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The scale-free and small-world properties are studied in detail for the complex earthquake networks constructed from the seismic 
data sets taken from California (USA), Japan, Iran and Chile. It is found that, in all these geographical regions, both the exponent 
 of the power-law connectivity distribution and the clustering coefficient C take the universal invariant values ≈1 and C≈0.85, 
respectively, as the cell size, which is the scale of coarse graining needed for construction of network, becomes larger than a cer-
tain value. A possible physical interpretation is given to the emergence of such remarkable invariance. 
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Dynamics governing seismicity is yet largely unknown, and 
accordingly the relevant research areas are necessarily em-
pirical, owing their developments to case studies. This 
seems to be true even in the processes of establishing two 
celebrated classical laws known as the Omori law for tem-
poral pattern of aftershocks and the Gutenberg-Richter law 
for the relation between frequency and magnitude. 

In the absence of detailed knowledge about underlying 
dynamics, it is of central importance to clarify the pattern of 
correlations in order to extract information on features of 
the dynamics as a time series. Here, our primary interest is 
in the event-event correlations between successive earth-
quakes. As reported in the literature, both the spatial dis-
tance [1] and time interval [2,3] between two successive 
events strongly deviate from Poissonian statistics, support-
ing rationality of the concept of the event-event correlations. 
Accordingly, the following working hypothesis may be 
framed: two successive events are indivisibly correlated at 
least at the statistical level, no matter how distant they are. 
In this context, it is also noted that an earthquake can in fact 

trigger the next one which is more than 1000 km away [4]. 
Thus, the correlation length can indeed be divergently large, 
indicating a similarity to critical phenomena. 

Although seismicity is generically assumed to be a com-
plex phenomenon, it is actually a nontrivial issue to charac-
terize its complexity in a unified way. The network ap-
proach offers a powerful tool to analyzing kinematical and 
dynamical structures of complex systems in a holistic man-
ner (see [5] as a general reading). In a series of recent works 
[6–9], we have introduced and developed the concept of 
earthquake network in order to reveal the complexity of 
seismicity. In this approach, the event-event correlations are 
replaced by edges connecting vertices (for the details of 
constructing an earthquake network, see Section 1). It was 
found that the networks constructed in some geographical 
regions are complex ones, which are scale-free [10] and 
small-world [11]. Close studies have shown [12] that they 
are hierarchically organized [13] and possess the property of 
assortative mixing [14]. It has also turned out [15] that time 
evolution of network characterizes main shock in a peculiar 
manner. In addition, it has been found [16] that the scaling 
relation holds for the exponents of the power-law connec-
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tivity distribution and network spectral density. 
Thus, the network approach may offer a novel possibility 

to deeper physical understandings of seismicity. Since the 
approach is inherently empirical in the sense that it is based 
on analyses of real data, it is essential to examine how uni-
versal the properties observed are. 

In this paper, first we summarize the recent discovery [17] 
about the universal behaviors of the characteristics of 
earthquake networks found through analysis of the data sets 
taken from California, Japan and Iran, as well as Chilean 
one included here anew. The earthquake networks in these 
four geographical regions are found to be of the scale-free 
and small-world type. We carefully study the dependencies 
of the exponent  of the power-law connectivity distribution 
and the clustering coefficient C on a single parameter that is 
the cell size of division needed for constructing a network 
(see Section 1). We show a remarkable fact that both  and 
C come to take the universal invariant values: 

 1,   (1) 

 0.85,C   (2) 

respectively, as the cell size becomes larger than a certain 
value. Then, we shall present a possible physical explana-
tion about the emergence of such invariance. 

1  Construction of earthquake network 

The method of constructing an earthquake network pro-
posed in [6] is as follows. 

A geographical region under consideration is divided into 
cubic cells. A cell is regarded as a vertex of a network if 
earthquakes with any values of magnitude (above a certain 
detection threshold) occurred therein. Two successive 
events define an edge between two vertices, but if they oc-
cur in the same cell, then a tadpole (i.e. a self-loop) is at-
tached to that vertex. These edges and tadpoles represent the 
event-event correlations (recall the working hypothesis 
mentioned earlier). 

This simple procedure enables one to map a given seis-
mic time series to a growing stochastic network, which is an 
earthquake network that we have been referring to. 

Several comments on the construction are in order. 
Firstly, it contains a single parameter: the cell size L, which 
is the scale of coarse graining. That is, all earthquakes oc-
curred in a given cell are identified and represented by the 
relevant vertex. Once a set of cells is fixed, then an earth-
quake network is unambiguously defined. Secondly, an 
earthquake network is a directed one in its nature. However, 
directedness does not bring any difficulties to statistical 
analysis of connectivity (or degree, i.e. the number of edges 
attached to the vertex under consideration) needed for ex-
amining the scale-free property, since by construction the 
in-degree and out-degree are identical for each vertex ex-

cept the initial and final vertices in analysis, so they need 
not be distinguished. Therefore, vertices except the initial 
and final ones have the even-number values of connectivity. 
Thirdly, a full directed earthquake network should be re-
duced to a simple undirected network, when its small-world 
property is examined (see Figure 1). That is, tadpoles are 
removed and each multiple edge is replaced by a single 
edge. 

To practically set up cells and identify a cell for each 
earthquake, here we employ the following procedure. Let 0 
and max be the minimal and maximal values of latitude 
covered by a data set, respectively. Similarly, let  and max 
be the minimal and maximal values of longitude. Define av 
as the sum of the values of latitude of all the events divided 
by the number of events contained in the analysis. The hy-
pocenter of the ith event is denoted by (i, i, zi), where i, 
i, and zi are the values of latitude, longitude and depth, 
respectively. The north-south distance between (0, 0) and 
(i, i) reads di

NS
 = R·(i 0), where R (  6370 km) is the 

radius of the Earth. On the other hand, the east-west dis-
tance is given by di

EW
 = R·(i 0)·cosav. In these expres-

sions, all the angles should be described in the unit of radian. 
The depth is simply di

D=zi. Now, starting from the point (0,  

 

Figure 1  Schematic descriptions of earthquake network: (a) full directed 
network and (b) reduced undirected simple network. The vertices with the 
dotted lines indicate the initial and final events in analysis. 
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0, z0  0), divide the region into cubic cells with a given 
value of the cell size L. Then, the cell of the ith event can be 
identified by making use of di

NS, di
EW and di

D. 
Closing this section, we wish to emphasize the following 

point ascertained by our examinations. Although numerical 
values of characteristics of a network generically depend on 
how cells are set up, gross properties of a network do not 
change. 

2  Scale-free and small-world properties of 
earthquake network 

The four independent seismic data sets we analyze here are 
from (i) California, http://www.data.scec.org, (ii) Japan, 
http://www.hinet.bosai.go.jp, (iii) Iran, http://irsc.ut.ac.ir 
and (iv) Chile (by the time when the present work was 
completed, the Chilean data was not made open to public 
yet). The periods and the geographical regions covered are 
as follows: (i) between 00:25:8.58 on January 1, 1984 and 
23:15:43.75 on December 31, 2006, 28.00°N–39.41°N lati-
tude, 112.10°W–123.62°W longitude with the maximal 
depth 175.99 km, (ii) between 00:02:29.62 on June 3, 2002 
and 23:54:36.21 on August 15, 2007, 17.96°N–49.31°N 
latitude, 120.12°E–156.05°E longitude with the maximal 
depth 681.00 km, (iii) between 03:08:11.10 on January 1, 
2006 and 18:26:21.90 on December 31, 2008, 23.89°N– 
43.51°N latitude, 41.32°E–68.93°E longitude with the 
maximal depth 36.00 km and (iv) between 04:21:57.0 on 
October 2, 2000 and 18:31:57.3 on March 29, 2007, 
29.01°S–35.50°S latitude, 69.51°W–73.95°W longitude 
with the maximal depth 293.30 km, respectively. The total 
numbers of events in these periods are (i) 404106, (ii) 
681546, (iii) 22845 and (iv) 17004. 

We have constructed the earthquake networks form these 
data sets following the procedure explained in Section 1 and 
analyzed their properties. In particular, we focus our atten-
tion to its scale-free and small-world properties. 

First, let us look at scale-freeness of earthquake network. 
In Figure 2, we present plots of the connectivity distribution 
(or, degree distribution) P(k), which gives the probability of 
finding a vertex with k edges, for those four geographical 
regions. As can be seen there, it decays as a power law: 

 
1

( ) ~ ,P k
k   (3) 

showing that the full earthquake networks are in fact 
scale-free. 

The scale-free nature indicates that there are quite a few 
hubs with large values of connectivity, which make the 
network heterogeneous. We have taken a close look at the 
vertices of some main shocks in each data set and found that 
they correspond to hubs. An important point is that, after-
shocks following each main shock tend to return to the  

 

Figure 2  The log-log plots of the connectivity distributions of the earth-
quake networks in (i) California, (ii) Japan, (iii) Iran and (iv) Chile, for the 
cell size 20 km × 20 km × 20 km. The numbers of vertices are (i) 1674, (ii) 
19662, (iii) 4274 and (iv) 1692, respectively. All quantities are dimensionless. 

locus of the main shock. This empirical fact explains why 
main shocks make their vertices hubs of a network. 

Second, we discuss small-worldness of the reduced sim-
ple earthquake. Here, the following two characteristic quan-
tities are of primary relevance. One is the clustering coeffi-
cient and the other is the average path length [11], both of 
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which are explained below. 
The clustering coefficient C of a simple network with N 

vertices is defined by 

 
1

1
.

N

i
i

C c
N 

   (4) 

ci appearing on the right-hand side is given by ci  (number 
of edges of the ith vertex and its neighbors)/[ki(ki1)/2] with 
ki being the connectivity of the ith vertex. Equivalently, it is 
calculated also as follows. Let A be the symmetric adjacen-
cy matrix of the reduced simple network. Its element (A)ij is 
1 (0), if the ith and jth vertices are linked (unlinked). Then, 
ci is also written as follows: 

 
3( )

.
( 1) / 2

ii
i

i i

A
c

k k



 (5) 

ci tells about the tendency that two neighboring vertices of 
the ith vertex are linked together. By definition, C takes a 
value between 0 and 1. An important point is that C of a 
small-world network is much larger than that of the corre-
sponding random network (i.e. classical Erdös-Rényi ran-
dom graph) given by 

 random 1,
k

C
N

 
   (6) 

where <k> is the average value of connectivity of the ran-
dom network. That is, 

 random .C C  (7) 

The other important characteristic quantity is the average 

path length l , which quantifies that, for a pair of vertices, 
how many steps the shortest path linking them contains. A 
small-world network has a small value for it. 

In Table 1, we present the results about these two char-
acteristic quantities. It shows that the reduced simple earth-
quake networks in California, Japan, Iran and Chile are in 
fact of the small-world type. 

3  Disappearance of cell-size dependence and 
universalities of network characteristics 

Quantities characterizing a network are usually dimension-   
less, as the connectivity distribution, clustering coefficient 
and average path length are. On the other hand, in the case 
of earthquake network, their numerical values depend on 
the cell size L, in general. This issue is discussed in this 
section. 

First of all, it is reasonable to make the cell size dimen-
sionless. We rescale L using the dimension of a geographical 
region under consideration. Let LLAT, LLON and LDEP be the 
dimensions of the whole region in the directions of latitude,  

Table 1  The values of the clustering coefficient C and average path 

length l of the networks in (i) California, (ii) Japan, (iii) Iran and (iv) Chilea)  

 C Crandom l  

(i) 0.7886 0.030 2.3640 

(ii) 0.4002 0.0021 2.7640 

(iii) 0.0641 0.0022 3.4438 

(iv) 0.1629 0.0096 2.8783 

a) The cell size employed is 20 km × 20 km × 20 km. The total numbers 
of vertices are as in Figure 2. For comparison, the values of corresponding 
random networks, Crandom, are also presented. 

longitude and depth, respectively. From these, we construct 
the following dimensionless quantity: 

  1/3

3 LAT LON DEP .l L L L L  (8) 

The values of the denominator in those four geographical 
regions are respectively as follows: (i) 617.80 km, (ii) 
1973.78 km, (iii) 583.45 km and (iv) 444.91 km. 

Secondly, let us discuss the cell-size dependence of the 
exponent γ in eq. (3). In Figure 3, we present plots of  of 
the scale-free earthquake networks with respect to l3. To 
calculate  from the data, we have employed the method of 
maximum-likelihood estimation for a power-law distribution. 
As can be seen in Figure 3, the result is remarkable: in each 
case, the dependence of  on the cell size disappears if the 
size becomes larger than each certain value. In addition, in 
all the four geographical regions,  takes the universal in-
variant value ≈1. 

The above result may be interpreted as follows. Accord-
ing to the method of network construction, there are two 
competitive factors. As the cell size increases, vertices get 
merged, yielding vertices with larger values of connectivity, 
while at the same time geographically neighboring vertices 
are absorbed each other, loosing the roles of hubs. The for-
mer decreases the value of , whereas the latter increases it. 
Disappearance of the cell-size dependence of  may be due 
to the balance between these two competitive effects. 

Finally, let us discuss the cell-size dependence of the 
clustering coefficient C. In Figure 4, we present its plots 
with respect to l3 for the earthquake networks in those four 
geographical regions. Again, quite remarkably, C also takes 
the universal invariant value C≈0.85 as the cell size be-
comes larger than a certain value. 

This result may be explained as follows. As the cell size 
increases, the number of vertices decreases, and the network 
approaches a complete graph (i.e. a fully linked network) 
having the maximum value of the clustering coefficient 
(C=1), but at the same time cells swallow triangular loops 
(recall the A3-nature of C in eq. (5)) attached to them as they 
become larger. The former effect increases the value of C, 
whereas the latter decreases it. Disappearance of the cell- 
size dependence of C may be due to the balance between 
these two competitive mechanisms. 



 Abe S, et al.   Chinese Sci Bull   December (2011) Vol.56 No.34 3701 

 

Figure 3  Dependence of the exponent γ on the dimensionless cell size l3: 
California (●), Japan (□), Iran (×) and Chile (△). All quantities are dimen-
sionless. 

 

Figure 4  Dependence of the clustering coefficient C on the dimension-
less cell size l3: California (●), Japan (□), Iran (×) and Chile (△). All quan-
tities are dimensionless. 

4  Concluding remarks 

We have studied the scale-free and small-world properties 
of the earthquake networks in California, Japan, Iran and 
Chile. We have observed that these networks are of the 
scale-free and small-world type and their cell-size depend-
ence qualitatively coincides with each other. We are firmly 
convinced that the discovered invariant values in eqs. (1) 
and (2) are universal and intrinsic in the seismicity of the 
Earth. 

An additional remark is about incompleteness of a seis-
mic data set. One might wonder if the incompleteness leads 

to change of the present results. Regarding this point, one 
should recall an important feature of a complex network: 
that is, it has a high degree of tolerance against “random 
attacks”, i.e. random removals of vertices [18]. In fact, earth-
quake networks do not have a centrality with a small value 
of connectivity. Since the incompleteness of a data set is not 
biased (i.e. not due to “intelligent attacks”), we can confi-
dently assume the robustness of the results presented here. 
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