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Abstract

This paper estimates teacher value-added measures of teacher quality in Chile. Using administrative data

we link individual student test score results to teacher assignment for 6th and 8th grade students, and con-

trol for a rich vector of covariates for the value-added estimation, including previous score and tuition

fees. We evaluate the degree of accuracy of our teacher value-added estimates for predicting teachers’ im-

pacts on student achievement, by means of a teacher switching quasi-experiment devised by Chetty et al.

(2014a), and find no significant bias in these estimates when controlling for our full set of variables. We

evaluate next which controls are most important for the unbiasedness of our estimates, and find that pre-

vious score, and as a novelty in the literature, tuition fees, are essential for these purposes. We study the

sorting on teacher value-added and report positive sorting between socioeconomic measures and teacher

value-added estimates, meaning that better off students and schools get the highest performing teachers.

JEL: I21, I24, J24

Keywords: Analysis of Education, Education and Inequality, Human Capital • Skills • Occupational

Choice • Labor Productivity.
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Chapter 1

Introduction

The economic effect of cognitive skills has been recognized as a strong policy factor explaining dif-

ferences in economic growth among countries. Hanushek & Woessmann (2011) find that neither insti-

tutional nor regulatory differences can account convincingly for differences in the long-run economic

growth among rich countries, while cognitive skills present themselves as a strong candidate underlying

these differences between OECD members. School is one of the main determinants of cognitive skills

formation, and in turn teacher quality is one of the most important assets of a school, if not the most

important. Determining how good a teacher is at improving his students’ achievement, however, is not

an easy task, yet one of the utmost importance. Higher teacher quality can have a tremendous impact on

life earnings, of the order of $250,000 on lifetime income per classroom, only by replacing a teacher in

the bottom 5% of value-added quality measure by an average teacher (Chetty et al. (2014b)).1 Reliable

teacher quality measures would let us be able to recognize the differences in effectiveness among teach-

ers, giving us the possibility to ensure better student performance, and thus better lifetime income and

higher long-run economic growth.

Value-added modelling is more and more widely used as a measure of teacher quality. Part of the

interest stems from its intuitive and straightforward approach. A teacher’s value-added corresponds to

the unique contribution she makes to her students’ achievement (Corcoran (2010)), and is defined as the

impact of a teacher once we control for other explicative variables of a student’s score such as the stu-

dent/family background, classroom, school and community factors. Until recently, the focus was primar-

ily on determining the teacher’s observable characteristics that had an impact on student achievement, but

1Hanushek (2011) find that the economic impact of teachers is over $400,000 annually for a teacher with a value-added one
standard deviation higher for a class of 20 students.
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Chapter 1. Introduction

the research agenda has been lately exploring less parametric approaches to identify the teachers’ unique

contribution to the students’ overall performance (Hanushek Rivkin, 2010, 2012; Chetty et al. (2017)).

Value-added measures rely on a selection on observables assumption: once we control for a suffi-

ciently rich set of covariates that determine the students’ achievement on a particular test, teachers must

be as good as conditional randomly assigned on these characteristics (Angrist et al. (2016)). To what

extent are controllable characteristics able to account for sorting such as student-teacher sorting, school-

teacher sorting or school choice is the key factor to determine how biased our value-added estimators will

be. Resolving this is fundamental for public policy, as teachers may be rewarded or penalized for consid-

erations that are out of their control, such as the mix of students in their classrooms (Chetty et al. (2014a)).

Another important property of value-added estimates is the intertemporal stability of the estimates, but

its relevance will depend on the policy question. For example, year to year correlations may be less

relevant than year to career correlations in value-added measures, if we are interested in teacher-career

performance (see Staiger & Kane (2014)).

Bias in value-added estimates can be understood as two different, yet related, kind of biases. Teacher-

level bias is the degree to which individual teachers’ VA estimates differ in expectation from their true ef-

fects (Chetty et al. (2017)), while forecast bias determines how inaccurate predictions of teachers’ causal

effects on student achievement on average are. While both are related, teacher-level bias is considerably

harder to estimate than forecast bias, yet both are policy pertinent, depending on the policy problem we

are trying to solve. We will focus on the latter and refer to it simply as “bias”.

This paper makes three primary contributions. First, we provide teacher value-added estimation and

characterization of their (un)biasedness in Chile, where this characterization, to our knowledge, has not

yet been implemented. Even though recent efforts have estimated teacher value-added measures in Chile,

none has evaluated whether they are unbiased estimates, an essential property that needs to be acknowl-

edged shall teacher value-added measures be implemented with public policy purposes. In other parts of

the world, their use as public policy input has become widespread due to its simplicity to understand and

low implementation cost, what makes it particularly attractive to use in a developing country.2

Second, this paper shows the bias estimates in teacher value-added measures in a totally new context,

and provides new empirical evidence about their reliability. Former literature, has consistently found no

bias in value-added measures, or very little bias (Kane & Staiger (2008); Kane et al. (2013); Chetty et al.

2Hsieh & Urquiola (2006) implement a methodology to evaluate effects of unrestricted choice on educational outcomes in
Chile, similar in spirit to the one used in this paper (and described in Section 6) to evaluate bias in teacher value-added estimates,
though at the community level.
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Chapter 1. Introduction

(2014a); Rothstein (2017); Bacher-Hicks et al. (2014), Bacher-Hicks et al. (2017)), with the use of exper-

imental (Kane & Staiger (2008); Kane et al. (2013); Bacher-Hicks et al. (2017)) or quasi-experimental

(Chetty et al. (2014a); Rothstein (2017); Bacher-Hicks et al. (2014)) methods. However, even though they

are implemented in diverse settings (different districts and states), the previous studies all explore bias in

value-added measures within the same country, the United States. Whether value-added measures main-

tain their unbiasedness in considerable different contexts, such as in a developing country with strong

competitive forces and unrestricted choice in the educational system as Chile, is an issue that remains to

be explored.

Third, we study the importance of tuition charged for value-added estimation. As a novelty in litera-

ture, we include the tuition charged by the schools to parents in the estimation of value-added measures

and their bias. In Chile, this tuition (copayment, or copago) is charged by private-voucher schools follow-

ing a financing reform to the chilean voucher system.3 It is used as a supplement to the subsidy provided

by the government, in a system known as financiamiento compartido (shared financing). The availability

of data on tuition charged by schools from this important subpopulation of schools in Chile4 allows us

to evaluate the effect of add-ons charged to the families on bias in teacher value-added estimations, in

a highly socioeconomically stratified system. The remainder of this paper is organized as follows. In

section 2, we provide a brief review on the relevant literature. In section 3, we provide the conceptual

framework and methodology, in section 4, we present the data. In section 5 we describe our value-added

estimates. In section 6 we implement the quasi-experimental estimates of bias. In section 7 we conclude.

3Tuition is also charged in private unsubsidized schools (particulares pagados) but we do not include them in the analysis,
as we don’t have data availability on the tuition charged by these schools. These schools represent a small share of total schools
in Chile and tend to serve the chilean elite.

4Mainly the subsidized private schools (particulares subvencionados).
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Chapter 2

Background and literature

Up to this date, many studies have estimated the distribution of teacher effectiveness (see Hanushek &

Rivkin (2012) or Koedel et al. (2015) for a review), but only a few have tried to determine the bias in these

estimates. Kane & Staiger (2008) provide an experimental evaluation of the bias in non-experimental

value-added measures, by evaluating whether non-experimental estimates could predict differences in

achievement between classrooms that were randomly assigned. They do so by regressing the difference

in average achievement among pairs of classrooms randomly assigned to treatment and control groups,

on the within-pair difference in the non-experimental teacher effect, computed previous random assign-

ment. They implement this random-assignment experiment in the Los Angeles Unified School District

(LAUSD), where 78 pairs of elementary school classrooms were randomly assigned to different teachers.

Their value-added estimation uses only within school randomization, but uses both within and between

evaluation of the bias in value-added estimates. They find no bias for those non-experimental measures

that conditioned on prior student achievement in some manner.

Another study that took advantage of random assignment is Kane et al. (2013): as part of the Measures

of Effective Teaching (MET) project, the authors randomize on a much greater basis, with rosters of

students assigned to 1591 teachers across six districts. They implement the same intuitive approach that

Kane & Staiger (2008) to evaluate bias, but built upon a composite measure of teacher quality comprised

of test scores, student surveys, and classroom observations in the prior school year. The authors find no

bias in the composite measure of teacher effectiveness, and provide evidence to recommend the inclusion

of prior achievement as a control in value-added models.

While the previous studies randomize within-schools, Glazerman & Protik (2015) use a between

school randomization, to address also between-school sorting. They do so by using a subsample drawn
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Chapter 2. Background and literature

from the transfer incentives study from the Glazerman et al. (2013) study. The authors’ intervention

consisted in a multisite randomized field trial, where they identified the highest performing teachers (as

measured by their value-added score), and randomly assigned them to vacancies in schools with very low

achievement, either to a treatment group that could hire from the high value candidates, or to a control

group where the school filled vacancies as they usually did. Glazerman & Protik (2015) find no bias at

the elementary level, but obtain evidence that their middle school value-added measures are biased.

Implementing experimental evaluations is not always feasible. Chetty et al. (2014a) (henceforth,

CFR) presented a quasi-experiment analog to the Kane & Staiger (2008) experiment. The quasi-experiment

exploits teacher turnover at the school-grade level, where teachers from a school-grade level are replaced

with a teacher of varying quality (as measured by his value-added). Whenever a school-grade teacher

is replaced by a higher (lower) value-added teacher, the average value-added increases (decreases) in

that school-grade. As long as a one-unit change in average teacher value-added is able to predict a one

unit change in mean scores at the school-grade level, value-added estimates are unbiased. This plausibly

exogenous quasi-experiment relies on the assumption that teacher staff changes from year to year are

uncorrelated with school and teachers characteristics.

While in an experimental setting we can ensure by design that teacher assignment is uncorrelated

with students’ or schools’ characteristics, it is not clear that this is the case for the naturally occurring

changes in staff within a school-grade cell. Though intuitively plausible, as the authors argue parents are

not likely to switch their children to a new school just because some year a teacher arrives or leaves, it is

still an empirical issue whether the design of the quasi-experiment is valid. CFR present some diagnostic

tests to evaluate the exogeneity of the quasi-experiment. They found that changes in VA estimates are

uncorrelated to changes in cross-cohort parent characteristics. The authors also present the relationship

between the changes in the average of the other subject score in a school-grade cell and the change in

average VA in the cell. If their key assumption holds, there should be no or little relationship for middle

school (considering different teachers teach different subjects to a same school grade), unless the VA of

a teacher in a subject also influences the outcome in the other subject: in that case the assumption may or

may not hold. The evidence the authors collect points toward a valid quasi-experiment design, and thus

presents itself as an attractive alternative to randomized trials when these are not feasible, and also to take

advantage of the considerably larger and readily available data from administrative sources and periodic

standardized tests.

CFR find no bias in value-added measures in their calculations, and are able to obtain considerably
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Chapter 2. Background and literature

more precise estimates of the bias than the ones implemented up to that date, by taking advantage of

a 7.6 million observations sample for computing the value-added measures, and roughly 60 thousand

observations for the evaluation of bias in their preferred specification (Chetty et al. (2014a), Table 4,

Column 1). The authors also test whether there are differences in average value-added across different

socioeconomic measures, and fail to find evidence of sorting of teacher effectiveness across these various

measures.

Following CFR, authors have replicated their analysis in other settings. Rothstein (2017), while

questioning the validity of Chetty et al. (2014a) methodology, replicates the analysis in North Carolina,

focusing only in a sample of elementary school-grades. When computing Chetty et al. (2014a) preferred

specification, they find no evidence of bias. The author argues nonetheless that the quasi-experiment

design is invalid, because teacher switching is correlated with changes in students prior score, what

Rothstein refers to as “student preparedness”. Rothstein points out as an important factor to this placebo

effect the sorting that introduces the sample selection from dropping teachers observed in only one period,

which also implies dropping his students altogether. He argues that this pushes (1−B) where B is the

bias, upward. By adjusting for this, Rothstein finds moderate bias.

Bacher-Hicks et al. (2014) replicate CFR analysis in the LAUSD. As CFR, they similarly find un-

biasedness in VA estimates, and acknowledge the correlation between changes in mean prior score and

changes in average VA reported by Rothstein (2014, 2017). They also test whether the predictive validity

of value-added estimates changes depending on the school-teacher matches. They do so by decomposing

the value-added measures into a component reflecting the information obtained from the same school,

a second one from another schools, and a third one from another but considerably different (in terms

of mean test scores) school. Even though the predictive validity of the portion of the value-added esti-

mate from the same school is higher than the one from other schools (whether the whole pool of other

schools or just the considerably different), they find no evidence that these different components were

not equally predictive of their students’ achievement. The authors also test for differences in mean VA

across different socioeconomic measures, and unlike CFR, find that both within and across schools, there

is student-teacher sorting on the students’ socioeconomic characteristics.

The analysis the authors did is complemented in Bacher-Hicks et al. (2017) with an experimental

evaluation of value-added measures, classroom observations and student surveys. Based on a prediction

of teacher effects combination of different achievement measures based on test scores, classroom obser-

vations, and student surveys, they find that both score-based measures of effectiveness are unbiased, and
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Chapter 2. Background and literature

as a novelty in the literature, the unbiasedness of value-added measures based on classroom observations

ratings are unbiased when predicting a teacher’s performance. The authors explore the unbiasedness of

student surveys, but due to a lack of statistical power, are unable to argue unbiasedness in these estimates.

In particular, the authors cannot reject that teachers’ predicted effectiveness using pre-random assignment

data, has a one on one effect on students’ score, or teachers’ classroom observation rates.

As mentionned previously, Chetty et al. (2014a) quasi-experimental method has nonetheless been

questioned. Rothstein (2014, 2017) argues that this method violates a placebo test they present, where

changes in mean prior scores are regressed on current changes in teachers’ value-added (see also Rothstein

(2009), Rothstein (2010), where the author finds evidence of fifth teacher effects influencing fourth grade

scores gains). If the value-added estimates capture causal impacts of teachers, they could not possibly

influence students’ scores in an earlier grade. Rothstein finds that there is a significant effect of changes

in average value-added estimates on mean prior scores, and argue that this results in a non-valid quasi-

experiment design. Chetty et al. (2017) respond by arguing that this is caused by a mechanical effect,

rather than a valid placebo test. As Chetty et al. (2017) say: “the treatment effect in this setting (VA)

is endogenously estimated from data on test scores”, meaning that value-added measures are computed

using prior scores, which makes it an invalid test to check on pre-treatment balance. The authors present

Monte Carlo simulations to show that the placebo test detects this correlation even when the research

design is valid. Chetty et al. (2016) provide several theoretical arguments and simulations to argue that

prior outcomes balance tests do not provide robust information on bias in value-added models, rejecting

balance in lagged gains across teachers’ effects, in unbiased estimates. Koedel & Betts (2011) posit

that future teacher effects are smaller when they focus on teachers with multiple cohorts of students’

observations. Rothstein (2017) replies with an alternative placebo test, which uses only demographic

characteristics – presumably unaffected by prior teachers’ effectiveness or by school-level shocks - to

predict a score. He then uses this predicted score to compute mean predicted scores, which he regresses

on the change in mean predicted VA, and finds an association significantly different from zero. Rothstein

finally argues that this is caused by the sample selection introduced by the dropping of teachers whose

VA measure is seen only one year, which causes that entire classrooms disappear from the analysis, in a

non-random way. This pushes to underestimate the degree of forecast bias in the value-added estimates.

Rothstein (2017) introduces that a way to correct this non-random sample selection is to impute the grand

mean to teachers VA (which corresponds to the Empirical Bayes estimator imputation when there is no

signal at all), and to further obtain more precise estimates, to control for the changes in mean prior scores
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Chapter 2. Background and literature

in the quasi-experiment regressions. Chetty et al. (2017) argue that both implementations are incorrect,

as they introduce bias in the estimations. The first method, because the crucial assumption that VA

is independent among teachers within a school does not hold empirically. If a high (low) performing

teacher leaves a school-grade cell, the replacing teacher will tend to be also a high (low) performing

teacher (the authors find a correlation of 0.2 in New York data). Contrary to Rothstein, CFR argue

that with a correlation of this magnitude, the bias is considerable. They also implement a Monte Carlo

simulation to contrast the effect of dropping missing data, and imputing the grand mean. They find that

dropping the observations leads to no bias, while the imputation procedure yields a bias of 7%. As what

respects the second method, CFR argue that the changes in mean prior scores constitute a bad control: an

endogenous control, because the change in mean prior scores and the change in average VA correlate as

some teachers follow students across grades.

Up to this date, only three out of the six studies on bias in value-added estimates mentioned above

obtained unbiased value-added measures at the middle school level. Two studies, Kane & Staiger (2008)

and Chetty et al. (2014a), did not disaggregate by school level, and one (Rothstein (2017)) did not use

middle school data. The studies from Kane et al. (2013) and Bacher-Hicks et al. (2014) found no bias

in middle school estimates, although with larger confidence intervals than for the elementary level. The

study from Glazerman & Protik (2015), present results that support biased value-added measures at the

middle school level, although with less statistical precision than Kane et al. (2013).

Until very recently there were also no VA estimates of teacher effects in Chile. Recent efforts have

been implemented, notably in conjunction with evaluating the effect of teacher characteristics on teachers’

contribution to student achievement (Santelices et al. (2015), Taut et al. (2016), Canales & Maldonado

(2018)). Canales & Maldonado (2018) implement three teachers’ contribution to student performance

measures: intraclass correlations, proportion of students’ test score variance explained by teachers, and

VA estimates. They do so by using student-level scores in 8th grade for 2011, estimating with a set of

covariates that comprises student characteristics, previous student’s score from four years ago, among

other controls. They then use these estimates to evaluate the role of specific teacher characteristics in

explaining student achievement. They find important teachers’ effects, as well as a relevant role for

teacher experience in teacher quality, but acknowledge that there is substantial variation not explained by

observable teacher characteristics.

An important limitation of the previous studies implemented in Chile, even though they use different

methods to correct for sorting, is that they do not assess if there is bias in their estimates.
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Chapter 2. Background and literature

We take charge of this limitation. In the next sections we estimate VA measures of teacher quality,

and assess whether VA estimates in middle school in Chile are unbiased. We also explore what factors

are the most relevant to ensure their unbiasedness.
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Chapter 3

Empirical Implementation

We will follow the methodology implemented by Chetty et al. (2014a)1 and their notation closely. First,

we will estimate a model regressing students’ test scores on prior scores2, demographic characteristics,

tuition charged (copago), teacher assignment history, and teacher fixed effects, as following:

A∗it = βXit +µ j + εit (3.1)

Where A∗it corresponds to the raw score test for student i in period t, Xit includes student’s prior test

scores, demographic characteristics, copago, and teacher assignment history. µ jt is a teacher fixed effect.

We then compute the residuals plus the absorbed teacher effects from that equation:

Ait = A∗it − β̂Xit (3.2)

And proceed to average them to the classroom-year level for each teacher, to obtain a raw measure

of teacher quality for that year. To account for the precision in potentially noisy estimates (as class

and student’s information vary across different teachers), we compute precision-weighted averages of

classroom-average scores within a teacher-year:

A jt = ∑c∈ j(c)= j hctAct (3.3)

Where the weight for classroom c in year t is:

1We use Chetty et al. (2014c) and borrow on code from Rothstein (2017) to implement Chetty et al. (2014a) analysis.
2A limitation of our estimations we acknowledge is the fact that prior scores are either from two years ago for the tightest

gap, or from four years ago. There is no availability of previous year scores.
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hct =
1

σ̂2
θ
+ σ̂2

ε

nct

(3.4)

hct corresponds to the precision for the classes taught by a teacher in year t, such as σ̂2
θ

is an estimate

of the class-level variance,3 nct is the number of students in the classroom, and σ̂2
ε is the individual-level

variance of residual test scores Var(εit).

We then estimate the covariances among average scores across years for a same teacher, allowing a

different covariance for each possible time lag. Each teacher-year measure is weighted by the number of

students taught. The interest for estimating the covariances between lags, is to allow for drift in value-

added measures, by allowing different weights on the different teacher-year mean scores. This permits us

the flexibility to estimate a teacher effect that is not fixed across years by construction.

We finally estimate teacher’s j value-added measure in t, µ jt as the best linear predictor of A jt based

on scores from all years except t. Considering that ~A−t
j is a vector containing the mean scores at the

teacher-year level used to estimate µ jt , the best linear predictor corresponds to:

µ̂ jt = ψ~A−t
j (3.5)

Where ψ = ∑A jt
−1

γ jt , such as ∑A jt corresponds to the precision-adjusted variance-covariance matrix

of ~A−t
j , and γ jt is the vector of auto-covariances between the mean test scores taught in t by teacher j and

the mean test scores of the same given teacher j in all other periods but t. By using the data from all other

years than t, precision is increased compared to using only data from previous periods. Both items in ψ

vary across j and t, that’s why we construct them across each teacher-year data.

Notice that this measure is a leave-one-out (jackknife) estimator of teacher year effect. We estimate

the teacher’s j effect in the classes taught in year t by using a weighted combination of the precision-

weighted mean residuals of a teacher from all the years but t, thus allowing for drift in teacher quality

measure, and reducing attenuation in the estimates.

This measure is the best linear predictor of actual scores, A jt , of a teacher based on score data of his

students in all the other years, ~A−t
j . Though µ̂ jt is an unbiased prediction of A jt , it is not clear that µ̂ jt

is an unbiased estimate of µ jt , the teacher true causal effect (Rothstein (2017)). This paper adds to the

current empirical evidence to argue whether µ̂ jt is an unbiased estimator of µ jt , and if biased, to what

extent. We describe in the next section the data used in these calculations.

3This class-level variance corresponds to σ̂2
θ
= Var(Ait)− σ̂2

ε − σ̂A0, where σ̂A0 is the within-teacher-year between-class
covariance in average scores.
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Chapter 4

Data

We use for our implementation data records available upon request from the Ministry of Education of

Chile. Test scores correspond to the SIMCE test results in Reading (Lenguaje y Comunicación) and

Math (Matemáticas). SIMCE is a battery of standardized tests administered to all students in some

of the following grades: 2nd , 4th , 6th , 8th and 10th grade, depending on the year the test is taken.1

For purposes of this estimation, we only consider middle school students: the score of the 6th or 8th

grade student as actual score, and the student’s score in 4th grade as previous score. SIMCE tests are

administered alongside a set of questionnaires asked to the student’s teacher in that subject, to his parents,

and in recent years to the student himself. We use information of the teachers’ and on the parents’

questionnaire, where socioeconomic and demographic information is available. We also make use of

the Ministry of Education teacher assignment database, to link each school-classroom-subject-year to a

teacher. This database doesn’t uniquely identify one teacher per school-classroom-subject-year, so we

apply a recursive algorithm where teachers are classified according to their subjects’ code to one of two

groups: Reading teacher, or Math teacher. As there may two or more teachers assigned to a same school-

classroom-subject-year, we sort the different subjects’ codes in term of absolute frequencies, where the

most common are placed first. We then assign to a school-classroom-subject-year the first teacher match

in the list of subjects’ codes of each subject group, and continue throughout each subject code in the list,

until all teachers through each subject code in each subject group are assigned to a school-classroom-

subject-year.

We use SIMCE scores from years 2009, 2011, 2013, 2014 and 2015, depending on the sample used.

Test scores are standardized, to have a mean of 0 and a standard deviation of 1, by subject-year.

1For Math and Reading tests.
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Chapter 4. Data

Our main analytical sample consists of the 6th grade students, from all schools for which we have data

on the tuition charged to parents (copago), except for private non-subsidized schools. We also present

results for a combined sample of 6th and 8th grades.2 Years available (and considered) for calculations on

6th grade only samples are 2013, 2014 and 2015, and for our combined (6th and 8th grades) sample, years

available are 2009, 2011, 2013, 2014 and 2015.

TABLE 1: SUMMARY STATISTICS FOR SAMPLE USED TO ESTIMATE VALUE-ADDED MODEL, 6TH GRADE
ONLY, NO PRIVATE SCHOOLS, ALL YEARS

Variable Mean SD Observations
(1) (2) (3)

Class size (not student-weighted) 26.7 7.9 15822
Number of subject-school years per student 1.9 0.3 221472

Test score (SD) 0.24 0.9 423233
Age (years) 11.2 0.4 423233

Female 51.5% 423233
Repeating grade 2.6% 423233

Special education 0.01% 423233
Household income 589,106 477,953 361522

Household education 13 3 342641
Copayment 21,317 20,764 423233

Notes: All statistics reported are for the sample used in estimating the baseline value-
added model. This sample includes only students who have non- missing lagged test
scores and other requisite controls to estimate the VA model. Number of observations
is number of classrooms in the first row, number of students in the second row, and
number of student-subject-year observations in all other rows. Student data are from
the administrative records of Chile. Test score is based on standardized scale scores.
Parent income is the yearly household income. For parents who do not file, household
income is defined as zero. Household education is the average parents’ education in the
household.

In our main sample, mean class size has 26.7 students, with a standard deviation of 7.9; students

have on average 1.9 subject-schools years; mean score is 0.24 and its SD is 0.9; students have on average

11.2 years, and 51.5% of them are females.3 Repeating students represent 2.6% of our sample, and only

0.01% are special education students. Average household income is of 589,106 chilean pesos (CLP),

2We also implement value-added estimations and quantify their bias in the next - not shown - specifications: 8th grade only,
no private schools, without copago in the VA estimation; 6th and 8th grades combined, no private schools, no copago in the VA
estimation; 6th grade only, no copago, all schools; 6th grade, no private schools, VA estimation with school fixed effects; 6th

grade, no private schools, VA estimation with school dependency type fixed effect (tipo de dependencia). All of these value-
added estimates are biased, some considerably higher than the others, but none with less than 40% of bias. These results are
available upon request.

3Standarized scores are at subject-year level, across all schools in Chile, not just the ones considered for our estimation
purposes. In our main estimates we focus on schools with data on copago available, which consists mainly of subsidized private
schools. When considering all schools, mean score is close to 0, as expected.
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Chapter 4. Data

with a standard deviation of 477,953 CLP. Descriptive statistics for the 6th grade full sample is available

in Table 8 in Appendix A,4 as are descriptive statistics for 8th grade and other samples, from Table 8

through Table 11 (Appendix A).

4Sample that consider all schools, and is not restricted to availability of the different variables.
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Chapter 5

Value-added estimates

To implement our estimates, following Chetty et al. (2014a) and depending on availability of data, we

use as controls a cubic polynomial in twice lagged score (and lagged four times scores in some specifica-

tions) in the same and in the other subject, and interact them with grade; student’s gender; age; absences

percentage; indicators for special education; and grade repetition. We consider class and school-grade

means in all the covariates, and additionally cubic polynomials of prior scores in both subjects, interacted

(separately) with grade; class size; and grade, year, and rurality of the school indicators. As previous

studies have shown substantial socioeconomic stratification in the chilean voucher system (e.g. Mizala &

Torche (2012)), we also include copago (tuition charged) in the control vector interacted with year dum-

mies. Some ways that tuition charged may impact a student score would be by reflecting the availability

of school resources or a higher overall disposition to spend on education from the parents.

Given that our previous score measure is not from the prior year but from two years ago (or four years

ago for our 8th grade students), we consider the history of teacher assignment between the previous score,

and the current year score. We do so by incorporating a teacher assignment indicator for these in-between

years for each student.

We proceed next to estimate the auto-covariances of the mean test score residuals from a teacher in a

class taught in a year t, and in all years other than t, and compute the respective autocorrelations. These

estimates can be seen in Table 2 for our main sample (6th grade, no private schools, all years sample).

There is a decay between the first and second lag. This continues as we go further apart: Figure 5

in Appendix A presents the plotted autocorrelation vector for the combined sample (6th and 8th grades),

where we have four lags.1 We corroborate a decay in autocorrelations, and for both figures the autocorre-

1Contrary to our main sample, where we only have two lags.
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Chapter 5. Value-added estimates

TABLE 2: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH GRADE, SCHOOLS WITH copago
ONLY, ALL YEARS

(1) (2)
Sample Reading Math

Lag 1 0.025 0.050
(0.002) (0.002)
[0.365] [0.637]

Lag 2 0.013 0.045
(0.002) (0.003)
[0.235] [0.567]

Total variance 0.476 0.383
Individual-level variance 0.418 0.310

Class variance 0.022 0.007
Teacher variance 0.036 0.065

Notes: Table 2 reports the estimated autocovariance,
the standard error of that covariance estimate clustered
at the teacher level (in parentheses), and the autocorre-
lation (in brackets) of average test score residuals be-
tween classrooms taught by the same teacher. We mea-
sure these statistics at time lags ranging from one (i.e.,
two classrooms taught one year apart) to two lags (i.e.,
two classrooms taught two years apart), weighting by
the sum of the relevant pair of class sizes. Row 7 re-
ports the raw variance of test score residuals and de-
composes this variation into components driven by id-
iosyncratic student-level variation, classroom shocks,
and teacher-level variation. We estimate the variance of
teacher effects as the covariance of mean score residu-
als across a random pair of classrooms within the same
year. Years considered are 2013, 2014 and 2015.

20



Chapter 5. Value-added estimates

lation seems to be converging, replicating the possibility of a transitory and permanent component noted

by CFR. We are nonetheless unable to approach the permanent component in our data due to limited lags

availability. Though we don’t have as many lags available as previous literature (Chetty et al. (2014a),

Rothstein (2017), Bacher-Hicks et al. (2014)), these results are notwithstanding in accordance with their

findings, although with higher autocorrelation coefficients for Math and Reading for our main sample

(Table 2) as well as the 6th and 8th grades sample combined (Table 12, Appendix A), compared to Chetty

et al. (2014a).

As our calculations are based on middle school data, the availability of multiple classes per teacher

per year allows us to compute the teacher’s within-year covariance of mean test score residuals σA0,

which corresponds to the variance of teacher effects σ2
µ , if class and student level shocks are independent

and identically distributed. Our variances of teacher effects are considerably larger than those found by

CFR (0.036 for Reading versus 0.01 for CFR; 0.065 for Math versus 0.018 for CFR), as are the class

level variances. Unlike CFR, we find that teacher variance is more important in explaining the scores

than class level variance for both subjects. Individual variance is in our results the main component of

variance, explaining a lower share of total variance than in CFR. Total variance is also higher than in

CFR.

We compute conditional variances to explore differences among groups of measures traditionally as-

sociated with teacher quality, such as teacher experience or qualifications. These results can be seen from

Table 13 through Table 20 in Appendix A. We can see that the variance of teacher effects explains a higher

share of total variance for teachers with master or PhD vis-a-vis teachers with no such qualification. We

cannot say the same for any kind of post-secondary education beyond college2, where the share of total

variance explained by the teacher variance is roughly the same between no post-secondary education, and

with some post-secondary education, given the college degree. When conditioning on teacher experience

quartiles, we see that this share has a non linear relationship on experience: this relation seems concave

for Math scores, with an increasing share until the third quartile (13.8%, 14.6%, 14.7% respectively), but

considerably lower for the fourth one (12.78%). In the case of Reading scores, this relationship is highly

non linear, with the lower teacher variance shares of total variance for the first (8.1%) and third (7.49%)

quartile, slightly higher than these ones for the fourth (7.66%), and the highest for the second quartile

(9.27%).

Finally, along with the test score residuals and the autocovariances, we proceed to compute the value-

2This category master and PhD, but also continuing education, skill enhancing programs, and in general any kind of certified
learning activities.
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Chapter 5. Value-added estimates

FIGURE 1: EFFECTS OF TEACHER VALUE-ADDED ON ACTUAL AND PREDICTED SCORES, 6TH GRADE,
SCHOOLS WITH copago ONLY, ALL YEARS

Panel A. Actual score
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Panel B. Predicted score using parent characteristics

−.2

−.1

0

.1

.2

P
re

d
ic

te
d

 S
c
o

re

−.4 −.2 0 .2 .4
Teacher Value−Added

Coefficient = 0.010
(0.002)

Predicted Score using Parent Characteristics

Notes: These figures pool all grades and subjects and are constructed using the sample
used to estimate the VA model, which has one observation per student-subject-school
year. The two panels are binned scatter plots of actual scores and predicted scores based
on parent characteristics versus teacher VA. These plots correspond to the regressions in
columns 1 and 2 of Table 3 and use the same sample restrictions and variable definitions.
To construct these binned scatter plots, we first residualize the y-axis variable with respect
to the baseline control vector separately within each subject by school- level cell, using
within-teacher variation to estimate the coefficients on the controls. We then divide the
VA estimates into 20 equal-sized groups (vingtiles) and plot the means of the y-variable
residuals within each bin against the mean value of the VA estimates within each bin. The
solid line shows the best linear fit estimated on the underlying micro data using OLS. The
coefficients show the estimated slope of the best- fit line, with standard errors clustered at
the school-cohort level reported in parentheses. 22
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TABLE 3: ESTIMATES OF FORECAST BIAS USING PARENT CHARACTERISTICS, 6TH GRADE ONLY, SCHOOLS
WITH copago ONLY, ALL YEARS

(1) (2) (3) (4) (5)
Sample Score in Pred. score using Score in Pred. score using Pred. score using

year t parent chars. year t parent chars. parent chars.

Teacher VA 0.994 0.010 0.988 0.005 0.007
(0.021) (0.002) (0.021) (0.002) (0.002)

Parent chars. controls X
School Fixed Effects X

Copago X

Obsevations 289200 231784 231784 231784 231784

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort
in parentheses. The regressions are run on the sample used to estimate the baseline VA model, restricted to
observations with a non-missing leave-out teacher VA estimate. There is one observation for each student-subject-
school year in all regressions. Teacher VA is scaled in units of student test score standard deviations and is
estimated using data from classes taught by the same teacher in other years. Teacher VA is estimated using
the baseline control vector, which includes: a cubic in lagged own- and cross-subject scores, interacted with
the student’s grade level; student-level characteristics including gender, age, lagged absences, and indicators for
grade repetition, special education; class size and class-type indicators; cubics in class and school-grade means of
lagged own- and cross-subject scores, interacted with grade level; class and school-year means of all the student-
level characteristics; copago and grade and year dummies. When prior test scores in the other subject are missing,
we set the other subject prior score to zero and include an indicator for missing data in the other subject interacted
with the controls for prior own-subject test scores. In columns 1 and 3, the dependent variable is the student’s test
score in a given year and subject. In columns 2, 4 and 5, the dependent variable is the predicted value generated
from a regression of test score on indicators of household income and parents’ education, after residualizing all
variables with respect to the baseline control vector.
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added estimates. Distributions of VA estimates can be seen in Appendix A (Figure 4, Appendix A).

Notice that the standard deviation of VA estimate is considerably smaller in Reading than in Math (0.108

in Reading, 0.183 in Math, Figure 4, Appendix A), slightly larger than the ones found in Bacher-Hicks

et al. (2014) for our main sample, though smaller for Math in the 6th and 8th combined sample, and about

twice the dispersion found in Chetty et al. (2014a). Both are smaller than true teacher effects (Table 2),3

due to the shrinkage in the estimates.

Figure 1, Panel A, shows the relation between students’ score, Ait , and teacher VA estimates, µ̂ jt ,

controlling by subject fixed effects. As the VA estimate of teacher j corresponds to the best linear pre-

diction of mean students’ score in year t of teacher j, the teacher VA estimate should yield a coefficient

of 1, i.e. a one-higher standard deviation teacher VA increases a student’s test score by one standard

deviation. The coefficient obtained from our preferred sample is below 1, but within the 5% confidence

interval (0.994±1.96×0.021). Coefficient obtained from this regression is closer to 1 in the combined

(and larger) sample (coefficient of 1.002, column 1 of Table 21, Appendix A).

We further explore if there is bias on excluded observable characteristics, such as parents characteris-

tics. Bias is identified under this approach if students are sorted to teacher based only on these excluded

observables. We regress the predicted - from the vector of unexplained by the baseline control Xit and

teacher fixed effects, share of parent characteristics, residual scores (Ap
it) - on the value-added estimates

µ̂
−t
jt (where the superscript denotes the year excluded in the estimate calculation), including subject fixed

effects. The coefficient obtained from this regression corresponds to:

Bp =
cov(Ap

it , µ̂
−t
jt )

Var(µ̂−t
jt )

(5.1)

Where Bp is the coefficient from the feasible estimation. CFR find a degree of bias from selection on

parent characteristics of 0.2 percent. In our case the degree of bias is considerably higher, of 1% (Table

3, Column 2). The result is presented graphically in Figure 1, Panel B. This coefficient is however not

significantly different from 0 in the combined sample, where it is very precisely estimated (Table 21,

Column 2, Appendix A). When exploring bias within schools (Table 3, Column 4), bias is reduced at half

(0.5%). Bias increases to 0.7% when considering copago fixed effects (Table 3, Column 5), but is also

significant only at 5%, not at 1%. Similar bias calculations are computed in Table 21 (Appendix A) for

the combined sample. Within schools, there is no bias on parent characteristics (Column 4), but there

is a small bias of 0.1% within copago levels (Column 5). These results show us that for value-added

3Teacher effects in Table 2 are in terms of variance.
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estimates that control for our full baseline vector, bias on parent characteristics is higher in Chile than in

other settings as in New York City, and this parent characteristics-school sorting is not fully captured by

the amount of tuition charged, in a setting where school-family matches is importantly determined by a

comprehensive socioeconomic sorting, beyond the tuition charged by the school.

We next proceed to explore whether the relationship between Ait and µ̂
−t
jt is causal or biased by sorting

on unobservables.
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Quasi-experimental estimates of bias

Before introducing the quasi-experiment, we first define bias in value-added estimates. Following Chetty

et al. (2014a), we define the following regression on observational data:

Ait = αt +λA jt +χit (6.1)

Where we consider momentarily E[Ait/1, µ̂ jt ] = αt +λA jt . Notice that Ait = µ jt +εit . As a regression

of Ait on µ̂ jt yields a coefficient of 1 by construction,

λ =
cov(Ait , µ̂ jt)

Var(µ̂ jt)
=

cov(µ jt , µ̂ jt)+ cov(εit , µ̂ jt)

Var(µ̂ jt)
= 1 (6.2)

Then the bias corresponds to the extent of which teachers are sorted to students due to unobservables,

εit . This corresponds to

B(µ̂ jt) = 1−λ =
cov(εit , µ̂ jt)

Var(µ̂ jt)
(6.3)

The key problem is to evaluate this parameter, B(µ̂ jt). Chetty et al. (2014a) devise a quasi-experiment

to evaluate this bias, based on changes in teaching staff. Teacher turnover at the school-grade-subject level

provides a plausibly exogenous mean value-added change of the teaching staff across cohorts within a

school-grade, given that the change in these teachers’ VA is orthogonal to changes in other determinants

of students’ scores. More formally, let ∆Qsgt = Qsgt−Qsg,t−1 be the change in mean teacher value-added

from year t−1 to t in grade g in school s, where this time VA estimates are constructed leaving out not

only the current year t, but also t−1. This applies both for the VA estimates used to compute Qsgt as for

the ones used to compute Qsg,t−1, i.e., we use µ̂
−t,t−1
jt , and µ̂

t,t−1
j,t−1, where the superscript denotes the years

26



Chapter 6. Quasi-experimental estimates of bias

excluded in the estimate calculation. The reason for this is to avoid a systematic correlation between the

dependent variable ∆Asgt , and ∆Qsgt , in the next regression:

∆Asgt = a+b∆Qsgt +∆χsgt (6.4)

(9)

Where ∆Asgt = Asgt − Asg,t−1 corresponds to the change in mean residual scores, and Asgt to the

average of Ait within a school s, grade g, year t cell. If year t and year t− 1 were not excluded in the

construction of VA estimates used in the right-hand variables, we would have a simultaneity problem.

This way, we ensure that the variation of value-added is driven by changes in the teaching staff. The key

assumption to identify bias in value-added measures is:

cov(∆Qsgt ,∆χsgt) = 0 (6.5)

In this case b = λ = 1−B(µ̂−t,t−1
jt ), where B corresponds to the magnitude of the bias in the VA

measure. Following Chetty et al. (2014a), we implement some tests to evaluate the validity of the key

assumption.

As a first approach, we look to evaluate whether there is a linear relationship between changes in

mean value-added estimates with changes in mean parent characteristics. In particular, we use predicted

raw scores based on parent characteristics, by regressing Ait on P∗it , obtaining the prediction from this

regression, Â∗Pit . We then run the regression ∆Â∗Psgt = a∗ + b∗∆Qsgt + ∆χ∗sgt . Results are displayed in

column 3 of Table 4, and plotted nonparametrically in Figure 2, Panel B. We cannot reject that b̂∗ is equal

to 0, thus providing evidence that changes in mean value-added are uncorrelated with changes in student

characteristics.

Second, we evaluate if there is a correlation with changes in mean raw scores in the other subject

(Table 4, Column 4). By regressing changes of mean scores in the other subject on changes in mean

value-added estimates, we obtain a coefficient non statistically different from 0, that can be seen nonpara-

metrically in Figure 3. This result would support the validity of the quasi-experiment. In Appendix B we

run some robustness estimates for this test.

Considering that our evidence either supports the validity of the key assumption or doesn’t inval-

idate it, we proceed to estimate the bias in value-added estimates with the quasi-experiment. In this

case, violations of the key assumption should be driven by unobserved determinants unrelated to parent
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Chapter 6. Quasi-experimental estimates of bias

FIGURE 2: EFFECTS OF CHANGES IN TEACHING STAFF ON SCORES ACROSS COHORTS, 6TH GRADE ONLY,
SCHOOLS WITH copago ONLY, ALL YEARS

Panel A. Changes in actual scores
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Panel B. Changes in predicted scores based on parent characteristics
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Notes: This figure plots changes in average test scores across cohorts versus changes in average
teacher VA across cohorts. Panel A is a binned scatterplot of changes in actual scores versus changes
in mean VA, corresponding to the regression in column 1 of Table 4. Panel B is a binned scatterplot of
changes in predicted scores based on parent characteristics versus changes in mean VA, correspond-
ing to the regression in column 3 of Table 4. See notes to Table 4 for details on variable definitions
and sample restrictions. Both panels are plotted using the core sample collapsed to school-grade-
subject-year means. To construct this binned scatterplot, we first demean both the x- and y-axis
variables by school year to eliminate any secular time trends. We then divide the observations into
20 equal-size groups (vingtiles) based on their change in mean VA and plot the means of the y vari-
able within each bin against the mean change in VA within each bin, weighting by the number of
students in each school- grade-subject-year cell. The solid line shows the best linear fit estimated on
the underlying microdata using a weighted OLS regression as in Table 4. The coefficients show the
estimated slope of the best-fit line, with standard errors clustered at the school- cohort level reported
in parentheses. 28
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TABLE 4: QUASI-EXPERIMENTAL ESTIMATES OF FORECAST BIAS, 6TH GRADE ONLY, SCHOOLS WITH copago
ONLY, ALL YEARS

(1) (2) (3) (4)
∆ predicted ∆ other

∆ score ∆ score score subject score

Changes in mean teacher 0.813 0.507 -0.024 0.121
VA across cohorts (0.111) (0.278) (0.023) (0.118)

Year fixed effects X X
School × year fixed effects X X

Other-subject change in mean teacher VA X
Grades 6 6 6 6

Number of school × grade × subject × year cells 3984 3984 3933 2690

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort in
parentheses. The regressions are estimated on a dataset containing school-grade-subject-year means, excluding class-
rooms in which we cannot construct the leave-two-year-out VA estimate described below. All regressions are weighted
by the number of students in the school-grade-subject-year cell. Changes in mean teacher VA across consecutive cohorts
within a school-grade-subject cell as follows: first, we calculate teacher VA for each teacher in a school-grade-subject
cell in each adjacent pair of school years using information excluding those two years. We then calculate mean VA across
all teachers, weighting by the number of students they teach. Finally, we compute the difference in mean teacher VA
(year t minus year t - 1) to obtain the independent variable. The dependent variables are defined by calculating the change
in the mean of the dependent variable (year t minus year t - 1) within a school-grade-subject cell. In columns 1–2, the
dependent variable is the change in mean test scores within subject (Reading or Math). In column 3, it is the change in
the predicted score, constructed based on parental characteristics. In columns 4, the dependent variable is the change in
the score in the other subject (e.g., Math scores for Reading teachers). Column 1 includes only year fixed effects and no
other controls. Columns 2 and 3 include school-by-year fixed effects. Columns 4 control for the change in mean teacher
VA in the other subject as well as year fixed effects.
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characteristics, and change differentially between school-grade cells at annual frequency.

Results are presented in Table 4. All specifications in Table 4 pool three sources of variation of

teachers’ value-added across school-grade-years: entries to school, exits of school, and switches between

grades within schools.1 In Column 1, we estimate the regression in equation (6.4) including year fixed

effects. This relation can be seen nonparametrically in Figure 2, Panel A. We obtain a non significant

18.7% of bias in this estimation. Though unbiased, the corresponding higher bound of the confidence

interval is considerably high, with about 40.5% bias. Column 2 runs a specification with school-year

fixed effects, to address the possibility that changes in teacher quality are related to improvements in

a school that affect test scores, and thus biasing our biases estimates if not considered. This time, bias

augments considerably and is significantly different from 0, with a point estimate of (1−0.507) = 49.3%,

but considerably less precisely estimated, with a confidence interval of roughly 49.3%±54.5%, making it

potentially completely biased. Identifying variation is reduced compared to year fixed effects only, which

can be the source of the bias increase in this measure. These bias are considerably more important than

those found in Chetty et al. (2014a), whose confidence interval (smaller than the one found in our study)

includes the value of the coefficient equal to 1 (no bias). Despite this level of bias (or unbiasedness), when

estimating without considering copago in the value-added estimation, bias augments to a significantly

different from zero 38.7% (Table 22, Appendix A). Bias is less when we consider copago in the estimation

(Table 23), but is only insignificantly different from 0 when we restrict the sample to the schools where

data on tuition is available only.

We run some robustness checks following Chetty et al. (2014a) in Table 5. All estimations in Table

5 include year fixed effects. In Table 5, Column 1, we only consider variation in teachers’ value-added

that stems from school exits. This variation is less likely to be correlated with changes in unobserved

students’ characteristics that influence scores. We isolate this source of variation by instrumenting ∆Qsgt

with the fraction of students taught by school-leaving teachers in the previous cohort, multiplied by the

mean VA of these school-leavers. Point estimate of bias in this case is 0.436 with a large confidence

interval of 0.436±1.96×0.229.

The next columns evaluate to what extent there is selection bias due to sample selection. Previous

estimations discarded classrooms whose teachers had missing VA estimates, but this procedure excludes

a nonrandom subset of classrooms.

CFR implement different approaches to tackle this. Column 2 provides an imputation of the uncon-

1In Table 4, as well as in Tables 5, 6 and 28, and also their equivalent with the combined sample, all scores used in the
dependent variable are raw scores instead of residual scores, unless stated otherwise.
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FIGURE 3: EFFECTS OF CHANGES IN TEACHING STAFF ON SCORES IN OTHER SUBJECT, 6TH GRADE ONLY,
SCHOOL WITH copago ONLY, ALL YEARS
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Notes: This figure plots changes in average test scores in the other subject across cohorts
versus changes in average teacher VA, controlling for changes in other-subject VA, cor-
responding to the regression in column 4 of Table 4. See notes to Table 4 for details on
variable definitions and sample restrictions. The panel is plotted using the core sample
collapsed to school-grade-subject-year means. To construct this binned scatterplot, we
first regress both the x- and y-axis variables on changes in mean teacher VA in the other
subject as well as year fixed effects and compute residuals, weighting by the number of
students in each school- grade-subject-year cell. We then divide the x residuals into 20
equal-size groups (vingtiles) and plot the means of the y residuals within each bin against
the mean of the x residuals within each bin, again weighting by the number of students
in each school-grade-subject-year cell. The solid line shows the best linear fit estimated
on the underlying microdata using a weighted OLS regression as in Table 4. The coeffi-
cient shows the estimated slope of the best-fit line, with standard errors clustered at the
school-cohort level reported in parentheses.
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TABLE 5: QUASI-EXPERIMENTAL ESTIMATES OF FORECAST BIAS: ROBUSTNESS CHECKS, 6TH GRADE ONLY,
SCHOOLS WITH copago ONLY, ALL YEARS

(1) (2) (3) (4)
Teacher Full <25 percent 0 percent
exit only sample imputed VA imputed VA
∆ score ∆ score ∆ score ∆ score

Changes in mean teacher 0.564 0.575 0.900 0.892
VA across cohorts (0.229) (0.053) (0.137) (0.146)

Year fixed effects X X X X
Grades 6 6 6 6

Number of school × grade × subject × year cells 3984 17098 3183 3148

Notes: Each column reports coefficients from a regression with standard errors clustered by school-cohort in parentheses.
The regressions are estimated on a dataset containing school-grade-subject-year means. The dependent variable in all
specifications is the change in the mean test scores (year t minus year t - 1) within a school-grade-subject cell. The
independent variable is the change in mean teacher VA across consecutive cohorts within a school-grade-subject cell; see
notes to Table 4 for details on the construction of this variable. All regressions are weighted by the number of students in
the school-grade-subject-year cell and include year fixed effects. In column 1, we report 2SLS (two-stage least-squares)
estimates, instrumenting for changes in mean teacher VA with the fraction of students in the prior cohort taught by teachers
who leave the school multiplied by the mean- VA among these school-leavers. Columns 2–4 replicate the specification
in column 1 of Table 4, varying the way in which we handle classrooms with missing teacher VA. Column 2 includes
all classrooms, imputing the sample mean VA to classrooms with missing teacher VA. Column 3 replicates column 2,
excluding entire school- grade-subject-year cells in which more than 25 percent of student observations have missing
teacher VA. Column 4 restricts to entire school-grade-subject-year cells with no missing teacher VA.
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ditional grand mean to VA measures, whenever µ̂
−t,t−1
jt is missing. Chetty et al. (2017) demonstrate the

bias in the estimation of λ potentially caused by this procedure: unless VA among teachers in a same

school is uncorrelated, this imputation introduces measurement error, and will lead to attenuation bias.

The coefficient in this regression is considerably smaller than the one in column 1 of Table 4, in line with

a positive correlation in VA among teachers in a same school. Bias is therefore more important than our

main estimate (Table 4, Column 1).

We implement in columns 3 and 4 of Table 5 specifications that restrict the sample to school-grade-

subject-year cells: where less than 25% of the teachers have their VA estimates imputed by the method-

ology above in both the current and previous years for Column 3, and we restrict our sample to only to

school-grade-subject-year cells where there is no missing teacher-year estimates in Column 4. In both

specifications, complete cohorts are excluded, not individual classrooms for some cohorts, avoiding the

sample selection bias problem. Restricting to school-grade-subject-year cells where no classes are miss-

ing should eliminate sample selection bias. Indeed, bias is reduced importantly as we restrict the sample

to less imputed cells, as in Chetty et al. (2014a): Column 3 shows a point bias of 10%, and Column 4 a

bias of 10.8%. Even though the bias sample with no imputed VA score is 0.8% higher than the one with

less than 25% imputed, both estimates are insignificantly different from 0%, and considerably smaller

than the fully imputed sample.

We further analyse the bias in these specifications, when the dependent variable is the mean changes

in residual 6th scores. This is the correct dependent variable if the key assumption doesn’t hold. These

results can be seen in Table 25 (Appendix A). Compared to the preferred sample estimates, these results

present more bias, through specifications 2 and 3.

Specification 4 in Table 25 shows an important result. Once we restrict the sample to entire school-

grade-subject-year cells with no missing teacher VA, the coefficient obtained in this specification is

roughly the same point estimate than the one obtained from our preferred sample, as is the confidence

interval: when we impose this sample restriction, the quasi-experiment estimation gives about the same

results whether we regress the change in raw test scores ∆A∗sgt on ∆Qsgt , or by regressing the change in

mean residual scores, ∆Asgt , on ∆Qsgt .2 When we restrict the sample to classrooms with non-missing

VA estimates for teachers, we don’t use the entire school-grade-subject-year cell for identification. In

that case, if assignment to classrooms is not as good as randomly assigned, the identifying assumption

is violated. When the key identifying assumption holds, i.e., when observable characteristics Xit are also

2This coefficient is the exact same coefficient for the raw score and for the residual score estimation for specifications without
teacher history, not reported.
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Chapter 6. Quasi-experimental estimates of bias

orthogonal to changes in teacher quality across cohorts, estimation from the former or the latter should

give the same result. We see that the coefficient from the regression of ∆A∗sgt on ∆Qsgt is about the same

with the one obtained of regressing Asgt , on ∆Qsgt only for the specification where the sample is restricted

to sample to school-grade-subject-year cells with no missing VA in the current and preceding year (see

Tables 5 and 25). This result provides further evidence to support the validity of the quasi-experiment

devised by Chetty et al. (2014a).

We proceed next to replicate Chetty et al. (2014a) analysis to apprehend what controls are most

relevant to the unbiasedness of value-added estimates. We re-estimate value-added measures by imple-

menting different specifications for equation (3.1). Results can be seen in Table 6. All specifications

have grade and year indicators. The first, as a benchmark, includes all covariates previously used; the

second, the baseline vector of covariates with no teacher fixed effect; the third controls only on all prior

scores - school, grade, and student-level - considered in the baseline estimates; the fourth, student-level

prior scores in both subjects; the fifth, student-level prior scores of the same subject; the sixth, all controls

except the scores, copago, teacher assignment history, and rurality; the seventh and last, no controls what-

soever (except grade and year fixed effects: thus, the score prediction will be the student’s mean score

by teacher). We can see that controlling only on prior scores for the VA computations gives measures

almost as unbiased that the ones computed with the full baseline vector of controls (0.813 coefficient for

the baseline versus the prior test scores VA coefficient of 0.732). VA computation without teacher FE has

less bias (coefficient of 0.890). This can be caused by the few years of our sample where we have VA

measures for teachers. Measures that control for any kind of lagged score have a high correlation with the

baseline VA estimate (90% or more), contrary to measures that do not control for previous scores (corre-

lation of 74.7% for non-score controls VA measures with the baseline VA measure, and of 72.3% for the

measure without controls). No-controls VA measure has a bias not considerably different to the measure

that controls for the baseline vector without the previous score controls or copago. We can therefore see

that lagged-scores are an important factor for the estimation of unbiased estimates, as noticed in previous

literature, as well as copago. This pattern of correlation and bias in the different specifications is seen

throughout the combined sample as well (Table 27, Appendix A).

Finally, as Chetty et al. (2014a) we estimate the relationship between VA measures and different

student characteristics. Results can be seen in the Table 7. We can see in Column 1 that one standard

deviation higher lagged test score is significantly associated with being assigned to a teacher with a

VA 0.0175 higher. In Column 2 we estimate the assignment with school fixed effects, thus estimating
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Chapter 6. Quasi-experimental estimates of bias

within school differences in assignment. Within schools, students with a one SD higher lagged test

score are significantly assigned teachers with 0.00299 higher VA. In Column 3 we see the relationship

with special education students. On average, special education students are assigned VA teachers 0.0285

higher than non special students. In Column 5 we explore the assignment on parent income (in 10.000$).

We see that students with higher household income get assigned higher VA teachers. This relationship is

nonetheless small. We further explore if controlling on parent income changes the assignment on lagged

score. In Column 6, conditional on parent income, one standard deviation higher in lagged test score

implies being assigned a 0.0160 higher VA teacher. In Column 7 we regress value-added on the average

household parent education: we find that an additional year in mean household parent education leads to

being assigned a 0.00384 higher VA teacher. When evaluating the teacher-parent education assignment

within school (Column 8), we find that there is no significant relationship between parent education and

teacher value-added. Column 9 studies the relationship between a school-level demographic, mean school

income, and VA estimates. Higher mean income schools have significantly better teachers, as measured

by VA. Finally, in Column 10 we evaluate the assignment of teacher quality to copago charged by schools:

schools that charge (on average) a 10.000$ higher copago, have on average teachers with a 0.00702 VA

higher.

Together, these results unravel a new aspect of the segregation present in the chilean educational sys-

tem: more advantaged schools have the ability to attract better teachers, therefore widening the existing

socioeconomic differences between students from different socioeconomic backgrounds.

35



Chapter 6. Quasi-experimental estimates of bias

TABLE 6: COMPARISONS OF FORECAST BIAS ACROSS VALUE-ADDED MODELS, 6TH GRADE ONLY, SCHOOLS
WITH copago ONLY, ALL YEARS

Correlation with Quasi-experimental
baseline VA estimate

estimates of bias (%)
(1) (2)

Baseline 1.000 0.187
(0.111)

Baseline no teacher FE 0.915 0.110
(0.137)

Prior test scores 0.956 0.268
(0.111)

Student’s prior scores in both subjects 0.925 0.287
(0.107)

Student’s prior score in same subject only 0.912 0.318
(0.104)

Non-score controls 0.747 0.663
(0.065)

No controls 0.723 0.693
(0.061)

Notes: In this table, we estimate seven alternative VA models and report correlations of the
resulting VA estimates with the baseline VA estimates in column 1. In column 2, we report
quasi-experimental estimates of forecast bias for each model, defined as 1 minus the coef-
ficient in a regression of the cross-cohort change in scores on the cross-cohort change in
mean teacher VA. These coefficients are estimated using exactly the specification in column
1 of Table 4. All the VA models are estimated on a constant sample of students for whom
all the variables in the baseline control vector are non-missing. All models are estimated
separately by school level and subject; the correlations and estimates of forecast bias pool
VA estimates across all groups. Each model only varies the control vector used to estimate
student test score residuals in equation (3.1); the remaining steps of the procedure used to
construct VA estimates are the same for all the models. Model 1 replicates the baseline
model as a reference; see notes to Table 3 for definition of the baseline control vector. The
estimated forecast bias for this model coincides with that implied by column 1 of Table
4. Model 2 uses all of the baseline controls but omits teacher fixed effects when estimat-
ing equation 3.1, so that the coefficients on the controls are identified from both within-
and between-teacher variation as in traditional VA specifications. Model 3 includes only
student-, class-, and school-level test score controls from the baseline control vector along
with grade and year fixed effects. Model 4 includes only cubic polynomials in prior-year
scores in Math and Reading along with grade and year fixed effects. Model 5 replicates
model 4, dropping the cubic polynomial for prior scores in the other subject. Model 6
removes all controls related to test scores and copago from the baseline specification, leav-
ing only non-score controls at the student, class, and school level (e.g., demographics, free
lunch participation, etc.). Model 7 drops all controls except grade and year fixed effects.
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Chapter 7

Conclusion

Unbiased value-added estimates can be retrieved in a different setting to the ones used so far, namely

schools districts within the United States, such as in the competitive and strongly segregated in socioe-

conomic terms school system in Chile, even with short panel structures. Our results suggest that in this

context, tuition as well as prior scores are fundamental controls for an unbiased value-added estima-

tion, and their omission is likely to cause severely biased estimates. Evidence provided throughout the

paper supports the validity of the quasi-experiment devised by Chetty et al. (2014a): it allows us the

identification in bias in teacher value-added estimates, whenever experimental evaluations have not been

implemented or are not feasible, as is the case of Chile.

When evaluating sorting on demographic characteristics, we find that the teacher quality is sorted pos-

itively to students and schools with higher income, to parents with higher education, to better achieving

students in previous grades, and to higher tuition charging schools. This sorting on teacher quality con-

tributes to corroborate the segregation in the chilean educational system, stemming not only from sorting

among schools, but also as seen in this study, on teacher quality. As such, this sorting is not only likely to

replicate socioeconomic differences, but also to increase these already present educational and economic

disparities, as a higher quality teacher has a higher positive effect on achievement. However, unbiased

identification of teacher quality not only allows to apprehend the current situation in the educational sys-

tem, but also permits to orient public policy. Unbiased value-added measures of teacher quality might be

useful to face these challenges, by implementing a reassignment of better teachers to more disadvantaged

students.
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Appendix A

TABLE 8: SUMMARY STATISTICS FOR FULL SAMPLE: 6TH GRADE ONLY, ALL SCHOOLS, ALL YEARS

Variable Mean SD Observations
(1) (2) (3)

Class size (not student-weighted) 24.0 8.5 44009
Number of subject-school years per student 1.9 0.3 548793

Test score (SD) 0.05 1.0 1057724
Age (years) 11.2 0.5 1055997

Female 50.6% 1057724
Repeating grade 2.6% 1049391

Special education 0.03% 1056007
Household income 554,929 572,926 893607

Household education 12 3 840647
Copayment 21,185 20,722 453675

Notes: See Notes to Table 1. Years considered are 2013, 2014, 2015. Does not include schools
from code of dependency Corporación de Administración Delegada, a small fraction of the overall
population school type.

TABLE 9: SUMMARY STATISTICS FOR SAMPLE USED TO ESTIMATE VALUE-ADDED MODEL, 6TH GRADE
ONLY, NO PRIVATE SCHOOLS, ALL YEARS

Variable Mean SD Observations
(1) (2) (3)

Class size (not student-weighted) 22.6 8.6 39963
Number of subject-school years per student 1.9 0.3 473563

Test score (SD) 0.01 1.0 902575
Age (years) 11.2 0.5 902575

Female 51.0% 902575
Repeating grade 2.6% 902575

Special education 0.03% 902575
Household income 444,978 401,189 773115

Household education 12 3 725079
Copayment 21,290 20,748 430657

Notes: See Notes to Table 1. Years considered are 2013, 2014, 2015.



TABLE 10: SUMMARY STATISTICS FOR SAMPLE USED TO ESTIMATE VALUE-ADDED MODEL, 8TH GRADE
ONLY, NO PRIVATE SCHOOLS, ALL YEARS

Variable Mean SD Observations
(1) (2) (3)

Class size (not student-weighted) 21.7 8.2 62845
Number of subject-school years per student 1.9 0.3 707728

Test score (SD) 0.03 1.0 1363630
Age (years) 13.2 0.4 1363630

Female 51.5% 1363630
Repeating grade 1.9% 1363630

Special education 0.05% 1363630
Household income 412,674 385,647 1199904

Household education 11 3 1117700
Copayment 19,921 18,945 630094

Notes: See Notes to Table 1. Years considered are 2009, 2011, 2013, 2014, 2015.

TABLE 11: SUMMARY STATISTICS FOR SAMPLE USED TO ESTIMATE VALUE-ADDED MODEL, 6TH AND 8TH

GRADES, SCHOOLS WITH copago ONLY, ALL YEARS

Variable Mean SD Observations
(1) (2) (3)

Class size (not student-weighted) 26.2 7.8 40423
Number of subject-school years per student 2.2 0.7 490740

Test score (SD) 0.25 0.9 1059083
Age (years) 12.3 1.0 1059083

Female 51.7% 1059083
Repeating grade 2.5% 1059083

Special education 0.02% 1059083
Household income 566,492 467,801 916401

Household education 13 3 864902
Copayment 20,489 19,717 1059083

Notes: See Notes to Table 1. Years considered are 2009, 2011, 2013, 2014, 2015.



TABLE 12: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH AND 8TH GRADES, WITH copago
ONLY, ALL YEARS

(1) (2)
Sample Reading Math

Lag 1 0.024 0.042
(0.001) (0.001)
[0.369] [0.592]

Lag 2 0.019 0.036
(0.001) (0.001)
[0.314] [0.510]

Lag 3 0.015 0.028
(0.002) (0.002)
[0.219] [0.378]

Lag 4 0.013 0.027
(0.003) (0.003)
[0.210] [0.382]

Total variance 0.503 0.405
Individual-level variance 0.438 0.336

Class variance 0.027 0.011
Teacher variance 0.038 0.057

Notes: See Notes to Table 2. Years considered
are 2009, 2011, 2013, 2014, 2015.



TABLE 13: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH AND 8TH GRADES, SCHOOLS
WITH copago ONLY, ALL YEARS, NO MASTER OR PHD

(1) (2)
Sample Reading Math

Lag 1 0.024 0.043
(0.001) (0.001)
[0.354] [0.592]

Lag 2 0.022 0.037
(0.001) (0.002)
[0.341] [0.520]

Lag 3 0.015 0.028
(0.003) (0.003)
[0.220] [0.372]

Lag 4 0.015 0.031
(0.004) (0.004)
[0.236] [0.409]

Total variance 0.499 0.401
Individual-level variance 0.434 0.333

Class variance 0.024 0.011
Teacher variance 0.040 0.057

Notes: See Notes to Table 2. Years considered
are 2009, 2011, 2013, 2014, 2015.



TABLE 14: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH AND 8TH GRADES, SCHOOLS
WITH copago ONLY, ALL YEARS, WITH MASTER OR PHD

(1) (2)
Sample Reading Math

Lag 1 0.027 0.045
(0.004) (0.004)
[0.378] [0.572]

Lag 2 0.016 0.024
(0.005) (0.005)
[0.251] [0.360]

Lag 3 0.014 0.026
(0.006) (0.008)
[0.191] [0.334]

Lag 4 0.010 0.005
(0.015) (0.010)
[0.151] [0.085]

Total variance 0.526 0.428
Individual-level variance 0.451 0.352

Class variance 0.029 0.008
Teacher variance 0.046 0.069

Notes: See Notes to Table 2. Years considered
are 2009, 2011, 2013, 2014, 2015.



TABLE 15: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH AND 8TH GRADES, SCHOOLS
WITH copago ONLY, ALL YEARS, NO POST-SECONDARY OR GRADUATE EDUCATION BEYOND COLLEGE

(1) (2)
Sample Reading Math

Lag 1 0.031 0.045
(0.004) (0.002)
[0.415] [0.596]

Lag 2 0.024 0.039
(0.003) (0.003)
[0.336] [0.533]

Lag 3 0.011 0.028
(0.004) (0.004)
[0.181] [0.421]

Lag 4 0.009 0.028
(0.006) (0.007)
[0.157] [0.373]

Total variance 0.504 0.397
Individual-level variance 0.440 0.331

Class variance 0.022 0.009
Teacher variance 0.043 0.057

Notes: See Notes to Table 2. Years considered
are 2009, 2011, 2013, 2014, 2015.



TABLE 16: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH AND 8TH GRADES, SCHOOLS
WITH copago ONLY, ALL YEARS, WITH POST-SECONDARY OR GRADUATE EDUCATION BEYOND COLLEGE

(1) (2)
Sample Reading Math

Lag 1 0.023 0.041
(0.002) (0.002)
[0.331] [0.560]

Lag 2 0.021 0.036
(0.002) (0.002)
[0.330] [0.494]

Lag 3 0.018 0.029
(0.003) (0.003)
[0.252] [0.369]

Lag 4 0.016 0.027
(0.005) (0.004)
[0.238] [0.395]

Total variance 0.502 0.409
Individual-level variance 0.436 0.340

Class variance 0.025 0.011
Teacher variance 0.041 0.058

Notes: See Notes to Table 2. Years considered
are 2009, 2011, 2013, 2014, 2015.



TABLE 17: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH AND 8TH GRADES, SCHOOLS
WITH copago ONLY, ALL YEARS, QUARTILE 1 OF TEACHER EXPERIENCE

(1) (2)
Sample Reading Math

Lag 1 0.027 0.042
(0.003) (0.002)
[0.391] [0.587]

Lag 2 0.024 0.037
(0.003) (0.003)
[0.378] [0.530]

Lag 3 0.007 0.010
(0.008) (0.004)
[0.110] [0.186]

Lag 4 0.020 0.012
(0.008) (0.010)
[0.389] [0.208]

Total variance 0.520 0.406
Individual-level variance 0.450 0.339

Class variance 0.028 0.011
Teacher variance 0.042 0.056

Notes: See Notes to Table 2. Years considered
are 2009, 2011, 2013, 2014, 2015.



TABLE 18: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH AND 8TH GRADES, SCHOOLS
WITH copago ONLY, ALL YEARS, QUARTILE 2 OF TEACHER EXPERIENCE

(1) (2)
Sample Reading Math

Lag 1 0.032 0.044
(0.003) (0.002)
[0.434] [0.616]

Lag 2 0.025 0.037
(0.003) (0.002)
[0.364] [0.506]

Lag 3 0.020 0.033
(0.006) (0.004)
[0.259] [0.426]

Lag 4 0.008 0.019
(0.009) (0.005)
[0.098] [0.315]

Total variance 0.507 0.404
Individual-level variance 0.437 0.333

Class variance 0.024 0.011
Teacher variance 0.047 0.059

Notes: See Notes to Table 2. Years considered
are 2009, 2011, 2013, 2014, 2015.



TABLE 19: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH AND 8TH GRADES, SCHOOLS
WITH copago ONLY, ALL YEARS, QUARTILE 3 OF TEACHER EXPERIENCE

(1) (2)
Sample Reading Math

Lag 1 0.021 0.048
(0.002) (0.002)
[0.336] [0.632]

Lag 2 0.017 0.043
(0.002) (0.003)
[0.286] [0.571]

Lag 3 0.015 0.036
(0.003) (0.004)
[0.254] [0.471]

Lag 4 0.018 0.044
(0.005) (0.005)
[0.285] [0.543]

Total variance 0.494 0.414
Individual-level variance 0.433 0.341

Class variance 0.024 0.013
Teacher variance 0.037 0.061

Notes: See Notes to Table 2. Years considered
are 2009, 2011, 2013, 2014, 2015.



TABLE 20: TEACHER VALUE-ADDED MODEL PARAMETER ESTIMATES, 6TH AND 8TH GRADES, SCHOOLS
WITH copago ONLY, ALL YEARS, QUARTILE 4 OF TEACHER EXPERIENCE

(1) (2)
Sample Reading Math

Lag 1 0.031 0.042
(0.002) (0.002)
[0.454] [0.626]

Lag 2 0.025 0.039
(0.002) (0.003)
[0.406] [0.567]

Lag 3 0.026 0.035
(0.004) (0.005)
[0.359] [0.451]

Lag 4 0.021 0.031
(0.005) (0.006)
[0.338] [0.425]

Total variance 0.496 0.399
Individual-level variance 0.428 0.331

Class variance 0.030 0.017
Teacher variance 0.038 0.051

Notes: See Notes to Table 2. Years considered
are 2009, 2011, 2013, 2014, 2015.



FIGURE 4: EMPIRICAL DISTRIBUTIONS OF TEACHER VA ESTIMATES

6TH GRADES, SCHOOLS WITH copago ONLY, ALL YEARS
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6TH AND 8TH GRADES, SCHOOLS WITH copago ONLY, ALL YEARS
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Notes: These figures plot kernel densities of the empirical distribution of teacher VA estimates µ̂ jt
for each subject (Math and Reading). The densities are weighted by the number of student test score
observations used to construct the teacher VA estimate and are estimated using a bandwidth of 0.025.
We also report the standard deviations of these empirical distributions of VA estimates. Note that
these standard deviations are smaller than the standard deviation of true teacher effects reported in
Table 2 because VA estimates are shrunk toward the mean to account for noise and obtain unbiased
forecasts.



FIGURE 5: DRIFT IN TEACHER VALUE-ADDED ACROSS YEARS, 6TH AND 8TH GRADES, SCHOOLS WITH copago
ONLY, ALL YEARS

0
.1

.2
.3

.4
.5

C
o

rr
e

la
ti
o

n

0 2 4 6 8 10
Years Separation Between Classes

Reading Math

Autocorrelation Vector in School for Reading and Math Scores

Notes: These figures show the correlation between mean test-score residuals across
classes taught by the same teacher in different years. To calculate these vectors, we first
residualize test scores using within-teacher variation with respect to our baseline control
vector. We then calculate a (precision-weighted) mean test score residual across class-
rooms for each teacher-year. Finally, we calculate the autocorrelation coefficients as the
correlation across years for a given teacher, weighting by the sum of students taught in
the two years.

TABLE 21: ESTIMATES OF FORECAST BIAS USING PARENT CHARACTERISTICS, 6TH AND 8TH GRADES,
SCHOOLS WITH copago ONLY, ALL YEARS

(1) (2) (3) (4) (5)
Sample Score in Pred. score using Score in Pred. score using Pred. score using

year t parent chars. year t parent chars. parent chars.

Teacher VA 1.002 -0.001 0.992 0.000 0.001
(0.015) (0.001) (0.015) (0.000) (0.000)

Parent chars. controls X
School Fixed Effects X

Copago X

Obsevations 819614 663410 663410 663410 663410

Notes: See Notes to Table 3.



TABLE 22: QUASI-EXPERIMENTAL ESTIMATES OF FORECAST BIAS, 6TH GRADE ONLY, NO PRIVATE SCHOOLS,
copago NOT CONSIDERED, ALL YEARS

(1) (2) (3) (4)
∆ predicted ∆ other

∆ score ∆ score score subject score

Changes in mean teacher 0.613 0.371 0.000 0.204
VA across cohorts (0.071) (0.174) (0.018) (0.091)

Year fixed effects X X
School × year fixed effects X X

Other-subject change in mean teacher VA X
Grades 6 6 6 6

Number of school × grade × subject × year cells 10396 10396 10219 6908

Notes: See Notes to Table 4.

TABLE 23: QUASI-EXPERIMENTAL ESTIMATES OF FORECAST BIAS, 6TH GRADE ONLY, NO PRIVATE SCHOOLS,
ALL YEARS

(1) (2) (3) (4)
∆ predicted ∆ other

∆ score ∆ score score subject score

Changes in mean teacher 0.666 0.403 -0.000 0.212
VA across cohorts (0.073) (0.185) (0.019) (0.095)

Year fixed effects X X
School × year fixed effects X X

Other-subject change in mean teacher VA X
Grades 6 6 6 6

Number of school × grade × subject × year cells 10396 10396 10219 6908

Notes: See Notes to Table 4.



TABLE 24: QUASI-EXPERIMENTAL ESTIMATES OF FORECAST BIAS, 6TH AND 8TH GRADES, SCHOOLS WITH
copago ONLY, ALL YEARS

(1) (2) (3) (4) (5)
∆ predicted ∆ other

∆ score ∆ score ∆ score score subject score

Changes in mean teacher 0.543 0.442 0.364 0.005 0.171
VA across cohorts (0.044) (0.065) (0.195) (0.009) (0.050)

Year fixed effects X X
School × year fixed effects X X X

Lagged score controls X
Lead and lag changes in teacher VA X

Other-subject change in mean teacher VA X
Grades 6/8 6/8 6/8 6/8 6/8

Number of school × grade × subject × year cells 13011 13011 2624 12922 9264

Notes: See Notes to Table 4.

TABLE 25: QUASI-EXPERIMENTAL ESTIMATES OF FORECAST BIAS: ROBUSTNESS CHECKS, 6TH GRADE
ONLY, SCHOOLS WITH copago ONLY, ALL YEARS, RESIDUAL SCORES

(1) (2) (3) (4)
Teacher Full <25 percent 0 percent
exit only sample imputed VA imputed VA
∆ score ∆ score ∆ score ∆ score

Changes in mean teacher 0.647 0.547 0.890 0.890
VA across cohorts (0.252) (0.056) (0.137) (0.147)

Year fixed effects X X X X
Grades 6 6 6 6

Number of school × grade × subject × year cells 3885 17112 3190 3148

Notes: See Notes to Table 5.



TABLE 26: QUASI-EXPERIMENTAL ESTIMATES OF FORECAST BIAS: ROBUSTNESS CHECKS, 6TH AND 8TH

GRADES, SCHOOLS WITH copago ONLY, ALL YEARS

(1) (2) (3) (4)
Teacher Full <25 percent 0 percent
exit only sample imputed VA imputed VA
∆ score ∆ score ∆ score ∆ score

Changes in mean teacher 0.398 0.431 0.547 0.532
VA across cohorts (0.091) (0.031) (0.049) (0.049)

Year fixed effects X X X X
Grades 6/8 6/8 6/8 6/8

Number of school × grade × subject × year cells 13011 46904 11032 10870

Notes: See Notes to Table 5.

TABLE 27: COMPARISONS OF FORECAST BIAS ACROSS VALUE-ADDED MODELS, 6TH AND 8TH GRADES,
SCHOOLS WITH copago ONLY, ALL YEARS

Correlation with Quasi-experimental
baseline VA estimate

estimates of bias (%)
(1) (2)

Baseline 1.000 0.457
(0.044)

Baseline no teacher FE 0.961 0.427
(0.048)

Prior test scores 0.973 0.486
(0.043)

Student’s lagged scores in both subjects 0.929 0.565
(0.039)

Student’s lagged score in same subject only 0.916 0.595
(0.037)

Non-score controls 0.709 0.789
(0.023)

No controls 0.688 0.810
(0.021)

Notes: See Notes to Table 6.



Appendix B

In this section, we explore further the placebo test seen in Column 4, Table 4. Through Tables 22-24,

this test shows a significant positive correlation. While these results don’t support the plausibility of the

key assumption, they do not invalidate the quasi-experiment if the teacher quality in one subject affects

positively the scores in the other subjects. This is what would be expected for example if a Reading

(Math) teacher quality affects positively (negatively) Math (Reading) scores. We study these relations

by restricting the sample to scores in one or the other subject. Results can be seen in columns 1 and 2

of Table 28. Though statistically insignificant, the effect varies across the different subjects. It is more

important for math teacher quality on Reading than reading teacher quality on Math for our main sample.

We consider if there is a different effect when considering test score achievement below or above the

median in Columns 3, 4, 5 and 6 of Table 28. We can see that the positive effect of math teacher quality

on reading scores is strong for the lower performing group, i.e. when scores are below the median, and the

opposite is true when scores are from the high achievement group (above the median). Reading teacher

quality impacting more importantly Math scores than viceversa, is also seen in Table 29. Intuitively,

better reading skills can improve the comprehension in other subjects such as math. Reading teacher

quality impacting math scores more importantly than viceversa is seen throughout the different sample

restrictions in Table 29.

TABLE 28: QUASI-EXPERIMENTAL ESTIMATES OF FORECAST BIAS: CHANGES IN THE OTHER SUBJECT:
DETAILS, 6TH GRADE ONLY, SCHOOLS WITH copago ONLY, ALL YEARS

Math on reading Reading on math Math on reading Reading on math Math on reading Reading on math
below median below median above median above median

mean score mean score mean score mean score
(1) (2) (3) (4) (5) (6)

Changes in 0.137 0.048 0.263 -0.033 -0.014 0.111
mean VA (0.155) (0.184) (0.248) (0.234) (0.193) (0.248)

Observations 1345 1345 595 592 750 753

Notes: Each column replicates the estimation in Table 4, Column 4, restricting further the sample. In Column 1 we restrict to Reading scores as
the dependent variable observations only; in column 2 to Math scores as a dependent variable only; in column 3 we restrict further to Reading
scores as a dependent variable only, where we restrict to below median mean scores; in column 4 we rescrict to Math scores as a dependent
variable only, and restrict to below median mean scores; in column 5 we restrict to Reading scores as a dependent variable only, considering
above median mean scores; and in column 6 we restrict to Math scores as a dependent variable only, considering above median mean scores.



TABLE 29: QUASI-EXPERIMENTAL ESTIMATES OF FORECAST BIAS: CHANGES IN THE OTHER SUBJECT:
DETAILS, 6TH AND 8TH GRADES, SCHOOLS WITH copago ONLY, ALL YEARS

Math on reading Reading on math Math on reading Reading on math Math on reading Reading on math
below median below median above median above median

mean score mean score mean score mean score
(1) (2) (3) (4) (5) (6)

Changes in 0.105 0.306 0.115 0.177 0.095 0.355
mean VA (0.065) (0.090) (0.103) (0.131) (0.078) (0.110)

Observations 4632 4632 1984 1925 2648 2707

Notes: See notes to Table 28.
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