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[1] In a previous paper, sufficiently large-amplitude and left-handed ‘‘pump waves’’
propagating parallel to the background magnetic field were shown to stabilize a
moderately dense beam in a proton plasma against the generation of waves drawing their
energy from the differential streaming motion of the beam [Gomberoff, 2003]. We now
examine the general case of both left-hand and right-hand pump waves and their effects on
beam instability as a function of pump wave amplitude and frequency, beam speed, and
plasma component temperatures. We find that the left-hand pump wave always gives
beam stability above a threshold amplitude. Larger threshold trend with increasing beam
speed and lower ones with increasing temperature. It is also shown that they can stabilize
left-hand polarized instabilities in the case of large drift velocities. The right-hand pump
similarly suppresses beam instabilities when its pump frequency is below the linearly
unstable range of frequencies. However, when its pump frequency is within the range of
instability, that part of the range below the pump frequency is stabilized beyond a
threshold amplitude, but the part above becomes even more unstable in the presence of a
right-hand pump. INDEX TERMS: 7839 Space Plasma Physics: Nonlinear phenomena; 7867 Space

Plasma Physics: Wave/particle interactions; 7868 Space Plasma Physics: Wave/wave interactions; 7871 Space

Plasma Physics: Waves and instabilities; 2164 Interplanetary Physics: Solar wind plasma; KEYWORDS:
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1. Introduction

[2] Electromagnetic ion beam-plasma interactions take
place in various space and astrophysics environments as
well as in laboratory plasmas. Proton beams have been
observed in several regions of space, and in some places
they display very large drift velocities (e.g., upstream of the
quasi-perpendicular bow shock where U � 10. U is the
beam drift velocity normalized to the Alfvén velocity) [see,
e.g., Hoppe et al., 1981, 1982; Leubner and Viñas, 1986;
Marsch, 1991; Gary, 1991].
[3] In the linear theory, these waves have been studied

both numerically and analytically by many authors [see,
e.g., Gary, 1991; Gomberoff and Elgueta, 1991; Gnavi et
al., 1996; Gomberoff et al., 1996; Gomberoff and Astudillo,
1998; Gomberoff et al., 2000]. The growth rates of the
instability maximize parallel to the background magnetic
field.
[4] The nonlinear behaviour of finite amplitude and

circularly polarized waves which propagate parallel to the
background magnetic field involve parametric wave-wave

interactions and also effects on beam components when
present. The latter effects are the subject of this paper.
Nonlinear behavior of left-hand polarized electromagnetic
waves in a solar wind-like plasma involving alpha particles
drifting relative to the proton, have been studied by Hollweg
et al. [1993] and Gomberoff et al. [1994]. Studies of
parametric decays of right-hand waves have been carried
out by Hollweg [1994] [see also Jayanti and Hollweg,
1994a, 1994b]. Their nonlinear evolution has also been
studied by using drift kinetic effects [Inhester, 1990], and
hybrid computer simulation techniques [Vasquez, 1995].
Studies including dissipation and varying beam drift speeds
have been carried out by Gomberoff [2000] and Gomberoff
et al. [2001, 2002]. The effect and evolution of the beam
for right-hand and left-hand polarized waves have also
been studied by using simulation experiments [see, e.g.,
Daughton et al., 1999].
[5] In the work of Gomberoff [2003], it was shown that

right-hand instabilities (r-instability) can be stabilized by
large-amplitude Alfvén/ion-cyclotron waves. Here we
investigate several situations involving left-handed and
right-handed large-amplitude waves (L and R waves of
large amplitude) in a system which is linearly unstable.
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Thus for example, in the work of Gomberoff [2003] the
beam velocity was assumed constant. It is shown here that
the threshold L-wave amplitude required to stabilize the
linear r-instability increases with increasing beam velocity,
and for fixed drift velocity, it decreases with increasing
pump wave frequency. For beam drift speeds above the
threshold required to destabilize l-instabilities, L-waves can
also stabilize the l-instability. The mechanism is more
efficient when the large-amplitude waves have frequencies
closer to the proton gyrofrequncy.
[6] In the case when there is a large-amplitude R-wave in

the system, it is shown that the part of the linear unstable
spectrum below the wave frequency (which may involve r
as well as l-instabilities depending on the beam drift
velocity) can be completely stabilized for pump wave
amplitudes above a threshold value. On the other hand,
the spectrum above the pump wave frequency can be either
destabilized further, or the whole corresponding dispersion
branch can become unstable.
[7] The paper is organized as follows. In section 2, the

linear beam-plasma dispersion relation in the cold approx-
imation is briefly discussed, and a brief derivation of the
nonlinear dispersion relation for L and R waves is pre-
sented. In section 3, the dispersion relation is solved
graphically in a number of different situations in order to
illustrate the various effects found. In section 4, the results
are summarized and discussed.

2. Dispersion Relation

[8] The plasma dispersion relation for circularly polarized
electromagnetic waves propagating in the direction of an
external magnetic field in a system consisting of electrons, a
proton core, and a proton beam, is given by [Gomberoff,
1992; Gomberoff and Hernández, 1992; Gnavi et al., 1996;
Gomberoff and Astudillo, 1996],

y20 ¼
x20

1� x0
þ h x0 � y0Uð Þ2

1� x0 � y0Uð Þ : ð1Þ

where x0 = w0/�p, y0 = k0vA/�p, vA = B0/(4p npMp)
1/2 is the

Alfvén speed, U = V/vA is the normalized beam velocity,
h = nb/nc is the beam density relative to the core density, and
�p = qB0/cMp is the proton gyrofrequency.
[9] The dispersion relation, equation (1), is valid in a

current-free plasma and in the reference frame where the
proton core is at rest [Gomberoff and Elgueta, 1991]. For an
alpha particle beam, the dispersion relation was first derived
by using kinetic theory in the semicold approximation
[Gomberoff and Elgueta, 1991] and later on by using fluid
theory [Hollweg et al., 1993]. The dispersion relation for an
arbitrary ion beam can be found in the work of Gomberoff
[1992].
[10] We now derive very briefly the nonlinear dispersion

relation assuming the plasma to be composed by electrons,
background protons, beam protons, and a left-hand circularly
polarized wave propagating along the external magnetic
field. This wave corresponds to the pump wave. Each plasma
component satisfies the following fluid equation of motion,

@

@t
þ u � r

� �
~u ¼ ql

ml

~E þ 1

c
~u	~B

� �
�

~rp

nlml

; ð2Þ

where ~u is the bulk velocity, ql is the electric charge, ml is
the mass, ~E and ~B are the electric and magnetic field,
respectively, and p is the pressure.
[11] As pointed out before, the dispersion relation given

by equation (1) was first derived by linearizing Vlasov’s
equation [Gomberoff and Elgueta, 1991], and using the
semicold approximation. Later on, it was derived by using
first-order perturbation theory on the fluid equation (2) for
zero temperature [Hollweg et al., 1993]. Finally, it was also
shown to be an exact solution of equation (2) for zero
pressure [Gomberoff et al., 1994].
[12] Following a procedure similar to Hollweg et al.

[1993] [see also Gomberoff et al., 1994, 1995; Gomberoff
1995; Galvão et al., 1996], the nonlinear dispersion relation
can be written in the following form [Gomberoff et al.,
2002; Gomberoff, 2003],

LþL�Dþ LþR�B�cc þ LþR�bB�ccb þ L�RþBþ þ L�RþbBþb

þ B�ccBþb � B�ccbBþð Þ R�Rþb � R�bRþð Þ=D ¼ 0: ð3Þ

In the last equation,

L
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 � x2
=y
 � hx2
b=y
b
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þ x
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b
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2
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� �

BþðbÞ1 ¼ �
Ay� bð Þ yþyþ bð Þx

2
0 bð Þ � y0y0 bð Þx

2
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Ayþ bð Þ y�y� bð Þx
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2
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� ¼ Aþ r 1�
bpy2
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� �

�b ¼ Aþ rb 1� bby2

x2b

� �

bl ¼ 4pnpgKTl=B2
0 l ¼ e; c; bð Þ;

where x = w/�p, y = kvA/�p, K is the Boltzmann constant, Tl
is the temperature of species l, and

xb ¼ x� yU

x0b ¼ x0 � y0U

A ¼ B=B0ð Þ2

r bð Þ ¼ y0 bð Þyþ bð Þy� bð Þ
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y0 ¼ 1� x0

y0b ¼ 1� x0b

y
 ¼ 1� x


y
b ¼ 1� x
b

x
 ¼ x0 
 x

y
 ¼ y0 
 y

x0b ¼ x0 � y0U

x
b ¼ x
 � y
U

b0e ¼ bey2= 1þ hð Þ:

[13] The pump wave is characterized by the coordinates
x0 and y0, and it is at the origin of the (x, y) coordinate
system. For zero pump intensity, A = 0, equation (3) reduces
to L+L�D = 0. The solution L± = 0, corresponds to the
dispersion relation of the upper and lower side band waves,
respectively. The other solution D = 0, corresponds to the
sound waves present in the system which, for h � 1, are
given by,

x ’ 
 be þ bp
� �1=2

y ð4Þ

x� yUð Þ ’ 
 bbð Þ1=2y ð5Þ

[14] Equation (4) represents the ordinary ion-acoustic
waves propagating forward and backward relative to the
proton core, and equation (5) corresponds to ion-acoustic
waves, supported mainly by the proton beam. They move
forward and backward relative to the beam. The solutions of
L± = 0 give the various branches of the dispersion relation.
The crossings between the solutions give the position and
nature of the possible wave couplings of the system. The
solutions of the nonlinear dispersion relation, equation (3),
are invariant under a rotation through an angle of 180�.
Therefore it is sufficient to analyze the solutions in the
upper half w � k plane [see, e.g., Hollweg et al., 1993;
Jayanti and Hollweg, 1994a, 1994b; Gomberoff et al., 1994,
1995; Gomberoff, 2000; Gomberoff et al., 2001]. Note that
for A = 0, only the ion-acoustic modes depend on the
temperature. Note also that the cold plasma dispersion
relation for electromagnetic modes is a good approximation
in those regions of space where bki = vth.i/vA � 1 (vth.i =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KTðiÞ=MðiÞ
p

is the thermal velocity of species i). This
may happen for small temperatures and also for not so
small temperatures [see, e.g., Gomberoff and Neira, 1983;
Gomberoff, 1992] or for very large Alfvén velocity relative
to the thermal velocity, like, e.g., in coronal holes [see, e.g.,
Cranmer, 2002; Hollweg and Isenberg, 2002, and referen-
ces therein]. Equation (3) corresponds to the dispersion
relation for left-hand polarized nonlinear waves. The dis-
persion relation for R-waves of large amplitude can be
obtained by replacing (x, y) by (�x, �y) and (x0, y0) by
(�x0, �y0). Alternatively, one can simply take (�x0, �y0)
for the frequency and wavenumber of the right-hand non-
linear wave and leave the rest unchanged. This is so because

the (x, y) plane is invariant under rotations through an angle
of 180�.

3. Numerical Study of the Nonlinear Dispersion
Relation

[15] In order to study the nonlinear dispersion relation,
equation (3), we use a graphical method first derived by
Longtin and Sonnerup [1986].

3.1. L-Wave Effects on Beam Instability

[16] We start by studying the effect of varying beam
velocity on the stabilization of the r-instability due to the
presence of an L-wave. In the work of Gomberoff [2003] it
was shown that for bi = 0.001, h = 0.2, U = 2, a large-
amplitude wave of frequency x0 = 0.1 stabilizes the linear
instability for At = 0.16, where At is the minimum amplitude
of the pump wave required to stabilize the linear instability.
As U increases, At is expected to increase too. In Figure 1a
we illustrate the situation for U = 2.3 and A = 0. The gap
between the two curves denoted by �F and �b corresponds
to the r-instability and is shown by an arrow [see
Gomberoff, 2003, Figure 1]. The lines denoted by �F
and �b are lower right-hand polarized sideband waves
propagating in the direction of the external magnetic field
[see Gomberoff, 2003]. The labels of the various branches
of the dispersion relation are given in Table 1. In Figure 1b,
A = 0.81 and the gap between �F and �b has disappeared
showing thereby complete stabilization of the linear insta-
bility. Thus the threshold amplitude is now At = 0.81,
instead of At = 0.16 for U = 2, as expected [see Gomberoff,
2003]. It can be shown that in general, At increases with
increasing U. On the other hand, if the pump wave fre-
quency is increased, the threshold value decreases. In fact,
in Figure 2a we have taken x0 = 0.5, and A = 0. The arrow
shows the linear instability gap. The other parameters are
the same as in the previous figure. In Figure 2b, we have
taken At = 0.7, and the instability is completely stabilized.
Thus as the pump wave frequency increases, the threshold
At-value decreases. In general, for fixed U, the instability
threshold continues to decrease as the pump wave
approaches the proton gyrofrequency. The effect is very
pronounced for frequencies very close to the resonance. For
example, for U = 3, and x0 = 0.3, At = 2.5. However, for the
same drift velocity but for x0 = 0.95, At = 0.47. Finally, in
Figure 3 we consider the case when U = 2.8. In this case
there are are both r and l-instabilities. In Figure 3a we have
plotted the nonlinear dispersion relation for x0 = 0.9, and
A = 0. The arrow shows the linear instability region. In
Figure 3b, A = 0.63. The linear instability is completely
stabilized, including the l-instability region corresponding
to Alfvén waves. It is simple to show that the l-instability is
the first to be stabilized as A increases.

3.2. R-Wave Effects on Beam Instability

[17] We shall now study the effect of a R-wave on the linear
instability. To do this, as explained above, one can simply
choose x0 to be negative and leave the rest unchanged. Thus,
we take a R-wave of frequency x0 = �0.1. The other
parameters are the same as in Figure 1. In Figure 4a we
illustrate the linear instability for A = 0 and U = 2, and it is
shown by the arrow. This corresponds to the gap involving
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�F and �b. Note that these two roots correspond now to
upper sideband waves while for a L-wave they correspond to
lower sidebandwaves [Gomberoff, 2003]. In Figure 4b,At has
been raised to A = 0.146. The gap has disappeared altogether
indicating complete stabilization of the linear instability. This
is a similar situation to Gomberoff [2003], but now the
stabilization is due to the presence of a large amplitude
R-wave. We shall now increase the beam drift velocity to
U = 4. As shown in Figure 5a, there are several linear

instability regions, right and left polarized. The regions
between B and C and D and O are r-instabilities, while the
region between O and G is a l-instability. In the following we
study the effect of a R-wave on these instability regions. To
this end, we take x0 = �0.1025, with corresponding
y0 = �0.1. As it follows from Figure 5a, in this case the
pump wave is unstable. In Figure 5b we show the nonlinear
dispersion relation, equation (3), for A = 0. The other
parameters are like in the previous figures. There are two
right-hand polarized instability regions, one going from the
origin to the point denoted by D and the other from the C to
B. The other two instability regions cover the gap between
the origin and the point denoted by G. In Figure 5c, we have
raised the pump wave amplitude to A = 0.1, and we see that
except for the region between the points D and C, the whole
right-hand branch has been destabilized. In Figure 5d we
have raised the pump wave amplitude further to A = 0.21,
and one can see that even the small stable region between D
and C is now unstable. In other words, for a R-wave with A
� 0.21, the branch of the dispersion relation above the pump
wave frequency is completely destabilized. In this case the

Table 1. Characterization of the Various Modes Appearing in

Equation (3)a

Mode Characterization

+ (�)F lh (rh) forward propagating
+ (�) B rh (lh) backward propagating
+ (�) b lh (rh) forward propagating
+ (�) s ion-acoustic forward (backward) propagation
+ (�) sb beam ion-acoustic forward (backward) propagation

aThe + (�) sign refers to the upper (lower) sideband waves and lh
(rh)left-hand (right-hand) polarization. F refers to the branch of the pump
wave, and b refers to the branch due to the beam.

Figure 2. Same as Figure 1, but x0 = 0.5 for (a) A = 0 and
(b) A = 0.7.

Figure 1. Nonlinear dispersion relation, equation (3),
x versus y, for h = 0.2, U = 2.3, bi = 0.001, x0 = 0.1, for
(a) A = 0, and (b) A = 0.81.
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pump wave acts in the opposite direction than the left hand
pump, i.e., it helps the destabilization of the this branch. For
the same parameters of Figure 5b, in Figure 6a we show again
the dispersion relation x vs. y, and concentrate on the gap
between the origin and the point denoted by G in Figure 5a.
This region involves an right-instability which goes from the
origin to the point x = 0.1025 and y = 0.1, and a l-instability
going from this point to G. In Figure 6b, the pump wave
amplitude has been raised to A = 0.8. From this figure it
follows that the point G is now closer to the origin, showing
stabilization of the l-instability. In Figure 6c, we have raised
A= 1.35 in order to show that the whole region is now stable.

4. Discussion

[18] By solving graphically the nonlinear dispersion rela-
tion equation (3) [Longtin and Sonnerup, 1986], we have
shown the following properties of a system containing a
large amplitude circularly polarized wave propagating in a
linearly unstable beam-plasma system. First, we assumed an

L-wave and we showed that as the beam velocity increases
the threshold At-value also increases. On the other hand, for
fixed drift velocity, the threshold required to stabilize the
linear r-instability decreases with increasing pump wave
frequency. A third result found in this case is that even
in the case when the drift velocity is large enough to trigger
l-instabilities, these can also be stabilized by an L-wave.
The stabilization process is more efficient for L-wave
frequencies close to the proton gyrofrequency. In Table 2
the results are extended to various temperatures and pump
wave frequencies for U = 2.2 and U = 2.3. As it follows
from Table 3 of Gomberoff [2003] and the present Table 2,
At increases with increasing drift velocity and decreases
with increasing wave frequency for fixed drift velocity.
[19] Next, we studied the effect of finite amplitude

R-waves on l and r-instabilities. This was done for two
cases. First, we considered the case when the frequency of
the pump wave is in a region where the system is linearly
stable, and second in a region where the system is linearly
unstable. In the first case, we showed that the presence of

Figure 4. Same as Figure 1, but for a right-hand polarized
pump of frequency x0 = 0.1 and U = 2, for (a) A = 0 and
(b) A = 0146.

Figure 3. Nonlinear dispersion relation, equation (3), x vs.
y, for h = 0.2, U = 2.8, bi = 0.001, x0 = 0.9, for (a) A = 0 and
(b) A = 0.63.
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Figure 5. (a) Linear dispersion relation x0 versus y0 for a right-hand polarized pump wave with h = 0.2
and U = 4. (b) Nonlinear dispersion relation x versus y for a right-hand polarized pump wave of linearly
unstable frequency x0 = 0.1025, with h = 0.2, bi = 0.001, U = 4, and A = 0, (c) A = 0.1, and (d) A = 0.21.
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the large amplitude wave can stabilized the linear instability.
This is illustrated in Figure 4. In Table 3, the results are
generalized for various temperatures and pump wave fre-
quencies. As it follows from Table 3, At increases with
decreasing temperature. This behavior is similar to the one
encountered in the case of a left-hand polarized large-
amplitude wave. In the second case, we assumed that the
right-hand pump wave frequency is in a region of linear
instability. In this case the large-amplitude wave can desta-
bilize the high-frequency region of the instability, i.e., the
region between the pump frequency and D and the region
between C and B (see Figure 5). On the other hand, the
presence of the pump wave stabilizes the region between the
pump wave frequency and O and the region between O and
G for A � At (see Figure 6). In this case, the large-amplitude
wave can be triggered by the linear instability itself, and if

Figure 6. Same as Figure 4b for (a) A = 0, (b) A = 0.8, and
(c) A = 1.35.

Table 2. Threshold L-Wave Amplitude, At, for Various Pump

Wave Frequencies and Temperatures

h U x0 y0 bi At h U x0 y0 bi At

0.2 2.2 0.001 0.00131 0.001 0.578 0.2 2.3 0.001 0.001432 0.001 0.805
0.01 0.573 0.01 0.801
0.1 0.528 0.1 0.798
1.0 0.511 1.0 0.780

0.1 0.1305 0.001 0.586 0.1 0.1366 0.001 0.812
0.01 0.585 0.01 0.810
0.1 0.556 0.1 0.810
1.0 0.554 1.0 0.840

0.5 0.801 0.001 0.521 0.5 0.811092 0.001 0.693
0.01 0.497 0.01 0.680
0.1 0.397 0.1 0.570
1.0 0.570 1.0 1.420

Figure 7. (a) Threshold L-wave amplitude, At, versus bi,
for fixed x0 = 0.001 and several U values: U = 2.0 (dashed
line), U = 2.2 (dotted line), and U = 2.3 (full line).
(b) Threshold L-wave amplitude, At, versus frequency,
x0, for fixed bi = 0.01, and U = 2 (full line), and threshold
R-wave amplitude for complete destabilization of the
r-instability for the same bi but U = 4 (dashed line).
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its amplitude can grow until A = At, the linear instability can
be saturated by the same wave triggered by the instability.
In Table 4, these results are extended to various temper-
atures and pump wave frequencies (for the destabilization
mechanism). In this case the threshold At value for complete
destabilization mechanism follows the same pattern of the
stabilization in the preceding cases: At decreases with
increasing temperature. The stabilization process illustrated
in Figure 6 will be discussed in details somewhere else. In
general, Tables 2–4 show that the mechanism is valid for a
large range of frequencies and temperatures. However, in
some cases the At values are unrealistically large and,
consequently, the mechanism is not efficient [see also
Gomberoff, 2003]. In Figure 7 we illustrate graphycally
some of the content of Tables 2–4.
[20] Thus we have shown that a large amplitude L or R

waves can act as a saturation mechanism for r/l-instabilities
and, in some cases, it can also lead to a further destabilizing
of the linear instabilities, like in the case of a large-
amplitude wave with frequency in a linearly unstable
region. The unstable region above the large-amplitude wave
frequency becomes even more unstable for A > 0. Another
way of looking at these results is the following. Linear
beam-plasma electromagnetic instabilities behave in a dif-
ferent way in the presence of a large-amplitude left-hand or
right-hand polarized wave. For example, in the linear theory
and in the absence of a large-amplitude wave, in order to
trigger the r-instability, the drift velocity of a proton beam with h = 0.2 moving in the direction of an external magnetic

field must have a drift velocity U � 1.95 [Gomberoff and
Astudillo, 1998; Gomberoff et al., 2000]. However, the
presence of a large-amplitude polarized wave can stabilize
the linear instability when the amplitude satisfies A � At.
For the particular case when U = 2.0 with the other
parameters like in Figure 1, the system is completely
stabilized in the presence of an L-wave with At ’ 0.16
[Gomberoff, 2003]. This result is shown in Figure 8a. This
means that in the presence of the L-wave with A = 0.16, a
larger beam drift velocity is required to trigger the
r-instability. In fact, in Figure 8b we have increased from
U = 2.0 to U = 2.1 in order to show that the instability has
reappeared, and it is shown by the arrow. Of course if A �
At, a much larger drift velocity is required to trigger the
instability.

[21] Acknowledgments. This work has been partially supported by
FONDECYT grants 1020152 and 7020152. One of us (J. H.) thanks
MECESUP for a doctoral fellowship.

Table 3. Threshold R-Wave Amplitude, At, for Various Pump

Wave Frequencies and Temperatures

h U x0 y0 bi At

0.2 2.0 0.001 0.00116 0.001 0.153
0.01 0.151
0.1 0.135
1.0 0.100

0.01 0.011581 0.001 0.151
0.01 0.150
0.1 0.134
1.0 0.110

0.1 0.112560 0.001 0.144
0.01 0.142
0.1 0.123
1.0 0.100

Table 4. Amplitude At of the R-Wave, Beyond Which Complete

Destabilization of the R-Branch of Beam Instability is Found, for

Various Pump Wave Frequencies and Temperatures

h U x0 y0 bi At

0.2 4.0 0.01 0.015 0.001 0.461
0.01 0.456
0.1 0.412
0.3 0.318
1.0 0.091

0.1 0.0985 0.001 0.212
0.01 0.210
0.1 0.184
0.3 0.134
1.0 0.025

2.0 0.806 0.001 0.022
0.01 0.021
0.1 0.018
1.0 0.0021

Figure 8. Same as Figure 1, but for (a) U = 2.0 and At =
0.16, showing the stabilization of the linear right-hand
instability, and (b) U = 2.1 and At = 0.16, showing the
destabilization of the linear instability.
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