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Abstract-In the most direct method for measuring correlation x(t)-x(t-Z)
functions with an analog computer a delay must be simulated. Since x(t-z) l(_).x(t-Z)
a lumped parameter system is used, we can only hope to approximate x _Ts
this delay. We intentionally exclude such storage systems as mag- T

netic tapes because of their cost, and confine ourselves to the use of multiplier
commonly available analog computer components. integrator

Extensive work has been carried out toward finding the best
delay approximation according to different criteria, based mainly on Fig. 1. Ideal circuit for measuring RZ(T).
transient or frequency response considerations. In this paper a new
point of view is adopted. The overall effect of the delay approximation y(t,Z)x(t-Z) Rxa(Z)
on the measured value of the autocorrelation function is taken into x(t)
account. The best approximation is then chosen as the one that v Ga(s) X T
produces the closest agreement between the theoretically measured
value and the exact value of the autocorrelation. It is seen that this m u iti p lier
method for selecting the delay approximation sometimes leads to integrator
very different results from those formerly obtained. For example, Fig. 2. Circuit for measuring Rxa(r) RX(r).
it is shown that for measuring the autocorrelation of noise generated
by filtering white noise with a filter with real poles, the best approxi-
mation is one whose value for a real argument (instead of jw) best system with a transfer function Ga(sr) = e-8-, we would
approaches the exponential function for a real argument. be able to obtain R,(r) with any accuracy we might
The treatment of the subject in this paper deals mainly with the

autocorrelation function, but is later extended to the case of cross- prescribe, if the integration time were long enough.
correlations. Since e-S cannot be synthesized by means of lumped

parameter systems, such as we have in an electronicGENERAL EQUATION analog computer, a rational fraction approximation to
ET x(t) } be an ergodic random process with an auto- the complex exponential function must be found. Ex-

variance KZ(r) and a corresponding power spec- tensive work has been carried out along these lines
tral density Wz(w). Since the process is ergodic, according to different approximating criteria [2]-[4].

the autocorrelation measured for one of the members Our new criterion will be that of finding the best delay
x(t) of the process is equal to the autovariance of the approximation, considering its overall effect on the
process. Therefore [1], measurement of the autocorrelation function itself.

K R ~ ( r I If we use any of the approximations Ga(sT) in place
Kx(r) of the delay e-8r, we shall have the system of Fig. 2 for

and carrying out our measurement. Let us find what is
1 T/2 really measured, instead of Rx(-r), because of that imper-

KZ(r) = lim -j x(()x(t + T)dt. (1) fect delay realization. Let
T o T -T/2 Rx,,(r) = approximation of Rx(T) measured by the sys-

But since we are dealing with a physical measurement tem of Fig. 2;
starting at t = 0, we must use Ga(sT) = approximation of e-8r used in this system;

1 T y(t, T) = approximation of x(t-r).
Rx(r) = lim x()x(t-r)dt. (2) In the measurement of Rxa(T), for a certain value of r

the value of r is fixed in Ga(sr), and the time average of
However, (2) gives the same result as (1) if the pro- x(t)y(t, T) is found by a multiplication followed by an

cess is ergodic [I]. The measurement is subject to a integration, i.e.,
restriction concerning the integration time T which, of
cus,must be finite. This part of the problem is Rz()= lrn 1J~x(t)y(t,^)t 3

treated elsewhere in the literature[1.T T
Ideally, the circuit for obtaining Rx(r) would be the Ltu o eaeRaT otecosorlto e

one shown in Fig. 1. It appears that if we could use a twex()ady,T)FoafidTwehvathenps
of the multiplier two signals which are functions of

Manuscript received January 17, 1965. time: x(t) and y(t, T). If we now take Ti as the newr delay
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Rvz(-Tl) = lim -J x(t - -r )y(t, T)dt. (4) G (s)
T- 0 T o

x(t)
We note that T in (4) is just a fixed parameter and not 0 4

the delay parameter. If we set here 7 =0, we get z(t
1 T G2(s)

Ryx(O) = lim J x(t)y(t, -r)dt, (5)
T-o T 0 Fig. 3. IVy;/(w)=Gl(jw)G2*(jw)J1K4(w).

and, comparing with (3),

Rxa(r) = Ryx(O). (6) As will be shown, this equation sets the basis for the
determination of the best approximation Ga(jfT). In the

That is, for the crosseorrelation parameter equal to ideal case,
zero, the approximation Rxa(-r) of RX(T) is the crosscor-
relation between x(t) and the approximation y(t, r) of Ga(jWT) = e-j5r,
the delayed input x(t-r). and (11) agrees with the Wiener-Khintchine theorem

For the system of Fig. 3 we may write [1 ] for r >O. In effect, we now have

J472(o) = G1(jw)G2*(jW)Wx(W). (7) 1 00 dw
Rx(T) = Rxa(T) = - ej&Wx(w) - -

Here W,2(co) is the cross power spectral density related 2 J0 27r
to the signals y(t) and z(t). In our case (Fig. 2) we may Instead of adopting the best approximation Ga(jwr)

as that which more closely approximates e-3wT, we shall
G2(jW) - = G2*(jw), select that Ga(jwT) which produces the best approxima-

z(t) = x(t), tion of Rxa(T) to Rx(7-). This last method often leads to
quite different results for Ga(jcWT) when compared withGi(sr) = Ga(57), results formerly obtained.

Gl(jwr) = Ga(jcor). Equation (11) may be put in a form more suitable for
calculation, noting that it is the evaluation along the

Replacing these relations in (7) we obtain ioai fteitgajco axis of the integral
JT7z(c) = Wyx(co), 1 '

TV0,(w) = Ga(jw-)Wx(w). (8) 4 j Ga('sr)Wz ds.

Now, according to the Wiener-Khintchine theorem Hence,
[1],1

1 Rxa(T) Ga(sr) Tlzx ds. (12)
K0x(v) = - FWyx(w), 4y-(

1 dw In many cases (12) imay be evaluated in a relatively
Kyx(v) = ei-WW:, X)-. (9) easy way by using Cauchy's residue theorem [5]:2 _00 2,x

But because of our ergodic hypothesis, if(s)ds

KVX(v) = Ryx(v). (10) = 27rj E Res [f(s), at poles of f(s) inside C]. (13)

Then, from (8), (9), and (10) we may write Let f(s) in (13) be

R ,z (v) =- ei wvGaQ(jUr)Wx(w) d- f(s) = G,, (S))WZ (-) (13a)

R0,(0) = --dwT Then, with reference to Fig. 4, we write
2j TJ dI rhe r n-

'+ f(s)ds =I f(s)ds + f(s)ds
Finally, using (6), the general equation (11) is ob- J c +'jR YC2

tamned, giving the approximate autocorrelation function= rjERs[()inC+C2. 14
as a function of the delay approximation transfer func-=2ij Rsf()inC+C1. 14
tion and the noise power density spectrum: Because Ga(s'r) is.a stable function, it has no poles in

the right-half plane (RH-P). The only poles inside
1 (' dco C1-jC2 are then those of Wx(sjj), with the exception of

Rxa(T) 3 __Ga(j@T)Wx(69) z z*(11) the ole nlocf Wil(s{/j) at the arorign, wlh;rich musob left
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JW shapedJ W ~~~~~~~~~~~~~~~~~~~~~wihi te
noise y(t,Z)x(t-Z)

j R [r \ s plane white approximation /Rx(Z)

R / R coX

_z c ~~~~ ~~~~~~~~~n(t) x(t)
. C ~~~~~~~~~~~~~~~~~Rx(Z )

Fig. 5. Measurement of the autocorrelatioii approxi-Cl C 1-1_/ 2 mation of linearly filtered white noise.

According to (16), the approximation given by the
Fig. 4. Integration conitour for inltegral (13). correlation circuit of Fig. 5 is

R.a(T)
out of the integration contour. Accordingly, letting 1? 1
go to infinity, (14) gives the following equation: = -- Res [Ga(s-)H(s)H(-s)Wo, at PWRP], (18)

2
-Jf ~f(s)ds where PWRP are the poles of H(s) H(-s) in the right--io half plane.
= 2w]r If we assume that the filter H(s) is a stable system,

F (S \ (S\S 1 the poles of H(s) are all in the left-half plane. Conse-Res LGa(sr)WxW at poles of W in RHPJ quently, the poles of H(-s) are all in the right-half
plane. Hence, the poles of H(s)H(-s) in the RHP are

+ lim ff(s)ds. those of H(-s). Therefore,
R--xo wo

Rxa(T) = --E Res [Ga(ST)H(S)H(-s) at PHRP], (19)In many cases we find that 2

limf(s) ds 0. (See Appendix.) (t 5) where PHRP are the poles of H(-s) in the right-halfhlm y) f(S)dS 0.O- (See Appendix.) (15) plane. Let

Therefore, H(s) K (S + Z1)(S +z2) '.
. (S + n)

W (S + PI)Q(S + p2) . . (S + pn)
f Ga(ST)WI-) ds

_jOOg/ - m~~~~~~~~~~~~~~~~~~~r< n,Pa(s) m n
- 27j E Res FGa(ST)Wx( ) at PwRP]. with the simple poles -pi, real or complex, in the left-

L\Jf half plane. Then,
Here PWRP are the poles of W,(s/j) in the right-half (S) (plane. Finally, replacing this expression in (12), the H(s)H(-s) = K2 Qm(s)Qm-S)

approximation Rza(,T) of RZ(T) is found to be (s+ Pi)(S-pi) . . . (s±P.)(S-P.)
1 1 / s \ P In order to use (19) we must find

Rza (T) = -Z Res at PWRP , (16) R2 [aS)xy Res [Ga,(sr)H(s)H(-s~), pi]J
subject to the restriction imposed by (15). - lim (s -pi)Ga(sT)H(s)H(-s),

S--+Pi

APPLICATION TO RATIONAL SPECTRUM NOISE since pi are the poles of H(-s). Noting that Ga(sr) has
The output power spectral density WI(oX) of a linear no poles in the RHP, we may write

lumped parameter system with a transfer function Res [Ga(S7)H(S)H(-s), pi]
H(jw) iS related [1 ], [6] to its input power spectral
density Wi(co) by = Ga(Pir) ulrn (s - p)H(s)H(-s). (20)

W~(c)- H(jc) |2Wi(o). B:ut if we let

If the input signal is white noise with Wi(co.) = Wo, A i= lrn (s - p)H(s)H(-s),
the output is rational spectruml noise, and is given by P

T17.(w) = IH(jw£) |2W0 = WoH(jw)H(-jw). (17) we may write the following:
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A_i nlim (-s - pi)H(-s)H(s).
jw

Hence,

A = lim (s + pi)H(s)H(-s) = -As. PO=jWo
s-Pi

Then

Ai= - l (s + pi)H(s)H(-s), (21) / Go4 Wo
s- -Pi

replaced in (20), yields

Res [Ga(sr)H(s)H(-s), pi - AiGa(piT).

Finally, replacing this in (19), the approximation to
the autocorrelation function is found to be

Po= l/T

RZU(T) ~~~=G-,A (pjr), r > ° (22)l
2 = Fig. 6. Domain for the valuation of the complex frequenicy responise.

where Wo is the power density spectrum of the white
noise at the input of H(s) (see Fig. 5); -Pi are the Let
poles of H(s) (all poles are simple and in the left-hand Ei(r) = -PiT- Ga(piT), (26)
plane); Ai is the residue of H(s)H(-s) at -pi
(i= 1 n); and Ga(sT) is the delay approximation so that
transfer function. n

If H(s) has a pole of order r at -pj, the residue is E(T) = > AE, (r). (27)

A-j,r=Res [as ()(s,p]A-j,r Res[Ga(s)H(s)HQ5s), pj], Then the accuracy of the measurement shall depend on
1 dr- the differences

A __ = -p( -1!dr [(s - pj)rG.(s)H(s)H(-s...)], -G(i)

and (22) turns into a more complicated expression. It is within the range of r concerned. This means that we
simpler in this case to treat the problem as a particular must study G(pir), as T varies, and compare it with
situation starting from (19), rather than try to find a - To do this, it is convenient to use the concept of a
more elaborate formula in place of (22). complex frequency response, defined as the set of values

If in (22) we let a function G(Xpo) assumes as X varies.

Ga(sT) = e-87, Here po is, in general, a fixed complex number, while
X is real and variable. This corresponds to the evalua-

the exact autocorrelation function is obtained for r>0: tion of G(Xpo) along an axis passing through O+jO, for
W= n X= 0, and through Po, for X = 1. For po =j and X =co we

R,.(z(T = RZ(T =-_E AAe-Pir, T > 0. (23) obtain the special case of the frequency response. For2 i=1 po= 1T, real, we have the evaluation of G(Xpo) along

Since the function measured by the circuit of Fig. 5 is the real axis. These situations are shown in Fig. 6.
the approximation Let us study the complex frequency response of

Ga(piT) in (24) and (26) according to the different na-

RX.a(T) = > AiGa(p?8T), (24) ture of the poles pi.

i=1 Real Poles
and since its exact value is given by Let pi= 1/ Ti be real. Then,

n

R (T) X AePi, Ga(piT) = GaA

the error is and

E(r) = Rx(T) - Rxa(T),

that is, Ei(T) = e-TT)Ga (T-Z).
F:(T) EAs[-77iT-a(piT). (25) We see, then, that for a real pole of H(s) in Fig. 5,

Ai[ei= aPi).(5 the best Ga(5T) will be the one whose real axis response
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owgi 0,2 aPII(u) 8aP33(u)

0,8

0--u-P22(u)°l ///

0°.4-- \a833(u) (2tP22(u) 8Gc(U) 8Gg(u)

-0,6c u ig. 8. Error E(r)=6Ga(r)=e-uGa(u) for diferent
-07 .P4(u approximations and a real argument.

60-24(sr) 233()2
IFig. 7. VTalue Of the approximation1s fOr a real argum1enlt. P(s)60+36(Sr) ±9(s-r)2+ (sr)3(3

G(T Ti) best approximates the exponential for a real p()120-6Osr±12(ST)2-(Sr)334

P34(u P3(ST

argument, i.e., e-(rIi), within the range of /TP of in- l2O+6OSr+12(Sr)2+(ST)3 (4
terest. Since the nondimensional variable T/T is inde- 80305)6(T245)
pendent of any particular real pole, we immediately P34(ST) = (35)
conclude that, if alll the poles of H(S) are real, then the 840+480(ST)±120(ST)2+16(ST)3±(ST)4
best delay approximation is also that which best ap- 1680-84O(Sr)±180(Sr)2-20(Sr)3±(Sr)4
proximates e (TIT). 14(S)680+ 8404(ST)+180(5T 26+_20 (ST)34(36)

In Fig. 7 we find Ga(U) =Ga(T T) for some rational
fraction approximations of G(sT) which can be built In Fig. 8 we find plots of the error
with commonly available analog computer components. /r\
These are described in the literature [2], [4], [7] and E(T) = -u-Ga aGi)

have the following transfer functions: TIT
1) Graphically determined optimum (in frequency As is to be expected, the error introduced by all-pass

domain) fourth-order all-pass approximation: approximations begins to increase after a certain./T,

1073.8 - 536.9(sr) ± 119-96(ST)2 - 13.585(Sr)3± (sr)4 (28)
Fg7Vlo aro 1073.8 + 536.9(sr) ± 119.96(sr)P + 13.585(sr)3 + (sr)4 (28)

2) All derivatives of the phase response equal to zero since as 2T goes to infinity,GI(r7T) must reach plus or
atest=jT s= 0: minus one. However, the non-all-pass approximations,

1415D.9 - 715.73(ST) ± 155D.85(ST)2 - 180576(rS)3 -1 (TS)4 (9

eoles) o 1415.9 + 715.73(sa) +1t5.85(sr) 8+ 180576(rs)3 + (rs)4 (29)

3) Cut product approximnation: such ahS P23(wtT) and P34(STT), go to zero under these

876.68 - 438.34(5T) + 98.696(Sr)2 - 11.1O(TS)3 + (TS)4proximate876.68 + 438.34(sr) P4498.696(sr) ± 11.108(sr) 1±2(S) (3)

The Padeapproximations plotted in Fig. 7 are samne circumstances. Sinceeo(TT) goes to zero as r/
tends to infinity, they are better suited for representing

PTe(se)= d (31) e (TIT)
2+5T For example, let H(s) in Fig. 5 be

P22(ST) 12 * ( 2 3 + (ST)
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Then, from (21),
1.0

Als = lim -- (s + ) et P23(u) 0

A i 1 /2To 0.6 ,' nt1 x(t ) P34(u) ()

0.4-.noi ~~~Gcg(u) ®

and, fromn (22), 0. I (.sI(.s1 cU)

___ (T 0.2 \.
Rxa(T) = Ga = - - _

4To 'To 0 ~7. . . )
1 2 3 4 5 6 7 8 9 10

The exact value is given by -0.2f

Rx(T) =W- e- (7/To) T> F.Fig. 9. Calculated rxa(7) for differenit approxi-
4To mations and filtered white nioise.

Since

Wo \We see that even if T/1 is not very large (i.e., the
Rx(O) = Rxa(O) = -, errors caused by all-pass approximations are not high),

4To it may happen that rT2 = Tl T2(Tr T) is large, giving
we may write the normalized autocorrelation rise to a significant error in Ga(T T2). However, this

effect is partially reduced because of the factor T2/T1 in

rxa(T) = Ra() =G_ -) T2 TRxaQ)-
To __T

We observe from Fig. 8 that if we use P34(sr) as the For example, let
delay approximation for the measurement, we get an
error of 1.5 per cent, for /T= 10. If G,(si-) is used, the T, = 0.5,
error goes up to 10 per cent. P23(sT) would produce an T2 = 0.1.
error of 5 per cent under these same circumstances.
As another illustrative example let us choose From (37) we have

1 rxa(r) = 1.25[Ga(2-r)>-0.2Ga(lOr)],
H(s)=-

(1 + sTi)(I + sT2) which is plotted in Fig. 9 for various delay approxima-
tions.Then, For T= l, we have Ga(2) in the first term, but Ga(10)

/ 10 T, in the second. It is here that an all-pass approximation
A1 = rn s + )TJ H(s)H(-s) = (T 2 T 2) is undesirable because of its higher error for large argu-

ments.
and In Fig. 9 we see that, up torT= 10, the maximum error

1 T2 introduced by using P34(ST) is less than 4 per cent, while
A2= lim (s + H(s)H(-s) = - -A1l. if G,(ST) is used, this error rises to 15 per cent. Even

>-+-l/T2 T2 T, P23(ST) is better for this case, since the error reaches only

Hence, from (22), 7 per cent.
As a final example of H(s) with real poles, let

Rxa(r) = [A jGa ( + A 2Ga (~)'H(s) =(T T
(sTo + 1)(sTj + 1)(sT2 + 1)

Rxa(-) = -AW oGa-)- Ga- This form appears when a filter for dc suppression, with
2 [Ga lp1i Ti \T2/1 a transfer function sTo/sTo+ 1, is used in cascade with

Also two low-pass filters.so, ~~~~~~~~~~~~Followingthe procedure already outlined, we obtain

raQ)=Rxa(T) from (21) and (22)
Rxa(°) A-To3

so that -2(T02 -T12)(T02 -T22)

rxa(r) = T1 [a(T) T Ga(rT)] (37) A1= -><< -
/ T229
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T02 T2
A2 --

2(T02- T22)(T12 - T22) 1.0

and 0.8

T (T __ P23(u) i.

AG)+ AGa )+A 2Ga - 0.6
TOT, T2 ~~~~~~~~~n() los x(t) G0u G(u

Txa(7) = - (38) 0.4 white (lOs.1)(O.5s*1)(0.2s.i)Gg(U)0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(8)wht(0s1)0.s+)(.2+1

Ao + A1 + A2 noise Gc(u) g)
\ e~~~~~~~~~~~~~~~iu(exact)

If we let 0.2--
10 0

1 3- L -6- --jo~0Ti = 0.5 6-0.

T2 = 0.2, Fig. 10. Approximation rxa(r) of filtered white

replacing in (38) we find noise for different delay approximations.

rxa(T)= 1.493[-0.05Ga(O.Tr)+l1.193Ga(2T)-0.476Ga(5T)].
zero at all. This is why we observe in Fig. 11 that for the

This function is plotted in Fig. 10. Again we see that higher values of i, non-all-pass approximations are
by the use of P23(sr) and P34(sr) as delay approxima- better than the all-pass ones, while for the lower range
tions, better results are obtained than if all-pass ap- of t the converse is true. We see this confirmed by the
proximations were used. results of Example 1.

Complex Poles Example 1: Let white noise be the input to a second-
order system with a transfer function

Let PX in

W0~~~~~~~~~~~~~~~~~~,
Rxa(T) =- AiGa(piT) (39) H( ) 2+ 2~s (41)

2=1
The approximate autocorrelation that would be mea-

be complex. Then we may write sured at its output, for different delay approximations
pi = oi + jwi, (Fig. 5), may be calculated by use of (22). The results

Pi ~i.i i,i- I 2 are plotted in Figs. 12(a), (b), (c), (d), and (e) for
pi= (iWini +fr@nV1 -tt > =0.1, 0.3, 0.5, 0.7, and 0.9, respectively.

pit = co,, (., + VjVl _ 12) Among the many error criteria that may be consid-
ered for comparing the relative merits of the differentwhereda i is the natural frequency of the pole and n its approximations, let us choose one that will give the

damping factor. Then, maximum wjT for which the difference between the

Ga(PiT) = Ga[Wt1iT(7i + jV1 - tb2)]. (40) actual and the measured value of the autocorrelation is
less than e; let us call this value Conrm. Choosing c== 0.02

In order to compare with the case of real poles, let us and 0.05, we may construct Tables I and II with the aid
write wi= 1/Ti. We obtain of Fig. 12.

r___1 Example 2: Suppose we are required to select a delay
Ga(PtT) = Ga LT + jV\l - 2)j. approximation for measuring the autocorrelation func-

tion r.(r) of white noise filtered by a second-order sys-
The argument here is not independent of the different tem in which t may be between 0.9 and 0.5. The nor-
poles -pi of H(s) because of t. Instead of having only malized value shall be within 0.02 of the actual value.
one function Ga(TIT), as in the case of real poles, we This measurement is to be carried out up to covT=4.0
have a family of functions of the nondimensional vari- in one case, and up to cwnT = 6.5 in the other. In Table I
able coJn =T Tn, with t as a parameter. we see that for the first case we may use P34(Sr), Go(sr),
The complex frequency response of Ga(pT) may be or G2(sT); for the second case we may use only P34(sr)

seen in Fig. 11 for different delay approximations, and Example 3: Let us change the range of t in Example 2,
for the perfect delay and suppose that it is between 0.1 and 0.5, and that the

measurement is to be carried out up to co T=4.5, and
e~~~T~ene~ - s2 * CT = 5.5. Now in Table I we find that for both of these

As in the case of real poles, the error appears for the cases we may use either G0(ST) or G,,(ST).
larger values of T/Tn or wj. The complex frequency Sinusoidal Signal
response of e-pT is such that its amplitude goes to zero
as co,T increases, for t>0. This happens more rapidly The autocorrelation of a sinusoidal signal
the higher t may be, while if t=0, e-P7 does not go to x(t) = Ao cos (coot + 4),
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0,3j- 8

5. SoGc42

-0.2 01 P34 01 Q02
3

0 1

23
N eP

-0.2 -Qj -03 t Ol 0.
03

wnZ=1.4
(a)

Q8j-- 6. J°8j loP

-0.8j~ ~~ ~ ~ ~ ~ ~ ~~~~~~~ .j- O2

89lop 5~~~~~~~~~~ 91

79. A22 5

. 4 ~~~~~~~~~~~:~

G10 j _ 1.0j
-10-Q8 -06 -Q4 G0g0. 4 06 10 1.0 -08 Q\ Q 2 Q 6 Q

(b) (c)

Fig. 11. Complex frequlency response of several approximations Ga(pSr) for complex pole pairs: (a) t=O.7; (b) t=0.5; and
(c) t=0.1. The parameter shown in the curves is conr.

TABLE I
- ~~~~~TABLE II

Approximate values of (C)nTm such that _____________________________
|rx(r)-rxa(r)I| <0.02 for WnT<XnTrn_ CnTm forj=0.05.

Ga(fsT\) P23(sT) P34(si) Go(ST) Gg(sr) Ga(St) P23(ST) P34(Sr) Go(ST) Gg(sr)

realpole 5.2 >10 8.4 4.4 realpole 9.6 >20 >10 6.8

10Pii >810 >10 5.9 4.5 t=O.9 >10 >10 8.5 5.8

0.7 3.3 6.5 6.6 4.5 0.7 > 10 > 10 8.6 7.0

0.5 3.3 6.5 7.8 5.6 0.5 4.2 7.4 7.8 7.1

0.3 3.5 6.5 5.5 6.1 0.3 4.0 6.7 9.1 7.8

0.1 2.6 4.0 6.2 8.9 0.1 4.1 5.0 6.8 9.2
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is given [1] by x(t) y (U)zx(t-Z)

A o2
RK(7) = cos woT, (42) L Rx(Z)2

and its power density spectrunm is found, according to
the Wiener-Khintchine theorem, by z(t)

Wx(co)= 2FRX(r),
A02 00 Fig. 13. Circuit for measuring crosscorrelations.

Wf(x) = - [cos (w + wo) T + cos (D- coo)r]dr. (43)
2J tion of sine waves, the best approximation is one whose

But response on the jw axis (i.e., its frequency response) best
approximates the frequency response of the exponential

00 function. This implies a constant amplitude, equal toJ cos (w + wo)Tdr one, and a linear phase variation with woT, since

sin (co + coo>r sin (co coo)T|e-jwoT 1,
= lim- lim-

00 CO + Co 00 cO + coo and

sin (c + co ))T7 [e-j-or] COT.
= 2 im- 2r6(co + coo).

T- Bx Xo + coo It is in this case that the criterion coincides with that of

In the samie way we find selecting the delay approximation that has the best fre-
quency response, as described in the literature [2]. For

f°° instance, G,(jcoT) gives a phase error of less than 1.10f cos (co -coo)rdi- = 27r6(co - co),cos
-x wo)TdT = 2rb(w coo), from CT= 0 up to co-= 7.5, after which the error increases

that, froiii (43), rapidly. However, P44(jCor) reaches this same phaseso that, fromn (43), error at coi= 4.8, and P34 (jw-T) reaches it at oTr=4.2.
A 02

W1(X) = - 2w[ (co + co) + 6(c - cO) EXTENSION TO CROSSCORRELATION TMEASUREMENTS
The results obtained for autocorrelation measure-

The mneasured value Rx,(T) may now be found by replac- nments may be extended to include the case of crosscor-
ing in (11): relations, the steps to be followed being similar. Let us

1 0 dw suppose that it is necessary to measure the crosscorrela-
Rxa(T) =-J Ga(jcoT)W_(c) tion between two signals, x(t) and z(t), using an ap-

2 27r proximate delay Ga(sr) (Fig. 13). The output of Ga(sr)
1 t A02 will be

Rxa(T) = G2_ ,a(jkwT) 2 [ (c + co) + 6(c - wo)]dco. (,
00

X~~~~~~~~~yt, T) = g,(Tj)x(t -r) d-rl(46)
Because of the property of the delta function we get, -t
finally, where gT(T1) is the impulse response of GQ(ST) for its

A02 Ga(jcocr) + Ga(-jcor) parameters set at T.
Rxa(. )= We may now write the crosscorrelation between

2 2 y(t, z) and z(t), using T2 as the corresponding delay, as

or

A o2 Ryz(r2) = y(t, r)z(t + T2),
Rx,(7) =- Re [Ga(jcoor)], (44) and

2

where Re stands for "real part of." In fact, if we use a R,y(r2) = Ryz(-T2) = Y(t, T)Z(t-T2)
perfect delay, If we set T2=O,

Ga(jcoo7) = e-jwor, (45) R30(0) = R00(0) = y(t, r)z(t),

and which is what is actually measured by the system of Fig.

Re [Ga,(jcxoo)] = cos cooT, 13 for each setting of T. Hence, we may write that the
approximate crosscorrelation iS

which, replaced in (44), gives the exact value indicated Rxza(T) = R00(0) = z()

Equation (45) means that, for measuring autocorrela- From (46) we have
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R2,(r2) = Ry2(-r2) = y(t, r)z(1-t 2) the answer is straightforward since, no matter how
I' ~ many poles there may be, the best delay is one whose
gg-(ri)x(t- rl)z(t -72) dTr. (47) value for a real argument best approximates the

X exponential function for a real argument, within the

Now the crosscorrelation between x(t-Ti) and z(t), range of delays considered. Low-pass approximations
using r2 as the delay parameter, may be written as are then to be preferred.

If H(s) is a second-order system, then the selection
X(t - -r)Z(t - 72) = x(t)z(t - -2 + T1) = Rx,(r1- 72). depends on ¢, the damping factor of the poles. For ex-

ample, we find that in the case of fourth-order approxi-
But since mations, as t decreases, the best delays change from

Rxz(71 - T2) = Rzx(r2 - Tj), (48) P34(ST) for the higher values, to Go(sT) and G,(sr) for
the lower values.

from (47) and (48) we obtain For complicated rational spectra, in which H(s) may
X0 have real and complex poles, the selection of Ga(sT) is

Rzy(T2) = RyZ(-r2) = I g,(Tr)Rzx(r2 - Tl) dTl- not so simple. However, we might expect that if, for
-:o instance, there are real poles, and complex poles with

high damping factors, a low-pass approximation might

Txhismeans Rourier is tionbwg- a be better. If there are only complex poles of low 4,R2z; hence its Fourier transform iS given [i] by G(~ rG(7 ih epeerdG,,(s,r) or G,(s-r) might be preferred.
F[R,y(r2)] = 2Wzy(c) = 2Ga(jcor)Wzx(c), (49) If the pole pattern of H(s) is arbitrary, for each pole-

zero configuration we may find the best approximation
because g,(ri) is the impulse response of Ga(s-), and also G,(ST). In fact, we may calculate the coefficients of

F[RZ2(T1)]= 2WzX(W) Ga(sr) by requiring that the mean square of the differ-
ence (25) between the actual value of the correlation

According to the Wiener-Khintchine theorem we may R(T) and the measured value shall be a minimum. This,
write that of course, implies a certain knowledge of the form of

1 co dc H(s) and of the range of variation of its parameters,
Rzy(r2) = elX-2W (co) - which in turn determine the pole-zero configuration.2 0 2w Such knowledge exists in the identification problem of

1fx dw adaptive control systems, for instance.
R z(0) = WzY(&) i The results contained in this paper may also be used

in the case where simultaneous measurement of the cor-
Replacing (49), we now get relation values for several values of r is required. Vari-

1 dco ous delay lines of decreasing complexity may be used,
Rzy(O) = Ryz(O) GJG(jwT)Wnzx(W) - (50) starting with elaborate approximations for high values

2 _0:27r of r and using more and more simple delay lines as r

But we have seen that the measurement is given by decreases. In this manner, considerable savings in equip-
Rxya(,r) =Ryz(O). Then, according to (50), ment may be effected.

1rX dco APPENDIX
Rxza2(T) JGa(jW7)W,x(7) (51) Following the lines for a similar case [8], we find a

sufficient condition so that
We observe that (51) is the most general case of (11).

Indeed, we need only place z=x in (51) to obtain (11). lim f(s) ds = 0 (52)
The conclusions derived for the autocorrelation case R-- c2
may be now extended to crosscorrelation measurements. for s = R [See (15) and Fig. 4.] Replacing s = Re1O in

CONCLUSIONS (52) we may write

A general equation (11) has been derived which lrn f(s) ds = urn f(Rei&)j Re1f d4. (53)
allows the calculation of the correlation function that sf OR7R rh2
would be measured if a certain delay approximation
were used. Also,

If the noise has a rational spectrum, i.e., if it is gen- ~ r/2 r1r/2
erated by passing white noise through a linear lumped J f(Rei4)j Re1 ick.¢ J |sf(s)| d4F (54)
parameter filter H(S), (11) turns into (16), subject to ~2i/
certain restrictions. In this case we have found that the for Reif _s. We see, then, that if
best delay approximation depends on the nature of the lim |sf(s) |= 0,
poles of H(s). In the case of the real simple poles of H(s)
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integral (53) will also go to zero. m

Now, in order that E= s
H(s) = K

lim sf(s) 0, n
S 0 E ajsj

j=6

we imust have, from (13a), Then, for sGa(sr)H(s)H(-s), we have

lisf(s) lim Ga
s 0 Degree of numerator =1 +degree of Ga+2m

8rn sf(s) = -lrn sGa(5+)Wx J- = 0. (55) Degree of denominator= 1+ degree of Ga+2n.
In particular, if W.(co) is the power density spectrum of But condition (57) means that
white noise filtered by a linear lumped parameter sys- 1 + degree of Ga + 2m + 1 < 1 + degree of Ga + 2n,
tem with transfer function H(jw), from (17) we have, so that 2m+1 <2n.

W,(w) = H(jw)H(-jw)W0, Since m and n are integers, it is sufficient that m <n.

/x =H\ s)H(-s)Wo. (56) REFERENCES
lWVz I,-) = H(s)H(-s) Wo. (56) [1] D. Middleton, An Introduction to Statistical Communication
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T , r gii [2] C. H. Single, Review of Transport Delay Representations for anThen, replacing (56) in (55), the following condition Analog Computer, Ann Arbor, Mich.: Applied Dynamics, Inc.,

must be fulfilled: 1963.[3] H. D. Huskey and G. A. Korn, Computer Handbook, New York:
I = ~~~~~~~~~~McGraw-Hill, 1962, sect 6.1.3.lim sGa(sT)H(s)H(-s) 0. (57) [4] W. J. King and V. C. Rideout, Improved Transport Delay Circuits

for Analog Computer Use, Tucson, Ariz.: U. of Arizona, Electrical
Engineering Dept., 1961.
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Experimental Study of a New Method of Time
Delay for Analog Computers

WALTER W. WIERWILLE, MEMBER, IEEE

Abstract-A new method for obtaining pure delay of voltage bugging. The experimental study has shown that high-quality results
waveforms on the analog computer is discussed. This method, which are obtainable with this method. Moreover, it is widely applicable
is based upon frequency-domain sampling in combination with a to computation and simulation problems, and can easily be
feedforward-feedback technique, is capable of producing relatively programmed.
long delays. The theory underlying the method has been previously
presented. In this paper experimental aspects are described in detail. INTRODUCTION
Particular emphasis is placed upon those topics that are important to
the use of the method in actual practice, namely; 1) a general, scaled Ak. MEH Dfrotiigcniuu ea
computer diagram, 2) typical experimental records (which also verify of signals on the analog computer was recently
the theory), and 3) a general procedure for programming and de- evolved [1]. This new delay technique makes

use of feedforward and feedback loops in conjunction
with a series of frequency-domain sampling filters [2],

Manuscript received September 21, 1964. [3 ]. Only standard linear analog computing components
The author iS with the Cornell Aeronautical Laboratory, Inc., of

Cornell University, Buffalo, N. Y. are required. Although the theory of the new method of


