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ABSTRACT: In previous works CO2 emissions in oil refineries have
been studied for production unit planning. In this manuscript the
associated CO2 mitigation costs are added to the scheduling of crude
oil unloading and blending. Numerical simulations executed on
literature cases show that the optimal scheduling may be affected, and
thus CO2 emissions may be greater than those predicted from
production unit planning. Furthermore, the biobjective problem of
maximizing profits and minimizing CO2 emissions is studied; pareto-
optimal solutions and the lowest carbon pricing that induces the
refinery to minimize CO2 emissions are presented for each case.

1. INTRODUCTION

Industrial activity dating from the beginning of the 19th
century has been linked to the use of fossil fuels as its main
energy source. As a consequence, levels of atmospheric CO2
concentration are rising. It is a widely accepted scientific fact
that the rise is due to human activity and it exceeds historical
levels.1

There is a growing trend on regulations over green house gas
emissions, such as United Nations Framework Convention on
Climate change (1992), Kyoto Protocol (1997), and Paris
Agreement (2015), just to name a few. Therefore, fuel
dependent industries face a challenge in the upcoming years.
This is the case for oil refining companies. Since these
companies participate in the life cycle of many products, a
reduction of CO2 emissions produced by this sector has
enormous implications in the entire global warming potential
of industrial and social activity.2

Bengtsson3 provides a literature review of the oil refining
industry. A classical division of a refinery’s supply chain is given
in three subprocesses.

1. Crude oil unloading and blending.

2. Production unit planning.

3. Product blending and recipe optimization.

The purpose of this manuscript is threefold: (i) to show that
an optimal scheduling of the first subprocess may vary
substantially if the CO2 mitigation costs are taken into
account, (ii) to explore the Pareto frontier of emissions and
profits, and (iii) to find the lowest carbon pricing that forces a
refinery to minimize CO2 emissions. To do so, the objective
function of the model used for scheduling is modified. The last
point is of importance since there is no consensus in the

literature on which model is the best to use; therefore, the
method can be adapted to other formulations if necessary.
The first subprocess consists of defining the crude oil

transfers between vessels, storage tanks, charging tanks, and
distillation units. The planner determines the circulation of
crude oil through units in order to maximize short-term profits
or minimize operational costs. This problem is solved in the
literature by means of mixed integer nonlinear programming
(MINLP), for a fixed time horizon, usually in the range of 1 or
2 weeks. Some aspects of the production planning are
discussed later, since the second and first subprocess are
interrelated.
The integer nature of the problem comes from the modeling

of tasks in a temporal sequence; the nonlinearity arises from
tracking the composition of mixtures in charging tanks. To
solve such models a MILP−NLP decomposition strategy of
MINLP can be frequently found, which consists of solving a
mixed integer linear program (MILP) and then fixing the
integer variables and solving a nonlinear program (NLP).4−7

There are also global optimization solvers that can tackle this
problem directly. In two studies comparing both approaches
the two step decomposition strategy worked as well as the
global solvers in terms of optimality and outperformed the
global solvers in CPU time.5,8 But Castro4 shows the inverse
with a different formulation.
Concerning this representation, earlier mathematical models

were based on discrete time representation (e.g., refs 9−12).
More recent literature focuses on continuous time formula-
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tions because of their reduced model size.7 However, the
findings of Castro4 show that discrete time representations
may be preferable when minimizing costs.
Chen et al.13 provide a review of three different continuous

time modeling approaches: the event-based models,14,15 the
unit slot-based models,16 and the multioperation sequence
(MOS) models.5,17 The essential difference between these is
how the variables are defined. They conclude that the MOS
model performed better in terms of computing time, but in a
specific case the resulting scheduling returned lower profits
than the other models.
A more recent approach is the resource network modeling

introduced by Castro et al.8 They compare their model with
the MOS model of Mouret et al.,5 and both models perform
similarly in terms of optimality; however, that of Mouret
outperforms in CPU times (Table 3). Their model has been
successfully applied to real case scenarios.18

There is yet another approach based on Petri Nets of Zhang
et al.;19 however, as pointed out in the same article, the
addition of an objective function is still under development.
Wu et al.20 addresses sustainability in the scheduling

problem by considering the energy savings in oil transportation
from storage tanks to charging tanks. The relationship in
energy and flow is nonlinear but avoids the nonlinearity by
realizing that the number of different flow rates are limited in
practice. However, as stated by Van Straelen et al.,21 even
energy-efficient refineries will continue to produce consid-
erable amounts of CO2, and the use of CO2 capture
technologies is a way to further diminish this impact.
In regard to the optimality and computational performance

considerations mentioned before, in this work we choose to
follow the model of Mouret et al.5 The study of the pareto-
optimal solutions required multiple executions of the problem,
so this approach was a good compromise between global
optimality and time efficiency.
The second subprocess consists of deciding which crude oils

to buy and which types of products are to be produced for a
time horizon of two or three months. The planner should thus
determine the operation mode for the different production
units to reach the most profitable configuration. Changing the
operation mode of a unit is a decision that usually reduces the
capacity and quality of the refinement for a short period
(Elkamel et al.22). This subprocess is also tackled by mixed
integer nonlinear programming, and the reader may refer to
Neiro and Pinto,23,24 who solved a real case in the Brazilian
Petroleum industry.
In Babusiaux’s work25 linear programming techniques are

used for a life cycle analysis of finished products in an oil
refinery, and the authors show that the main contribution of
CO2 emissions can be traced back to the refinement process in
production units rather than to combustion of finished
products (Table 6 of the article). Elkamel et al.22 developed
an optimization model (also a MINLP) to take into account
CO2 emissions of an oil refinery during the planning process.
Their model maximizes profits with the constraint that
emissions should fulfill a reduction target. One of their main
conclusions is that the use of capture technologies is necessary
to achieve reductions over 30% in CO2 emissions.
The amount of fuel used in the production units depends on

the amount of crude oil to be processed in the respective unit;
more precisely, it depends on the flow entering each unit (see
Figure 1). At the same time, the amount of emitted CO2 grows
on the amount of burnt fuel. Since distillation units are one of

the meeting points between the planning of production units
and the scheduling of crude oils operations, CO2 consid-
erations are included in the former process.
It is fairly intuitive that the objectives of minimizing

emissions and maximizing profits are inherently opposed, as
they have been studied in the planning of production units.22

What is not evident is that once planning is decided, the
scheduling may produce more emissions than expected.
A method is proposed to include CO2 reduction

considerations in the scheduling of crude oil operations of
an oil refinery, namely unloading, blending, and distillation.

1. Mitigation costs and also a penalization term over the
amount of CO2 to be emitted is included in the objective
function.

2. The trade-off between emissions and profits is done by
varying the weight of the penalization term in the
objective function.

This weight can be interpreted as carbon pricing over
emissions; therefore, the penalization term corresponds to the
negative externalities associated with CO2 emissions.
These ideas are implemented in objective functions, and to

the authors’ knowledge, these changes have not been proposed
previously in optimization problems in scheduling of crude oil
operations to reduce emissions in refineries.
In this sense, the present work seeks to be a contribution to

the reduction of emissions in the synthesis and optimization of
industrial processes.The novelty lies in considering planning
decisions in the scheduling process and observing that CO2
emissions can go higher than expected by planning. Studying
that problem gives insights on possible regulations for
refineries.

2. METHODS
This section accounts for the mathematical optimization model
(MINLP) used in the numerical experiences. It is organized in
three subsections dealing with the mathematical modeling and
a subsection dealing with the (MILP-NLP) decomposition
strategy.

2.1. CO2 Emissions in Oil Refineries. In this subsection
the equations modeling CO2 emissions and their associated
costs are derived. The following concepts are borrowed from
the model developed by Elkamel et al.22 The authors consider
three options for reducing CO2 emissions:

1. Flow rate balancing: By increasing the flow to units that
emit less CO2 than others.

2. Fuel switching: Changing the fuel used in the
production unit.

Figure 1. Schema of the CO2 emissions from distillation units. X
represents the scheduling decision, V = (V1, ···, Vn) are the volumes
entering each distillation unit, and U = (U1, ···, Un) represents if some
capture technology is being used in that distillation unit. ϵ(V, U)
accounts for the total emissions.
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3. CO2 capture: The inclusion of CO2 capture technologies

in distillation units; this is called an “end of the pipe”

solution and is the most expensive one.

The same article provides a summary of the available
technologies for reducing CO2 emissions. A current evaluation
of such end of the pipe solutions in the sector is performed by
Van Straelen et al.21 They conclude that the use of such
technologies is more costly than current carbon trading values,
so only an increase in such values, mandatory regulations, or
major technological breakthroughs are required.
The Elkamel et al.22 model is intended to plan oil refineries

whereas the model of this article is aimed at scheduling crude
oil operations.
The main equations borrowed from their model are eqs 11,

19, and 20 of the article,22 those corresponding to profits,
produced CO2, and released CO2, respectively, which are
restated to be applied in the present work.
Let RD be the set of all distillation units and L be the set of

all capture technologies. For each production unit, the
emissions are proportional to a nondecreasing function f of
the inlet flow rate. The emissions Er of each unit r ∈ RD are of
the form

E EF f FR( )r r r=

where FRr is the inlet flow rate of distillation unit r and EFr is
the emission factor. For the current work the inlet flow rate is
taken as the mean flow rate. If the scheduling time horizon is H
and the total volume that enters distillation unit r is Vr then
FRr = Vr/H. This is justified by the fact that distillation units
should operate continuously. In the model used in this article
the function f is the identity function. Since the time horizon is
fixed in the scheduling problem, the emissions only depend on
Vr. The emissions of each distillation unit become

E EF Vr r r= (1)

where EFr is an emission factor of CO2 per unit of crude oil,
measured in [tons of CO2/bbl]. Notice that this emission
factor models the carbon content of fuels used in production
units.
Let Ur

l ∈ {0,1} with r ∈ RD, l ∈ L, being a parameter with
value 1 if capture technology l is implemented in distillation
unit r, and 0 otherwise. The cost of treating a ton of CO2 in a
distillation unit with capture technology l is denoted by cl. The
total cost associated with CO2 capture becomes

c U E
l L

l
r
l

r

r RD

∑
∈
∈

At most one technology can be implemented in each unit;
therefore, for each distillation unit r:

U 1
l L

r
l∑ ≤

∈

Ur
l is a parameter, and then the latter inequality is not an actual

constraint on the scheduling. However, it is a constraint in the
planning of production units since the planner must decide
which technology, if any, should be implemented in each unit.
Finally if technology l allows a fraction qabs

l ∈ (0, 1) of the
emissions to be absorbed, then the total emissions released Erel
to the atmosphere by each distillation unit becomes

E q U E1
r R l L

l
r
l

rrel abs
D

i

k
jjjjjj

y

{
zzzzzz∑ ∑= −

∈ ∈ (2)

Taking into account the previous considerations, in the next
section a model for the scheduling of crude oil operations is
provided. Two very important assumptions in the modeling
should be highlighted. The simplest increasing function for f
was chosen, and the flow rate on a given time horizon was
simplified by its mean flow rate.

2.2. Scheduling of Crude Oils Operations. This
subsection presents the essential elements of the model used
for the optimization of the scheduling and unloading of crude
oils. The original model5 was extended by adding the CO2
emission reduction costs. For the sake of completeness a full
description of the model is included as Supporting
Information.
There are four different subsets of the set resources (R).

• Vessels carrying the crude oils (RV).
• Storage tanks for arriving crude oils (RS).
• Charging tanks for mixing the crude oils in storage tanks

(RC).
• Distillation units which process the blends produced in

charging tanks (RD).

and three different subsets of the set operations W.

• Crude oil unloading from vessels to storage tanks (WU).
• Crude oil transfers from storage tanks to charging tanks

(WT).
• Crude oil transfers from charging tanks to distillation

units (WD).

Two other relevant sets are the set of crude oil types (C) and
the set of crude properties (K). The topology of the refinery is
defined by the sets of input and output operations (Ir ⊂ W and
Or ⊂ W, respectively) of the resource r ∈ R.
The goal is to maximize profits in a fixed production horizon

satisfying a given demand for specified products, by acting on
the following decision variables that characterize the process:

• The order in which operations take place.
• Starting times and duration of operations.
• Transferred volumes in each operation.

This model adopts the structure of priority slots17 to address
the order of operations. A brief summary of this structure is
presented below.
Given n ∈ , an operation v is assigned to slot i ∈ {1, ···, n}.

Let v and w be two operations that cannot occur
simultaneously, assigned to priority slots i and j, respectively.
If i < j, operation v must end before operation w begins. This
mechanism is better expressed by the nonoverlapping
operation constraints in the Supporting Information file. This
modeling tool has the disadvantage of creating symmetric
solutions and increasing the solving time exponentially on n.
The same approach as in the original work is used for avoiding
such symmetries.
The variables can be summarized as follows:

• Assignment variables: Ziv ∈ {0,1}, i ∈ T, v ∈W. It takes
1 as a value if priority slot i was assigned operation v, and
0 otherwise.

• Starting times: Siv ∈ +, i ∈ T, v ∈ W. Starting time of
operation v if it is assigned to priority slot i, 0 otherwise.
Siv is measured in days.
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• Duration: Div ∈ +, i ∈ T, v ∈ W. Duration of
operation v if it is assigned to priority slot i, 0 otherwise.
Div is measured in days.

• Total volume transferred: Viv ∈ +, i ∈ T, v ∈W. Total
crude oil volume transferred in operation v if it is
assigned to priority slot i, 0 otherwise. Viv is measured in
[Mbbl] (1000 barrel).

• Partial transferred volume: Vivc ∈ +, i ∈ T, v ∈W, c ∈
C. Crude oil volume of type c transferred in operation v
if it is assigned to priority slot i, 0 otherwise. Vivc is
measured in [Mbbl].

• Total tank volume Lir ∈ +, i ∈ T, r ∈ RA ∪ RM. Total
volume crude oil accumulated in tank r before the
execution of operation assigned to priority slot i.
Measured in [Mbbl].

• Partial tank volume: L i Tirc ∈ ∈+ , r ∈ RA ∪ RM, c ∈
C. Volume of crude oil c accumulated in tank r before
the execution of operation assigned to priority slot i.
Measured in [Mbbl].

For the purposes of this subsection the relevant parameter
of the original work is

• Gross margin: Gc, c ∈ C. Gross Margin per unit of crude
oil of type c. Measured in dollars per barrel [$US/bbl].

In the extended model the following parameters are added.

• Capture technology: Ur
l r ∈ RD, l ∈ O. Ur = 1 if capture

techonolgy is implemented in distillation unit r, Ur = 0
otherwise.

• Emission factor: EFr, r ∈ RD. Emission factor of CO2

per unit of crude oil of distillation unit r.
• Cost of capture technology: cl represents the cost of

treating a ton of CO2 in distillation units with capture
technology l. Measured in dollars per ton of CO2 [$US/
t].

The gross margins obtained from treating the different crude
oil types in the distillation units are

G V
i T v I

c ivc

r R
r

c CD

∑ ∑
∈ ∈
∈ ∈ (3)

The capture technology costs are

c U EF V
i T v I

l
r
l

r iv

r R
r

l LD

∑ ∑
∈ ∈
∈ ∈ (4)

The Optimal Scheduling of Unloading and Blending (OSUB)
is defined as

G V c U EF Vmax

s.t. Operational constraints

i T v I
c ivc

i T v I

l
r
l

r iv

r R
r

c C r R
r

l LD D

∑ ∑ ∑ ∑−
∈ ∈ ∈ ∈
∈ ∈ ∈ ∈

(OSUB)

where operational constraints can be found in the constraints
section in the Supporting Information. The model extends the
original work5 by the inclusion of eq 4 in the objective
function.
2.3. Trade-off between Emissions and Profits. Since

reducing CO2 emissions involves a cost, this section is oriented
to obtain Pareto-optimal solutions, in the sense that an
improvement in either emissions or profits is detrimental to
the other.

G V c U EF V

q U EF V

max

1

s.t. Operational Constraints

i T v I
c ivc

i T v I

l
r
l

r iv

i T v I l L

l
r
l

r ivabs

r R
r

c C r R
r

l L

r R
r

D D

D

i

k
jjjjjj

y

{
zzzzzz

∑ ∑ ∑ ∑

∑ ∑ ∑γ

−

− −

∈ ∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈ ∈

∈

(Pγ)

Notice that γ is in [$/tCO2] units and represents the monetary
cost of the negative externalities of CO2 emissions that the
refinery internalizes; this is the same unit used in several
carbon pricing initiatives such as Alberta SGER ([23US
$/tCO2]), Denmark carbon tax ([25US$/tCO2]), or Japan
carbon tax ([3US$/tCO2]).

26 If γ is large enough, then the
solution minimizes the released emissions subject to supplying
the demand. By contrast, if γ = 0 the original problem (OSUB)
is recovered. The emissions associated with the solution of
(Pγ) are defined as εγ. The case where γ = 0 will be named as
Business as Usual emissions (εBAU) because it represents an
efficient oil refinery maximizing short-term profits.
An interesting problem is to find the smallest the smallest

carbon pricing that forces a refinery to do its best to minimize
emissions. This value will be named γopt and may be seen as a
social optimum: CO2 reduction is maximized and profits do
not decrease more than necessary to achieve this. The
construction of the Pareto Frontier and finding γopt is
addressed by studying the following optimization problem
for several values of γ > 0, as suggested in Boyd’s work.27

2.4. Composition Constraint and Relaxation. The only
nonlinear constraint of the model is the composition
constraint, which expresses an equivalence between concen-
trations inside any tank and within their output lines. These
concentrations can be followed as molar fractions. There is an
underlying hypothesis that the tank contents are homoge-
neously mixed. In consequence, molar fractions can be
estimated as volume or flow ratios: The ratio of crude type c
volume over the total volume (Vivc/Viv) transferred in an
operation leaving tank r must equal the ratio of crude type c
partial tank volume over the total tank volume (Lirc/Lir); this
can be written as

V L L V

i T r R v O c C, , ,
ivc ir irc iv

r

=

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ (5)

Notice that eq 5 is a bilinear expression and, therefore,
nonconvex. This allows the existence of multiple local minima
thus hindering the numerical resolution. Splitting variables and
constraints may lead to loss of optimality. Although for very
difficult problems like this a slightly suboptimal solution is
acceptable, ignoring constraint 5 at the first step may also cause
the second step problem to become infeasible for the
assignment variables from the first step. Along that line, the
recent work of Zhao et al.28 proposes an algorithm which
iteratively calculates MILP problems until a feasible point is
always obtained; however, the solution may not be optimal.
Although the method to solve the MINLP is not the main

focus of our paper, the technique two-step solution has been
presented and compared with global solvers by Mouret et al.5

With the twofold objective of promoting overall optimality
and second stage feasibility, a relaxed form of eq 5 is
incorporated into the first step problem. These constraints,
called McCormick relaxation,29 consist in introducing linear
inequalities that force the Liv, Livc, Viv, and Vivc variables to lie in
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the convex hull of the set described by the nonlinear eq 5; the
details can be found in the Supporting Information file.
Including this relaxed form of the composition constraint

improves the work of Mouret et al., by diminishing the number
of infeasible problems, thus increasing the applicability of the
two-step strategy. In simulations, presented in Section 3, the
inclusion of the McCormick relaxation played a key role in
obtaining feasible problems in the second step, as can be seen
in the example presented in Table 1. Notice that the same
value holds for both relaxations; however, Mouret’s relaxation
becomes infeasible.5

Finally Kolodziej et al.6 made a comparison of two
techniques that address at the same time global optimality
and feasibility, namely, piece-wise McCormick relaxation and
multiparametric disaggregation. Both of them create tighter
linear bounds on eq 5 than those of McCormick relaxation at
the expense of computing time, thus, the choice of a two step
decomposition with a simple McCormick relaxation.

3. CASE STUDIES
To account for the effects of the inclusion of the CO2
reduction costs in the resulting scheduling and profits, the
following cases were considered as case studies, and they have
been recurrently used throughout the literature.4,5,9 The
general division among resources and the superstructure is
representative from classic refineries (e.g., BP, Total, SK).
Case 1: The refinery’s configuration consists of three vessels,

three storage tanks, three charging tanks, and two distillation
units (Figure 2) in a 12-day scheduling horizon.

Operation sets become:

W v v v

W v v v v v v v

W v v v v

, ,

, , , , , ,

, , ,

B 1 2 3

T 4 5 6 7 8 9 10

D 11 12 13 14

= { }

= { }

= { }

Case 2: The refinery’s configuration for this case consists of
three vessels, six storage tanks, four charging tanks, and three
distillation units (Figure 3) in a 12-day scheduling horizon.
Operation sets become:

W v v v

W v v v v v v v v v v

W v v v v v v

, ,

, , , , , , , , ,

, , , , ,

B 1 2 3

T 4 5 6 7 8 9 10 11 12 13

D 14 15 16 17 18 19

= { }

= { }

= { }

Parameters for both case studies can be found in the Data
section of the Supporting Information file. The following
schedules were obtained from the solution of problem
(OSUB).
To highlight the effects of the costs inclusion in the

scheduling, the setting cl = 0 corresponding to ignoring the
cost of treating the produced CO2 emissions is presented as
well for comparison.
The former represents the current state of refineries since no

CO2 costs are considered and coincides with the simulations
carried out in the original work.5 Whenever this cost is
included, the optimal scheduling tends to avoid sending oil in
units capturing CO2.
For case study 1, Table 2 shows the amount of crude oil that

enters each distillation unit when considering the CO2 costs.

This result is not surprising since a cost on using unit r11 was
added. Figure 4a,b shows how the optimal schedule is changed
when the CO2 cost is included. The most notorious change
goes in distillation operations and was expected to happen;
since CO2 reduction costs are included on unit r11, a new
solution will try to pump crude oil to unit r10 rather than r11 as
shown in Table 2. Notice that the only tank that can send
crude oil to both distillation units is r8; therefore, distillation 2
(v12) should be used for a longer time instead of distillation 3
(v13). Since starting and ending times of operations in a
refinery are dependent on other operations, the whole
scheduling is changed except for transfer 3 and the unloading
operations. An analogous discussion for case study 2 can be
made considering Figure 5a,b and Table 3.
In summary, an efficient profit maximizing refinery should

avoid using the capture technology due to extra costs. The
model predicts this behavior.

The trade-off between emissions reduction( )100BAU

BAU
×ε ε

ε
− γ

and profits is presented in Figures 6a and 7a. In both cases it
can be seen that the CO2 emissions reduction remains
unchanged for several values of γ but abruptly changes at
certain points. For example, in Figure 6a for γopt ≈ 0.59$/tCO2

Table 1. Case Study 1 with n = 15 Priority Slots

value MILP value NLP GAP

ignoring eq 5 (Mouret et al.5) 8380.3 unfeasible -
McCormick relaxation 8380.3 7812.3 6.7%

Figure 2. Case 1 configuration.

Figure 3. Case 2 configuration.

Table 2. Amount of Crude Oil Pumped into Distillation
Units for Case 1a

considers CO2 capture cost? r10 [Mbbl] r11 [Mbbl]

yes (Figure 4b) 844.3 655.7
no (Figure 4a) 600 900

aOnly unit r11 has capture technology installed.
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the refinery reaches the maximum possible CO2 emissions
reduction, or equivalently, the minimum level of CO2
emissions, providing the minimum cost of the negative
externalities that induces the refinery to reduce emissions as
much as possible.
Since one of the stages for solving this problem is a MILP,

released emissions will remain constant for several γ values: a
change in γ will provide a different optimum only if a dual
variable changes sign. A planner considering the cost of
externalities will be faced with a finite number of Pareto-
optimal solutions.
Notice that solution of model Pγ gives values of γ

considerably lower than the current carbon pricing initiatives.
Since the model is taken from literature examples, it gives no
real insight on the pricing of CO2 emissions. Rather, it
exemplifies a way to define the pricing by finding γopt.

4. CONCLUSIONS AND FINAL REMARKS

Based on a benchmarked model and literature examples,
numerical simulations of the CO2 emissions of distillation units
during the scheduling of crude oil operations were conducted.
The objective function of the original model was modified to
consider the cost of CO2 capture and negative externalities of
emissions in order to explore the behavior of a profit
maximizing refinery.
Even though the mathematical model proposed simplifies

(for the sake of resolvability) the characteristic function f of
distillation units and considers the mean flow rate, the
inclusion of CO2 mitigation costs may drastically change the
optimal scheduling. Both case studies show the sensitivity of
the decision model to CO2-related costs. This sensitivity is
demonstrated by a change of these distillation units used in the
process. Since sending more crude oil to units with some
capture technologies increases the cost, the capture of CO2
emissions can be represented into the short-term profit
equation as proposed herein.
At the same time it raises the question for the trade-off

between CO2 emissions reduction and profits. To shed some
light over this issue a classic multiobjective optimization
approach was applied and few Pareto-optimal solutions were
found. The pareto-optimal solution when emissions are

Figure 4. Case 1 scheduling.

Figure 5. Case 2 scheduling.

Table 3. Amount of Crude Oil Pumped into Distillation
Units for Case 2a

considers CO2 capture cost? r14 [Mbbl] r15 [Mbbl] r16 [Mbbl]

yes (Figure 5b) 1176 324 900
no (Figure 5a) 626 616 1158

aUnits r15 and r16 have capture technology installed.
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minimized is of high interest because γopt could be used to
assess regulations regarding the price per ton of emitted CO2

in each refinery. Methods to estimate such γopt, as well as its
sensitivity to operational parameters, without directly calculat-
ing the scheduling problem could be further studied.
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