α, Equation (B5) is used to solve the evolution for the grid
points with 2 � i � Nr and 1 � j � Nθ − 1 when using zero
boundary conditions, and for the grid points with 1 � i � Nr

and 1 � j � Nθ −1 when using Meissner boundary conditions.
To time-evolve βk

1,j for the Meissner boundary conditions,
we use a modified form of Equation (B7):(

∂β

∂t

)k

1,j

= − sin θj

Δr/2

(
[Fr ]k3/2,j − [Fr ]k1,j

)
− sin θj

Δθ

(
[Fθ ]k1,j+1/2 − [Fθ ]k1,j−1/2

)
. (B10)

Noting that αk
1,j = 0 together with the first of the Meissner

boundary conditions (Equation (A11)) implies [Fr ]k1,j = 0, we
have that(

∂β

∂t

)k

1,j

= − sin θj

Δr/2
[Fr ]k3/2,j

− sin θj

Δθ

(
[Fθ ]k1,j+1/2 − [Fθ ]k1,j−1/2

)
. (B11)

Also, when evolving the equilibrium field of Section 4.1, a
slight numerical problem arose at points right below the surface,
where a small error in the resolution of Δ∗α produced numerical
artifacts in the evolution of the toroidal field function. In order
to overcome these problems, for this particular case we solve
the toroidal field function just below the surface of the star by
interpolation,

βk
Nr−1,j = 1

2

(
βk

Nr−2,j + βk
Nr ,j

) = 1

2
βk

Nr−2,j , (B12)

where the zero boundary condition at the surface was used. Since
in these poloidally dominated cases the toroidal field should not
produce steep current sheets at the surface, this approximation
should not significantly alter the evolution.

B.1. Implementation of Boundary Conditions

In this section we describe how the boundary conditions
shown in Appendix A are implemented in this finite-difference
scheme. The condition at the axis is trivial, but at other points
more care is required.

B.1.1. Matching an External Vacuum Field

For the surface of the star, we have the boundary condition
given by Equation (A11), which can be expressed in finite-
difference form as

αk
Nr +1,j − αk

Nr−1,j

2Δr
= −

L∑
l=1

al

Rl+1

√
2l + 1

4π
sin θjP

1
l (cos θj ).

(B13)

This expression gives the value of αk
Nr +1,j at each time step.

The sum must be limited to a finite number of multipoles L,
and the al are given by Equation (A9), but with the integral
computed as

al = Rl

l + 1

√
π (2l + 1)

Nθ−1∑
j=0

(
αk

Nr ,j
+ αk

Nr ,j+1

)
2

P 1
l (cos θj+1/2)Δθ.

(B14)

For β, right at the surface the continuity of the azimuthal
component of the field requires βk

Nr ,j
= 0. The value of β just

outside the surface, βNr +1,j , is only required to solve ∂β/∂r right
at the surface. However, this cannot be evaluated as βNr +1,j = 0
(no toroidal flux outside the star), because the derivative of β
need not be continuous at the surface. Instead, we set βk

Nr +1,j

in such a way that the radial derivative of β computed at the
surface is the same as computing it backward, i.e.,

βk
Nr +1,j − βk

Nr−1,j

2Δr
= βk

Nr ,j
− βk

Nr−1,j

Δr
. (B15)

B.1.2. Zero Boundary Conditions

The zero boundary conditions are simple, except that an extra
one is needed at the crust–core interface to set the value of
α right below the surface. This is done by noting that, since
∂α/∂t = 0 at the inner boundary (its value is fixed to zero),
Equation (B1) implies that Δ∗α = 0 there, which reduces to

α0,j = −α2,j , (B16)

and similarly when it is applied at the outer boundary.

B.1.3. Meissner Boundary Conditions

To implement the Meissner boundary conditions given by
Equations (A6), we solve for αk

0,j and βk
0,j from the discretized

versions of these, which results in

βk
0,j = βk

2,j +
RB

ni,j ηi,j r2
min sin θj

Δr

Δθ

(
βk

1,j+1 − βk
1,j−1

)
,

αk
0,j =

(
βk

1,j+1 − βk
1,j−1

)
Δr + 4ni,j ηi,jR

−1
B r2

min sin θj Δθ(
βk

1,j+1 − βk
1,j−1

)
Δr − 4ni,j ηi,jR

−1
B r2

min sin θj Δθ
αk

2,j .

(B17)

Unfortunately, the denominator in this last expression can get
very close to zero, causing numerical problems for simulations
with large RB.

B.2. Variable Time Step

Usually it will be the case that some time intervals in the
simulation will require a much smaller Δt to converge without
producing numerical instabilities. Since Hall drift will advect
field lines with the electron velocity ve = − j/(ne), we have a
Courant condition of the form

|ve|Δt

Δl
< kc, (B18)

where kc < 1 is chosen at the beginning of each simulation
and Δl is the smallest dimension of any grid cell. Using that
j = c(∇ × B)/(4π ), the time step is solved as

Δt = kc

4πne

c

Δl

|∇ × B| , (B19)
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Figure 15. Left: evolution of the ratio of poloidal to total magnetic energy EP /E as a function of time for the four test cases of Appendix D, which are combinations
of the fundamental poloidal and toroidal Ohm modes, with RB = 25. Solid lines are results given by Hollerbach’s spectral code, while crosses show the results of
the finite-difference code developed for this work. Right: snapshots of the evolution of the test case with lowest and highest initial EP /E ratio (left and right frames,
respectively). For both frames, the plot on the left is done with our finite-difference code, while the one on the right is done with Hollerbach’s spectral code. All plots
correspond to t/tHall = 2.40.

(A color version of this figure is available in the online journal.)

which is exactly the same condition used by Viganò et al. (2012).
In the thin crust, unless the number of grid points in the radial
direction is much larger than the number of grid points in the
θ -direction, the smallest dimension of a grid cell will always be
Δr . Because of this, we assume in our implementation Δl = Δr .

At each step of the simulation, this is evaluated at all points
in the grid, and the smallest value is chosen. In order to avoid
having the time step increase indefinitely as ohmic diffusion
becomes dominant, we also define a dissipative time step,

Δt = kc

(Δr)2

η
, (B20)

and the smallest of the two values is used at each step of the
simulation.

Although in principle we only need kc < 1, in the simulations
performed for this work numerical problems arose when kc was
chosen close to unity, sometimes requiring values as small as
kc = 0.01 for the simulations to converge. The need for such
small time steps should be related to the use of purely explicit
(and first order in time) methods for the time evolution and
the explicit third-order spatial derivatives that appear in the
equations.

APPENDIX C

OHMIC MODES

If we only consider the effect of ohmic decay in Equations (6),
the resulting differential equations are linear, namely,

∂α

∂t
= ηΔ∗α,

∂β

∂t
= 
 2∇ ·

(
η∇β


 2

)
, (C1)

which is a well-studied problem for the case where cur-
rents are present inside a sphere (Lamb 1883; Cowling 1945;
Chanmugam & Gabriel 1972; Cumming 2002). Exponen-
tially decaying solutions can be easily computed for the case
of η = η(r) and currents contained in a spherical shell

Table 1
Decay Timescales of Poloidal and Toroidal

Ohmic Modes Under Zero and Meissner
Boundary Conditions

n l τP τT , zbc τT , Mbc

1 1 0.323 0.0995 0.376
2 1 0.0438 0.0252 0.0447
1 2 0.260 0.0964 0.330
2 2 0.0422 0.0250 0.0440

Notes. First two radial modes for each of l = 1, 2, with
rmin = 0.75R. The τP are the values associated with the
poloidal modes both for the cases of zero and Meissner
boundary conditions, while τT , zbc and τT , Mbc are the
values for the toroidal modes in the case of zero boundary
conditions (for the subscript zbc) and Meissner boundary
conditions (for the subscript Mbc). Values are given in
units of tOhm = L2/η.

(Cumming et al. 2004). For the simple case of constant re-
sistivity the right-hand side of Equation (C1) for β reduces to
ηΔ∗β, and analytical solutions for these ohmic modes are readily
available,

α(r, θ, t) = r [Ajl (kr) + Byl (kr)] P 1
l (cos θ ) sin θe−t/τ , (C2)

β(r, θ, t) = r [Cjl (kr) + Dyl (kr)] P 1
l (cos θ ) sin θe−t/τ , (C3)

where jl and yl are the spherical Bessel functions of order l.
Also, τ = 1/(ηk2), and the values of k and the ratios A/B and
C/D depend on the boundary conditions used for α and β. A few
values of τ for different modes are shown in Table 1 for both zero
and Meissner boundary conditions at the crust–core interface
and matching to an external vacuum at the surface. Note that
for the case of a field confined in the star as in Section 4.2 the
solutions satisfy α ∝ β and are equivalent to the ones shown in
Table 1 for the toroidal field with zero boundary conditions.
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APPENDIX D

COMPARISON WITH THE SPECTRAL
CODE OF HOLLERBACH (2000)

The most immediate way to test the validity of a
code is to compare it against analytically known solutions.
These are available for the case of pure ohmic dissipation
(see Appendix C), and our code properly reproduces these
ohmic eigenmodes. The same cannot be done for the Hall
drift term; although solutions describing wave phenomena can
be obtained for a constant background field (Goldreich &
Reisenegger 1992), these are incompatible with our boundary
conditions.

On the other hand, we had access to the spectral code devel-
oped by Hollerbach (2000), which was used in the simulations
of Hollerbach & Rüdiger (2002, 2004). We used this code to run
four test cases in order to compare with our results. These are
particularly useful for a comparison since this code uses a spec-
tral decomposition, a method radically different from our finite-
difference approach. All tests were made using zero boundary
conditions at the crust–core interface and matching to an ex-
ternal vacuum field with no surface currents at the surface of
the star.

The resolution used when running these simulations with
the spectral code was an expansion in terms of 20 radial
and 20 latitudinal modes, which we compare against the
same resolution used in our simulations, i.e., 40 radial and
120 latitudinal grid points with L = 24 for the multipole
expansion outside the star. Initial conditions were chosen using
combinations of the fundamental poloidal and toroidal modes
with RB = 25. The choice of a low resolution for the runs
with the spectral code and a small value of RB were due to the
long times required for each simulation with Hollerbach’s code.
Figure 15 shows the evolution of the ratio of poloidal to total
magnetic energy EP /E, together with comparative snapshots
of the structure of the field using both codes.

It can be seen that both the structure and the energetics are
remarkably consistent between both codes. Since the implemen-
tation of the spectral code is significantly different from ours,
the positive outcome of this comparison is indicative that our
implementation is correct at least for the case of zero boundary
conditions.
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Hollerbach, R., & Rüdiger, G. 2002, MNRAS, 337, 216
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