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The aim of this study was to compare the accuracy of breeding values (EBVs) predicted using the traditional

Bias pedigree based Best Linear Unbiased Prediction (PBLUP) and the single-step genomic Best Linear Unbiased

Pearson's correlation
Heritability
Oncorhynchus mykiss

Prediction (ssGBLUP) for resistance against infectious pancreatic necrosis virus (IPNV) in rainbow trout. A total
of 2278 animals were challenged against IPNV and 768 individuals were genotyped using a 57 K single nu-
cleotide polymorphism array for rainbow trout. Accuracies for both methods were assessed using five-fold cross-

validation. The heritabilities were higher for PBLUP compared to ssGBLUP. The ssGBLUP accuracies out-
performed PBLUP in 7 and 11% for days to death and binary survival, respectively. The ssGBLUP could be an
alternative approach to improve the accuracy of breeding values for resistance against infectious pancreatic
necrosis virus in rainbow trout, using information from genotyped and non-genotyped animals.

1. Introduction

Infectious pancreatic necrosis virus (IPNV) has been recognized as a
major viral disease problem in salmonids [1] and in the year of 2015
the IPN viral agent represented about 30% of the disease diagnoses in
the salmon farming centers in Chile [52]. The IPNV is a member of the
family Birnaviridae, a non-enveloped and double-stranded RNA viruses
with a bi-segmented (A and B) genome encoding five or six proteins [2].
Typical strategies for controlling IPNV outbreaks include vaccines and
husbandry measures [3]. Selective breeding can represent an alter-
native to control this disease in salmonids [4-6,51].

In Atlantic salmon (Salmo salar) large and significant genetic var-
iation associated to IPNV mortality has been reported [1,7,8]. More-
over, a quantitative trait loci (QTL) with major effect on IPNV mortality
in seawater and freshwater have been detected [9-12] and successfully
used for marker-assisted selection (MAS) by breeding companies [13].
In rainbow trout (Oncorhynchus mykiss), significant genetic variation
has been reported for IPNV resistance [14] and a marker with a mod-
erate effect was found to be associated to this trait [15]. The lack of a
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QTL with major effect suggests that MAS could not be the most ap-
propriate method to incorporate genomic information to accelerate
genetic improvement for IPNV resistance in the rainbow trout popula-
tion used in the present study. As an alternative, genomic selection may
be suggested to increase the genetic progress by using dense SNP gen-
otypes [6].

The traditional pedigree best linear unbiased predictor (PBLUP)
[16] is considered one of the preferred methods for the estimation of
breeding values (EBV) and is commonly used for genetic evaluations in
breeding programs in aquaculture species [17]. This approach uses all
available information on relatives to predict EBV, by using the nu-
merator relationship (A) matrix, while correcting for fixed, non-genetic
effects and genetic trends in the population [18]. Recent theoretical and
empirical studies indicate that replacing the A matrix by a genomic
relationship (G) matrix, which requires genotypic information for all
the phenotyped animals, can increase the accuracy of genetic evalua-
tions for important economic traits in salmonids [19-28]. A common
situation in fish breeding is that only a proportion of the phenotyped
population is actually genotyped. As an alternative to incorporate all
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phenotyped animals into the genetic evaluation the single-step genomic
best linear unbiased prediction (ssGBLUP) method has been proposed
[29,30]. ssGBLUP can automatically account for all relatives (geno-
typed and non-genotyped animals), simultaneously fitting genomic in-
formation to estimate fixed effects and predict EBV, simplifying the
practical implementation of genomic selection [30,31].

Recent studies have shown the benefits from the use of ssGBLUP in
increasing the accuracy of genomic predictions for uniformity of body
weight in Atlantic salmon [32], resistance against bacterial cold water
disease [25,26] and resistance against Piscirickettsia salmonis [28] in
rainbow trout. However, to date there are no studies comparing the use
of the pedigree relationship (A) and a combined pedigree and genomics
relationship (H) matrix for predicting breeding values for one of the
most important viral diseases affecting rainbow trout aquaculture,
IPNV.

The objective of this study was to assess the accuracies of EBVs for
resistance against infectious pancreatic necrosis virus using the tradi-
tional PBLUP and ssGBLUP methods in farmed rainbow trout.

2. Material and methods
2.1. Phenotypes

Phenotypic data for IPNV resistance in 2278 rainbow trout in-
dividuals (representing 58 maternal full-sib families and 20 paternal
half-sib families) were obtained as described by Flores-Mara et al. [14].
The fish belonged to the 2014 year-class of the Aguas Claras S.A.
breeding program (Puerto Montt, Chile), which has been selected for
weight at harvest across three generations using best linear unbiased
prediction (BLUP) approach. It has been recently reported that re-
sistance against IPN and weight at harvest are not genetically correlated
in this rainbow trout population [14]. The average body weight and age
of fish was 2.24 (SD = 0.71) grams and 154 (SD = 15) days, respec-
tively. The challenge was carried out in a recirculation system using a
0.25m? tank with fresh water. The average temperature, oxygen sa-
turation and salinity during the experiment were 11 °C, 95.74% and
3.46 ppt, respectively. The IPN virus isolate (CD-AQO03; Sp serotype)
was purchased from Centrovet Ltda. (Puerto Montt, Chile). The virus
was isolated from infected Atlantic salmon kidney obtained from a
Chilean farm located in the Xth Region, Chile, during an outbreak in
November 2014. Isolation was carried out using CHSE-214 cell line and
then cryopreserved until the preparation of inoculum in RTG-2 cell line
[14]. The challenge was performed with a virus concentration of
107.82 TCIDso/mL, determined by the Karber-Spearman method [33].
The application of the inoculum was done by intraperitoneal route with
0.05 mL per fish. Additionally, 1.1 L of inoculum was diluted in 5L of
fresh water and then poured into the tank containing 130L of fresh
water at 17 °C and kept at retained flow for 4 h. After this, fresh water at
10 °C was incorporated to induce thermal shock. The challenge test
spanned 63 days and mortalities were recorded daily. The cause of
death was confirmed by molecular diagnostics using RT-PCR. At the
end of challenge test, all surviving fish were anesthetized and eu-
thanized. Fin clip samples were taken from all animals for the DNA
extraction. All the experimental challenge procedures were approved
by The Comité Institucional de Cuidado y Uso de Animales (CICUA)
from the University of Chile (Certificate N° 17,019-VET-UCH).

2.2. Genotypes

The genotyping strategy was aimed at maximizing the phenotypic
variance within the sample while keeping a balanced representation of
fish per family. Hence, genotyping was not totally random, but focused
on selecting all susceptible fish (n = 280) from the different families.
The remaining fish (n = 488) were selected at random from the dif-
ferent families trying to keep similar number of animals per family.
Thus, each family was represented within the sample with an average of
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13 (SD = 2) fish/family.

Genomic DNA was extracted from fin clip samples from 768 fish
using the commercial DNeasy Blood & Tissue Kit, Qiagen, following the
manufacturer's instructions. The fish were genotyped using an 57 K SNP
Affymetrix® Axiom®, designed by The National Center for Cool and
Cold Water Aquaculture, at the United States Department of Agriculture
(USDA) and commercially available [34].

The genotypes were quality controlled using Affymetrix's Software
AXIOM Analysis Suite using the default settings. Additional quality
control steps were conducted by filtering out SNPs and sample with a
Hardy-Weinberg equilibrium test p-value less than 0.00001, SNP call
rate lower than 0.95 and a minor allele frequency lower than 0.01.

2.3. PBLUP and ssGBLUP methods

The variance components and EBVs were initially predicted using
the conventional pedigree-based BLUP (PBLUP) method, under the
following model:

y=XB+Za+e

where y is the vector of phenotypic observations (day to death or binary
survival), B is a vector of initial weight as co-variate, a is a vector of
random additive genetic polygenic effects with a distribution ~N(O,
Ac,%), where A is the pedigree relationship matrix and o, is the ad-
ditive genetic variance; e is the vector of random error effects with a
distribution ~N(0, Io.?), where I is an identity matrix and o.? is the
residual variance; and X and Z are the incidence matrices.

The PBLUP solutions for the breeding values were obtained using
the mixed model equations [16]:

Xy

- [Z’Y]

where E is the vector of fixed effect solutions, 2 is the vector of esti-
mated breeding values, and o = 62/G2. The genetic variance (62) and
residual variance (62) were estimated using the restricted maximum
likelihood (REML) method [35].

The variance components and genomic breeding value (GEBV) were
also estimated using ssGBLUP method, using a similar model to the
described above. Nevertheless, in ssGBLUP the kinship matrix is re-
placed by the H matrix [29], in which genotypes and pedigree data are
combined. Thus, the inverse of the matrix H is:

=it |0 °
0 Gl-A;

XX XZ B
ZX ZZ+aA']| 3

Where, A is the inverse numerator relationship matrix for all animals,
Ay, is the inverse of the pedigree-based relationship matrix for gen-
otyped animals only; and G is the inverse genomic relationship matrix.

The trait day to death was analyzed as a linear trait using
AIREMLF90 and BLUPF90, whereas, the trait binary survival was ana-
lyzed as a threshold trait using THRGIBBS1F90b from BLUPF90 family
programs [36].

Resistance to IPNV was measured as the challenge survival, defined
as the number of days to death (DD), with values ranging from 13 to
63 days, and as binary survival (BS), scored as 1 if the fish died during
the challenge test and O if the fish survived until the end of the chal-
lenge. In this study, the iteration process did not converge for binary
survival, even using a large number of iteration (5,000,000). In this
way, we adjusted the binary survival as a linear trait.

2.4. Prediction accuracy

To compare the accuracy of genomic and pedigree-based predic-
tions, a five-fold cross-validation scheme was applied as it has been
previously described by Yoshida et al. [28]. Briefly, all phenotyped and
genotyped animals (n = 2278) were randomly separated into five
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validations sets. The genomic predictions of the validation data sets
were determined one at a time where the phenotypic records of 20% of
the genotyped animals (n = 144) were set to missing and the remaining
80% of the genotyped fish (n = 577) plus 100% of the animals with
only phenotypes (n = 1557) were used as training dataset.

Accuracy was used to assess the performance of each method and
was estimated as follows:

TEBV,y
h

IEBv,BV =

where rgpy, gy is the correlation between the EBV of a given model
(predicted for the validation set using information from the training set)
and y is the recorded individual phenotype, while h is the square root of
the common heritability, calculated using PBLUP [37]. The Pearson's
correlation and the regression between the EBVs obtained by PBLUP
and GEBVs predicted with ssGBLUP in the validation data set were used
to measure the degree of similarity between the predictions and as a
measure to indicate the bias of predictions, respectively.

3. Results

The summary statistics for both traits, DD and BS, and the initial
weight used as are presented in Table 1. The cumulative mortality for
all phenotyped fish at the end of challenge test was 12.3%, ranging
between 0% and 47.62% for the most resistant and the most susceptible
family, respectively. The cumulative mortality for the genotyped fish at
the end of challenge test was 34.5%, ranging between 0% and 100% for
the most resistant and the most susceptible family, respectively. The
Fig. 1 shows the percentage of cumulative mortality per family.

A total of 38,292 markers and 721 samples passed on the filtering
criteria. The heritabilities estimated for ssGBLUP method were lower
(DD = 0.25 and BS = 0.24) than those obtained with PBLUP
(DD = 0.40 and BS = 0.35) (Table 2).

Prediction accuracies based in five-fold cross-validations obtained
with ssGBLUP were slightly higher than those obtained with PBLUP.
The nominal difference in the prediction accuracy was 0.04 and 0.06
for DD and BS, respectively (Table 3). The relative increase in ac-
curacies when comparing PBLUP against ssGBLUP was 7 and 11% for
DD and BS, respectively. Moreover, for both methods (PBLUP and
ssGBLUP) BS showed somewhat higher accuracies than DD. The slightly
higher prediction accuracies using genomic information compared to
the PBLUP, was probably due the small number of genotyped animals
used in the validation set.

The Pearson's correlation between the PBLUP and ssGBLUP pre-
dictions were high and similar for both traits. The bias values were
below the unity, and the value for BS was slightly lower than the one
observed for DS (Table 4).

4. Discussion

The results for the pedigree-based estimates of heritability are
consistent with previous studies conducted on the same rainbow trout
population [14] and lower compared with the genomic heritability
estimated by Rodriguez [15] using the genomic BLUP method [37]. In a

Table 1
Summary statistics for initial weight, day to death and survival to IPNV in rainbow trout.

Traits Phenotyped fish N = 2278 Genotyped fish N = 721

Mean SD Min Max Mean SD Min Max
Initial weight  2.24 0.71 0.70 6.50 2.14 0.73 0.8 5
(€3]
Days to death 57 9.44 13 53 52 13.99 13 53
(days)
Survival (%) 87.66 - - - 64.63 - - -
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previous study Vallejo et al. [25,26], found a lower heritability for re-
sistance against bacterial cold water disease in rainbow trout when
comparing ssGBLUP against PBLUP (for both trait definitions: days to
death and binary survival), which is in agreement with our results.

Several studies for different traits and livestock species concluded
that the single-step genomic evaluations provide more accurate pre-
diction of the genetic merit than classical PBLUP method [38-41]. For
Salmo salar, Sae-Lim et al. [32] found a relative increase prediction
ability of 19% for uniformity and body weight when used the ssGBLUP
compared to PBLUP. In a previous study for bacterial cold water disease
resistance in rainbow trout, Vallejo et al. [25] observed a lower pre-
dicted ability for ssGBLUP compared to PBLUP for the trait measured as
day to death using a small training sample size (n = 583) and progeny
testing. In a second study using also progeny performance and a larger
number of genotyped (n = 1473) and phenotyped (n = 7893) animals a
considerable relative increase in the accuracy of GEBVs (near 80%) was
observed for ssGBLUP when compared to EBVs predicted using tradi-
tional pedigree-based BLUP [26]. The relatively moderate increase in
accuracy when comparing PBLUP with ssGBLUP (7 to 11% for DD and
BS, respectively) found in the present study may have been affected by
the low quantity of animals genotyped (n = 768). Furthermore, we also
found a higher accuracy when analyzing IPNV resistance as a binary
trait, as reported by Vallejo et al. [25], using a close number of geno-
typed animals.

High values for the Pearson's correlation coefficient for both traits
indicate a high agreement between predictions from the ssGBLUP and
PBLUP. Regarding bias, the ideal value is the unity, which indicates that
there is no bias in the prediction [42,43]. Here we found bias values
somewhat below the unity indicating overestimation of the EBVs and
GEBVs. Vallejo et al. [25,26] obtained higher and similar level of bias
for pedigree- and genomic-based genetic evaluations for bacterial cold
water disease resistance in rainbow trout, respectively, when compared
to the results presented here.

Different factors can influence the accuracy of genomic predictions,
including the number of genotyped individuals, the number of in-
dividuals in the training population, the linkage disequilibrium be-
tween the SNP and all QTL controlling the traits and the level of re-
latedness among the animals in training and validation set [44-47].
Some studies in Atlantic salmon reported that genomic predictions can
accelerate the genetic progress for disease resistance traits when com-
pared against pedigree-based method [19,20,24,48]. In addition, some
of these studies have shown that using lower-density panels (0.5 to
10 K) were sufficient to maximize the increase in accuracy, suggesting
that decreasing marker density could help to reduce the genotyping
costs without compromising the gain in accuracy [19,20]. A recent
study shown that the use of low density SNP panels combined with
genotype imputation strategies can provide a cost effective approach
for the practical implementation of genomic selection in salmon [49].
In the present study, we found an increase in prediction accuracy when
comparing ssGBLUP against PBLUP, even though we used a relatively
reduced number of genotyped animals with a 57 K commercial SNP
panel. In addition, the cumulative mortality for the whole population
was low (12.3%), which decreased the amount of variation to be
exploited by different genetic evaluation methods and most likely had
an impact on reducing the accuracy of predictions. The results pre-
sented here suggest that the ssGBLUP can be a promising alternative to
improve the accuracy of genetic merit prediction for IPN resistance in
rainbow trout when information of pedigree, phenotypes and a rea-
sonable number of genotypes are available. Further studies, using a
higher number of both genotyped and phenotyped animals, in addition
to the use of alternative designs to evaluate prediction accuracies (e.g.
progeny testing) are needed in order to know if the differences in the
prediction accuracy between PBLUP and ssGBLUP presented here can
be even larger. Moreover, an economic analysis should be considered to
determine if such increases in prediction accuracies can justify the cost
of different SNP genotyping strategies for the practical implementation
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Fig. 1. Percentage of cumulative mortality by family after 63 days challenge test against IPNV in rainbow trout for phenotyped animal (a) and genotyped (b).
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Table 2

Variance components and standard error (in parenthesis) for days to death (DD) and
binary survival (BS) after a challenge against IPNV for rainbow trout using pedigree based
BLUP (PBLUP) and single-step genomic BLUP (ssGBLUP).

Trait o> a2 h*

PBLUP

DD (days) 38.01 (9.34) 56.90 (5.44) 0.40 (0.08)
BS(Oor1l) 0.03 (0.01) 0.06 (0.01) 0.35 (0.08%)
ssGBLUP

DD (days) 21.27 (4.53) 65.18 (3.32) 0.25 (0.05)
BS(Oorl) 0.02 (0.00) 0.07 (0.00) 0.24 (0.04%)

@ Genetic variance.

" Residual variance.
¢ Heritability.

4 Standard deviation.

Table 3
Five-cross validation accuracies for days to death (DD) and binary survival (BS) after an
IPNV challenge in rainbow trout.

Model DD BS

Average Sp* Average SD!
PBLUP 0.49 0.06 0.50 0.05
ssGBLUP 0.53 0.07 0.56 0.08

@ Standard deviation.

Table 4

Five-fold cross-validation means (standard deviation) for Pearson's correlation (above
diagonal) and bias (below diagonal) for days to death (DD) and binary survival (BS) to
IPNV in rainbow trout.

Trait DD BS

Model PBLUP ssGBLUP PBLUP ssGBLUP
PBLUP - 0.92 (0.01) - 0.92 (0.01)
ssGBLUP 0.89 (0.03) - 0.86 (0.02) -

of genome-enabled selection for IPN resistance in rainbow trout
breeding populations.
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