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The energy-momentum tensor of the field produced by an electron with arbitrary movement in a

r

curved space contains a tensor T, with the following properties: (i) vanishing covariant divergence,
(i) null flux across the cones that come out from the world line of the electron, and (iii) positive-

definite diagonal elements of T,. These properties make it possible to express the differential
conservation law in an integral form over a two-dimensional surface contained in the cone with apex in
a fixed point of the world line of the electron. This integral gives a measure of the energy irreversibly
emitted by the electron associated to the tensor T},. The corresponding rate of radiation is given by
2e? %% where %’ is the square of the covariant acceleration.

1. INTRODUCTION

DeWitt and Brehme'! and Hobbs?® generalized to
curved spaces the well-known Lorentz-Dirac
equation® for flat space. From the DeWitt-
Brehme-Hobbs equations it follows that, even in
the absence of an incoming electromagnetic field
acting on the electron, the electron has a non-
vanishing covariant acceleration, that is, the
trajectory is not a geodesic, in contrast with the
flat-space case. These equations, however, shed
no light on the important problem of knowing when
and how much the electron radiates when moving
in a curved space. According to many authors*®
it seems extremely difficult to get from the equa-
tion of motion any clear information as to the
value of the radiated energy. In the flat-space
case Rohrlich® has established a Lorentz-invari-
ant criterion (independent from the Lorentz-Dirac
equation) that solves the above-mentioned problem,
namely, the electron radiates if and only if its
acceleration is not zero.

In a previous paper’ (to which we shall refer as
A) we have shown that the energy-momentum ten-
sor for the electron field has a part T, that we
call the radiation tensor and that it has the follow-
ing properties:

(i) Tjv has null flux across the light cones with
apex on the electron world line.

(ii) T/, satisfies the (covariant) conservation
law

Tﬁu:"=0 (1.1)
off the world line.
(iii) T7y=0 (no sum). (1.2)

We will show that the tensor T, describes en-
ergy that is irreversibly emitted by the electron
in the form of radiation, escaping to infinity. In
particular the properties (i) and (ii) allow us to
express the differential conservation law (1.1) in
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an integral form over an arbitrary two-dimen-
sional closed surface contained in a light cone
with apex on the world line. This integral con-
servation law allows us to evaluate in a covariant
way the radiated energy flux associated to the ten-

sor T],, which is
R=%e23%22 0, (1.3)

where Z¢ is the covariant acceleration of the elec-
tron, that is,

ne d2° .o dz2°
dar

z%= —+I"By°‘z'sz'7, Z (1.4)

dar
The scalar (1.3) becomes the well-known Larmor
formula in the flat-space case.

In a flat space T, describes, of course, all
the energy radiated by the electron,® but in a
curved space the “tail” of the solution of the
Maxwell equations' introduces complications.
Nevertheless, there are curved spaces where the
tail vanishes.® For such spaces T}, obviously de-
scribes the whole of the radiated energy.” For
them, then, we can generalize Rohrlich’s cri-
terion, since from (1.3) we can see that the elec-
tron radiates if and only if its covariant accelera-
tion does not vanish. Probably there is a great
variety of Riemann spaces where all the energy
radiated by the electron is described by T;,, but
we will not attempt any analysis of this problem
here.

We will be using the same symbols, notation,
and conventions as DeWitt and Brehme,' and in
the following we will refer to Ref. 1 simply as DB.
Throughout the present paper we will assume that
the metric of our Riemann space has the proper-
ties mentioned in Sec. Il of A. From Egs. (2.28)
and (2.29) of A we have that the radiation tensor
for an electron is given by

2
Thy = f;r-gvaO:“(J:y(Ez—K'zK-z)K-4 . (1.5)
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All the termsused inthis equation are defined in A.
The point z that appears as one of the arguments
of the world function a(x, z) is the retarded point
associated with the point x. Following DB we as-
sociate the indices a through « of the Greek alpha-
bet to the point z, while the indices A through w
are always to be associated with the point x.

As we will see in Sec. IV, one can compute the
radiated energy associated with 7, without having
to study its asymptotic behavior at large distances
from the electron. With this aim, in Sec. II we
give a formulation of Larmor’s formula in flat
spaces making use of a basic property that follows
from the radiation tensor. In order to formulate
this fundamental property in curved spaces, we
generalize in Sec. III the world tube used by
Bhabha'® about 30 years ago in the flat-space case.
With the help of this tube we establish in Sec. IV
the generalized Larmor invariant associated with
the tensor T},. The result does not depend on the
tube used, but the generalization of the Bhabha
tube is highly convenient for computational rea-
sons.

II. DISCUSSION OF LARMOR’S FORMULA
IN FLAT SPACES

We will briefly discuss in this section the deri-
vation of Larmor’s formula in flat spaces, looking
for a fundamental formulation of it so as to be
able to transcribe it to curved spaces. Let 2,(7)
be the world line of the source; T is its proper
time. We already know that the radiation tensor
of a point source of massless scalar, vector, or
tensor fields and of an arbitrary multipolar struc-
ture can be written in the form™!

1 -
T;Tu="_susup 4Q’ (2.1)

4n
where
u
Su=xy =24, p=@y-2,)0", vy=dz,/dr.

2z, is the retarded point associated to the point x,
and @ is a Lorentz scalar that depends on the par-
ticular field that we are dealing with (scalar,
vector, or tensor) and the multipolar structure of
the source confined to the world line zu(-r). The
tensor (2.1) satisfies the properties (i), (ii), and
(iii) mentioned in Sec. I (specialized, of course,
to flat space).

Let z ,(7*) and z,(7), with 7>7* be two points
on the world line of the source, and let us con-
sider now the light cones drawn from these points
into the future. In addition we consider two time-
like world tubes Z, and Z, of arbitrary radii
€,>0 and €,>0 (defined in a Lorentz-invariant
way) that surround the world line of the source

and do not intercept each other. These tubes and
cones define a volume A, and then because of
property (ii) of Sec. I we have that in A the follow-
ing relation is valid:

[ o' Thatx=0. (2.2)
A
If AZ, and AZ, denote the part of the tubes limited
by the two cones mentioned above, then with the
help of Gauss’s theorem and property (i) of Sec. I
we obtain from Eq. (2.2) that
T, dz} =
Az, AL,

This equation is valid for arbitrary tubes Z, and
%,. Its physical interpretation is rather obvious:
It expresses the fact that the radiation emitted be-
tween the points z(7*) and z(7) becomes indepen-
dent from the source as soon as it is emitted and
it propagates along the cones towards infinity.

Equation (2.3), however, is not valid in curved
spaces, and for this reason we are going to obtain
more basic information contained in this equa-
tion. To this end we choose the tubes Z, and Z,
to be Bhabha tubes.'® A Bhabha tube is defined
by means of

ThdZy . (2.3)

suv" =p =€ (e>0 fixed),
(2.4)
sust=0.

The corresponding surface element is given by
dz,=lev, - (1 =k')s, JedQdr . (2.5)

All the quantities in the right-hand side are eval-
uated at the retarded point associated with x,
k'=s,0", and dQ represents an element of solid
angle in the rest frame of the source. Introducing
Egs. (2.1) and (2.5) in Eq. (2.3) we obtain

j;r* dT'<41:—€1 f squQ>
=ITT* dr’ <41+€2 fs,@dﬂ) . (2.6)

Thus, the integral over Z,, for example, has been
reduced to an integral over the two-dimensional
surface defined by the intersection of the cone
with apex in z2(7’) and the tube Z, followed by an
integral over the retarded time.

From (2.6) we obtain, deriving with respect to
7 and evaluating this derivative at 7*, that

1 1
T fs“QdQ-‘M—e; fs“QdQ. 2.7

This equation is valid for arbitrary €, and €,;
therefore, the integral

Z11r_e fsquQ (2.8)
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gives the same value for any two-dimensional
closed surface lying inside the cone and deter-
mined by the intersection of the two three-dimen-
sional surfaces

=€, sus*=0 (2.9)

vyS
with arbitrary €. The point z is, of course, fixed
in these equations.

We have thus shown that the integral (2.8) does
not depend on € using the particular tube defined
by Eqgs. (2.4). But it is easy to see that the form
of the tube does not matter. In fact, let us assume
that Z, is the Bhabha tube (2.4) and that Z, is an
arbitrary tube. It is obvious that the integral over
the surface AZ, in the right-hand side of Eq. (2.3)
can be performed as an integration over the two-
dimensional surface determined by the intersec-
tion of Z, with the cone drawn from z(7’) into the
future, followed by an integration over 7’. We can
then recover in this way a fundamental equation
of type (2.7) which will now be written as

1 1
z"—éfSquQ—EfS“QadQ .

The scalar a depends on the type of surface Z,;

if we change it to Z, the scalar a changes, but the
integral does not since it is again equal to the
left-hand side of Eq. (2.10). We conclude, there-
fore, that the four-vector defined by Eq. (2.8)
represents a fundamental property associated with
the radiation emitted in z(7) and that it propagates
along the corresponding light cone.”? To see more
clearly its physical meaning let us evaluate from
Eq. (1.5) (in the case of the flat space) the Lorentz
scalar

R=”“(Z’}f€ fs“QdQ> .

A trivial computation shows that R is nothing else
but Larmor’s invariant,
dzz"
@

(2.10)

(2.11)

R=%e??, i'= (2.12)
which measures the rate of radiation emitted.

We will prove in Sec. IV that an equation analo-
gous to (2.10) is valid in curved spaces. To this
effect it is convenient to generalize the tube (2.4)
to a curved space. Such a generalization is made
in Sec. IN.

III. GENERALIZATION OF BHABHA’S
WORLD TUBE

In this section we are going to generalize the
tube (2.4) to curved spaces. As we shall see, it is
possible to carry out the integrations in an exact
form for an arbitrary radius. In connection with

this, notice that the tube defined by DeWitt and
Brehme in Sec. 4 of their paper is not adequate
for our purposes. They built their tube in the
following way: They consider the points extending
out a fixed distance € along the geodesics ortho-
gonal to the world line of the universe in a point
2(7), determining in this way a two-dimensional
surface II. Varying 7, Il generates the world tube
of DB. An integral over this tube, then, is ex-
pressed as an integral over II followed by an inte-
gral in 7 (which obviously is not the retarded time
of any point of II). Now, if we consider two dif-
ferent points in II, there are associated to them,
in general, two different retarded points on the
world line of the electron. This creates a compli-
cated, since, as we shall see from Eq. (1.5), the
tensor T, evaluated at the point x is completely
determined by a unique retarded point on the world
line of the electron. An integral of T, over II,
therefore, is practically impossible to evaluate

in an exact form.

In what follows z always designates a point on
the world line of the electron. Consider the future
light cone emerging from the point 2(7), that is,
the surface

o(x,2)=0. (3.1)

This surface intercepts the three-dimensional
surface

0..2%=€ (e>0 fixed) (3.2)

in a two-dimensional surface that in the following
will be denoted by $. When z varies on the world
line of the electron, ® generates a three-dimen-
sional surface. This surface is the natural gen-
eralization of the Bhabha tube (2.4).

From Egs. (3.1) and (3.2) it follows that the vec-
tor 6x" is on the surface of the generalized Bhabha
tube if and only if

0.,0xF=—€dr, (3.3)

Gubx“:—(ch’)d'r . (3.4)
Here we have introduced the simplifying notation
Gu=0.12%. (3.5)

In Eq. (3.4) x and «’ have the same meaning as in
A.

Let us determine now the directed (vector den-
sity) surface element of the tube defined by Eq.
(3.2), that is,

AT, =€,y 4r0,x"6,x°%0,x7 | (3.6)
n wv ot Yy 2 3

where 6,x”, 6,x° and 8,x" are three linearly in-
dependent displacements contained in the tube
(3.2) and €4, 4r is the four-dimensional permuta-
tion symbol. In order to do this it is necessary
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to give a convenient parametrization of the points
of the tube (3.2).

Let us consider first the surface ¢ defined by
Eqgs. (3.1) and (3.2) with z fixed. It is obvious
that if we take a vector, lying in the cone that is
drawn from the retarded point z towards the
future, then this direction and the point z uniquely
define a null geodesic passing through z. This
geodesic intercepts the surface ¢ in a well-de-
fined point and therefore we can parametrize the
points of the surface ® by means of a null vector
at the retarded point z. We choose this vector to
be 0.,.

Similarly to what DeWitt and Brehme have done,
we introduce at z a tetrad of orthonormal vectors;
one of them is Z% while the other three we desi-
gnate as n{' (=1,2, 3). Then we have

Rjo= 0ij,

ns n;e2%=0. (3.7)
In what follows and up to Eq. (3.20) we assume
that z is a point that remains fixed on the world
line of the electron.
If we denote by o the component of 0, ortho-
gonal to 2%, then
OL

OIZO

o t(0,52P)e =0, +el, . (3.8)

From this equation it follows that if o, is known
we obtain 0., and vice versa; therefore, we can
parametrize the points on the two-dimensional
surface ® by means of 6. Now, since this vector
is in the space defined by the three vectors =, we
can introduce a set of three direction cosines ;
that completely determine the direction of o
relative to the n{. These satisfy the obvious rela-
tion

Q,Q;,=1. (3.9)
From Eq. (3 8) it follows, on the other hand, that

oote=e?, (3.10)
Then Egs. (3.7), (3.9), and (3.10) allow us to write

Og=—€n oS (3.11)

clearly showing that o is completely determined
with just two direction cosines. We use them as
the two parameters that allow us to identify any
point in the two-dimensional surface &.

Consider now the problem of defining two dis-
placement vectors 6,x" and 6,x" contained in &.
If the direction cosines Q; determine a point x* in
®, then a variation 69; changes the point x" to
x* +6x". The vector 6x" is determined by means
of Eq. (3.11). In fact,

Og,u0x! = —€n; 09 . (3.12)
We see from Eq. (3.8) that

0;;u=°;au ’ (313)

since in the change §; - Q; +6Q; the point z re-
mains fixed.
Following DB we introduce the notation

Dyu==0.40 . (3.14)

From the hypothesis that we have made concerning
the metric it is easy to see that the bivector D™,
exists (DB, p. 231), that is,

Dy D=0, . (3.15)

With the help of D™'”% and Eq. (3.13), we obtain
from Eq. (3.12) that an arbitrary displacement 6x*
in the surface ¢ is determined by

ox* =e D™ _n2oQ; . (3.16)

This equation is formally identical to Eq. (4.7) of
DB, but, of course, there is a fundamental dif-
ference, since our geodesics are the null geodesics
that generate the future light cone emerging from
the point z. Instead, DB make use of spacelike
geodesics to build their tube. It is obvious to
verify that the displacements (3.16) satisfy Eqs.
(3.3) and (3.4) with d7=0.

A pair of independent variations 6,92; and 6,9,
in the direction cosines define an element dQ of
solid angle by the relation

Q,dR=¢,,,0,2,0,92, , (3.17)

where €,;, is the three-dimensional antisymmetric
permutation symbol. If we denote by le“ and

62x“ the corresponding displacements in the sur-
face ® produced by 6,2; and 6,2;, then using
(3.16) and (3.17) we get

0,%,0,%,— 0,%,0,%, =€2D™Y, D™, gnfnbe,,, Q,dQ.
(3.18)

This equation will be useful for computational pur-
poses later on.

To obtain a complete parametrization of the
points of the tube defined by Eq. (3.2) it is not
sufficient, of course, to have the two direction
cosines that define o and the proper time 7. It is
also necessary to give a transport law for the
tetrad Z% n when 7 varies. For our purpose,
however, such specification is superfluous. All
the information about the tetrad 2%, n{' that we need
is in Egs. (3.7). The following equations can be
inferred from them [DB, Egs. (4.16) and (4.19)]:

ninf=g«®+i%8 (3.19)
6&575’1{1”? =& —1/2(z)€ijk(nk8gct6 —nkagﬂe)‘ée .
(3.20)

Let us now build a displacement 5,x" on the tube
(3.2) such that it is orthogonal to the linearly inde-
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pendent displacements 6,x" and 6,x on the surface
$, that is, bax“ should satisfy the following equa-
tions:

6,x"6,x,=0,

6,4"6,x,=0,
2 (3.21)
o’to,x, = —€dT

G"0,xy = —(x +K')dr .

Of course, this linear system has a unique solu-
tion and it is easily seen to be

o =€V W6 x,6,x, € Gy— (x +K" o, M NdT |
(3.22)
where
(3.23)

The evaluations of M, 6,x", and dZ, are quite
similar and we illustrate them by showing the
evaluation of M. In contrast with DeWitt and
Brehme, we will not make use of the operation of
“homogenization” of indices since it will not be
necessary to make covariant expansions at small
distances of the world line of the electron. We
calculate dZ, for arbitrary €.

By means of Eq. (3.18), M can be put in the form

M=—€""“*6,x,6,%0,,6, .

1 Vwl - - a
M =-3€%""“ D™, DY, gninbe, 40, ,022,dQ
1

—_1c.2 -1 A & a,,B a
= —3€% 4 35y|D 7 oD DOninE | (42,0, 5dR .

(3.24)
Making use of Eq. (3.20) and the abbreviation
Q*=nlQ, , (3.25)
we write M in the form
M=—-€*|D™,|g /2()
X(0, 0270 BQ g5, — 2,0°95,0%) . (3.26)

Here we have come back to the bivector ¢,,, in-
stead of D, defined in Eq. (3.14). Notice that M
in Eq. (3.23) (as well as 8,%" and 6,%") is formally
identical to that in DB [see DB, Eq. (4.24)], and
since we have only used the fundamental property
of the world function o

o, (3.217)

w
Utdwo

in obtaining Eq. (3.26) it is also valid in the case
of DB.

We now state the properties of the tube (3.2)
and of our parametrization in Eq. (3.26). In par-
ticular we have

Qu=-€0, 4y, (3.28)

which is nothing else but Eq. (3.11) combined with

Eq. (3.8) and definition (3.25). It is also easy to
derive from Eq. (3.15) that

|D™t | = —g(x)g(z)D* .

When we relate this equation to the equations
[see DB, Egs. (1.60) and (1.62)]

(3.29)

A=g7'D, (3.30)

g2 (0g" @) =g, (3.31)
we obtain

D™, = =g V2(x)g V3(2)Aa™ . (3.32)

Introducing Eqgs. (3.28) and (3.32) in Eq. (3.26) we
finally obtain

M=-€’gV2(x)A™1dQ . (3.33)
Analogously, from (3.22) we obtain
o, x" =[e My +Kk' =8, 60 +6¥)dr . (3.34)

Introducing 6,x" and 6,%" and 6,x" defined through

Eq. (3.16) in Eq. (3.6), one finds that the vector-
density surface element of the tube (3.2) can be
expressed in the form

dZ, =eg "V2(x)A™eb, — (x +K')o, ) dQdr .
(3.35)

Thus we have expressed dZ, in a covariant form
for arbitrary € without making use of special co-
ordinate systems. The key point that facilitates
such construction is the famous Synge world func -
tion o(x, 2). We must keep in mind that z in Eq.
(3.35) is the retarded point corresponding to the
point x on the tube (3.2). This fact introduces
considerable simplifications, as we shall see in
Sec. IV.

If we proceed in a similar fashion to obtain Eq.
(3.35) but for the tube of DeWitt and Brehme we
obtain

dZ, =eg "V2(x)a" x +k')0,,dQdT . (3.36)

This formula is apparently simpler than (3.35);
however, complications arise because the geo-
desics employed are the ones orthogonal to the
world line of the electron and therefore 7 is not
the retarded time at which the fields are usually
evaluated. In particular, for example, the A ap-
pearing in (3.36) is different from the A of Eq.
(1.5).

V. GENERALIZATION OF LARMOR’S FORMULA

Let us consider the following auxiliary construc-
tion. Let Z, and Z, be two generalized Bhabha
tubes (3.2) of radii €, and €,, respectively, €, >¢,.
From the points 2(7) and z(7*) we draw future light
cones. We designate by A the domain bounded by
these four-surfaces. Let Z,,(x, 2(T*)) be the bi-
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vector of parallel translation over the geodesic
that goes from x to 2(7*). Consider now the inte-
gral

[ (@ aTi)at. (4.1)
A\
The integral obviously defines a vector at z(7*),
and we cantransform it by means of Gauss’s the-
orem and properties (i) and (ii) of Sec. I, obtaining

f gr“,,T;,,dz”—f g“aT;,,dz';fg“;”T;ud‘*x.
AEI AEZ A

(4.2)

In contrast with the flat-space case we have in the
present case that the right-hand side does not
vanish, Since T}, as well as dZ" is evaluated at
the retarded point associated with x, we have
from Egs. (1.5) and (3.35) and the relations

0,,0"=0, (4.3)
=€ (4.4)

5 il sagil _ g sa
Gu0'" =0,,,2%" =0,,2

that

Tr,dz) = ‘_1-61_27_ €,0.4(8% - k22 ™4dQdr . (4.5)
Notice that the complicated factor A which ap-
pears in T, has been eliminated. Thus, the inte-
grand of the surface integrals in Eq. (4.2) can be
written [in this case « =€; see Eq. (3.2)] as

(32

yee Zua0it(E —k'%; e, HdQdT (i=1,2).

(4.6)

Since the geodesics of g, and ¢’* are not the
same, we cannot make use in (4.6) of the relation
[DB, Eq. (1.34)]

Buotit =0, . 4.7)

To abbreviate let us introduce the notation

2

¥, = :—ne'l('z'z—fc’ze,-'z) (i=1,2). (4.8)

Then Eq. (4.2) can be written, in the case of the
tube (3.2), in the form

T T
f d‘f'»fguao;“%dﬂ=f d"r’fgfuac‘“zpzdﬂ
- x Tk
+f§“a’"T,I,,d4x. (4.9)
A

The integration over A can be performed in the
following way. First, for 7’ fixed between 7*
and T we consider the cone drawn from z(7’) into
the future; then we perform the integration over
that part of this cone which is bounded by the
tubes Z, and Z,, followed by the integration over

7'. As integration variables over the cone we can
choose, for example, a pair of direction cosines
and the radius € of Eq. (3.2) varying from €, to €,.
Such a procedure has been recently used by
Synge'® in Minkowski space. We can write, there-
fore,

I?“a;uTﬁu d*x
A

.
=f dT'f T, g7V (x)Eded, (4.10)
T * €, Se<ey

where = is a biscalar that is irrelevant to our pur-
poses. Introducing this expression in Eq. (4.9)

and taking the derivative with respect to 7 and
evaluating it at 7* we have

f§#a07“¢ldﬂ

= fguaotﬂ¢2d9+ fg#a:llT‘:Ug-l/ZEkdﬂ .

(4.11)

Now we can make use of Eq. (4.7), and since T],
is proportional to 0., and it is known [DB, Eq.
(1.31)] that

Zuowo=0 (4.12)

the integral over the cone of Eq. (4.11) is null and
we obtain

fa:azpldﬂ= fa:a%dn , (4.13)

showing that Eq. (2.7) can be generalized to curved
spaces and that the integral

fo;azpdﬂ (4.14)

is independent of the radius of the tube (3.2). This
shows that the radiation emitted at the point z as-
sociated with Tj, becomes independent of the
source and propagates along the light cone with
apex at this point.

According to the discussion of Sec. II, the inte-
gral (4.14) is related to the energy radiated at 2,
and in analogy to what was shown there it can be
seen that the form of the tube which intercepts the
cone with apex at z is irrelevant as far as the flux
of radiated energy is concerned. In addition, the
surface that intercepts the cone can be any time-
like or spacelike surface. According to the anal-
ysis of Sec. II, the Larmor generalized invariant
associated with T[, is

R=2 [0, yd0=c fua; (4.15)

one recalls that the point z remains fixed in the



integration process. Introducing Eq. (4.8) in Eq.
(4.15) we obtain

R=e2<'z'2—4—1;fx’25'2d9) . (4.16)

With the help of Eqs. (3.8) and (3.11) we have

= (0: _E‘éa)é.a

=—€en; Z°Q; . (4.17)
Therefore
L[ e-2rzdq = nenfs g (4.18)
e =3 N2l - .

With the help of Eq. (3.19) we see that the right-
hand side of this equation is equal to $%%. Thus,
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Larmor’s generalized invariant (4.16) becomes
R=%e%3% . (4.19)

R obviously is positive-definite,

We can apply the same method to the massless
scalar field with a point source. In this case the
radiation tensor is [see A, Eq. (A7)]

Gm?

Th = —4—ﬂ—g‘/20;uo:u AK"™2K7S (4.20)

yielding the generalized Larmor formula given by

R=3Gm%?%. (4.21)

ACKNOWLEGMENT

I would like to thank Professor A. O. Barut and
Dr. P. Cordero for useful discussions and for
reading the manuscript.

!'B. DeWitt and R. Brehme, Ann. Phys. (N. Y.) 9, 220
(1960).

%J. M. Hobbs, Ann. Phys. (N. Y.) 47, 141 (1968).

SP. A. M. Dirac, Proc. R. Soc. A167, 148 (1938).

‘A. Peres, Ann. Phys. (N. Y.) 12, 86 (1961).

’S. F. Smith and P. Havas, Phys. Rev. 138, B495 (1965).

®F. Rohrlich, Classical Charged Particles, (Addison-
Wesley, Reading, Mass. 1965), Chap. 5.

D. Villarroel, Phys. Rev. D 11, 1383 (1975).

8C. Teitelboim, Phys. Rev. D1, 1572 (1970); 2, 1763(E)
(1970).

®J. M. Hobbs, Ann. Phys. (N. Y.) 47, 166 (1968).

104, J. Bhabha, Proc. R. Soc. A172, 384 (1939).

Hp, villarroel, Ann. Phys. (N.Y.) 90, 113 (1975).

2The above discussion allows us to see clearly the phy-
sical meaning of the nice construction made by J. L.
Synge [Relativity: the Special Theory (North-Holland,
Amsterdam, 1956), Appendix 8]. Synge, however,
employs the complete energy-momentum tensor, al-
though it is easy to see that only Tﬁ,, contributes to his
calculation. It seems that this is the first work where
it is suggested that the radiation emitted becomes in-
dependent of its source.

137, L. Synge, Ann. Mat. Pura Appl. 84, 33 (1970).



