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In the heart, insulin controls key functions such as metabolism, muscle contraction and cell death.
However, all studies have been focused on insulin action during reperfusion. Here we explore the car-
dioprotective action of this hormone during ischemia. Rat hearts were perfused ex vivo with an ischemia/
reperfusion Langendorff model in absence or presence of insulin. Additionally, cultured rat car-
diomyocytes were exposed to simulated ischemia in the absence or presence of insulin. Cytoprotective
effects were measured by myocardial infarct size, trypan blue exclusion, released LDH and DNA frag-
mentation by flow cytometry. We found that insulin protected against cardiac ischemia ex vivo and
in vitro. Moreover, insulin protected cardiomyocytes from simulated ischemia by reducing necrotic cell
death. Protective effects of insulin were dependent of Akt and NFkB. These novel results show that insulin
reduces ischemia-induced cardiomyocyte necrosis through an Akt/NF-kB dependent mechanism. These
novel findings clarify the role of insulin during ischemia and further support its use in early GIK

perfusion to treat myocardial infarction.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Ischemic heart disease (IHD) is characterized by atherosclerotic
narrowing of the arteries of the heart, resulting in a reduced blood
supply to the heart. IHD is the major cause of death worldwide.
However, myocardial ischemia also occurs during heart trans-
plantation. After ischemia, reperfusion takes place, restoring the
blood flow and nutrients. Both ischemia and reperfusion can induce
cardiac death by necrosis and/or apoptosis [ 1]. The glucose-insulin-
potassium (GIK) infusion [2,3]| was initially used during the reper-
fusion in the infarcted heart [4]. GIK was also used as a car-
dioprotective solution to provide metabolic support based on that
insulin could control energy metabolism, muscle contraction and
cell death [5—8]. However, clinical trials using GIK infusion during
reperfusion showed negative results [9]. Apstein proposes that
these negative results could be explained, in part, because GIK did
not start before reperfusion [6]. Therefore we hypothesized that
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insulin has cardioprotective effect when is applied during the
ischemic period. Cardiomyocyte death is mainly inhibited by acti-
vation of PI3K/Akt pathway. Akt phosphorylates and inactivates
several proteins including BAD, caspase 9, FoxO, etc [8]. However,
insulin also controls transcriptional factors including NFkB. This
one has also shown to be protective against ischemia [10,11].
Recently we showed that insulin stimulates cardiomyocyte mito-
chondrial fusion and metabolism by activating Akt/NFkB signaling
pathway [9]. Therefore, the aim of this work was to investigate the
protective role of insulin during ischemia and understand the
contribution of NFkB on insulin-dependent cardioprotection.

2. Materials and methods
2.1. Cultured cardiomyocytes

Primary cultured cardiomyocytes (2—3 days old) Sprague-
Dawley rats were prepared and used as described in Ref. [12].
Rats were obtained from the Animal Breeding Facility, Facultad
Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Chile. All
studies conform to the Guide for the Care and Use of Laboratory
Animals published by the U.S. National Institutes of Health (8th
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Edition, 2011) and were approved by our Institutional Ethics Re-
view Committee.

2.2. Langendorff system

Langendorff studies were performed according to Ibacache et al.
[13]. Briefly, the hearts were mounted in a Langendorff system,
perfused retrograde via the ascending aorta at 12 mL/min with
physiological Krebs Henseleit buffer. After stabilization, hearts
were subjected to 45 min low flow ischemia (0.25 mL/min) fol-
lowed by 60 min reperfusion. Insulin (Actrapid) was added during
ischemia or ischemia/reperfusion (Fig. 1A). Then, the hearts were
sliced from into 2 mm slices. They were counterstained with 2,3,5-
triphenyltetrazolium chloride (Sigma). For each slice, measuring
the size of the infarct area was performed by planimetry as
described in Ref. [13]. The infarct size was expressed as % of the
ventricular volume [13].

2.3. Simulated ischemia/reperfusion

Ischemia was performed as described in Ref. [14]. Briefly, cells
were incubated in ischemia-mimicking solutions containing (in
mM) HEPES (5), 2-deoxy-p-glucose (10), NaCl (139), KCI (12), MgCl,
(0.5), CaCl; (1.3), and lactic acid (20), pH 6.2, under 100% nitrogen
(02 <1%) at 37 °C for 8 h. Subsequently for reperfusion, this medium
was replaced with DMEM/M199 medium containing 10% FBS and
cells were cultured under normoxia.

2.4. Western blot

After treatments, cells were lysed and equal amounts of protein
were separated by SDS—PAGE (5—20% gels) and electrotransferred
to PVDF membranes. The membranes were incubated with primary
antibodies (anti-pS473 Akt, anti-pT308 Akt, pS137 BAD, anti-pS536
p65, anti-p65, anti-GAPDH, anti-Akt total, anti-f actin or anti-IkB,
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Cell Signaling) and re-blotted with HRP-linked secondary antibody.
The bands were detected using ECL and quantified by image
densitometry using Image] software (NIH). Protein content was
normalized by GAPDH or B-actin level.

2.5. Immunofluorescence studies

Cardiomyocytes were fixed with paraformaldehyde 4% PBS,
permeabilized with 0.01% triton, 3% bovine serum albumin was
used to block the samples. They were incubated with rabbit anti-
p65 NFkB overnight at 4°C, and cells were washed and incubated
with secondary fluorescent antibody.

2.6. Cell death assays

Cell death was studied by: a) Exclusion Trypan blue: cells were
counted by double-blind; b) Apoptotic subG1 population [14]; and
c) released LDH (Cytotoxicity assay kit, Promega).

2.7. Statistical analysis

Results were expressed as mean + SEM (n: 4—7 independent cell
preparations). The comparisons between groups versus control
were performed in GraphPad Prism 5 software using t-Student or
ANOVA for two or more than two groups, respectively. p < 0.05 was
set as significance level.

3. Results
3.1. Effect of insulin on infarct size ex vivo

To understand the protective role of insulin against ischemia/
reperfusion, hearts were exposed to ischemia/reperfusion in

absence or presence of 10 or 100 nM insulin only during ischemia
or during ischemia/reperfusion. Infarct size was measured as
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Fig. 1. Effect of insulin against ischemia/reperfusion (I/R) ex vivo and in vitro. Panel A, Experimental protocol for Langendorff. Panel B, % infarct size of ex vivo experiments. Panel C, cultured
cardiomyocytes were submitted to simulated I/R in absence (—/—) or presence of 10 nM insulin (Ins) during ischemia (+/—) or for complete I/R protocol (+/+). Cell viability was measured by
trypan blue exclusion. Values are mean + SEM. N: 4—7 independent experiments. Data were analyzed by one-way ANOVA and Tukey's multiple comparison test. *p < 0.05, “**p < 0.01 and
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P < 0.001. N.S. no significant changes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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described in Methods. Fig. 1A shows that insulin reduced infarct
size. However, no differences between insulin treatment during
ischemia or ischemia/reperfusion were found (Fig. 1B). This result
was novel because most of studies have shown protective effects of
insulin during reperfusion [15—18]. These results were confirmed
in vitro where cultured cardiomyocytes were exposed to ischemia/
reperfusion in the absence or presence of 10 nM insulin during
ischemia or ischemia/reperfusion. Similar to Langendorff, insulin
protects the cells with no differences between its presence during
ischemia or ischemia/reperfusion (Fig. 1C). These results suggest
that insulin protected from ischemia/reperfusion, primarily by
acting during ischemia.

3.2. Effect of insulin on cell death during simulated ischemia

We studied whether insulin protects against ischemia alone. In
order to test this, ischemia was performed by 2, 4 and 8 h. We
observed a time-dependent decrease in cell viability of 20, 35 and
50%, respectively (Fig. 2A). We chose 8 h to evaluate cell death.
Then, we studied the effects of different insulin concentrations (1,
10, and 100 nM) for 8 h of simulated ischemia. The results showed
that 10 nM insulin was the optimal concentration to prevent and/or
inhibit the cell viability decrease in simulated ischemia (Fig. 2B).
Next, we analyzed the type of cell death that insulin prevents on
cardiomyocytes exposed to ischemia. Fig. 2C shows that ischemia
increased necrotic cell death detected by released LDH. Also
apoptotic subG1 cell population increased (Fig. 2D). However in-
sulin reduces both released LDH and subG1 cells induced by
ischemia (Fig. 2C and D). Insulin did not decrease active caspase-3
and cleaved PARP in ischemia (Fig. 2E). Therefore, these results
suggest that insulin protects and/or prevents ischemia damage by
inhibiting necrosis cell death.

3.3. Effect of insulin on Akt activation during simulated ischemia

Akt activation was determined because is a key mediator of
insulin signaling controlling cell death. Levels of phospho-Akt on
serine 473 and threonine 308 were increased with insulin treat-
ment in ischemia (Fig. 3A). These effects were inhibited in a dose-
dependent manner by the Akt inhibitor (0—5 uM) Akt VIII
(Fig. S1A). Downstream, insulin increased BAD phosphorylation on
Serine 137 (Fig. 3B). These results, suggest that insulin activated Akt
and triggered BAD phosphorylation during simulated ischemia.

3.4. Effect of insulin on NFkB during simulated ischemia

Insulin treatment in simulated ischemia reduced the NFxB
repressor IkBa levels (Fig. 4A). Moreover, insulin augmented p65
NFkB nuclear translocation in cardiomyocytes (Fig. 4B) and
increased p65 NFkB phosphorylation on Serine 536 during
ischemia (Fig. S1B). This effect was abolished by BAY 11-7082
(Fig. S1B).

3.5. Effect of Akt and NFkB inhibition on protective role of insulin
during ischemia

In order to evaluate the role of Akt and NFkB on insulin-induced
cardioprotection during ischemia. Akt and NFkB were inhibited by
AKTi VIII and BAY 11-7082, respectively. Both Akt and NFkB inhi-
bition abolished insulin-induced cardioprotection during simu-
lated ischemia (Fig. 4C and D). These results suggest that Akt and
NFkB participate on insulin-induced cardioprotection and/or pre-
vention of ischemic damage.

4. Discussion

The main finding of this work involved the clarification of the
role of insulin on cardioprotection during ischemia. We found that
insulin protects cardiomyocytes by reducing necrotic cell death.
Protective action of insulin involves NFkB through an Akt-
dependent mechanism.

In the normal heart, insulin promotes glucose uptake and its
utilization via glycolysis, regulates long-chain fatty acid uptake and
protein synthesis [8]. However, during ischemia/reperfusion, in-
sulin promotes cardioprotection [15—18]. Dogs subjected to
myocardial ischemia/reperfusion and treated with insulin 10 min
before reperfusion showed significant cardioprotective effects as
evidenced by improved cardiac function, improved coronary blood
flow, reduced infarct size, and myocardial apoptosis [17]. In rabbits,
insulin given just before reperfusion also reduced infarct size [15].
In isolated rabbit hearts, infusion of insulin prior to ischemia
significantly reduced myocardial infarction through a PI3K-
dependent mechanism [19]. In rats, administration of insulin after
reperfusion reduced post-ischemic myocardial apoptotic death
[18]. Moreover in rats, insulin infusion 10 min before the ischemia
and continuing for 2 h, significantly reduced infarct size, decreased
apoptosis and improved cardiac function after ischemia [16]. These
data unveiled the use of GIK infusion as a cardioprotective treat-
ment during reperfusion [5—7]. However, clinical trials using GIK
infusion during reperfusion as a cardioprotective agent showed
negative results [9]. Here, we showed that cardioprotective actions
of insulin are more important during ischemia than reperfusion.
This result could explain most of the controversial results obtained
with GIK infusion. In this sense, Apstein proposes that negative
results obtained in the CREATE-ECLA trial regarding the effect of
GIK infusion on mortality in acute myocardial infarction is due, in
part, because GIK infusion was not started early and well before
reperfusion [6]. Our results suggest that the main effect of insulin
was associated with the reduction of necrosis during ischemia
rather than the reduction of apoptosis during reperfusion. We
propose that insulin administration early during reperfusion could
reduce some of the necrotic process initiated during ischemia,
inducing cardioprotection. After reperfusion was initiated effect of
insulin in apoptosis should be negligible, hence explaining the null
results obtained in CREAT-ECLA trial.

Only few works have explored the cardioprotective effect of
insulin administered just before or during ischemia [16,19]. How-
ever, none of them has characterized the effect on cardiomyocyte
death during this stage. Xing et al. and first preclinical studies using
GIK infusion in the early 70's showed that treatment with insulin
during ischemia decreased plasma creatine kinase and LDH activ-
ities [16,20]. Although Xing et al. described a reduction of apoptosis
after reperfusion [16], histological analysis [20]| and plasma enzy-
matic activities [16,20] suggest also an anti-necrotic action of
insulin.

Several studies involved the insulin-mediated activation of PI-
3K/Akt pathway to explain the protective effect of GIK [2,21,22].
Akt phosphorylates and inactivates several pro-apoptotic proteins
including BAD [23]. We found that basal and insulin-dependent Akt
and BAD phosphorylation were increased during ischemia. BAD is a
pro-apoptotic member of the Bcl-2 family which exerts its proap-
optotic action by binding Bcl-2 and Bcl-XL [23]. Akt-dependent BAD
phosphorylation at serine 136 creates a consensus site for inter-
action with the 14-3-3 protein. BAD then binds to 14-3-3, releasing
Bcl-2 or Bcl-XL, with the consequent promotion of cell survival
[23,24]. Bcl-2 has been associated with prevention of mitochondrial
permeability transition, an event resulting in either apoptosis or
necrosis [25,26]. In fact, Bcl-2 and Bcl-XL can inhibit the mito-
chondrial permeability transition itself [27]. The possible
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changes.

mechanism involved an inhibition of VDAC and ANT activities by
Bcl-2 [28,29]. Therefore, BAD regulation of Bcl-2 and Bcl-XL could
block the mitochondrial permeability transition, and could there-
fore block mitochondrial permeability transition-dependent ne-
crosis in addition to their well-established ability to inhibit
apoptosis [26].

In addition to BAD phosphorylation, our results showed that
insulin-dependent Akt activation also stimulates NFkB, visualized
by a decreased NFkB repressor IkBo. protein levels associated with a
p65 translocation to the nucleus. Dan et al. described that the Akt-
dependent mTOR and IKK interaction stimulates IKK activity which
phosphorylates IkBa leading to NFkB activation [30]. Moreover, we
have previously shown that insulin activates NFkB in car-
diomyocytes through an Akt-dependent pathway [31]. Here, we
showed that insulin activated NF«B and prevented cardiomyocyte
death induced by ischemia. Inhibition of both Akt and NFkB by
using Akti and BAY during ischemia, respectively, abolished insulin-
dependent reduction of cell death.

Besides insulin, NFkB is activated by pro-inflammatory cyto-
kines and endogenous ligands for toll-like receptors that are

generated during ischemia [32]. NFkB activation in turn induces
pro-inflammatory proteins [32]. Because inflammation can trigger
heart injury, NFkB blocking using pharmacological inhibitors or
decoy oligonucleotides reduces myocardial infarction in animal
models [32—35]. In addition, NFkB knockout mice have less heart
failure and lower mortality compared with wild-type mice after
myocardial infarction [36]. Our results showed that interventions
blocking NF«B should be analyzed with caution because NFkB also
blocks necrosis during myocardial ischemia. Misra et al. revealed
that NFkB activation was required to decrease ischemia-induced
cell death in a murine model of acute myocardial infarction via
induction of c-IAP1 and Bcl-2 [10].

NFkB is a well-known anti-apoptotic transcription factor [37].
However, NFkB has also less known anti-necrotic action [37]. NFkB
exerts its protective effects by upregulating expression of several
genes [38]. Among these are Bcl-2-family members, A1/Bfl-1 and
Bcl-XL, the caspase-8 regulator FLIPL, the caspase inactivators:
cellular inhibitor of apoptosis proteins (c-IAP)1 and c-IAP2 and X
chromosome-linked IAP (XIAP), TRAF1 and TRAF2 and serpin SPI2a
[38]. Several of these proteins, including Bcl-2 family members and
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serpin SPI2a, have been directly associated with the prevention of
necrosis [26,39]. Therefore, insulin dependent NFkB activation
could be considered as a mechanism to decrease necrosis during
ischemia.

Because insulin reduced cardiomyocyte necrosis during
ischemia, insulin could be used as a cardioprotective agent in organ
preservation solutions during transplantation. Several organ pres-
ervation solutions have been used in heart transplantation,
including University of Wisconsin, histidine-tryptophane-
ketoglutarate, St. Thomas' Hospital, crystalloid cardioplegia and
blood [40—42]. Insulin has been added to some of these solutions to
maintain a steady state of metabolism of the donor heart ex vivo
[43,44]. None of these works evaluated insulin as a cardioprotective
agent. However, protective effect of insulin seems to be tissue
specific, since in liver transplant, insulin in University of Wisconsin
solution exacerbates the ischemic injury and decreases the graft
survival rate [45]. Therefore, future research should clarify the
contribution of insulin as cardioprotective agent in organ preser-
vation solutions.

In conclusion, this study shows that insulin decreased necrosis
in cardiomyocytes during ischemia through an Akt/NF«B pathway.
These novel findings thus clarify the role of insulin during ischemia,
joining the large body of literature supporting the use of insulin in
GIK perfusion to treat myocardial infarction.
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