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ROBUST SPEECH RECOGNITION IN NOISY AND REVERBERANT ENVIRONMENTS 

USING DEEP NEURAL NETWORK-BASED SYSTEMS 

In this thesis an uncertainty weighting scheme for deep neural network-hidden Markov model 

(DNN-HMM) based automatic speech recognition (ASR) is proposed to increase discriminability 

in the decoding process. To this end, the DNN pseudo-log-likelihoods are weighted according to 

the uncertainty variance assigned to the acoustic observation. The results presented here suggest 

that substantial reduction in word error rate (WER) is achieved with clean training. Moreover, 

modelling the uncertainty propagation through the DNN is not required and no approximations for 

non-linear activation functions are made. The presented method can be applied to any network 

topology that delivers log-likelihood-like scores. It can be combined with any noise removal 

technique and adds a minimal computational cost. This technique was exhaustively evaluated and 

combined with uncertainty-propagation-based schemes for computing the pseudo-log-likelihoods 

and uncertainty variance at the DNN output.  Two proposed methods optimized the parameters of 

the weighting function by leveraging the grid search either on a development database representing 

the given task or on each utterance based on discrimination metrics. Experiments with Aurora-4 

task showed that, with clean training, the proposed weighting scheme can reduce WER by a 

maximum of 21% compared with a baseline system with spectral subtraction and uncertainty 

propagation using the unscented transform. 

Additionally, it is proposed to replace the classical black box integration of automatic speech 

recognition technology in human-robot interaction (HRI) applications with the incorporation of the 

HRI environment representation and modeling, and the robot and user states and contexts. 

Accordingly, this thesis focuses on the environment representation and modeling by training a 

DNN-HMM based automatic speech recognition engine combining clean utterances with the 

acoustic-channel responses and noise that were obtained from an HRI testbed built with a PR2 

mobile manipulation robot.  This method avoids recording a training database in all the possible 

acoustic environments given an HRI scenario. In the generated testbed, the resulting ASR engine 

provided a WER that is at least 26% and 38% lower than publicly available speech recognition 

application programming interfaces (APIs) with the loudspeaker and human speakers testing 

databases, respectively, with a limited amount of training data. 

This thesis demonstrates that even state-of-the-art DNN-HMM based speech recognizers can 

benefit by combining systems for which the acoustic models have been trained using different 

feature sets. In this context, the complementarity of DNN-HMM based ASR systems trained with 

the same data set but with different signal representations is discussed. DNN fusion methods based 

on flat-weight combination, the minimization of mutual information and the maximization of 

discrimination metrics were proposed and tested. Schemes that consider the combination of ASR 

systems with lattice combination and minimum Bayes risk decoding were also evaluated and 

combined with DNN fusion techniques. The experimental results were obtained using a publicly-

available naturally-recorded highly reverberant speech data. Significant improvements in WER 

were observed by combining DNN-HMM based ASR systems with different feature sets, obtaining 

relative improvements of 10% with two classifiers and 18% with four classifiers, without any 

tuning or a priori information of the ASR accuracy. 
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Resumen 

En esta tesis se propone un esquema de ponderación por incertidumbre para sistemas de 

reconocimiento automático de voz (ASR) basados en redes neuronales profundas y modelos 

ocultos de Markov (DNN-HMM) para incrementar la discriminabilidad en el proceso de 

decodificación. Para esto, los pseudo-log-likelihoods de la DNN son ponderados de acuerdo a la 

varianza de incertidumbre asignada al vector de observación. Los resultados presentados aquí 

sugieren que se obtiene una reducción sustancial en la tasa de error de palabra (WER) con 

entrenamiento clean. Además, no se requiere modelar la propagación de incertidumbre a través de 

la DNN y no se realizan aproximaciones para las funciones de activación no-lineal. El método 

presentado se puede aplicar a cualquier topología de red que entregue valores de tipo log-like-

lihood. Este puede ser combinado con cualquier técnica de supresión de ruido y adiciona un mínimo 

costo computacional. Esta técnica fue exhaustivamente evaluada y combinada con esquemas 

basados en propagación de incertidumbre para el cómputo de los pseudo-log-like-lihoods y la 

varianza de incertidumbre a la salida de la DNN. Dos métodos propuestos optimizaron los 

parámetros de la función de ponderación al aprovechar la búsqueda de grilla ya sea en una base de 

datos de desarrollo representativa de la tarea dada o en cada elocución en base a métricas de 

discriminación. Experimentos con la tarea Aurora-4 muestran que, con entrenamiento clean, el 

método de ponderación propuesto puede reducir el WER en un máximo de 21% comparado con el 

sistema baseline con sustracción espectral y propagación de incertidumbre usando la transformada 

unscented. 

Adicionalmente, se propone reemplazar la clásica integración black box de tecnología de 

reconocimiento de voz en aplicaciones de interacción humano-robot (HRI) con la incorporación de 

la representación y modelado del entorno HRI y los estados y contextos del robot y usuario. En 

consecuencia, esta tesis se centra en la representación y modelado del entorno entrenando un motor 

de reconocimiento automático de voz basado en DNN-HMM combinando elocuciones clean con 

las respuestas del canal acústico y el ruido que se obtuvieron en un banco de pruebas de HRI 

construido con un robot de manipulación móvil PR2. Este método evita grabar una base de datos 

de entrenamiento en todos los entornos acústicos posibles dado un escenario de HRI. En el banco 

de pruebas generado, el motor de ASR resultante proporcionó un WER que es al menos 26% y 

38% menor que las interfaces de programación de aplicaciones (APIs) de reconocimiento de voz 

disponibles públicamente para las bases de datos de loudspeaker y speakers humanos, 

respectivamente, con una cantidad limitada de datos de entrenamiento. 
Esta tesis demuestra que incluso los reconocedores de voz basados en DNN-HMM de última 

generación se pueden beneficiar al combinar sistemas para los cuales los modelos acústicos han 

sido entrenados usando diferentes conjuntos de características. En este contexto se discute la 

complementariedad de los sistemas de ASR basados en DNN-HMM entrenados con los mismos 

conjuntos de datos pero con diferentes representaciones de la señal. Se propusieron y probaron los 

métodos de fusión de DNN basados en la combinación de peso plano, la minimización de la 

información mutua y la maximización de métricas de discriminación. Esquemas que consideran la 

combinación de sistemas de ASR con la combinación de lattice y la decodificación con minimum 

Bayes risk fueron evaluados y combinados con técnicas de fusión de DNN. Los resultados 

experimentales fueron obtenidos usando una base de datos de voz de dominio público grabada de 

forma natural. Se obtuvieron mejoras significativas en el WER combinando sistemas de ASR 

basados en DNN-HMM con diferentes conjuntos de características, obteniendo mejoras relativas 

de 10% con dos clasificadores y 18% con cuatro clasificadores, sin ningún ajuste o información a 

priori de la precisión del ASR.  
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Chapter 1 

Introduction 
 

Speech recognition systems have become increasingly important in uses as varied as HRI scenarios, 

smart homes and applications where users are not directly tethered to a microphone.  Major 

problems with ASR performance often occur with additive noise and reverberation in acoustic 

environments in which the ASR has to function.  A wide range of algorithms have been developed 

to reduce issues with these variables.  However, many problems still remain to be resolved to 

improve speech recognition accuracy.   

In this thesis, three topics are proposed to improve speech recognition accuracy.  First, 

uncertainty variance is used to manage additive noise problem in DNN-based speech recognition 

systems. Second, ASR training considers the time-varying acoustic channel in to increase 

robustness of performance in a specific acoustic environment. Finally, to reduce reverberation 

effects, new methods and schemes are proposed to combine different ASR systems. 

1.1. Speech recognition and the additive noise problem 

Additive noise is present in many of the speech recognition applications and can greatly affect the 

performance of recognition systems especially when this noise changes over time or is non-

stationary. To address this problem, a variety of algorithms have been developed, ranging from 

techniques using spectral subtraction to adaptive filters. Furthermore, after the application of these 

noise removal techniques, the enhanced features can be considered random variables where the 

mean is given by the enhanced features and the variance by the uncertainty associated to these 

features. 

Depending on the distortion in the acoustic observation, the scale of scores delivered by the 

acoustic model may vary frame by frame. In these cases, it is important to preserve the balance 

between the acoustic/phonetic and language model scores in the decoding stage. Additionally, the 

original motivation to use the uncertainty variance in noise cancelling was to weight the 

information of each frame according to its reliability and then use that variance to modify the 

probability of observation in Gaussian mixture model-hidden Markov model (GMM-HMM) 

systems.   

Recently, several uncertainty-of-observation techniques have been developed by extending 

the idea of using the uncertainty to modify the acoustic model probability. Methods such as 

unscented transform [1] and piecewise exponential approximation [2] have been proposed in the 

literature to propagate the uncertainty variance through the DNN. Surprisingly, the uncertainty 

variance propagated through the DNN in DNN-HMM systems has not been employed yet.  

In this thesis, the uncertainty variance in noise cancelling and the uncertainty propagated 

through the DNN are used to address the additive noise problem in the proposed uncertainty 

weighting scheme.  This scheme uses the original idea of uncertainty variance in noise cancelling 

to underestimate frames with high uncertainty, thus increasing the discrimination of the decoding 

stage in state-of-the-art DNN-based ASR systems. 
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1.2. Time-varying acoustic channel in speech recognition 

The presence of robots in our society is a reality, and the speech technologies could play an 

important role in improving robot social integration. Robust speech recognition is one of the key 

features that must be provided for successful HRI. To achieve robustness in speech recognition 

performance in HRI scenarios, several challenges must be addressed, including how to manage the 

time-varying acoustic channel due to the relative motion between the sound sources and directivity 

patterns of robot microphones. 

Several authors in the HRI community use speech processing technologies, particularly 

speech recognition, in a plug-and-play fashion without considering issues that can arise in real 

scenarios such as noises produced by robot movements or variations that can occur with acoustic 

channels during interaction. Typically, these authors use toolkits or speech recognition engines 

without making any adaptations according to the scenario that will be used. Also, many authors 

consider to use a Wizard-of-Oz approach for applications that involve speech recognition instead 

of implementing a recognition engine (e.g. [3,4,5]). 

Furthermore, as robots are being developed for a wide range of tasks, robots will need to 

operate in a wide variety of scenarios with acoustic channel variations, noises from the scenario 

where HRI occurs, etc. Typically the noises generated by motors, fans and robot mechanisms turn 

out to be non-stationary, so addressing the noise problem in HRI scenarios becomes even more 

complex.  

Given the possible acoustic variations in HRI scenarios, a generic HRI scenario may be best 

used for modelling. Generic HRI scenarios can also take into consideration that when the robot or 

the user changes its position, there are changes in the acoustic channel that are reflected in 

variations of the reverberation time. In addition, generic scenarios can also manage the direction 

of the directivity patterns of robot microphones and sources.  

This thesis addresses the problem of time-varying acoustic channels and robot noise through 

a DNN-based ASR training strategy, which considers the acoustic environment representation.  

Here, also a model is proposed that considers the acoustic environment, and the state and context 

of the user and robot as input of ASR to more accurately reflect real situations. Additionally, 

applications are proposed that involve automatic speech recognition at the different 

speaker-microphone distances that can occur in rooms with high reverberation. 

1.3. Speech recognition in real reverberant environments 

Many applications that consider the recognition of speech for their operation are developed to work 

in rooms with adverse acoustic conditions, such as reverberant environments in which the 

performance of recognition systems can be reduced due to successive sound reflections. This 

reverberation problem can be found in places such as: parking lots, halls, multipurpose rooms, 

gymnasiums and museums. While humans can recognize the speech signals in these highly-

reverberant environments, achieving this task with machines is not trivial.  

Additionally, distant speech recognition represents a major challenge because the effects of 

noise and reverberation on the speech signal increase with the speaker-to-microphone distance [6]. 

Distant speech recognition leads to degradation of speech recognition systems due to the room 

acoustics and must be considered in real applications. Several authors have performed or proposed 
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distant speech database recording for developing and testing techniques with real data. In recent 

years, many researchers have tried to improve the performance of recognition systems by 

incorporating new training strategies and acoustic modelling techniques. However, despite the 

recent advances in speech recognition technology, successful distant speech recognition in real 

reverberant environments remains an important challenge [7]. 

One way to approach the reverberation problem is to design or use engineered features. 

Parameterization techniques for such features designed to offer robustness in certain conditions can 

be found in the literature. In addition, acoustic modeling based on deep learning can extract 

complex relationships from the input features that could help in part to deal with the reverberation 

problem. Another alternative to address the reverberation problem is the application of 

enhancement techniques. Several algorithms have been proposed to enhance the reverberated 

speech signals, including non-negative matrix factorization (NMF), suppression of slowly-varying 

components and the falling edge (SSF), and weighted prediction error (WPE). 

In this thesis the reverberation problem is addressed combining acoustic models of state-of-

the-art DNN-based ASR systems trained with the WPE enhancement method and different 

parametrization techniques. The proposed methods were exhaustively assessed in highly-

reverberant real and controlled environments using the HRRE database. 

1.4. Hypothesis 

In this research four hypotheses are established in the ASR field:  

• Underweighting frames with high uncertainty can lead to better performance in DNN-HMM 

based ASR systems. 

• The robustness over time-varying spectral tilt of the Locally-Normalized Filter-Bank (LNFB) 

features can improve the performance of ASR systems in HRI scenarios. 

• Considering the acoustic environment information could improve the performance of ASR 

systems in HRI scenarios. 

• Combining ASR systems trained with different features can lead to higher accuracy in 

challenging environments such as those with high reverberation. 

1.5. Objectives 

To test these hypotheses, a general objective and three specific objectives have been established. 

1.5.1. General objective 

• To improve the effectiveness of the ASR systems in noisy and reverberant environments in 

terms of the WER. 

1.5.2. Specific objectives 

• To improve the performance of DNN-based ASR systems in environments with additive noise 

by adapting the relative weights of the language model and the acoustic-phonetic model. 

• To improve the performance of DNN-based ASR systems in HRI scenarios with a time-varying 

acoustic channel using LNFB and environment-based training. 

• Improve the robustness of DNN-based systems in reverberant environments by combining 

acoustic models trained with different parameterization techniques. 



 

4 

 

1.6. Thesis structure 

In Chapter 2, a novel uncertainty weighting scheme is proposed to address the additive noise 

problem. This chapter discusses the uses and propagation through DNN of uncertainty variances. 

Here, two schemes to estimate the uncertainty variances are presented: at the observation vector 

and at the DNN output. Different configurations of the uncertainty weighting scheme are also 

proposed according to the estimation of uncertainty variance and the propagation of 

features/variance. The propagation of features and uncertainty was carried using the unscented 

transform. Additionally, two schemes are presented for the estimation of the weighting parameters: 

task-dependent and utterance-dependent. The reported results were achieved with the Aurora-4 

database. The propagation of features and uncertainty variances with the unscented transform as 

well as the estimation of weighting parameters using the task-dependent and utterance-dependent 

schemes are also discussed. The results show that the improvements obtained with the proposed 

weighting scheme with clean training could reduce the gap between clean and multi-noise/multi-

condition training, which could be very useful when it is not feasible to train an ASR  system in 

the same testing conditions. 

Chapter 3 addresses the robustness of ASR in HRI scenarios. It is proposed to replace the 

classic black box integration of ASR technologies with the incorporation of the HRI environment 

representation and modelling, and the robot and user states and contexts. Moreover, different test 

conditions were generated by recording two types of acoustic sources, i.e. loudspeaker and human 

speaker, with the PR2 robot while performing azimuthal head rotations and movements towards 

and away from the fixed sources. Additionally, this chapter proposes the use of locally normal 

features to address the problem of time-varying acoustic channel in human-robot interaction 

scenarios. Also, a DNN-HMM system training strategy that considers the acoustic channel 

responses and noise to characterize the acoustic environment in the ASR engine was proposed. 

Results show that the locally normalized features can lead to greater robustness regarding the 

acoustic channel variation. Moreover, the proposed environment-based training scheme is 

compared with publicly available APIs.  

Chapter 4 addresses the problem of reverberation by means of the combination of 

complementary acoustic models trained with different parameterization techniques. DNN fusion 

methods based on flat-weight combination, the minimization of mutual information and the 

maximization of discrimination metrics were proposed and evaluated. Also, schemes that consider 

the combination of ASR systems with lattice combination and minimum Bayes risk decoding were 

tested and combined with DNN fusion techniques. Results with CHiME-2 and HRRE (highly-

reverberant real environments) databases are presented and discussed. Finally, Chapter 5 

summarizes the general conclusions and proposes topics for future research. 
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Chapter 2 

Uncertainty weighting and propagation in DNN-HMM based 

speech recognition 
 

2.1. Introduction 

Uncertainty variance in noise removal was firstly proposed to weight the information provided by 

frames according to their reliability in dynamic time warping (DTW) and HMM algorithms 

[8,9,10]. To this end, the enhanced features, e.g. Mel frequency cepstral coefficients (MFCC) or 

filter-bank log-energies, should be considered random variables with the corresponding mean and 

variance. In [11] it was proposed “the replacement of the ordinary output probability with its 

expected value if the addition of noise is modelled as a stochastic process, which in turn is merged 

with the HMM in the Viterbi algorithm.” As a result, the new output probability for the generic 

case of a mixture of Gaussians can be regarded as the definition of a stochastic version of the 

weighted Viterbi algorithm. This is because the final variances of the Gaussians correspond to the 

sum of the HMM and uncertainty variances. If the uncertainty variances increase, the 

discriminability of the GMM observation probability decreases and the decoding process relies 

more on the language model [12]. The Viterbi decoding algorithm, which incorporates the 

uncertainty in noise cancelling is called stochastic weighted Viterbi (SWV) algorithm because the 

increase of the GMM variances leads to a discriminability reduction of those frames with high 

uncertainty. Results with GMM-HMM-based speaker verification [11] and speech recognition 

[12,13] suggested that SWV can lead to significant WER reductions when speech signals are 

corrupted with additive, convolutional and coding-decoding distortion.  

In [14], a similar result was later obtained by marginalizing the joint conditional pdf of the 

original and corrupted cepstral features over all possible unseen clean speech cepstra. Instead of 

using a model for additive noise, as in [11], the pdf of the noisy features, given the clean 

coefficients, was assumed to be as a Gaussian distribution. However, this result employed the same 

idea of uncertainty proposed in [8,9,10]. Additionally, in [14], the weighting nature of the use of 

uncertainty was not analyzed. In [15], a new classification rule was presented by proposing an 

integration over the feature space instead of over the model-parameter space. It was tested with 

connected speech recognition. The enhancement uncertainty variances were estimated by using a 

probabilistic and parametric model of speech distortion. In [16], two adaptation schemes were 

proposed to preserve the observation uncertainty. The results were obtained with connected digits. 

It is worth noting that in [12] and [13] a generalization of the model presented in [11] was 

successfully applied to a continuous speech recognition task. 

The uncertainty estimation of speech features was also later addressed in  [17,18,19,20]. 

Particularly in [20], it was shown that short-term Fourier transform (STFT) uncertainty propagation 

can be combined with the Wiener filter to compute minimum mean square error (MMSE) 

estimations in the feature domain for various parameter extraction methods. In contrast, despite the 

noise cancelling uncertainty being presented only for band-pass filters and MFCC coefficients, the 

proposed modelling employed in [8,9,10,11] does not require consideration of a Gaussian 

distribution for the additive noise in the STFT domain. Moreover, the non-linear log function is 

included by definition in the uncertainty estimation with spectral subtraction.  
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As mentioned above, in the context of band-pass filter bank analysis based features, the 

uncertainty in noise cancelling was proposed initially in [8,9], and further developed in [11]. 

According to [11] the uncertainty variance in noise cancelling in a band-pass filter is expressed as: 

Var[log(𝑠𝑚
2̅̅̅̅ |𝑦𝑚

2̅̅ ̅̅ )] =

{
 
 

 
         

2 ⋅ 𝑐𝑚 ⋅ E[𝑛𝑚
2̅̅ ̅̅ ]

𝑦𝑚
2̅̅ ̅̅  − E[𝑛𝑚

2̅̅ ̅̅ ]
             , if   𝑦𝑚

2̅̅ ̅̅  − E[𝑛𝑚
2̅̅ ̅̅ ] ≥ 10 ⋅ 𝑐𝑚 ⋅ E[𝑛𝑚

2̅̅ ̅̅ ]

−
𝑦𝑚
2̅̅ ̅̅  − E[𝑛𝑚

2̅̅ ̅̅ ]

50 ⋅ 𝑐𝑚 ⋅ E[𝑛𝑚
2̅̅ ̅̅ ]
+ 0.4 , else                                                    

 , (2.1) 

where 𝑠𝑚
2̅̅̅̅ , 𝑦𝑚

2̅̅ ̅̅  and  E[𝑛𝑚
2̅̅ ̅̅ ] are the estimated original clean energy, observed noisy energy and 

estimated noise energy at filter 𝑚, respectively. In addition, 𝑐𝑚 is a correction coefficient that 

considers the short-term correlation between the clean and noise signals. According to [8], 

E[log(𝑠𝑚
2̅̅̅̅ |𝑦𝑚

2̅̅ ̅̅ )] = log(𝑦𝑚
2̅̅ ̅̅  − E[𝑛𝑚

2̅̅ ̅̅ ]) , where  𝑦𝑚
2̅̅ ̅̅  − E[𝑛𝑚

2̅̅ ̅̅ ] can be seen as the spectral subtraction 

estimate of the clean signal. As shown in [8] and [11], the uncertainty variance of the Mel filter 

bank (MelFB) and MFCC can be obtained with (2.1). The uncertainty variance of delta and delta-

delta features can also be estimated as in [11]. This uncertainty variance is a key component of the 

SWV algorithm, which can lead to significant improvements in HMM-based speaker verification 

and speech recognition tasks. 

Uncertainty propagation has attracted the attention of several authors in the last few years. 

Various uncertainty-of-observation (UoO) techniques have been developed by extending the idea 

of using the uncertainty in noise cancelling to modify the acoustic model probability 

[14,17,21,22,23,24]. The main motivation in this regard is the same as the one in SWV. It considers 

the enhanced features as random variables, rather than estimated coefficients. Thus, the uncertainty 

introduced by the enhancement process is considered the variance of the obtained feature. Then, 

these random variables are analytically propagated and modify the acoustic model variance. 

However, when applying this strategy to a DNN-based system, the problem of uncertainty 

propagation cannot be analytically handled without important approximations. Because a DNN is 

not a probabilistic model it is not clear how to modify the acoustic pseudo-likelihood given the 

feature uncertainty. Some methods for uncertainty propagation, such as the unscented transform 

(UT) [1] and piecewise exponential approximation (PIE) [2], have been proposed. Considering the 

results presented in [24], this chapter focuses on the UT scheme for uncertainty variance 

propagation through a DNN. UT is a method for propagating the statistics of a random variable 

through a nonlinear transformation. A set of sigma points is deterministically chosen to represent 

the distribution of the random variable. Then, these points are propagated using a given nonlinear 

function, the DNN in this case, and the mean and variance of the transformed set are computed. 

This method differs from the Monte Carlo technique in that no random samples are required, and 

only a low number of points is needed [25]. 

In the DNN-based UoO techniques published elsewhere, it is surprising that only the mean 

or expectation of the DNN-output is considered, and the variance is not used to modify the acoustic 

probability. As mentioned above, the DNN is not a parametric framework, and the uncertainty 

variance estimated by propagating random variables through the hidden layers requires many 

approximations and assumptions that can hardly be considered realistic. Moreover, the resulting 

uncertainty variance at the DNN output has not yet been employed in the decoding process. It is 

also surprising that the original motivation to define uncertainty in noise cancelling was to weight 
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the information provided by frames according to the reliability of the information they provide. 

This philosophy has not been pursued by uncertainty propagation methods in DNN-based systems.  

In this Chapter, an uncertainty weighting scheme for DNN-HMM-based speech recognition 

is presented. The motivation is to increase the discriminability in the decoding process by 

weighting the DNN pseudo-log-likelihoods according to the uncertainty variance assigned to the 

acoustic observation. The parameters of the weighting function can be optimized by a grid search 

on a development database or on an utterance-by-utterance basis. Optimizing the combination of 

the acoustic/phonetic and language models is not a problem that has been exhaustively addressed. 

In [26], it was suggested that the combination of the language and acoustic/phonetic models needs 

to be explored. The dynamic adaptation of the language model weight was addressed in [27]. The 

language model weight was modified according to the state of the dialogue or to the current 

utterance; however, a limited improvement in accuracy was observed. The advantages of the 

proposed method are outlined as follows: a) substantial reductions in WER are achieved with clean 

training; b) no degradation is introduced with multi-noise and multi-condition training;  

c) modelling the uncertainty propagation through the DNN is not required despite the fact that it 

leads to further improvements; d) no approximations for non-linear activation functions are made; 

e) there is no need to consider the hidden layer pre-activations as uncorrelated; f) it can be applied 

to any network topology that delivers log-likelihood-like scores; g) the proposed weighting scheme 

can be combined with any noise removal   and, h) it incurs a minimal additional computational cost 

in its most basic configuration.  

The proposed technique is exhaustively evaluated and combined with uncertainty-

propagation-based schemes for computing the pseudo-log-likelihoods and the uncertainty variance 

at the DNN output. It is worth emphasizing that special attention is given to optimize the 

DNN-HMM baseline system, which in turn provides a baseline WER that is competitive with those 

published elsewhere. The results presented here suggest that the proposed uncertainty weighting 

scheme outperforms the existing propagation strategy. The latter scheme can hardly lead to 

improvements in recognition accuracy with an optimized DNN-HMM system. Moreover, the 

uncertainty weighting method reduces the gap between clean and multi-noise/multi-condition 

training, which can be convenient when it is not easy to train a DNN-HMM system in conditions 

that are similar to the testing ones.  

2.2. Uncertainty weighting 

In a DNN-HMM system, the DNN provides a pseudo-log-likelihood defined as [28]: 

log[𝑝(𝑥𝑡|𝑞𝑡 = 𝑠)] = log[𝑝(𝑞𝑡 = 𝑠|𝑥𝑡)] − log[𝑝(𝑠)] , (2.2) 

where 𝑥𝑡 is the acoustic observation at time 𝑡, which is defined as a window of input feature frames. 

In addition, 𝑞𝑡 denotes one of the states or senones, 𝑠 ∈ [1, 𝑆], 𝑆 is the number of states or senones, 

and 𝑝(𝑠) is the prior probability of state 𝑠. The final decoded word string, �̂�, is determined by [28]: 

�̂� = argmax
𝑊

{log[𝑝(𝑋|𝑊)] + 𝜆 ∙ log[𝑝(𝑊)]} , (2.3) 

where 𝑋 denotes the sequence of acoustic observations 𝑥𝑡, and  𝑝(𝑋|𝑊) is the acoustic model 

probability that depends on the pseudo log-likelihood delivered by the DNN, log[𝑝(𝑥𝑡|𝑞)]. 

Furthermore,  𝑝(𝑊) is the language model probability of word string 𝑊 and  𝜆 is a real constant 
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that is employed to balance the acoustic model and language model scores. The scheme adopted in 

this chapter corresponds to modification of the DNN-HMM decoding process by incorporating an 

uncertainty weight, 𝑈𝑊, in (2.3): 

�̂� = argmax
𝑊

 {𝑈𝑊 ∙ log[𝑝(𝑋|𝑊)] + 𝜆 ∙ log[𝑝(𝑊)]} , (2.4) 

where 𝑈𝑊 is defined for each 𝑥𝑡, i.e. 𝑈𝑊[𝑥𝑡]. Accordingly,  𝑈𝑊[𝑥𝑡]  → 0 if the uncertainty of 

frames in 𝑥𝑡, as employed in DNN-HMM systems, is high. In addition, 𝑈𝑊[𝑥𝑡]  → 1  if the 

uncertainty of 𝑥𝑡 is low. For a given 𝑥𝑡, DNN estimates 𝑆 pseudo-log-likelihoods, log[𝑝(𝑥𝑡|𝑞 = 𝑠)]. 

At each 𝑥𝑡, the dispersion of log[𝑝(𝑥𝑡|𝑞 = 𝑠)] is defined as its variance estimated over all the 

possible states or senones 𝑠. The weighted pseudo-log-likelihoods correspond to ℒ𝑤 = 𝑈𝑊[𝑥𝑡] ∙

log[𝑝(𝑥𝑡|𝑞)]. Consequently, ℒ𝑤 has a lower variance or dispersion than log[𝑝(𝑥𝑡|𝑞 = 𝑠)] when 

𝑈𝑊[𝑥𝑡] < 1.  Observe that the closer 𝑈𝑊[𝑥𝑡] is to zero, the less dispersed is the distribution of  ℒ𝑤. 

As a consequence, the information provided by the acoustic model loses discriminability and the 

decoding process tends to rely more on the language model than on the acoustic model. In contrast, 

if the uncertainty associated to 𝑥𝑡 is low, i.e. 𝑈𝑊[𝑥𝑡] tends to be one, (2.4) is reduced to (2.3). 

Hence, the motivation is to estimate and employ the uncertainty variance associated with the 

acoustic observation by providing an alternative technique to the uncertainty propagation 

methodology, which in turn requires many assumptions and approximations in the DNN 

framework. It should be noted that the use of the uncertainty variance at the DNN output remains 

unsolved to date.  

In this chapter, the following weighting function which is a generalization of the function 

presented in [8,9,10] is proposed: 

𝑈𝑊[𝑥𝑡] = {

1 , if  𝑈𝑉[𝑥𝑡] ≤ 𝑇ℎ
𝑇ℎ

𝐾(𝑈𝑉[𝑥𝑡] − 𝑇ℎ) + 𝑇ℎ
, if  𝑈𝑉[𝑥𝑡] > 𝑇ℎ

   , (2.5) 

where 𝑈𝑉[𝑥𝑡]  is the uncertainty variance assigned to the acoustic observation, 𝑥𝑡;  𝑇ℎ is a threshold; 

and 𝐾 is a constant that can be tuned on a task-by-task basis or estimated by optimizing the 

discriminability sentence-by-sentence, as explained in Section 2.3. Figure 2.1 shows the weighting 

function defined in (2.5) with 𝑇ℎ = 1 and several values of 𝐾. 

In this way, two schemes to compute the uncertainty variance required by the weighting 

function in (2.5) have been proposed.   

2.2.1. Uncertainty variances estimated at the observation vector 

If 𝑈𝑉𝑙,𝑛 corresponds to the uncertainty variance of feature 𝑛 at frame 𝑙, 𝑁 is the number of features, 

and 2𝐿 + 1 is the size of the context window of input  𝑥𝑡 in the DNN, 𝑈𝑉[𝑥𝑡] in (2.5) can be made 

equal to the averaged uncertainty variance within 𝑥𝑡 = [𝑂𝑡−𝐿 ∙∙∙  𝑂𝑡 ∙∙∙ 𝑂𝑡+𝐿]: 

𝑈𝑉[𝑥𝑡]  =
1

𝑁 ⋅ (2𝐿 + 1)
⋅ ∑ 𝑈𝑉𝑙,𝑛

1≤ 𝑛≤ 𝑁
𝑡−𝐿≤𝑙≤𝑡+𝐿 

   , 
(2.6) 
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where 𝑂𝑡 represents the observation vector at frame 𝑡 composed of 𝑁 features,  𝑂𝑡 =

[𝑂𝑡,1 ∙∙∙  𝑂𝑡,𝑛 ∙∙∙ 𝑂𝑡,𝑁]
𝑇

. 

2.2.2. Uncertainty variances estimated at the DNN output 

The averaged uncertainty variance assigned to  𝑥𝑡 is also defined when the uncertainty variance is 

propagated through the DNN as a random variable. Therefore, in this case 𝑈𝑉[𝑥𝑡]  represents the 

averaged uncertainty over all states at the DNN output: 

𝑈𝑉[𝑥𝑡] =
1

𝑆
∑ Var[log[𝑝(𝑥𝑡|𝑞𝑡 = 𝑠)]]

𝑠∈[1,𝑆]

 . (2.7) 

Observe that according to (2.7), the proposed uncertainty weighting technique provides a 

model in which the DNN-output variance can be employed, which remains not possible so far. The 

propagation of the uncertainty variances of the context window should lead to a more effective 

representation of 𝑈𝑉[𝑥𝑡] in (2.5) because it incorporates information of the whole DNN. 

2.2.3. Uncertainty variance estimation vs. feature propagation 

Similarly to the uncertainty variance estimation, there are two methods to propagate the features 

through a DNN: first, by considering the features as constants; second, by considering the features 

as random variables by leveraging uncertainty propagation schemes, e.g. UT. This scenario 

generates the four combinations or possible configurations shown in Fig. 2.2 and summarized in 

Table 2.1. Each configuration is defined as outlined below: 

Configuration I: The features of acoustic observation  𝑥𝑡 are propagated through the DNN as 

constants and 𝑈𝑉[𝑥𝑡] in (2.5) is directly computed at the observation vector with (2.6), as illustrated 

in Fig. 2.2.a. 

 
Figure 2.1   Proposed uncertainty weighting function. 𝑇ℎ was made equal to 1 and 𝐾 was made equal to 1, 5, 10, 

50, and 100. 
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Configuration II: The features of acoustic observation  𝑥𝑡 are propagated through the DNN as 

constants, and 𝑈𝑉[𝑥𝑡] in (2.5) is estimated with (2.7) by propagating the uncertainty through the 

DNN with UT, as illustrated in Fig. 2.2.b. 

 

 
 

Figure 2.2   Proposed uncertainty weighting scheme for a) Configuration I, b) Configuration II, c) Configuration III 

and d) Configuration IV, as defined in Section 2.2.3. Observe that the weighted pseudo log-likelihoods, ℒ𝑤, 

corresponds to: 𝑈𝑊[𝑥𝑡] ∙ log[𝑝(𝑥𝑡|q)] in a) and b); and 𝑈𝑊[𝑥𝑡] ∙ E{log[𝑝(𝑥𝑡|𝑞)]} in c) and d). 
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Configuration III: The features of acoustic observation  𝑥𝑡 are propagated through the DNN as 

random variables with UT, and 𝑈𝑉[𝑥𝑡] is directly computed at the observation vector with (2.7), as 

illustrated in Fig. 2.2.c. 

Configuration IV: The features of the acoustic observation  𝑥𝑡 are propagated through the DNN 

as random variables with UT, and 𝑈𝑉[𝑥𝑡] in (2.5) is estimated with (2.7) by using the propagated 

uncertainty, as illustrated in Fig. 2.2.d. 

2.3. Uncertainty weighting function estimation 

The purpose of (2.4) is to increase the discriminability of the ASR system. To increase the 

recognition discriminability, it is necessary to estimate the parameters of the proposed model, i.e. 

the uncertainty weighting function parameters, 𝐾 and 𝑇ℎ in (2.5). In this chapter, two optimization 

schemes for  𝐾 and 𝑇ℎ in (2.5) are proposed: task-dependent and utterance-dependent estimation. 

2.3.1. Task-dependent estimation of the weighting function 

Observe that 𝑈𝑊[𝑥𝑡] is a function of the uncertainty variances assigned to 𝑥𝑡 and the DNN 

parameters. However, the DNN parameters are constant in the decoding process. They are defined 

by the task and estimated after a training procedure. Consequently, 𝑈𝑊[𝑥𝑡] is a function of the 

uncertainty variances of 𝑥𝑡 and the task itself. As a result, given a specific task, the 𝑈𝑊 function 

parameters, 𝐾 and 𝑇ℎ, can be estimated or tuned by increasing the discrimination ability of the 

DNN-HMM recognizer, e.g. by reducing the WER. A common strategy to perform this tuning is 

to employ a development database, which has different data from the testing data, to select the set 

of function parameters that results in the lowest WER. However, both the training and development 

databases should share similar language models with similar perplexities. Then, the selected 

parameters are applied to the testing database. As mentioned above, the proposed weighting 

scheme gives a higher weight to frames with high reliability in the recognition decision to improve 

the system word discriminability. 

2.3.2. Utterance-dependent estimation of the weighting function 

The weighting function parameters in (2.5) can be optimized (i.e. estimating 𝐾 and 𝑇ℎ) by 

minimizing the WER as in Section 2.3.1. Another strategy is to optimize the weighting function on 

an utterance-by-utterance basis by assessing the discriminability achieved by each pair (𝐾, 𝑇ℎ). To 

this end, a metric is defined that depends on the discrimination achieved by the decoding process 

on each utterance. Accordingly, the weighting function parameters can be optimized with respect 

to this metric by employing a grid search.  The speech recognition engine employed in this research, 

Kaldi, uses weighted finite states transducers (WFST) representation, which provides a method to 

Table 2.1   Uncertainty weighting combined with uncertainty/feature propagation. 
 

  Uncertainty variance 

  
At the observation 

vector 
At the DNN output 

F
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tu
re

s Propagated as 

usual 
Configuration I Configuration II 

Propagated as a 

random variable 
Configuration III Configuration IV 
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combine the acoustic and language models, leading to a simplified framework to handle the ASR 

decoding [29]. For each utterance, the final word sequence hypothesis is obtained from the lattice 

resulting from the decoding procedure. It is also possible to obtain an N-best list and the 

corresponding log-likelihoods from each utterance lattice. The likelihood differences between the 

most likely hypothesis, denoted as 1st-best, and the other hypotheses within the N-best list can be 

considered measures of discriminability in the hypothesis space. In addition, lattice density 

(𝛿𝐿𝑎𝑡𝑡𝑖𝑐𝑒), defined as the average number of arcs crossing a frame inside the lattice [30], is another 

parameter that characterizes the lattice obtained for each utterance. In fact, in [30] it was observed 

that the WER decays when 𝛿𝐿𝑎𝑡𝑡𝑖𝑐𝑒  increases. As a result, 𝛿𝐿𝑎𝑡𝑡𝑖𝑐𝑒 can also be used as a measure of 

discriminability. 

To assess the discriminability resulting from the ASR decoding on each utterance, many 

metrics that combined N-best based analysis and  𝛿𝐿𝑎𝑡𝑡𝑖𝑐𝑒 obtained from the corresponding lattice 

were tested. The best correlations with WER were achieved with the following metrics: 

𝑚1 =
𝑙𝑙𝑘1

𝜎𝑁−𝑏𝑒𝑠𝑡
   , (2.8) 

𝑚2 =
𝑙𝑙𝑘1

𝜎𝑁−𝑏𝑒𝑠𝑡
∙

1

𝛿𝐿𝑎𝑡𝑡𝑖𝑐𝑒
   , (2.9) 

where 𝑙𝑙𝑘1 represents the log-likelihood (𝑙𝑙𝑘) of the 1st-best hypothesis, and 𝜎𝑁−𝑏𝑒𝑠𝑡 denotes the 

standard deviation of 𝑙𝑙𝑘 within the N-best hypotheses.  The proposed utterance-dependent 

estimation of the weighting function, i.e. 𝐾 and 𝑇ℎ, is summarized as follows: 

Utterance dependent estimation of the weighting function 

 

Choosing the uncertainty weighting/feature propagation configuration (Section 2.2.3); 

Defining the search grid for 𝑇ℎ and 𝐾 in (2.5); 

for each utterance 

     for 𝐾 within the search grid  

          for 𝑇ℎ within the search grid [11] 

               ASR decoding according to (2.4); 

               Obtaining resulting lattice(𝐾,𝑇ℎ) that depends on 𝐾 and 𝑇ℎ; 

               Obtaining N-best-list(𝐾,𝑇ℎ) out of lattice(𝐾,𝑇ℎ); 

               Obtaining the log-likelihoods, 𝑙𝑙𝑘, for N-best-list(𝐾,𝑇ℎ); 

  Estimating features from the N-best-list(𝐾,𝑇ℎ) log-likelihoods such as 𝑙𝑙𝑘1 and 𝜎𝑁−𝑏𝑒𝑠𝑡; 
               Obtaining lattice density 𝛿𝐿𝑎𝑡𝑡𝑖𝑐𝑒 in lattice(𝐾,𝑇ℎ); 

  Estimating discrimination metric 𝑚(𝐾, 𝑇ℎ) for each pair (𝐾,𝑇ℎ) in the search grid as a  

               function of the N-best list-based features and 𝛿𝐿𝑎𝑡𝑡𝑖𝑐𝑒 (e.g, 𝑚1 and 𝑚2 as in (2.8) 

               and (2.9), respectively); 

          end for 

     end for 

     Estimating optimal 𝐾 and 𝑇ℎ, �̂� and 𝑇ℎ̂, respectively: 

(�̂�, 𝑇ℎ̂) = arg optimize
𝐾,𝑇ℎ

{𝑚(𝐾, 𝑇ℎ)} 

     Recognized word string = 1st-best hypothesis in N-best-list(�̂�, 𝑇ℎ̂); 

end for 
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In the algorithm described above, the N-best hypotheses, corresponding log likelihoods, and 

lattice density were obtained by employing lattice-to-nbest, lattice-to-post and lattice-depth Kaldi 

tools, respectively. 

2.4. Experiments 

The ASR experiments were performed on the Aurora-4 corpus [31,32] by using the Kaldi Speech 

Recognition Toolkit [33]. Three training sets from Aurora-4 were employed: the clean, multi-noise, 

and multi-conditions. Each training set contains 7138 utterances from 83 speakers. The clean and 

multi-noise training set were recorded with a Sennheiser HMD-414 microphone. The clean training 

set contains only clean data. The multi-noise set contains clean (25%) and artificially-degraded 

utterances (75%) with one out of six noises added at SNRs between 10 and 20 dB [31]. Finally, 

half of the multi-condition training set was recorded with the Sennheiser HMD-414 microphone, 

while each utterance of the other half was recorded with one out of 18 different microphones, with 

noise added as in the multi-noise data [31]. The testing database was composed of 14 test sets 

clustered in four groups according to Table 2.2 [31]. Each noisy test set contains 330 artificially 

degraded utterances with one out of six noises added at SNRs between 5 and 15 dB. The 

development database was also composed of 14 sets with 330 utterances each, clustered in four 

groups [32]. The development and test sets are summarized in Table 2.2. The speakers and 

transcriptions in the development database are different from the testing ones. The development 

database was employed to avoid overfitting in the DNN training. 

Spectral subtraction (SS) [34] was applied on a frame-by-frame basis to multi-noise and 

multi-condition training sets, and to test data. The compensated Mel filter 𝑚 is defined as: 

FEm
SS=max {β∙FE𝑚 ; FE 𝑚 - α(SNR𝑚)∙E[𝑛𝑚

2̅̅ ̅̅ ]}  , (2.10) 

where 

 

Table 2.2   Description of Aurora-4 development and testing data sets. 

Data Set Microphone Noise Group 

1 Sennheiser HMD-414 Clean A 

2 

Sennheiser HMD-414 

Car 

B 

3 Babble 

4 Restaurant 

5 Street 

6 Airport 

7 Train 

8 Different Types Clean C 

9 

Different Types 

Car 

D 

10 Babble 

11 Restaurant 

12 Street 

13 Airport 

14 Train 
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α(SNR𝑚)={

𝛼0                                   , 𝑖𝑓 SNR𝑚 = 0dB              

𝛼0 − (α0 − 1) ∙
SNR𝑚

18
  , 𝑖𝑓 0 < SNR𝑚 < 18dB      

1                                       , 𝑖𝑓 SNR𝑚 ≥ 18dB              

 , (2.11) 

where  E[𝑛𝑚
2̅̅ ̅̅ ]  is the noise energy estimated in non-speech intervals, as defined above;  FEm is the 

filter energy without SS; FEm
SS is the compensated filter energy obtained with SS; 𝑆𝑁𝑅 corresponds 

to the segmental signal-to-noise ratio, where a segment corresponds to a frame; and 𝛽 defines a 

positive lower bound to the compensated filter energy. In this chapter, 𝛼0 and 𝛽 are equal to 2.0 
and 0.1, respectively. The uncertainty variances for the log energies of the Mel filters, and those 

for the corresponding delta and delta-delta features, were estimated according to [11] and as 

described in the Section 2.1.  Constant 𝑐𝑚 in (2.1) was made equal to 0.15 in all filters, as in [12]. 

Observe that 𝑐𝑚 is merged in the weighting function, which in turn is defined by 𝐾 and 𝑇ℎ. 

To compare the effectiveness of the proposed approach, results with Vector Taylor 

Series (VTS) [35] were obtained. This technique is much more complex than SS and compensates 

for additive noise and linear channel filtering by making use of a modified version of the EM 

algorithm. Given a GMM trained on clean speech, VTS obtains an MMSE estimation of the 

uncorrupted signal. VTS was implemented in Kaldi, and the GMM was composed of 256 

components. It was trained with the whole clean training database from Aurora-4. 

The DNN-HMM systems were trained using alignments from a GMM-HMM recognizer 

trained with the same data. In turn, the GMM-HMM systems were trained by using MFCC features, 

linear discriminant analysis (LDA) and maximum likelihood linear transforms (MLLT), according 

to the tri2b Kaldi Aurora-4 recipe: first, the monophone system is trained; second, the alignments 

from that system are employed to generate an initial triphone system; and finally, the triphone 

alignments are employed to train the final triphone system. The number of units of the output DNN 

layer is equal to the number of pdfs in the corresponding GMM-HMM system. For decoding stage, 

the standard 5K lexicon and trigram language model were used. Each DNN in the DNN-HMM 

system was composed of seven hidden layers and 2048 units per layer, and each was trained with 

the cross-entropy criterion. The feature vector was composed of 40 MelFB features, and delta and 

delta-delta dynamic features, with consideration of an 11-frame context window.  In a previous 

optimization step, the DNN-HMM baseline system with multi-condition training was tested with 

24, 32, 40 and 56 MelFB filters. The lowest WER, 10.9%, was found with 40 filters. This baseline 

WER is competitive with those published in the literature for the same task [36,37,38,39]. 

The feature and uncertainty variance propagation through DNN was performed with the UT 

method, which was implemented in C++ for compatibility with Kaldi. The following systems were 

evaluated: the baseline system without SS or uncertainty weighting and uncertainty propagation, 

baseline; the baseline system with SS as explained above, baseline+SS; feature-uncertainty 

propagation with UT and combined with SS, SS+UT Prop; uncertainty weighting according to 

Configuration I in Section 2.2.3, SS+UW-config I; uncertainty weighting according to 

Configuration II in Section 2.2.3, SS+UW-config II; uncertainty weighting according to 

Configuration III in Section 2.2.3, SS+UW-config III; and, uncertainty weighting according to 

Configuration IV in Section 2.2.3, SS+UW-config IV. Finally, statistical significance analysis was 

performed with the NIST matched-pair sentence-segment word error test (MAPSSWE) [40]. 
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2.5. Discussion 

The SS and VTS can reduce the average WER in 17.4% and 26.7%, respectively (statistically 

significant with 𝑝 < 0.001) with clean training (see Table 2.3). With multi-noise training, SS and 

VTS lead to reductions in the average WER equals to 4.5% and 13%, respectively (statistically 

significant with 𝑝 < 0.001)  according to Table 2.4. Observe that VTS is a much more sophisticated 

method than SS and attempts to remove the channel mismatch as well as the additive noise. With 

multi-condition training, SS and VTS have no effect on recognition accuracy, according to 

Table 2.5. The experiments to assess the uncertainty propagation, uncertainty weighting and 

weighting parameter estimation are discussed as follows. 

2.5.1. Feature and uncertainty variance propagation using UT 

The features were propagated with UT by considering them as random variables, SS+UT Prop. It 

is an approach found in the literature that employs the uncertainty of features in DNN-based ASR 

without using the uncertainty weighting. In ordinary uncertainty propagation, the uncertainty 

Table 2.3   WERs obtained with clean training for the Aurora-4 test groups. 
 

System B C D AVG. 

baseline 29.61 22.21 48.97 35.42 

baseline + SS 21.70 22.64 42.39 29.26 

baseline + VTS 20.27 14.61 37.38 25.96 

SS + UT prop. 21.78 22.73 42.44 29.33 

SS+ UW-config I 19.28 20.83 39.85 27.01 

SS + UW-config II 17.05 22.55 37.53 25.18 

SS+ UW-config III 19.35 20.81 39.95 27.09 

SS + UW-config IV 17.09 22.57 37.59 25.23 

 

Table 2.4   WERs obtained with multi-noise training for the Aurora-4 test groups. 
 

System B C D AVG. 

baseline 7.43 16.33 26.65 16.00 

baseline + SS 6.99 15.13 25.66 15.28 

baseline + VTS 6.95 10.84 23.26 13.92 

SS + UT prop. 6.98 15.09 25.66 15.28 

SS+ UW-config I 7.13 15.17 25.46 15.26 

SS + UW-config II 7.16 15.06 24.95 15.04 

SS+ UW-config III 7.13 15.15 25.44 15.25 

SS + UW-config IV 7.19 15.08 24.95 15.06 

 

Table 2.5   WERs obtained with multi-condition training for the Aurora-4 test groups. 
 

System B C D AVG. 

baseline 6.54 7.83 17.02 10.90 

baseline + SS 6.67 7.38 17.21 11.00 

baseline + VTS 7.01 6.74 17.23 11.10 

SS + UT prop. 6.66 7.42 17.20 11.00 

SS+ UW-config I 6.75 7.40 17.06 10.97 

SS + UW-config II 6.83 7.47 16.98 10.98 

SS+ UW-config III 6.76 7.38 17.09 10.99 

SS + UW-config IV 6.83 7.57 16.96 10.98 
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variance at the DNN output is useless. On average, practically the same WER than baseline+SS 

was obtained for clean, multi-noise and multi-condition training, respectively, according to 

Tables 2.3, 2.4 and 2.5. These results are considered consistent with those presented by other 

authors in which the use of UT for uncertainty propagation in DNN-HMM-based systems led to 

minimal improvements in recognition accuracy [24,41]. 

2.5.2. Task dependent UW function estimation  

The task-dependent optimization of 𝐾 and 𝑇ℎ in (2.5) was carried out by means of a grid search 

with group B of the development database provided by Aurora-4 (see Table 2.2): 𝐾 was made equal 

to 1, 5, 10, 50 and 100; and 𝑇ℎ was made equal to 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, and 0.16. 

All 5*8=40 configurations (𝐾, 𝑇ℎ) were tested. As mentioned above, group B of the development 

data differs from group B of the testing data. Because the language model in Aurora-4 task does 

not completely cover the development sets [42], a new language model was generated by adding 

the transcriptions of the development sets to the original training corpus. The resulting WER curves 

for each uncertainty weighting/feature propagation configuration (Section 2.2.3) are shown in 

 
 

Figure 2.3   WER v/s 𝑇ℎ with 𝐾 equal to 5, 10, and 50 obtained with the development databases in the task-

dependent estimation of the weighting function parameters with clean training:  a) UW-config I, b) UW-config II, 

c) UW-config III and d) UW-config IV. 
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Figs. 2.3, 2.4, and 2.5 when the DNN-HMM- based ASR training corresponds to clean, multi-noise 

and multi-condition, respectively. The optimal 𝐾 and 𝑇ℎ found for each uncertainty 

weighting/feature propagation configuration (Section 2.2.3) and DNN-HMM training condition are 

listed in Table 2.6. It is worth noting that the classic multi-noise and multi-condition training 

assume that the training conditions are similar to the testing ones. If there is a mismatch between 

training and testing, the accuracy of the ASR system should be degraded. In contrast, the 

optimization of the weighting function (i.e. 𝐾 and 𝑇ℎ) does not require use of the same types of 

noise in training and testing. Moreover, as shown in Figs. 2.3, 2.4, and 2.5, there is a wide range of 

values of 𝐾 and 𝑇ℎ where the maximum discrimination or the lowest WERs are observed. The 

WER obtained in the grid search optimization of 𝐾 and 𝑇ℎ with group B of the development 

database are summarized in Tables 2.3, 2.4 and 2.5 for clean, multi-noise and multi-condition 

training, respectively. As shown in Table 2.3, a significant reduction in WER is achieved using the 

optimal 𝐾 and 𝑇ℎ in (2.5) with clean training. This result strongly validates the uncertainty 

weighting model proposed here. Nevertheless, a minimally significant reduction in WER is 

observed with multi-noise and multi-condition training with all the uncertainty weighting/feature 

propagation configurations according to Tables 2.4 and 2.5. This result is consistent with the one 

 

Figure 2.4   WER v/s 𝑇ℎ with 𝐾 equal to 5, 10, and 50 obtained with the development databases in the task-

dependent estimation of the weighting function parameters with multi-noise training: a) UW-config I, b) 

UW-config II, c) UW-config III and d) UW-config IV. 
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obtained with uncertainty variance propagation mentioned above, whereby no improvement in 

recognition accuracy was observed with multi-noise and multi-condition training. The results 

achieved with the optimum 𝐾 and 𝑇ℎ are detailed as follows. 

 
Figure 2.5   WER v/s 𝑇ℎ with 𝐾 equal to 5, 10, and 50 obtained with the development databases in the task-

dependent estimation of the weighting function parameters with multi-condition training: a) UW-config I, b) 

UW-config II, c) UW-config III and d) UW-config IV. 

 

Table 2.6   Task-dependent optimum K and Th defined in (2.5) estimated with development database B. 

Training System           K Th 

Clean 

UW-config I 10 0.10 

UW-config II 10 0.06 

UW-config III 10 0.10 

UW-config IV 10 0.06 

Multi-noise 

UW-config I 1 0.08 

UW-config II 1 0.04 

UW-config III 1 0.08 

UW-config IV 1 0.04 

Multi-condition 

UW-config I 5 0.12 

UW-config II 10 0.08 

UW-config III 5 0.12 

UW-config IV 10 0.08 
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With clean training, the proposed uncertainty weighting scheme with SS+UW-config I, 

SS+UW-config II, SS+UW-config III and SS+UW-config IV leads to average relative 

improvements in WER that are equal to 7.7%, 14.0%, 7.4% and 13.8%, respectively, when 

compared with baseline+SS, as shown in Table 2.3. The greatest improvements occur with group 

B (i.e. additive noise mismatch only), where the highest reductions in WER compared with 

baseline+SS are 21.4% and 21.2% for SS+UW-config II and SS+UW-config IV, respectively. It 

should be noted that SS attempts to cancel only additive noise. The combined effect of SS and 

uncertainty weighting lead to average improvements of 23.7%, 28.9%, 23.5% and 28.8% for 

SS+UW-config I, SS+UW-config II, SS+UW-config III and SS+UW-config IV, respectively, when 

compared with baseline. When compared with the uncertainty propagation with UT, the proposed 

uncertainty weighting scheme also resulted in reductions equal to 7.9%, 14.2%, 7.6% and 14.0% 

with SS+UW-config I, SS+UW-config II, SS+UW-config III and SS+UW-config IV, respectively. 

All these improvements are statistically significant with 𝑝 < 0.001. When compared with VTS, the 

uncertainty weighting method with SS leads to reductions in the average WER equal to 3.0% 

(statistically significant with 𝑝 < 0.001) and 2.8% (statistically significant with 𝑝 < 0.01) with 

SS+UW-config II and SS+UW-config IV, respectively. Moreover, the WER reduction from 

SS+UW-config II and SS+UW-config IV is higher than 15% with group B (see Table 2.2). These 

results strongly validate the proposed decoding method according to (2.4). 

According to Tables 2.4 and 2.5, the improvement in recognition accuracy from uncertainty 

weighting and uncertainty propagation with multi-noise and multi-condition training is 

dramatically lower than with clean training. This result is consistent with those obtained in the 

previous tuning of the weighting function with the development data (see Figs. 2.4 and 2.5). Group 

D with multi-noise training is the only case where some reduction in WER is observed when 

compared with baseline+SS: 2.8% with both SS+UW-config II and SS+UW-config IV. This 

reduction is statistically significant with  𝑝 < 0.001 in both cases. The poorer performance with 

multi-noise and multi-condition training must be due to the fact that the accuracy of the DNN 

response does not depend on the uncertainty in noise cancelling when the same additive noise 

employed in testing is included in training.  

Multi-noise training is the only condition in which VTS provides a higher reduction in WER 

than the uncertainty weighting scheme with SS. This is a result of the fact that VTS attempts to 

remove both additive noise and the channel mismatch (i.e. groups C and D in Table 2.2). In 

contrast, SS attempts to remove only additive noise. With multi-condition training, no significant 

difference was found between VTS and any of the configurations of the uncertainty weighting 

decoding, i.e. SS+UW-config I, SS+UW-config II SS+UW-config III and SS+UW-config IV. 

In the experiments described above, the optimization of 𝐾 and 𝑇ℎ in (2.5) was carried out by 

means of a grid search with group B of the development database provided by Aurora-4 with the 

same types of additive noise employed in testing. In order to evaluate the independence of the 

optimal 𝐾 and 𝑇ℎ  with respect to additive noise, Fig. 2.3 was reproduced (clean training) by using 

the leave-one-out strategy with the six types of additive noise in the development set, by tuning 𝑇ℎ 

with 𝐾 equal to 5, 10 and 50 in all the possible combinations of five-out-of-six types of additive 

noise. As a result, an extremely high coincidence of the tuning curves with all the possible 

combinations of five-out-of-six types of additive noise was observed in SS+UW-config I, 

SS+UW-config II, SS+UW-config III and SS+UW-config IV.  In fact, the resulting optimal 𝑇ℎ for 

each 𝐾 is exactly the same with all combinations of five-out-of-six types of additive noise, in all 

the configurations of feature and uncertainty propagation. This result is consistent with Fig. 2.3, 
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where it is shown that there is a wide range of values for 𝐾 and 𝑇ℎ  that minimize the WER. In 

other words, removing one noise from the development data does not affect the optimal weighting 

function.  Moreover, according to (2.1), the uncertainty in noise cancelling depends only on local 

SNR estimated on the corresponding filter-band. Consequently, given a frame, the averaged 

uncertainty depends mostly on the local SNR. Finally, DNNs typically exhibit good generalization, 

which may also contribute to the consistency observed in the estimation of 𝐾 and 𝑇ℎ. 

2.5.3. Utterance dependent UW function estimation 

In this chapter, the estimation of the weighting function, i.e. 𝐾 and 𝑇ℎ in (2.5), is also proposed on 

an utterance-per-utterance basis, as explained in Section 2.3.2, by employing grid search 

optimization with metrics 𝑚1 (2.8) and 𝑚2 (2.9). Each metric is evaluated within the N-best 

hypotheses in the lattice resulting from the ASR decoding procedure for a given set of values for 

𝐾 and 𝑇ℎ. Figure 2.6 shows WER vs. 𝑇ℎ when 𝐾 equal to 1, 5, 10, and 50 with the car noise testing 

sub-set and clean training, for metrics 𝑚1 and 𝑚2. The N-best-list analysis according to 

Section 2.3.2 was performed with N equal to 100 hypotheses. The pseudo log-likelihood of each 

one of the N-best hypotheses and the lattice densities to estimate metrics 𝑚1 and 𝑚2 according to 

(2.8) and (2.9) were obtained with Kaldi tools. As shown in Fig. 2.6, the maximum values of 

metrics 𝑚1 and 𝑚2 coincide with the lowest WER. This result strongly suggests that the weighting 

function parameters 𝐾 and 𝑇ℎ in (2.5) could be optimized on an utterance-by-utterance basis with 

respect to the maximization of metrics such as 𝑚1 and 𝑚2.  The results obtained with the estimation 

of 𝐾 and 𝑇ℎ based on the utterance dependent maximization of metrics 𝑚1 and 𝑚2  are shown in 

Table 2.7. With clean training, SS+UW-config IV leads to average relative reductions in WER that 

Table 2.7   WERs obtained with the utterance-dependent estimation of 𝐾 and 𝑇ℎ defined in (2.5) based on the 

maximization of discriminability metrics 𝑚1 and 𝑚2 defined in (2.8) and (2.9) for the Aurora-4 test groups.  

 

System B C D AVG. 

baseline+SS 21.7 22.64 42.39 29.26 

UW-config IV, 𝑚1 19.50 22.36 39.62 27.18 

UW-config IV, 𝑚2 18.65 21.93 39.33 26.61 

 

 
Figure 2.6   Discriminability metrics 𝑚1 and 𝑚2 v/s 𝑇ℎ (solid line), and WER v/s 𝑇ℎ (dotted line), with 𝐾 equal 

to 1, 5, 10, and 50. Metrics 𝑚1 and 𝑚2 are defined in (2.8) and (2.9). 𝐾 and 𝑇ℎ are the weighting function 

parameters according to (2.5). The DNN-HMM system corresponds to UW-config IV.  
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are equal to 7.1% and 9.0% when compared with baseline+SS with metrics 𝑚1 and 𝑚2, 

respectively. This reduction is statistically significant at the level of 𝑝 < 0.001 in both cases. These 

results suggest that the utterance dependent optimization of the uncertainty weighting function is 

possible. Nevertheless, the reductions in WER that are achieved are lower than those obtained by 

using a representative development data to tune 𝐾 and 𝑇ℎ. The use of new metrics that could be 

more finely correlated with the discriminability in the decoding process should overcome this 

limitation. 

2.6. Conclusions 

In this chapter, an uncertainty weighting scheme for DNN-HMM-based speech recognition is 

proposed. The motivation was to increase the discriminability in the decoding process by weighting 

the DNN pseudo-log-likelihoods according to the uncertainty variance assigned to the acoustic 

observation. This scheme was exhaustively tested and combined with uncertainty-propagation 

based schemes for computing the pseudo-log-likelihoods and uncertainty variance at the DNN 

output. It is worth highlighting that, in contrast to traditional uncertainty propagation schemes, the 

proposed uncertainty weighting enables use of the uncertainty variance at the DNN output. Special 

attention was focused on optimizing the DNN-HMM baseline system, which in turn produced a 

baseline WER that is competitive with those published elsewhere. The parameters of the weighting 

function can be optimized by making use of a grid search on a development database that is 

representative of the addressed task or on each utterance based on discrimination metrics. 

Experiments with Aurora-4 task and clean training showed that the proposed weighting scheme 

combined with spectral subtraction provided a reduction in WER as high as 21% when compared 

with the baseline system with spectral subtraction and uncertainty propagation with the unscented 

transform, when there was only an additive noise mismatch. In the same conditions, the reductions 

in WER compared to VTS, a much more sophisticated method than SS, were higher than 15%.  It 

is worth highlighting that, in principle, the proposed uncertainty weighting scheme can be defined 

and applied to any front end or distortion removal technique. 

With multi-noise training a low reduction in WER was observed. Nonetheless, in the case of 

multi-condition training no recognition accuracy increase was observed. If the same additive noise 

employed in testing is included in training, the accuracy of the DNN response would not depend 

on the uncertainty in noise cancelling, and the proposed weighted decoding would lose its 

effectiveness. Moreover, in this chapter, a method was proposed to resolve an interesting problem 

that has not been exhaustively addressed in the literature: the optimization of the acoustic/phonetic 

model and language model combination. In this context, if the accuracy of the DNN response is 

modelled with multi-noise and multi-condition training, this information can be employed in 

combination with the scheme proposed herein. On the other hand, bounds were established in this 

chapter to the uncertainty weighting schemes that are not found in the literature. It is important to 

emphasize that the results on the use of uncertainty reported in this chapter are competitive with 

those on uncertainty published elsewhere using the same database that was presently employed. 

Furthermore, these results were achieved with a baseline system that favorably compared with 

others used in the literature, which validated the improvements in accuracy reported here.  

In addition, the uncertainty weighting method is a means to reducing the gap between clean 

and multi-noise/multi-condition training. This can be useful when it is not easy to train a 

DNN-HMM system in conditions that are similar to the testing ones. The proposed scheme can 

thus be applied to any network topology that delivers log-likelihood-like scores, it can be combined 

with any distortion removal technique or front end, and it requires a very low additional 
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computational cost in the configurations where the propagation of uncertainty is not required due 

to the small number of operations necessary to obtain an apply the weighting factor. Finally, the 

combination of the uncertainty weighting scheme with other noise cancellation methods, and the 

modelling of the DNN response accuracy with multi-noise and multi-condition training, are 

proposed for future research. 
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Chapter 3 

DNN-HMM based automatic speech recognition for HRI 

scenarios 
 

3.1. Introduction 

If social robotics is a reality, then the appropriate social integration between humans and robots 

could greatly improve the cooperation between users and machines. There are several applications 

in defense, hostile environments, mining, industry, forestry, education and natural disasters where 

some integration and collaboration between humans and robots will be required [43]. HRI is 

especially relevant in those situations when robots are not fully autonomous and require interaction 

with humans to receive instructions or information in decision-making applications [44,45,46,47]. 

In this context, human like communication between people and robots is essential for a successful 

human-robot collaborative symbiosis [48,49]. Additionally, speech is the most straightforward and 

natural way that humans employ to communicate [50,51,52]. As a consequence, voice-based HRI 

should be the most natural way to facilitate a collaborative human-robot synergy. Hence, speech 

technology, especially ASR, should play an important role in social robotics.  

Furthermore, it is well known that computer vision is an important research topic in robotics. 

Recent challenges such as DARPA Robotics Challenge [53] and Robocup [54] have led to great 

improvements in computer vision [55,56,57,58]. On the other hand, there has also been a 

significant progress in ASR, but this advancement has taken place outside the HRI field. ASR has 

gained relevance in robotics in the last years, but its status is still far from the one enjoyed by 

computer vision in the robotic research. This is still somehow surprising, considering that both 

technologies make use of similar signal processing and deep learning methods, and may explain 

partly the lower penetration of ASR in the robotic community. 

In this chapter, it is proposed that ASR technology should also be investigated, designed and 

developed to address HRI applications. Subsequently, the ASR engine should take into 

consideration the environment, and robot and user states and contexts. Following this strategy, this 

chapter focuses on the environment representation and modeling by training the ASR engine with 

the combination of clean utterances with the acoustic-channel responses and noise that were 

estimated and recorded, respectively, with an HRI testbed. This testbed represents the generic 

problem of HRI in mobile robotics. The resulting ASR accuracy outperforms publicly available 

ASR APIs with a limited amount of training data. 

3.2. Related work 

3.2.1. An introduction to ASR technology 

Automatic speech recognition is the process and related technology for transcribing human speech 

into words. By using Bayes’s rule, the ASR problem can be formulated as follows [59]: 

�̂� = argmax
𝑊

𝑃(𝑊|𝑋) = argmax
𝑊

𝑝(𝑋|𝑊) ∙ 𝑝(𝑊)  , (3.1) 

where �̂� is the optimal label (word or phone) sequence; 𝑋 is the input speech observation sequence 

that represents a given speech utterance;  𝑝(𝑊) denotes the language model describing the 
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probabilities of word combinations; and, 𝑝(𝑋|𝑊) indicates the acoustic model. Consequently, the 

task of an ASR system is to find (by means of a process called decoding, performed with the Viterbi 

algorithm [60]) the most likely label sequence �̂� given an observed sequence of feature vectors 

that corresponds to the speech utterance. The language model can be represented with [61]: 

statistical models; stochastic context-free grammars (SCFG); or, stochastic finite-state models. In 

the case of statistical models, which are widely employed in research, the prior probability of a 

word sequence 𝑊 = 𝑤1, … , 𝑤𝐿 in (1) can be approximated with N-grams: 

𝑝(𝑊) ≅∏𝑝(𝑤𝑙|𝑤𝑙−1, 𝑤𝑙−2, … , 𝑤𝑙−𝑁+1)

𝐿

𝑙=1

  , (3.2) 

where 𝑁 is typically between 2 and 4. The language model defines the transition probability from 

one N-gram to the next word to guide the search for an interpretation of the acoustic input. 

Additionally, the size of the vocabulary and perplexity [62] are critical for the ASR accuracy. 

Basically, perplexity measures the uncertainty about the words that may follow a given N-gram. A 

low-perplexity language model defined by a given task or context will constrain the decoding and 

perform better than a high-perplexity one.  

Acoustic modeling defines the statistical representations for the sequence of acoustic feature 

vectors 𝑋 obtained from the speech waveform. The utterances are divided into 20 or 30 ms windows 

with overlap (e.g. 50%). The set of acoustic features are usually obtained from the short-term fast 

Fourier transform (FFT) within each window [60,63,64]. Speed and acceleration coefficients (also 

called delta and delta-delta coefficients) are also typically used, and the final feature vector is 

composed of the static features plus the delta and delta-delta coefficients [65]. Mean and variance 

normalization of the coefficients can also be employed. Until a few years ago, most speech 

recognition systems adopted hidden Markov models (HMMs), to deal with the temporal variability 

of speech, and Gaussian mixture models (GMMs) to represent 𝑝(𝑋|𝑊). Given a set of speech 

feature vectors 𝑿 = {𝒙𝑡}𝑡=1
𝑇 , the state observation probability density function of feature vector 𝒙𝑡 

at frame 𝑡 in state s𝑖 is expressed by [60]: 

𝑝(𝒙𝑡|s𝑖) = ∑ 𝑐𝑖,𝑚 ∙ 𝒩(𝒙𝑡; 𝜇𝑖,𝑚 , Σ𝑖,𝑚)

𝑀

𝑚=1

  , (3.3) 

where 𝑐𝑖,𝑚, 𝜇𝑖,𝑚, and Σ𝑖,𝑚 correspond to the mixture weights, mean vectors, and covariance 

matrices, respectively, for 𝑀 Gaussian mixture components. In the last few years, artificial neural 

networks (ANNs), e.g. DNNs, have shown significant performance improvement over GMM based 

models. In a DNN-HMM system, the DNN provides a pseudo-log-likelihood defined as: 

log[𝑝(𝒙𝑡|𝑠𝑗)] = log[𝑝(𝑠𝑗|𝒙𝑡)] − log[𝑝(𝑠𝑗)]  , (3.4) 

where 𝑠𝑗 denotes one of the states or senones; and the state priors log[𝑝(𝑠𝑗)] can be trained using 

the state alignments obtained with the training speech data. The final decoded word string, �̂�, is 

determined by: 

�̂� = argmax
𝑊

{log[𝑝(𝑋|W)] + 𝜆 ∙ log[𝑝(𝑊)]}  , (3.5) 
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where the acoustic model probability 𝑝(𝑋|W) depends on the pseudo log-likelihood log[𝑝(𝒙𝑡|𝑠)] 

delivered by the DNN, and 𝜆 is the constant that is employed to balance the acoustic model and 

language model scores [66]. The results reported in [67] showed that the DNN-HMM ASR can 

lead to a word error rate reduction of 32% relative when compared to the ordinary GMM-HMM 

system with the Switchboard task [68]. However, training a DNN is not an easy task. The objective 

function can be highly non-convex, and the training algorithm can easily converge to a suboptimal 

local minimum. This problem can be minimized by making use of a pre-training strategy [69]. 

Also, ANNs need more training data than GMM-HMM systems [70]. It is worth mentioning that 

public ANN based ASR APIs employ at least tens of thousands of hours of speech for training, if 

not millions of hours. Other ANN architectures have also been applied to ASR: LSTM [71]; 

CNN [72]; and, RNN [73]. The results obtained using DNN-HMM systems are competitive when 

compared to those reported with others ANN architectures [74,75,76,77,78]. In some cases, 

systems employing combinations of ANN architectures, very deep CNN [79] or fCNN [80] have 

outperformed DNN, LSTM, or the ordinary CNN approaches. However, the higher the number of 

the ANN parameters, the higher the required amount of training data.  

In matched conditions between training and testing data, ASR shows large performance gain. 

In contrast, models will have difficulties recognizing test samples if they differ from data used in 

training. For this reason, noise robustness of ANN based systems can be achieved by using multi-

style training. For instance, a DNN trained with several types of noise and SNR levels can lead to 

a high accuracy improvement in real applications [81]. 

3.2.2. Black box-based integration of ASR technology 

Most of the research that considers ASR in HRI scenarios use ASR toolkits or APIs as black boxes. 

A non-exhaustive list of available options that support ASR includes systems such as HTK [82], 

SPHINX [83,84], JULIUS [85], KALDI [33] and BAVIECA [86], and general purpose ASR APIs 

provided by, for instance, Google, Microsoft and IBM. These toolkits and APIs have been 

employed in HRI applications to incorporate ASR capabilities to a robot on a plug-and-play 

fashion [87,88,89,90,91], i.e. a speech signal is input to the ASR to obtain a text transcription (see 

Fig. 3.1) without taking into consideration operation conditions such as noise, relative movement 

between the speaker and the robot, microphones directivity and response, or user or robot context. 

In [87], a project that integrates smart home technology and a socially assistive robot to 

extend independent living for elderly people is described. A Nao robot plays the role of 

communication interface between the elderly, the smart home, and the external world. The robot 

can recognize simple answers from the user such as “yes” and “no” by using Sphinx 4.0 from 

Carnegie-Mellon University. Despite the fact that the Nao robot has a built-in microphone, its 

quality is too low for practical indoor applications, and a ceiling-mounted microphone was used to 

capture user speech. CMU Sphinx engine was also employed in [90], as part of a voice control 

system for a robotic endoscope holder during minimally invasive surgery. In [89], a general 

 

Figure 3.1   Ordinary black box-based ASR integration in HRI scenarios. 
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framework for multimodal human-robot communication is proposed. This framework allows users 

to interact with robots using speech and gestures. The Google Speech API was chosen because it 

offered speaker and vocabulary independency, which in turn could allow a natural speech 

interaction with no constraints. Google Speech API was also employed in [91] to provide ASR 

capabilities to a robot that needed to understand the intentions of users without requiring 

specialized user training. It comprises a recognition model that combines language, gestures, and 

visual attributes.  In [92], four ASR engines were compared by making use of different grammars: 

the Google Speech API; the Microsoft Speech APIM; Pocket Sphinx from CMU; and, the NAO-

embedded Nuance VoCon 4.7 engine. Experimental results showed that the Google Speech API 

led to the highest accuracy. 

The integration of ASR technology on a black box basis can lead to poor performance 

because the chosen ASR system is not designed necessarily to comply with specific scenarios or 

tasks. In [88], an evaluation with children aged from 4 to 10 years old playing versions of a 

language-based game hosted by an animated character is described. Speech recognition results 

using Sphinx3 on children utterance showed a poor performance, partially due to the mismatch 

between the children’s voices and the adult acoustic model of the ASR engine. General purpose 

speech toolkits or APIs have been widely used as an easy solution to integrate ASR to some 

platforms. However, while those ASR engines provide good results in several scenarios, they may 

not provide an optimal solution to specific tasks because they are not considered in the training 

procedure, or the technology simply does not compensate for unexpected distortions. As an 

example, in [93], it was investigated whether the open-source speech recognizer Sphinx can be 

tuned to outperform Google cloud-based speech recognition API in a spoken dialog system task. 

By training a domain-specific language and making adjustments, Sphinx could outperform the 

Google API by 3.3%. 

3.2.3. Simulating ASR with WoZ evaluations 

One of the challenges in HRI interaction that may require an ad-hoc solution instead of a 

multipurpose API, is the speech recognition with relative movements between the speaker and the 

robot. In scenarios where ASR is performed by moving robots, the corruption of speech produced 

by the additive noise of the robot’s motors should be taken into consideration. Speech recognition 

experiments with moving robots in [94] led the authors to recommend that the robot should pause 

its actions as soon as it realizes that it is being talked to, which in some applications is unacceptable. 

They also suggest that the only reliable speech recognition engine for HRI is another human being. 

Given the fragility of ASR technology that was unveiled in HRI environments, many researchers 

have adopted interaction mechanisms that do not rely on speech recognition technology such as 

Wizard of Oz (WoZ) based approaches [3,4,5,95,96,97,98,99], i.e. the response of a speech 

recognition engine is simulated to evaluate other factors before it is implemented. 

3.2.4. Evaluation of optimal physical set up and operating conditions 

There is an alternative strategy, which instead of making the ASR technology more suitable to 

target operating conditions or adopting WoZ schemes, attempts to find the optimal operating 

environment that maximizes the ASR accuracy. In [92], the following variables were evaluated: 

different noise scenarios; different distances and angles of the speaker with respect to the 

microphones; three types of microphones, i.e. desktop, studio and the robot-mounted microphone. 

According to the experimental results, the authors provide recommendations regarding how the 

speech-based HRI with children should be deployed so as to achieve a smoother interaction. Some 
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of the recommendations are: using additional input/output devices, even replacing verbal language 

input with a touchscreen; and, to place the user in an optimal location with respect to the 

microphones. Although these recommendations are based on evaluations with children, the authors 

suggest that they are applicable to HRI in general.  

A speech recognition friendly artificial language (ROILA) was compared to English spoken 

language when talking to a Nao robot in [94]. The experiment considered: three microphone types 

(the ones built-in in the robot, a headset, and a desktop microphone); two conditions of head 

movement (static and moving) for the Nao robot; and, the two types of spoken languages (English 

and ROILA). The authors concluded that ROILA does not provide a significant improvement when 

compared to ordinary spoken English. However, the type of microphone and the robot’s head 

movement are critical for the ASR accuracy. 

If ideal operating conditions are not met, one strategy is to try to cancel the corrupting 

environments. For instance, in [100] and [101] the external noise sources or ego-noise caused by 

motors and fans of the robot are removed with enhancement methods. 

3.2.5. Locally normalized features 

A novel set of speech features for robust ASR called Locally-Normalized Cepstral Coefficients 

(LNCC) was proposed in [102]. LNCC are inspired by Seneff's Generalized Synchrony Detector 

(GSD) [103] which perform a local normalization in the frequency domain in each auditory 

channel, and hence are relatively invariant to changes in the frequency response of the transmission 

channel. LNCC are an extremely simple but effective way to instantaneously normalize speech 

features. Its effectiveness has been tested in speaker verification tasks where results demonstrate 

that the proposed LNCC features are far more effective compensating for spectral tilt [102] and 

more robust to additive noise than ordinary MFCC coefficients [104]. 

Given the effectiveness of LNCC and motivated by the fact that performance of DNN-HMM 

ASR systems is typically better when spectrogram-like features are used, rather than features in a 

pseudo-cepstral domain, Locally Normalized Filter Bank (LNFB) features are presented in [105]. 

LNFB features correspond essentially to LNCC features before the cepstral transform. The local 

normalization is achieved in the filter-bank space by dividing the output of a triangular 

frequency-weighting filter (which is similar to the triangular filter in conventional MFCC 

coefficients) by the output of a second frequency-weighting filter [102]. This normalization 

removes very coarse variations in the spectral shape that can be considered constant within both 

filters, such as overall tilt, which arise mostly from channel variability. These two filters are called 

“numerator filter” and “denominator filter”, and their shape is an approximation to the frequency 

response of the numerator and denominator of the Seneff GSD operator: 

Numm( f )= {-
2

B
| f - f  m

  C|   , if | f - f  m
  C|≤

B

2
      0        , otherwise

   , (3.6) 

 

Denm( f )= {
2

B
(1-dmin)| f - f  m

  C|+dmin  , if | f - f
  m

  C|≤
B

2
 

              0                  , otherwise

  , (3.7) 

The shapes of these filters are shown in Fig. 3.2. 
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Figure 3.2   Graphical representation of the mth numerator filter (solid line) and the mth denominator filter (dashed 

line). 

 

 

 

Figure 3.3   Processing sequence to obtain LNFB features. 
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Given a channel 𝑚 with central frequency 𝑓 𝑚
𝑐  and bandwidth B, the LNFB feature 𝑚 is 

defined as the log of the locally-normalized energy for channel 𝑚, 𝐿𝑁𝑚: 

LNFBm= log(LNm)= log (LNNumm/LNDenm)   , (3.8) 

where LNNumm is the numerator filter energy, and LNDenm is the denominator filter energy. 

The sequence of processing stages to obtain the LNFB is shown in Fig. 3.3.  

In [105], LNFB was applied to the Aurora-4 robust DNN-HMM-based speech recognition 

task. It is shown that mean and variance normalization is more effective than mean normalization 

for the LNFB features and the relative global WER over all conditions for LNFB features was 7.4% 

smaller than the average WER obtained using MelFB features. These results indicate that LNFB 

features provide better recognition accuracy for DNN-HMM ASR systems compared to MelFB 

features. Furthermore, results suggest that LNFB are especially helpful in providing robustness to 

channel mismatches between training and testing data. The use of LNFB has not been tested with 

reverberant data yet and the use of these features could be an alternative to tackle the possible 

spectral variations produced by reverberation.  

One of the motivations behind the LNCC or LNFB features was to provide a set of parameters 

that were robust to time-varying channels such as those found in HRI environments. In these cases, 

temporal-trajectory filtering techniques, such as RASTA or CMN, are not applicable. In [104] 

LNCC was shown to reduce time-varying spectral tilt in a speaker verification task. In [105], the 

use of LNFB features provided significant reductions in WER in a DNN-HMM ASR system with 

channel mismatch. 

3.3. Generic ASR test bed for HRI 

In contrast to the ASR integration on a black box basis as discussed above, this chapter proposes 

to consider not only the acoustic signal but also the operation conditions such as the environment, 

and robot and user state and contexts (see Fig. 3.4). 

By environment it is understood basically the acoustic channel, reverberation conditions and 

the additive noise caused by the robot movement. Robot state and context denote all the information 

about current variables and operating conditions of the machine to generate a list of feasible or 

acceptable commands or information that could be input by the user. Finally, user state and context 

designate, among others, the user’s attitude, emotional conditions, and task completion status that 

 

 

 
Figure 3.4   Proposed ASR integration in HRI scenarios. 
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can also predict user’s command and info input to the robot. The full accomplishment of this kind 

of integration is far beyond the scope of this chapter, for that reason this section focusses on the 

environment representation and modeling by training the ASR engine with clean utterances 

combined with the acoustic-channel responses and noise that were estimated and recorded, 

respectively, with an HRI testbed. This testbed attempts to represent the generic acoustic 

environment of HRI in mobile robotics from the ASR point of view.  

First of all, for instance, consider some real human social scenarios where robots could be 

very useful: a museum guide giving a tour, a student in a classroom asking the teacher a question, 

a rescue team helping a survivor and a team of chefs working in a restaurant. All these situations 

have something in common: a person talks to somebody else who is busy accomplishing a task and 

is not looking to who is talking to him/her. Also, the two individuals may be moving one with 

respect to the other. 

As shown in Fig. 3.4, the proposed strategy considers the information related to the acoustic 

environment as one of the inputs of the ASR engine. In this chapter the acoustic environment is 

represented with the impulse responses that characterize the time-varying acoustic channel 

(TVAC) and the additive noise generated by the robot movement. The main advantage of this 

strategy is the fact that it is much more efficient than recording the training database in all the 

possible operating conditions. To record the testing speech data in a real mobile robot scenario, to 

estimate the channel impulse responses and to record the robot noise, a testbed that employs a 

loudspeaker and human speakers as sources plus a moving robot as a receiver was implemented. 

A preliminary version of this testbed was described in [106] where pilot experiments were 

reported. Because of the high relevance to the HRI community, a more complete version of this 

type of HRI scenario is proposed and described in the following sections. Particularly, different 

types of robot noise were recorded and included in the training procedure to represent more 

accurately the robot movement-conditions and the acoustic environment. Also, additional test sets 

were recorded by replacing the loudspeaker with human speakers in the same context. 

3.3.1. Robotic platform and database recording 

The experimental platform makes use of the PR2 (Personal Robot 2) shown in Fig. 3.5. The PR2 

robot is equipped with a Microsoft Xbox 360 Kinect sensor mounted on top of its head. 330 clean 

testing utterances of the Aurora-4 database were re-recorded with the HRI testbed located in a 

meeting room (Fig. 3.6) including different specifications of the relative motion between the robot 

and the sources. Note that when the source and the robot are static one with respect to the other is 

a special case in relation to the more general situation (see Fig. 3.5). The two audio sources 

corresponded to a studio loudspeaker and four native American English speakers (two males and 

two females). The recording was performed by the PR2 Microsoft Kinect sensor, which contains a 

four-microphone array. The four signals received were summed to obtain a single channel signal. 

The recording procedure considered the relative movements of the robot microphones with respect 

to the sources by simultaneously applying translational movement to the robot body and angular 

rotation to the robot head. 

3.3.1.1. Robot displacement  

The robot moved towards and away from the source (i.e. the loudspeaker or the human speakers) 

between positions P1 and P3 (see Fig. 3.6). Three maximum robot displacement velocities were 
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defined: 𝑉𝑚𝑎𝑥1 = 0.30 𝑚/𝑠, 𝑉𝑚𝑎𝑥2 = 0.45 𝑚/𝑠 and 𝑉𝑚𝑎𝑥3 = 0.60 𝑚/𝑠. Those velocities were 

inspired by the discussions in [107], where a robot approached to a seated person at 0.2 𝑚/𝑠 and 

0.4 𝑚/𝑠. In those conditions, none of the human participants found these robot speeds were too 

fast. Then, the maximum velocities mentioned above were multiplied by an acceleration   and    

deceleration    function. 

Additionally, the recording of the test database was also performed with the robot in a static 

condition with respect to the source at position P1. 

a) 
 

 
 

b) 
 

 
 

Figure 3.5   PR2 robot equipped with a Microsoft Kinect that was used to record the database: a) the source 

corresponds to a studio loudspeaker that was employed to reproduce clean utterances from a database; and, b) the 

source is a human speaker reading sentences from the same corpus. 
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Consequently, four robot displacement scenarios were considered   for   the   test   data   

recording:  three   translational movements between P1 and P3 with maximum velocities 𝑉𝑚𝑎𝑥1, 
𝑉𝑚𝑎𝑥2 and 𝑉𝑚𝑎𝑥3; and, a static position at P1. 

N

S

EW
MEETING

ROOM

 

Figure 3.6   Meeting room where the HRI scenario was implemented. The robot moved towards and away from 

the source (i.e. the loudspeaker or the human speakers) between positions P1 and P3. 

 

 

 
Figure 3.7   Movement of the PR2 robot head during the utterances recording. The head moves periodically 

from -150º to 150º and back at angular velocities equal to 0.28, 0.42 and 0.56 rad/s. Recordings with static head 

are performed at 0º. The selected angular velocities for the robot head emulates the situations where the robot 

follows with the head a target located two meters away and moving with linear velocities of 2, 3, and 4 km/h, 

respectively. The acoustic sources can be a loudspeaker or a human speaker. In both cases the sources were located 

at 0° with respect to the robot. 
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3.3.1.2. Robot head rotation 

The robot makes turns with the head as shown in Fig. 3.7 for each of the four displacement 

conditions described above. The robot head moves periodically from –150º to 150º and back at 

three angular velocities. The sources are located at 0°. The three angular velocities 𝜔𝑖 for the robot 

head were made equal to: 0.28, 0.42 and 0.56 rad/s. The chosen angular velocities correspond to 

the angular speed of the head rotation necessary for the robot to follow a target with its head 

movement. The target is located two meters away from the robot and it is moving with tangential 

velocities of 2, 3 and 4 km/h, respectively, as shown in Fig. 3.7. A fourth angular motion condition 

was zero, fixing the robot’s head at 0° (i.e., oriented towards the source) for each robot 

displacement described above. 

3.3.1.3. HRI scenario testing databases 

The combination of four conditions for robot displacement and four robot’s head angular 

movements produces 16 test database recording conditions. Consequently, the total number of 

Aurora-4 clean testing utterances reproduced with the studio loudspeaker is equal to 330 

utterances/robot-movement-conditions x 16 robot-movement-conditions = 5280 utterances. On the 

other hand, each of the four native American English speakers pronounced ten sentences from the 

Aurora-4 corpus per robot-movement-conditions. Those sentences were the same for the all the 

four speakers. As a result, the human speakers recorded 4 x 10 utterances/robot-movement-

conditions x 16 robot-movement-conditions = 640 utterances. The average number of words per 

utterances is equal to 16.2 words. The vocabulary size in the testing data is 1270 words. It is 

important to mention that background noise was kept under control and measured before recording 

the test database at each robot movement condition. The equivalent sound pressure level over ten 

minutes was equal to 39 dBA. Instructions for requesting the HRI playback testing database are 

available at http://www.lptv.cl/en/hri-asr/. Further information about the testing database recording 

can be found in [108]. 

3.3.2. Representing time varying acoustic channel 

TVAC in this HRI scenario can be modeled using a set of samples of the acoustic channel impulse 

responses. In this chapter 33 four-channel impulse responses (IRs) were computed with the robot 

placed at P1, P2 and P3 (Fig. 3.6), and for each robot position the head was oriented at 11 different 

angles with respect to the source. The head angle was varied from –150º to 150º in steps of 30º. 

Angle 0º corresponds to the Microsoft Kinect microphones oriented towards the sources in Fig. 3.7. 

The impulse responses were estimated using the Farina’s sine sweep method [109]. An exponential 

sine sweep signal was generated from 64 Hz to 8 kHz and reproduced with a studio loudspeaker. 

The sweep audio was recorded with the four channel Microsoft Kinect sensor. An impulse response 

was estimated for each channel by convolving the corresponding recorded signal with the 

time-reversal of the original exponential sine sweep. 

3.3.3. Noise recording 

To incorporate additional information about the acoustic environment in the HRI scenario, different 

robot noise levels were recorded by the Kinect microphone array in the 16 robot movement 

conditions. The recorded noise was included in the ASR training procedure. The robot noise is 

generated by its internal fans and electrical motors operating at different translational and angular 

velocities. Finally, the four Kinect channels were summed to obtain a single channel signal. 
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3.4. Time-varying acoustic channels in ASR-based HRI 

Speech recognition experiments were performed using the Kaldi Speech Recognition Toolkit [33]. 

Three training sets were employed, referred to as Clean, 1-IR, and 33-IR. The Clean training dataset 

consisted of the original utterances of the Aurora-4 database. The Clean training set consists of 

7138 utterances from 83 speakers and contains only clean data recorded with a Sennheiser 

HMD-414 microphone. 

The 1-IR training set was generated by convolving the 7138 utterances from the clean 

training set of the Aurora-4 database with the IRs, corresponding to the four Kinect channels, 

estimated when the robot-source distance was equal to 1 m and the angle between the robot head 

and source was 0º. For creating the 33-IR training set, 25% of the clean training set of the Aurora-

4 database was convolved with the IRs, corresponding to the four Kinect channels, estimated when 

the robot-source distance was equal to 1 m and the angle between the robot head and source was 

0º. The remaining 75% of the clean training set was convolved with the remaining 32 four-channel 

IRs in such a way that the 32 IRs were evenly distributed across the signals. 

In this section, results obtained using the MelFB and LNFB feature vectors are compared. 

The DNN-HMM system is composed of DNNs with seven hidden layers and 2048 units per layer 

each, using a context window of 11 frames. The DNN-HMM systems were trained using 

alignments from a GMM-HMM recognizer trained with the same data. The GMM-HMM systems 

were trained using MFCC features, LDA, and MLLT, according to the tri2b Kaldi Aurora-4 recipe. 

First, a monophone system was trained; second, the alignments from that system were employed 

to generate an initial triphone system; and finally, the triphone alignments were employed to train 

the final triphone system. The number of units of the output DNN layer was equal to the number 

of Gaussians in the corresponding GMM-HMM system. The standard 5K lexicon and trigram 

language model were used. 

3.5. Environment-based ASR training 

The speech recognition experiments reported here made use of Aurora-4 database, which in turn 

was generated with the 5000-word closed-loop vocabulary task based on the DARPA Wall Street 

Journal (WSJ0) Corpus [31]. To generate the Environment-based Training (EbT) set, 25% of the 

clean training utterances of the Aurora-4 database, which consists of 7138 utterances 

(i.e. 15.2 hours) from 83 native English speakers and contains only data recorded with a high-

quality microphone (i.e. Sennheiser HMD-414), was convolved with the IRs, corresponding to the 

four Kinect channels, estimated when the robot-source distance was equal to 1 meter and the angle 

between the robot head and source was 0º. Then, the four convolution results were summed to 

obtain a single channel signal. The remaining 75% of the clean training set was convolved with the 

remaining 32 four-channel IRs by employing the same procedure described above, in such a way 

that the IRs were evenly distributed across the signals. The recorded noise was added to this 75% 

of utterances using the Filtering and Noise Adding Tool FaNT [110] at SNR between 10 and 20 dB. 

It is worth highlighting that this training data is completely different from the testing databases 

described above, i.e. different speakers and different utterances. 

In this section, the experiments were performed with a DNN-HMM ASR using the Kaldi 

Speech Recognition Toolkit [33], which is a state of the art and competitive ASR technology as 

mentioned above.  To build a DNN-HMM system with Kaldi, first a GMM-HMM is trained with 

the EbT training data, using the tri2b Kaldi recipe for the Aurora-4 database. In this recipe, a 
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monophone system is trained; then, the alignments from that system are employed to generate an 

initial triphone system; finally, the triphone alignments are employed to train the final triphone 

system.  Also, MFCC parametrization of speech, LDA, and MLLT are part of the recipe. Once the 

GMM-HMM system is trained, the GMM is replaced with a DNN. The DNN is composed of seven 

hidden layers and 2048 units per layer each, and the input considers a context window of 11 frames. 

The number of units of the output DNN layer is equal to the number of Gaussians in the 

corresponding GMM-HMM system. The reference for the DNN training is the alignment obtained 

with the clean version of the whole training data and the GMM-HMM trained with the same clean 

data. This leads to a better reference for the DNN than using the noisy or corrupted speech data 

directly [111,112]. The DNN is trained firstly using the Cross-Entropy criterion. Then, the final 

system is obtained by re-training the DNN with the state-level minimum Bayes risk (sMBR) 

discriminative training [113]. The final ASR system is referred as EbT. For comparison reasons, a 

DNN-HMM system was trained with the clean database without any information regarding the 

HRI testbed scenario. Additionally, statistical significance analysis was performed using the NIST 

matched-pair sentence-segment word error test (MAPSSWE) [40]. 

For decoding, the standard 5K lexicon and trigram language model from WSJ were 

used [114]. As a result, the language model is tuned to the task, i.e. it is task dependent. The 

required files and scripts to generate the EbT training data and the detailed Kaldi recipe to train the 

DNN-HMM based ASR system employed here are available at http://www.lptv.cl/en/hri-asr/. 

3.6. Results and discussions 

3.6.1. Time-varying acoustic channels in HRI scenarios 

Results were obtained for a total of 96 experimental conditions consisting of all permutations of 

the four displacement velocities: 𝑣 equal to 0, 0.3, 0.45, and 0.6 m/s, four head angular velocities: 𝜔 

equal to 0, 0.28, 0.42, and 0.56 rad/s, two types of feature extraction procedures (MelFB and 

LNFB), and three sets of training data (Clean, 1-IR, and 33-IR). Table 3.1 describes the WER 

obtained for each experimental condition. As can be seen in Table 3.1, the best results are observed 

for LNFB in all cases for each training condition. Note that 1-IR training achieves the best WER 

only for the case of a static robot, where test and training conditions match perfectly. Otherwise, 

the use of 33-IR training condition with LNFB features leads to a WER reduction greater than 54% 

when compared with a baseline system with MelFB features and Clean training. 

On average, LNFB features outperform MelFB over all training conditions. The WER for 

LNFB is 19% (relative) less than for MelFB, in the Clean training condition, and 23% less in the 

1-IR and 33-IR training conditions. A comparison of training conditions reveals that the use of 

1-IR training leads to 35% and 32% WER reductions for LNFB and MelFB, respectively, compared 

to Clean training. This improvement most likely reflects the incorporation of the room and Kinect 

microphones responses in the training data. For the 33-IR training conditions, the WER is reduced 

by 56% and 53% with respect to Clean training, for LNFB and MelFB, respectively. These greater 

reductions in WER are due to additionally incorporating into the training data the three source-

microphone distances and 11 head angles for each distance. In this way, the DNN-HMM system 

can also compensate for the channel variability caused by the robot movements.  

As can be seen, the WER obtained when the robot is in motion is worse than when the robot 

is static at 1 meter from the source. This degradation increases linearly with the displacement 
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velocity and can be as high as 202% and 253% for LNFB and MelFB, respectively, for the greatest 

velocity. The results show that part of the degradation is caused by the robot motors noise, which 

was found to increase linearly with velocity. The effect of channel variability given by the robot 

movement towards and away from the source also increases with the displacement velocity, leading 

to an additional degradation. It is worth mentioning that the use of LNFB features reduces the WER 

respect to the WER obtained with conventional MelFB, confirming the natural robustness of the 

LNFB features with channel variability and channel mismatch. 

WER is also worse when the robot head is undergoing rotational motion compared to when 

it is static.  Nevertheless, this degradation is relatively independent of angular velocity, and can be 

as high as 151% and 116% for LNFB and MelFB, respectively, for the greatest velocity. It is worth 

mentioning that the percentage of occluded frames in each testing condition, i.e. frames for which 

the path from the source to the Kinect microphones is blocked by the Kinect encasement, is the 

same for each head angular velocity, except for the static head condition which does not produce 

any occluded frames. Moreover, the noise power of the head motors was found to be independent 

of the head angular velocity, except for the static head condition which produces no head motor 

noise. 

3.6.2. EbT and comparisons with APIs 

The average WER obtained with the 5280 utterances recorded in the HRI scenario (Section 3.3.1.3) 

with the loudspeaker, was equal to 65.0% using the ASR system trained with clean data. When 

only the IRs were incorporated in the training procedure, the average WER was dramatically 

reduced to 31.4%. Moreover, the EbT system (i.e. that includes both IRs and robot noise) provided 

a much lower WER: 11.6%. This dramatic increase of the ASR accuracy strongly supports the 

proposed approach to model the acoustic environment of an HRI scenario with channel impulse 

responses and robot additive noise. Observe that this WER was achieved with only 15 hours of 

Table 3.1   WERs obtained using MelFB and LNFB features with different training conditions and different 

velocities of robot displacement and head rotation. 

 Training condition  

Testing condition     Clean        1-IR        33-IR 

𝑣 

(m/s) 

𝜔 

(rad/s) 
MelFB LNFB MelFB LNFB MelFB LNFB 

0 

0   9.3   8.6   5.5   5.4   6.2   6.2 

0.28 52.4 43.8 29.0 22.2 14.8 12.9 

0.42 53.2 41.4 28.7 19.4 14.6 11.8 

0.56 54.5 42.1 28.1 19.9 14.3 11.9 

0.3 

0 36.2 25.9 18.4 12.9 15.9 10.6 

0.28 77.6 66.6 52.8 42.4 32.6 27.5 

0.42 77.0 65.8 52.4 43.9 33.2 27.2 

0.56 79.7 67.1 56.1 44.9 34.8 27.5 

0.45 

0 45.1 30.3 21.3 15.9 17.9 12.3 

0.28 83.3 68.6 62.3 49.2 42.2 33.0 

0.42 83.8 68.7 62.4 49.5 43.1 33.0 

0.56 84.4 70.5 65.5 49.8 43.5 33.0 

0.6 

0 55.3 33.4 28.5 19.5 26.5 15.5 

0.28 86.4 73.4 69.1 53.5 50.3 37.5 

0.42 85.8 69.4 66.6 50.8 48.5 36.5 

0.56 86.9 73.1 68.7 54.0 51.1 39.5 
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training data. This result was corroborated by making use of the testing data set that was recorded 

with the four native American English speakers: 73.5% and 20.1% with clean training and EbT, 

respectively. These WERs are higher than those obtained with the playback testing data. This must 

be due to the fact that the human speakers pronounced the utterances with a lower volume resulting 

in a lower signal-to-noise ratio. Actually, the average SNRs were equal to 11 and 18 dB for human 

speakers and loudspeaker data, respectively.  

For comparison reasons, ASR experiments with three publicly available APIs by using the 

“Speech Recognition” Python library (Version 3.7) [115]: the Google Web Speech API (Google 

API); the IBM Speech to Text API (IBM API); and, the Bing Voice Recognition API (Bing API) 

were performed. Fig. 3.8 shows the WER obtained with the EbT system and the three API 

mentioned above with the 330 clean utterances from Aurora-4. As it can be seen in Fig. 3.8, the 

EbT system provided the lowest WER that is 34% lower than the second best (statistically 

significant with  𝑝 < 0.001), i.e. IBM API. This result suggests that adopting a better tuned 

language model, as done in the EbT ASR system, provides a clear advantage over a flatter or more 

general-purpose language model. 

In the HRI test sets, it was observed that in challenging scenarios the APIs evaluated here 

delivered empty strings as the result of the ASR queries. Given this situation, the WERs were 

estimated with the non-empty returned text strings. Table 3.2 presents the ASR results obtained 

with the EbT system, Google API and IBM API, in all the robot motion conditions, with the 

playback loudspeaker testing database (Section 3.3.1.3). In the case of Bing API, the number of 

empty strings per each test set or empty string rate (ESR), increased dramatically and prevented us 

from showing a representative WER. All the ASR results with the APIs shown in Table 3.2 were 

carried out between September 6th and 12th, 2017. According to Table 3.2 the lowest and highest 

WERs were achieved with the static condition (i.e. translation and angular velocities equal to zero), 

and with the highest displacement and rotational velocities, respectively, with EbT, Google API 

and IBM API. Also, the lowest WER for each robot movement condition is achieved with EbT. 

 
Figure 3.8   WERs obtained with the EbT system and the publicly available ASR APIs. The testing data 

corresponds to the original clean test set from Aurora-4 database (330 utterances). 
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Fig. 3.9 summarizes the WERs obtained with EbT, Google API and IBM API, in all the robot 

movement conditions shown in Table 3.2, with the playback loudspeaker testing database 

(Section 3.3.1.3). As can be seen in Table 3.2 and Fig. 3.9, the lowest WER correspond to the EbT 

system. The average WER achieved with the EbT system is 26% lower than the second best 

(statistically significant with  𝑝 < 0.001), i.e. Google API. According to Fig. 3.9, the EbT system 

and Google API provided the lowest WER dispersion. Also, the observed average ESRs were equal 

to 0%, 0.3% and 6.5% with EbT, Google API and IBM API, respectively. If the empty strings were 

Table 3.2   WERs obtained with the EbT system, Google API and IBM API. The testing sets correspond to the 

playback loudspeaker sub databases recorded at each combination of robot displacement and robot head angular 

velocities. 

  ASR System 

𝑣 

(m/s) 

𝜔 

(rad/s) 

Clean 

training 
EbT 

Google 

API 

IBM 

API 

0 

0   8.63   4.11   7.94   9.27 

0.28 52.79   7.73   9.94 27.88 

0.42 53.09   7.68 10.91 25.94 

0.56 54.06   7.83 11.32 26.57 

0.3 

0 36.04   5.66   9.32 22.71 

0.28 76.42 12.22 16.31 49.23 

0.42 76.59 12.33 17.39 51.68 

0.56 78.80 12.82 17.88   51.3 

0.45 

0 43.36   6.16   9.04 22.55 

0.28 82.94 16.74 19.30 53.03 

0.42 83.49 15.28 20.73 54.69 

0.56 83.73 15.45 22.31 55.93 

0.6 

0 53.30   7.49 10.78 29.57 

0.28 85.80 18.27 22.06   56.9 

0.42 85.07 17.47 22.91 56.37 

0.56 86.46 18.68 24.42 58.19 

 AVG. 65.04 11.62 15.79 40.74 

 

 
Figure 3.9   WERs obtained with the EbT system, Google API and IBM API in all the robot movement conditions 

shown in Table 3.2, with the playback loudspeaker testing database (Section 3.1.3).  

 



 

39 

 

included in the computation of the error rates, the WERs increased to 15.9% and 42.6% with 

Google API and IBM API, respectively. With EbT the WER was not modified because ESR is 

equal to zero in this case. 

For validation purposes, Fig. 3.10 summarizes the WERs obtained with EbT, Google API 

and IBM API, in all the robot movement conditions shown in Table 3.2, with the native American 

English speaker testing database (Section 3.3.1.3). According to Fig. 3.10, the lowest value and 

dispersion for WER also corresponds to the EbT system. The average WER achieved with system 

EbT is 38% lower than the second best, i.e. Google API. The average ESRs with the human speaker 

testing data set are equal to 0%, 5.8% and 5.6%. If the empty strings were included in the 

computation of the error rates, the WERs increased to 35.0% and 57.1% with Google API and IBM 

API, respectively. The results with the ASR APIs using the native American English speaker 

testing database were obtained between September 25th and October 5th, 2017. 

By comparing Fig. 3.8 with Fig. 3.9, it can be observed that the lowest WER is achieved with 

the EbT system. However, the EbT system also provides the highest relative increase in average 

WER, i.e. 231%, from the clean testing data to the playback loudspeaker testing database 

(Section 3.3.1.3) in the HRI scenario. In contrast, Google API, for instance, shows a relative 

increase in average WER equal to 117%. This result can be explained according to [116], [117] 

and [118], where it is said that the ASR engines that support the APIs evaluated here could have 

been trained with at least thousands of hours of speech covering a wide diversity of acoustic 

conditions. In contrast, the EbT system was trained with only 15.2 hours of clean speech utterances 

that were convolved with channel impulse responses and had noise added (Section 3.5). The 

proposed procedure is applicable to any HRI environment, being only necessary the capture of the 

robot noise and the estimation of the acoustic impulse responses to get a new EbT system. 

Implementing this new system is very practical and simple to make, because this procedure requires 

just a couple of days and a few hours of training data. At this point it is worth highlighting that the 

 
 

Figure 3.10   WERs obtained with the EbT system, Google API and IBM API in all the robot movement conditions 

shown in Table 3.2, with the native American English speakers testing database (Section 3.1.3). The average WERs 

were 20.1%, 32.6% and 56.4% with EbT, Google API and IBM API, respectively. 
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adequate use of user and robot states and contexts can reduce the language model perplexity, and 

lead to further improvements in recognition accuracy. 

3.7. Conclusions 

Locally-Normalized Filter-Bank features and DNN-HMM training strategies were employed to 

address the problem of time-varying channels in speech recognition-based human-robot 

interaction. Time-varying channels were generated by performing displacement movements and 

head rotations at different speeds with respect to a source location that remained fixed. The use of 

33-IR training produced reductions in WER greater than 50% compared to Clean training with both 

LNFB and MelFB. However, LNFB provided a WER 23% lower than MelFB with 33-IR. When 

compared with Clean training and MelFB, 33-IR and LNFB led to a reduction in WER equal 

to 64%.  

It is proposed to replace the popular black box integration of automatic speech recognition 

technology in HRI applications with the addition of the HRI environment representation and 

modeling, and the robot and user states and contexts. Then, as a consequence of this strategy, this 

section was focused on the environment representation and modeling by training a DNN-HMM 

model based automatic speech recognition engine with the combination of clean utterances with 

the acoustic-channel responses and noise that were estimated and recorded, respectively, with an 

HRI testbed built with a PR2 robot.  The proposed procedure is much more effective and efficient 

than recording a training database in all the possible acoustic environments, given an HRI scenario. 

Also, different speech recognition testing conditions were generated by recording two types of 

acoustic sources, i.e. a loudspeaker and human speakers, using the PR2 robot, which has a 

Microsoft Kinect sensor mounted on top, while performing head rotations and movements towards 

and away from the fixed sources. This testbed models the generic problem of HRI in mobile 

robotics, and the resulting automatic speech recognition accuracy outperformed publicly available 

speech recognition APIs. The word error rate achieved by the EbT system is at least 26% and 38% 

lower than the evaluated APIs with the loudspeaker and human testing databases, respectively, 

with a limited amount of training data. Other factor in HRI scenarios is that the user speech may 

be stressed in noisy conditions, i.e. Lombard effect. This problem, and the incorporation of user 

and robot states and contexts are proposed for future research. 
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Chapter 4 

Combining DNN-based acoustic models improves speech 

recognition accuracy in reverberant environments 
 

4.1. Introduction 

Many speech applications require that the user is not tethered to a close-talking microphone. 

Examples of such applications include automatic meeting transcription, voice dialogue systems for 

devices in smart homes, and interaction with humanoid robots, which are more intuitive, 

comfortable and effective if the user could interact with microphones on the device or in some third 

location, independent of the user. In many of these scenarios, the talker could be located several 

meters away from the microphone, and the received signal could be corrupted by interfering 

sounds, such as background noise and interfering speakers. In addition, speech in rooms is 

corrupted by the effects of reverberation caused by reflections of the speech from the surfaces of 

the room and the objects that are in it [119].  The effects of reverberation are a major problem in 

distant-talking ASR. 

Reverberation and background noise decreases speech intelligibility and speech quality. This 

especially affects the performance of ASR systems, which are not as robust to reverberation as the 

human auditory system [120]. These performance degradations depend on the nature of the 

environment and make such systems less effective [121]; therefore, far-field speech recognition 

remains a challenge. One frequently-used measure of reverberation is the reverberation time (RT), 

which is defined as the time required for sound pressure level to decay by 60 dB. Offices and home 

environments typically have an RT from around 0.5 to 1.0 seconds, and longer RTs lead to greater 

reverberation distortion and greater degradation in ASR accuracy. Although RT is the most 

commonly-used general descriptor of reverberation, there are many other aspects of rooms that 

impact on speech intelligibility and ASR accuracy [122]. 

4.1.1. Reverberation model 

Reverberant speech is usually modeled as the convolution of clean speech 𝑥(𝑡) with a room impulse 

response (RIR) ℎ(𝑡) [7,123,124,125,126]  according to: 

𝑦(𝑛) = 𝑥(𝑡) ∗ ℎ(𝑡) . (4.1) 

The RIR ℎ(𝑡) reflects the reverberation properties of the room and depends on the acoustic 

absorption of the surfaces in the room, the layout of the room, and the location of the speaker, 

microphone, and other objects in the room.  The RIR is frequently described in three parts: the 

direct speech signal, the early reflections, and the late reflections. Early reflections consist of the 

initial discrete reflections that arrive at the microphone, which frequently occur within 50 ms of 

the arrival of the direct component. These reflections vary with the relative positions of the speaker 

and microphone and when combined with the direct signal can improve the perception of the 

human auditory system [127]. Late reflections correspond to the response that develops when the 

components arrive so frequently that ℎ(𝑡) approximates a continuous function of time. The later 

reflections are typically modeled as an exponential decay and are independent of speaker and 

microphone position. They are believed by some to be the primary source of degradation in ASR 

systems (e.g. [128]). 
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While reverberation could be treated as a convolutional distortion for clean speech, in real 

rooms reverberation times are generally much longer than the 20-35 ms of a typical analysis frame 

for ASR and similar tasks.  Furthermore, the properties of the reverberant environments vary in 

time and space. For these reasons, traditional methods proposed to reduce convolutional distortion, 

such as cepstral mean normalization (CMN) [129] and relative spectral (RASTA) filtering 

[130,131], do not achieve good results in reducing the reverberation effect for ASR as they can 

only remove or compensate for the short-term convolutional distortions of systems that have short 

impulse responses [123,132]. 

Several methods have been proposed to address reverberation distortion, and they are usually 

divided in three classes according to the stage in which they are implemented: ASR front-end, ASR 

back-end, and speech preprocessing [133,134,135]. Methods implemented in the ASR front-end 

aim to improve the feature robustness to reverberation. Examples of these methods includes: 

algorithms to handle missing or unreliable speech regions that are dominated by noise 

[135,136,137] and feature-extraction methods based on the normalization of sub-band temporal 

modulation envelopes [132,138]. Methods that are implemented in the ASR back-end aim to 

improve the robustness of the ASR system by adapting the acoustic model, as in [124,139,140]. 

Finally, there are speech signal preprocessing methods that are applied before the derivation of the 

feature vectors, such as speech reverberation suppression [133]. 

Many recent proposed methods [7,141,142,143] have been developed and tested using the 

data distributed through the REVERB challenge [144]. This challenge was organized to address 

the lack of common data sets with which to evaluate progress in the field of reverberant ASR and 

speech enhancement (SE). A common speech corpus was proposed to evaluate SE and ASR 

developments in reverberant conditions. Various acoustic environments and different levels of 

reverberation and stationary noise were considered. The challenge data set also included real 

recordings carried out in a meeting room.  

In [141], different robust features are explored for use in a convolutional DNN (CDNN) 

based acoustic model for recognizing continuous speech in a reverberant condition. The features 

were motivated by human auditory perception and speech production for their experiments. 

Damped Oscillator Coefficients (DOC) [145], Normalized Modulation Coefficients (NMC) [146] 

and Gammatone Filter Coefficients (GFCs) (a linear approximation of the auditory filterbank 

performed in the human ear), are some of the features that were employed. The authors obtain 

WERs as low as 30.40% using NMC, and 28.65% when applying combined GFC and NMC to the 

single channel data of the REVERB 2014 challenge. 

In [147], the authors address the problem of distant speech recognition for reverberant noisy 

environments. They propose a double-stream architecture combining a state-of-the art GMM 

system with a deep long short-term memory (LSTM) recurrent neural network (RNN) trained to 

predict frame-wise phoneme estimates, which are converted into observation likelihoods to be used 

as an acoustic model. LSTM-RNNs can learn long-range temporal context, by making use of 

memory cells in the hidden units. This capability leads to an increase of the robustness against 

noise and reverberation. They employed a double-stream HMM system that, in every time frame, 

has access to two independent information sources, the acoustic likelihoods of the GMM and the 

LSTM predictions. They show that the LSTM system can improve a robust state-of-the-art GMM 

system. Experiments were carried out on the medium-vocabulary task of the 2nd ‘CHiME’ Speech 

Separation and Recognition Challenge, which includes reverberation and highly variable noise. 
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The challenge baseline WER was reduced by 64% relative on average. Additionally, results show 

that speech enhancement using NMF, although it leads to improvement in the GMM system, it 

does not improve the results when combining GMM with LSTM. 

4.1.2. Speech dereverberation techniques 

Several enhancement algorithms have been proposed to address the effects of reverberation, 

SSF [148], NMF [149],  and WPE [150,151]. The SSF algorithm is motivated by the precedence 

effect, which is the observation that the human auditory system appears to emphasize the first-

arriving components of sounds in reverberant environments. SSF performs an onset enhancement 

at the peripheral level and steady-state suppression on a band-by-band basis [148]. In contrast, 

NMF accomplishes blind deconvolution of the response to a reverberated signal in the frequency 

domain [149]. It is easy to observe that the presence of reverberation causes a representation like a 

spectrogram to become blurred or smeared along the time axis, caused by convolution of the 

response representing clean speech with the sample response of the room acoustics, as represented 

in the frequency domain.  Because phase information is lost in the spectrogram, blind 

deconvolution cannot be accomplished exactly, but a good approximation can be achieved by 

exploiting the facts that the matrix representing the sample response in the frequency domain would 

be non-negative and sparse. Finally, the WPE algorithm is focused on robust blind deconvolution 

based on long-term linear prediction, which aims at late reverberation reduction. In this way, the 

algorithm receives a single-channel speech signal which may contain multiple speakers, 

background noise, and reverberation. The de-reverberation is performed based on long-term linear 

prediction in the short-time Fourier transform (STFT) domain and provides low speech distortion. 

4.1.3. Signal representation and pre-processing 

In recent years, ASR system has experienced a large improvement by the replacement of 

conventional GMM models with DNNs for acoustic modeling. With this change, some researchers 

have found that the engineered features used for training GMMs are not optimal for DNNs: while 

diagonal GMMs are better trained with de-correlated features such as MFCC, deep models can 

better learn from correlated features [152,153].  

Several works have focused on identify the best features to train deep models [154,155]. One 

of the approaches to learn new features is to combine engineered features using neural networks 

[156,157,158]. In particular, Tüske et al. trained several ASR systems using raw time signals, the 

FFT and engineered features such as MFCC, PLP and Gammatone (GT) [157].  They found that 

the best system was obtained using a combination of MFCC, PLP and GT, using either 50h and 

250h of training data. These results suggest that: the differences between engineered features 

benefit the DNN training, and the improvement due to combination does not depend on the amount 

of training data. 

4.1.4. Classifier fusion 

Multiple Classifier Systems (MCS) is a powerful method for increasing classification rates in 

pattern recognition problems. MCS has been successfully applied in many and different fields such 

as finance, medical diagnosis, security, remote sensing, pattern recognition, between others 

[159,160,161,162]. In fact, MCS has shown good performance in almost any field in which pattern 

classifiers are used [163]. Currently, MCS still a very active area with many researches in machine 

learning and pattern recognition, and several approaches are currently used to construct an 

MCS [164,165]. However, there is no fusion method that can obtain the optimal classification 
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performance for all the applications. Therefore, the study of multiple classifier fusion is still an 

open problem [166]. 

Particularly, in ASR many research groups have noted that the performance of ASR systems 

can be improved by the combination of information from multiple parallel feature streams.  In fact, 

the best systems in most international evaluations of speech processing technologies are based on 

the combination of multiple contrasting systems, which are ultimately combined to produce a final 

hypothesis.  

The algorithms currently used to combine information from parallel feature sets can he 

broadly viewed as belonging to one of three classes that operate at three different levels of 

information processing. The first type of combination approach, which is sometimes referred to as 

feature combination or input combination, typically concatenates  different independent or 

correlated feature vectors to form a larger feature vector, performing recognition based on the 

values of the combined features, sometimes using a dimensionality-reduction algorithm such as 

LDA or principal components analysis (PCA) for dimensionality reduction of the feature vector 

and/or feature decorrelation (e.g. [167]).  The last paragraph of Section 4.1.3 provides some 

specific examples of feature combination. The second type of combination approach, which has 

been called state combination, probability combination, and middle combination, refers to methods 

that combine information from parallel streams at the stage at which probabilities are evaluated in 

the search process using one of several combination methods (e.g. [168,169]).  The third (and 

perhaps most popular) type of combination approach has been called score combination, hypothesis 

combination, output combination, or lattice combination, refers to methods that combine parallel 

sources of information after the search procedure is completed.  These methods include the well-

known ROVER method [170], confusion network combination (CNC) [171], the Hypothesis 

Combination method [172], as well as various lattice-combination methods (e.g. [173,174]).  

4.1.4.1. Lattice combination and minimum Bayes risk-based decoding 

One approach to combining systems is the lattices combination and using the minimum Bayes risk 

(MBR) decoding [175]. This lattice combination and MBR-based decoding (LC/MBR) method 

represents an alternative to ROVER [170] and CNC [171]. 

4.1.4.2. Linear combination of scores 

Another approach to combine multiple systems is to make a weighted sum of the scores delivered 

by the different systems. The linear combination of systems is a widely used approach in the 

literature. However, finding the weighting parameters is a subject that is far from being solved. 

In general, the degree of improvement in recognition accuracy obtained from combination of 

parallel feature streams depends in large part on the extent to which the information that is being 

combined is complementary (e.g. [176]).  In any particular application which uses parallel 

information sources, the choice of the specific type of combination method to be used typically 

depends on the type of application, classifier architecture, and available computation resources, 

among other factors.  

This chapter explores multi-DNN and multi-lattice combinations to obtain more robust 

systems for reverberant environment. Also, the optimization of the DNN linear combination is 
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exhaustively explored. For the most part, the information combination methods considered in this 

chapter involve various forms probability combination. 

4.2. Engineered features and reverberation 

The comparison of different robust features in combination with enhancement techniques in a 

controlled highly-variable real reverberant environment is not found in the literature. In this section 

the robustness of LNFB and MelFB features in combination with NMF, SSF and WPE 

enhancement methods is discussed and evaluated regarding RT and speaker-microphone distance 

with clean and reverberated training. For this purpose, preliminary experiments were carried out to 

explore the aforementioned variables. 

4.2.1. Preliminary training data 

Speech recognition experiments were performed using the Kaldi Speech Recognition Toolkit [33]. 

The Clean training set from the Aurora-4 database was employed. This set contains 7138 utterances 

from 83 speakers recorded with a Sennheiser HMD-414 microphone. Additionally, a reverberant 

training set was developed, referred to as “Reverb.” 

For Reverb training, simulations were made with the simulation program Room Impulse 

Response Generator [177], which uses the image method assuming a rectangular room [178]. In 

order to avoid potential artifacts in training because of potential standing wave patterns that may 

develop in rectangular rooms, the Reverb training database consists of 5353 utterances that were 

passed through 5353 different randomly-generated room impulse responses (RIRs). The 

dimensions of the simulated rooms varied from RIR to RIR with an average of 7.95 meters length, 

5.68 meters width and 4.5 meters height, approximating the dimensions of the larger-sized 

reverberation chamber of the Acoustic Institute. The dimensions for each individual RIR were 

drawn from uniform distributions over the range of plus or minus 20 percent of the nominal values 

stated above. A nominal RT was then selected by sampling a random variable over the range of 

0.45 to 1.87 seconds, and the nominal average absorption and reflection coefficients that would 

provide the selected nominal RT were calculated using the Sabine equation [179]. Six separate 

reflection coefficients, one for each room surface, were drawn from a uniform distribution between 

plus and minus 10 percent of the nominal reflection coefficient calculated from the Sabine 

equation, resulting in a room with a reverberation that was random, but close to the intended 

nominal value. The distance between speaker and microphone was drawn from a uniform 

distribution between 0.144 and 2.816 meters. The speaker and microphone were placed in random 

locations at the room, using the distance that was selected for a particular trial, with the constraints 

that both speaker and microphone are at least 1 meter from any wall and between 1 and 2 meters 

from the floor. 

4.2.2. Preliminary system training 

Two types of feature vectors were compared in this section, the MelFB and LNFB features, in both 

cases considering a context window of 11 frames, including 5 frames before and 5 frames after the 

current frame. Each DNN in the DNN-HMM system consists of seven hidden layers and 2048 units 

per layer. The DNN-HMM systems were trained using alignments from an GMM-HMM 

recognizer trained with the same data. In turn, the GMM-HMM systems were trained by using 

MFCC features, LDA, and MLLT, according to the tri2b Kaldi Aurora-4 recipe. First, a 

monophone system was trained; second, the alignments from that system were employed to 

generate an initial triphone system; and finally, the triphone alignments were employed to train the 
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final triphone system. The number of units of the output DNN layer was equal to the number of 

Gaussians in the corresponding GMM-HMM system. For decoding stage, the standard 5K lexicon 

and trigram language model were used. 

4.2.3. Preliminary results and discussion 

The results were obtained for a total of 330 testing utterances for each one of the 20 reverberation 

conditions (four RTs and five microphone-speaker distances) available in the highly-reverberant 

real environments (HRRE) database [180]: RTs equal to 0.47, 0.84, 1.27, and 1.77 seconds; and, 

microphone-speaker distances equal to 0.16, 0.32, 0.64, 1.28, and 2.56 meters.  Two types of 

feature extraction procedures (MelFB and LNFB), two sets of training data (Clean and Reverb) 

and four types of environmental compensation (none, NMF, SSF, and WPE) were combined.  

Table 4.1 describes the WERs obtained for each speaker-microphone distance averaged 

across the four RTs that were available in the reverberation chamber. The lowest WER for each 

column is highlighted in bold in Table 4.1. As can be seen in Table 4.1, the best results are observed 

for Reverb training with MelFB combined with WPE in most cases. The best MelFB features 

perform better than the best LNFB features (in conjunction with Reverb training) averaged over all 

RTs. Compared with the baseline system with MelFB and Clean training condition, the optimal 

reductions in Table 4.1 are higher than 70% with all the speaker-microphone distances. 

4.2.3.1. Training procedure 

According to what has been mentioned about multi-style training, the best results are achieved with 

Reverb training in most test conditions. However, as can be seen in Fig. 4.1, Clean training in 

combination with WPE achieves better performance than Reverb training in four of the twenty 

conditions:  RT equal to 0.84 and 1.27 seconds at 2.56 meters using LNFB; and, with RT equal 

0.47 seconds in the shortest distances (i.e. 0.16 and 0.32 meters) using MelFB. 

 

Table 4.1   WERs averaged across all RTs values using MelFB and LNFB for different training conditions and pre-

processing techniques in the HRRE database. 

 
Training Feature 

Speaker-microphone distance (m) 

   0.16   0.32 0.64    1.28 2.56 

B
as

el
in

e
 

Clean 
MelFB 34.1 55.5 70.2 78.9 84.7 

LNFB 18.7 32.6 53.0 69.1 79.5 

Reverb 
MelFB 13.3 16.3 21.7 31.1 36.4 

LNFB 14.0 17.7 22.2 30.1 34.8 

N
M

F
 Clean 

MelFB 16.4 25.5 38.9 56.3 67.8 

LNFB 14.3 20.8 30.6 49.6 62.5 

Reverb 
MelFB 11.9 14.3 17.6 26.2 31.9 

LNFB 12.6 15.1 17.9 26.0 32.0 

S
S

F
 Clean 

MelFB 14.9 22.0 34.5 53.7 65.7 

LNFB 12.3 18.0 27.2 46.2 59.8 

Reverb 
MelFB 11.0 12.6 15.0 21.9 26.2 

LNFB 11.5 12.6 15.2 21.2 25.0 

W
P

E
 Clean 

MelFB 9.8 19.1 39.9 61.1 72.8 

LNFB 7.9 13.9 29.0 53.2 67.3 

Reverb 
MelFB 8.7 10.0 13.1 20.0 25.5 

LNFB 9.8 11.4 14.2 21.0 26.3 
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4.2.3.2. Effect of enhancement techniques 

As discussed above, the NMF, SSF and WPE techniques were designed to reduce the mismatch 

between training and testing conditions. As seen in Table 4.1, the application of this techniques is 

always helpful no matter which training data are used. Additionally, SSF always outperforms NMF 

for the examined conditions. On the other hand, WPE surpasses SSF in all distances only with 

Reverb training. 

The use of WPE in combination with MelFB and Reverb training, and averaging across all 

RTs, produces the best system for speaker-microphone distances greater than 0.32 meter. For the 

speaker-microphone distance of 0.16 meter, the best result is obtained with WPE with Clean 

training and using the LNFB features. The use of WPE in combination with MelFB and LNFB 

provides the best results for almost all test conditions, except for the greatest RTs at the longest 

distances, i.e. RT equal to 1.27 and 1.77 seconds at a speaker-microphone distance equal to 2.56 

meters, where SSF combined with LNFB and Reverb training leads to greater accuracies 

(see Fig. 4.1). 

a) 

 

b) 

 
c) 

 

d) 

 
 

Figure 4.1   Results for the best ASR systems for a) RT=1.77 s, b) RT=1.27 s, c) RT=0.84 s and d) RT=0.47s. 
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4.2.3.3. Performance of MelFB versus LNFB features 

Figure 4.1 compare directly the best systems obtained using the MelFB and LNFB features. MelFB 

achieve the best WER in several cases. Nevertheless, as can be seen in Fig. 4.1, LNFB exhibits 

better accuracy in some critical RTs and distances, i.e. with RT equal to 1.27 and 1.77 seconds at 

a distance of 2.56 meters. On the other hand, LNFB worked better in the shortest distance, i.e. 

0.16 meter, for RT equal to 0.84 and 1.27 seconds. 

4.2.3.4. Complementarity between ASR systems 

Despite the fact that on average the use of MelFB in combination with WPE and Reverb training 

provided the lowest WER, different combinations of features, training data and enhancement 

techniques could address more effectively some testing conditions. The results shown in the 

Fig. 4.1 suggest that there is some degree of complementarity between systems trained with 

different data, enhancement, and parametrization methods. Although always the best system can 

be selected, also the best engines can be combined to obtain a new system that could be even more 

accurate in different test conditions. 

4.2.4. Preliminary findings 

Two training conditions were evaluated: Clean and Reverb. The comparisons also included the 

NMF, SSF, and WPE environmental compensation algorithms. The results presented here show 

that the lowest average WER is achieved using Reverb training and MelFB features combined with 

WPE. With Clean training, i.e. significant mismatch between testing-training conditions, LNFB 

features clearly outperform MelFB parameters. 

Generally, the use of the NMF, SSF and WPE compensation techniques improves WER for 

LNFB and MelFB features, for both training styles. Specifically, with Reverb training the use of 

WPE and LNFB provides WERs that are 3% and 20% lower in average than SSF and NMF, 

respectively. WPE and MelFB provides WERs that are 11% and 24% lower in average than SSF 

and NMF, respectively. 

It is worth highlighting that for some test conditions some systems led to higher accuracies 

than MelFB/WPE. These results strongly suggest that there is complementarity among the different 

engines tested here. 

4.3. DNN linear combination 

4.3.1. DNN complementarity 

It is well known that DNN acoustic modelling outperforms ordinary GMM models. This may be 

the result of the fact that DNN can learn robust speech representations in the deeper layers. These 

representations would be jointly learned when DNN is trained as a classifier. As a result, using raw 

signal as an input has become a real option and many authors have suggested that engineered 

features like PLP or cepstral features are not essential to achieve high ASR accuracy [81,153,181]. 

This has consolidated the notion that only a large amount of data is sufficient to train a deep 

learning-based ASR independently on how the input signal is pre-processed. In contrast, some 

authors have argued that it is still useful to combine different features to learn new speech 

representations [156,157]. 
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In the DNN training, the backpropagation algorithm is applied after pre-training. The 

backpropagation algorithm relies on the computation of local gradients, which are used to compute 

the weight corrections Δ𝑤𝑗𝑖 = 𝜂𝛿𝑗𝑦𝑖 [182], where: Δ𝑤𝑗𝑖 is the correction applied to the weight that 

connects neuron 𝑖 to neuron 𝑗; 𝛿𝑗 is the local gradient associated with neuron 𝑗; and, 𝑦𝑖 is one of the 

input signals to neuron 𝑗 and the output from neuron 𝑖. If neuron 𝑗 belongs to the first hidden layer 

of the network, then the above equation can be written as:  

Δ𝑤𝑗𝑖 = 𝜂𝛿𝑗𝑥𝑖, where 𝑥𝑖 is the 𝑖th input feature. Consequently, if the speech enhancement or 

parametrization change, the DNN training process will achieve different solutions for weights and 

bias {𝑾, 𝒃} independently of the training data size, despite the fact that the same network parameter 

initialization and training data are used.  As a result, complementary DNNs could be obtained by 

just modifying the input signal representation. Observe that the increase of the training data size 

should provide a reduction in WER independently of the speech enhancement or parametrization 

methods. However, according to what discussed here, two DNNs trained with different speech 

representation methods could provide complementary information although they may lead to the 

same ASR accuracy individually. On other words, the complementarity of DNNs should not 

depend on the training data size. This is the main motivation to explore DNN combination to 

address the problem of robust ASR, particularly in reverberant environments. 

There are several methods for classifier fusion such as the maximum rule, minimum rule, 

mean rule, product rule, weighted majority vote rule and linear combination [183,184,185]. This 

chapter will focus on the latter one. Given 𝑅 DNNs, the linear combination of scores is defined as: 

�̂�(𝑠, 𝑛) = ∑𝜔𝑟,𝑠,𝑛 ⋅ 𝑚𝑟(𝑠, 𝑛)

𝑅

𝑟=1

  , (4.2) 

where �̂� is the combined score (e.g. LLK or log-posterior probabilities) for the DNN 𝑠𝑡ℎ output 

(also state or senone) in input frame 𝑛𝑡ℎ; 𝑚𝑟(𝑠, 𝑛) is the score provided by DNN 𝑟𝑡ℎ;  and, 𝜔𝑟,𝑠,𝑛 is 

the corresponding weight. These weights can be considered dependent or independent of output 

𝑠𝑡ℎ or frame 𝑛𝑡ℎ. 

One of the key assumptions for combining two classifiers is the degree of complementarity 

that could exist between them. A measure of complementarity could be the correlation between the 

outputs of two classifiers. Table 4.2 shows the  average  correlation coefficient for  the  whole test  

Table 4.2   Average correlation coefficient for 20 subsets of HRRE database with the different classifiers output. 

Classifiers Avg. Corr. 

Coeff. 
Classifiers Avg. Corr. 

Coeff. 

MelFB-LNFB 0.80 MelFB1-MelFB2 0.85 

MelFB-PNCC 0.79 MelFB1-MelFB3 0.87 

MelFB-RPLP 0.74 MelFB1-MelFB4 0.85 

LNFB-PNCC 0.79 MelFB2-MelFB3 0.87 

LNFB-RPLP 0.75 MelFB2-MelFB4 0.85 

PNCC-RPLP 0.75 MelFB3-MelFB4 0.87 

Avg. 0.77 Avg. 0.86 
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HRRE database calculated for the outputs of different pairs of DNNs. In the Table 4.2 it is observed 

that the outputs of DNNs trained with different initializations but with the same features vector are 

more correlated than the outputs of the DNNs trained with different features. This results strongly 

suggests that there could be a greater complementarity between DNNs trained with engineered 

features than with DNNs trained from the same feature vector. 

4.3.2. Estimation of the DNN linear combination 

4.3.2.1. Flat-weight based combination 

A natural approach to performing the linear combination of DNNs is to employ flat-weights in (4.2) 

that are state and frame independent, i.e. 𝜔𝑟. By definition, ∑ 𝜔𝑟
𝑅
𝑟=1 = 1. A special case corresponds 

to uniformly distributed weights across all the DNNs: 

𝜔𝑟 =
1
𝑅⁄   . (4.3) 

4.3.2.2. Frame-by-frame based DNN combination 

To combine DNNs on a frame-by-frame basis one method based on the minimization of the mutual 

information and another one defined according to the maximization of a discrimination metric were 

evaluated. In the first case, the mutual information is estimated between the score of the best 

classifier and the pdf of the combined score generated by the linear combination of the first 

classifier and a second one [185,186].  Accordingly, consider that: 𝑚1(𝑠, 𝑛) and 𝑚2(𝑠, 𝑛) in (4.4) 

denote the pseudo LLKs provided by two DNNs; 𝑚1(𝑠, 𝑛) corresponds to the LLKs score of the 

most accurate DNN; and, the combined LLK scores is given by: 

�̂�(𝑠, 𝑛) = 𝜔1,𝑛 ⋅ 𝑚1(𝑠, 𝑛) + 𝜔2,𝑛 ⋅ 𝑚2(𝑠, 𝑛)  , (4.4) 

where 𝜔1,𝑛 = 1 − 𝜔2,𝑛. Observe that in (4.4) weights 𝜔1,𝑛 and  𝜔2,𝑛 depend on frame 𝑛  but are state 

independent.  The pdf of the combined score �̂� at a given frame 𝑛 is denoted by 𝑓[�̂�(𝑠, 𝑛)|𝑛, 𝜔2,𝑛]. 

As a result, the mutual information between 𝑚1(𝑠, 𝑛) and 𝑓[�̂�(𝑠, 𝑛)|𝑛, 𝜔2,𝑛] given frame 𝑛 and 

weight 𝜔2,𝑛  can be expressed as: 

𝐼{𝑚1(𝑠, 𝑛); 𝑓[�̂�(𝑠, 𝑛)|𝑛, 𝜔2,𝑛]|𝑛}

= 𝐻{𝑚1(𝑠, 𝑛)|𝑛} − 𝐻{𝑚1(𝑠, 𝑛)|𝑓[�̂�(𝑠, 𝑛)|𝑛, 𝜔2,𝑛], 𝑛} . 

(4.5) 

Weight 𝜔2,𝑛 could be obtained by maximizing the additional information provided by 

𝑓[�̂�(𝑠, 𝑛)|𝑛,𝜔2,𝑛]  to 𝑚1(𝑠, 𝑛), which is equivalent to minimizing the mutual information between 

𝑓[�̂�(𝑠, 𝑛)|𝑛,𝜔2,𝑛] and 𝑚1(𝑠, 𝑛), i.e.  𝐼{𝑚1(𝑠, 𝑛); 𝑓[�̂�(𝑠, 𝑛)|𝑛,𝜔2,𝑛]|𝑛}. Note that 𝐻{𝑚1(𝑠, 𝑛)|𝑛} in 

(4.11) does not depend on 𝑚1(𝑠, 𝑛) and to minimize the mutual information is equivalent to 

maximizing conditional entropy 𝐻{𝑚1(𝑠, 𝑛)|𝑓[�̂�(𝑠, 𝑛)|𝑛, 𝜔2,𝑛], 𝑛}. Consequently, the optimum 

weight in (4.5), �̂�2,𝑛, can be estimated according to: 

�̂�2,𝑛 = argmax
𝜔2,𝑛

〈𝐻{𝑚1(𝑠, 𝑛)|𝑓[�̂�(𝑠, 𝑛)|𝑛, 𝜔2,𝑛], 𝑛}〉  , (4.6) 

where 
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𝐻{𝑚1(𝑠, 𝑛)|𝑓[�̂�(𝑠, 𝑛)|𝑛,𝜔2,𝑛], 𝑛}

= −∑Pr{𝑚1(𝑠, 𝑛)|𝑓[�̂�(𝑠, 𝑛)|𝑛,𝜔2,𝑛], 𝑛}

𝑄

𝑖=1

⋅ log〈Pr{𝑚1(𝑠, 𝑛)|𝑓[�̂�(𝑠, 𝑛)|𝑛,𝜔2,𝑛], 𝑛}〉   , 

(4.7) 

and Pr{𝑚1(𝑠, 𝑛)|𝑓[�̂�(𝑠, 𝑛)|𝑛, 𝜔2,𝑛]}  is estimated by evaluating 𝑚1(𝑠, 𝑛)  in 𝑓[�̂�(𝑠, 𝑛)|𝑛, 𝜔2,𝑛]. 

Given frame 𝑛, the pdf´s of 𝑚1(𝑠, 𝑛), 𝑚2(𝑠, 𝑛) and �̂�(𝑠, 𝑛) can be approximated with Gaussian 

distributions, whose parameters (i.e. mean and variance) are, respectively, (𝜇𝑚1
, 𝜎𝑚1

2  ), (𝜇𝑚2
, 𝜎𝑚2
2  ) 

and  (𝜇�̂�, 𝜎�̂�
2  ). Accordingly, (𝜇�̂�, 𝜎�̂�

2  ) can be estimated as follows: 

𝜇�̂�(𝜔2,𝑛) = (1 − 𝜔2,𝑛) ⋅ 𝜇𝑚1
+ 𝜔2,𝑛 ⋅ 𝜇𝑚2

  , (4.8) 

𝜎�̂�
2 (𝜔2,𝑛) = 𝜔2,𝑛

2 ⋅ [𝜎𝑚1
2 + 𝜎𝑚2

2 − 2 ⋅ 𝐸[𝑚1(𝑠, 𝑛) ⋅ 𝑚2(𝑠, 𝑛)] + 2 ⋅ 𝜇𝑚1
⋅ 𝜇𝑚2

] 

                        −2 ∙ 𝜔2,𝑛 ⋅ [𝜎𝑚1
2 − 𝐸[𝑚1(𝑠, 𝑛) ⋅ 𝑚2(𝑠, 𝑛)] + 𝜇𝑚1

⋅ 𝜇𝑚2
] + 𝜎𝑚1

2   . 
(4.9) 

Due to the fact that (4.7) does not provide an analytical solution, �̂�2,𝑛 in (4.6) can be obtained 

by grid search. Note that optimal weight �̂�2,𝑛 is found on a frame-by-frame basis within each testing 

utterance. Accordingly, given utterance 𝑢, it is also possible to define an average optimum weight: 

�̂�2,𝑛̅̅ ̅̅ ̅̅ =
∑ �̂�2,𝑛
𝑁𝑢
𝑛=1

𝑁𝑢
   , (4.10) 

where 𝑁𝑢, is the number of frames in utterance 𝑢.  

The second criterion explored to determine the optimal weights on a frame-by-frame basis 

attempts to increase the discriminability in the decoding process [187]. To achieve this purpose, 

the following metric was employed: 

𝐷(𝑥𝑛) =
max {�̂�(𝑠, 𝑛)} − mean{�̂�(𝑠, 𝑛)}

SD{�̂�(𝑠, 𝑛)}
  ,  (4.11) 

where:  �̂�(𝑠, 𝑛) is defined as in (4.4) given a frame 𝑛; SD denotes standard deviation; and, 

max {�̂�(𝑠, 𝑛)}, mean{�̂�(𝑠, 𝑛)} and SD{�̂�(𝑠, 𝑛)} are obtained over all the states of the combined 

DNNs at frame 𝑛. Then, the optimal weight �̂�2,𝑛 can be achieved by maximizing 𝐷(𝑥𝑛): 

�̂�2,𝑛 = argmax
𝜔2,𝑛

{𝐷(𝑥𝑛)}  . (4.12) 
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4.4. DNN combination and LC/MBR 

In this section, two combination schemes are presented that represent an alternative or complement 

to the DNNs combination methods proposed in the previous section. 

4.4.1. Scheme with two systems 

Another alternative to perform the information fusion of two classifiers is the proposed 

combination scheme shown in Fig. 4.2.a. This scheme considers two of the DNN combination 

methods proposed above as well as the LC/MBR. 

4.4.2. Scheme with four systems 

Finally, it is proposed to combine four systems at the same time using the combination scheme 

shown in Fig. 4.2.b. This scheme, unlike the scheme proposed for two systems, uses only one of 

the DNNs combination method proposed here and the LC/MBR. 

 

a) 

 

 

 

b) 

 

 

Figure 4.2   Combination schemes using the proposed DNN combination methods and the LC/MBR used to combine 

a) two DNNs, as in Table 4.6, and b) four DNNs, as in Table 4.7. 
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4.5. Experiments 

4.5.1. Training and testing data 

For these experiments the test data from publicly-available real recordings of speech in a 

reverberant chamber with controllable RTs between 0.47 and 1.77 seconds was used.  The training 

data were developed by subjecting clean speech to simulated reverberation.  The databases are 

described in this section. 

4.5.1.1. Training data 

A multi-condition training database was generated based on the WSJ0 SI-284 corpus, which 

consists of about 81 hours of clean speech. The multi-condition database was derived from the 

entire clean SI-284 dataset.  Each utterance of the clean database was convolved with three different 

simulated RIRs selected randomly from a list of 30,000 RIRs. The RIRs were simulated using the 

Room Impulse Response Generator [177]. The RT values of the generated RIRs varied between 

0.4 and 2.4 seconds with an overall distribution of RTs that is shown in Fig. 4.3. The dimensions 

for each individual RIR were drawn from uniform distributions over the range of plus or minus 20 

percent of the nominal values of 7.95 meters length, 5.68 meters width and 4.5 meters height. The 

motivation was to not match exactly the dimensions of the reverberation chamber used to collect 

the test data. The speaker-to-microphone distance was drawn from a uniform distribution between 

0.144 and 2.816 meters. The speaker and microphone were placed in random locations at the room, 

using the distance that was selected for a particular trial, with the constraints that both speaker and 

microphone are at least 1 meter from any wall and between 1 and 2 meters from the floor. This 

randomization of the simulation parameters was implemented to reduce potential effects of artifacts 

caused by standing-wave phenomena in the rectangular shoebox-shaped room that RIR and other 

similar simulations based on the image method [178].  The resulting multi-condition database has 

a duration of 325 hours of which 25% are clean utterances. The size of the database is comparable 

to the amount of data in the Switchboard task [188]. In pilot experiments, also the CHiME-2 - 

Track 2 database was used [189].  This database is also based on the WSJ0 SI-284 dataset and was 

also obtained by convolving clean speech with binaural RIRs and adding background noise. 

 
Figure 4.3   Histogram of the reverberation times in the generated room impulse responses used to obtain 

the reverberated training data. 
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4.5.1.2. Testing data  

The HRRE database was used for system testing.  This database is described in detail in [180] and 

is publicly available for research purposes. The database is composed of re-recorded utterances 

from the Aurora-4 clean evaluation set. The recording was performed in a real reverberant chamber, 

varying the speaker-to-microphone distance and the reverberation time. The speaker-to-

microphone distances are 0.16, 0.32, 0.64, 1.28 and 2.56 meters. The resulting room RTs are 0.47, 

0.84, 1.27 and 1.77 seconds.  Altogether, there are 20 combinations of speaker-to-microphone 

distances and RTs.  Each combination is composed of 330 testing utterances. 

4.5.2. ASR systems 

Four DNN-HMM based ASR engines were trained in parallel using four different types of initial 

features: conventional MelFB, LNFB [105], PNCC [138], and RASTA-PLP (RPLP) [190]. Each 

classifier was trained using the Kaldi Speech Recognition Toolkit [33]. As usual, a GMM-HMM 

recognizer was trained on clean data using the tri2b Kaldi Aurora4 recipe. This recipe uses MFCC 

features and performs LDA and MLLT to train a triphone system. This GMM-HMM system is 

subsequently used to obtain clean forced alignments to the reverberant training data. The resultant 

alignments are employed as references to train the DNNs [111]. The DNN architecture is composed 

of seven hidden layers and 2048 units per layer. The input layer considers a context window of 11 

frames, with 5 frames before and 5 frames after the current frame. Finally, the minimum Bayes risk 

(MBR) decoding was performed considering the standard 5K lexicon and trigram language model 

from the WSJ database. 

4.6. Results and discussion 

4.6.1. Pilot results comparing the CHiME-2 and HRRE databases 

As an exploratory experiment, the real evaluation database, HRRE, was tested on a system trained 

with the CHiME-2 database using MelFB features as described in Section 4.5.2. The results are 

shown in Table 4.3, where a baseline WER% reported in the literature is also added for comparison 

purposes. As can be seen, the proposed system provides competitive accuracy on the CHiME-2 

evaluation. Nevertheless, system performance is much worse for the HRRE test data than for the 

CHiME-2 data.  This result suggests that CHiME-2 is not very representative of real reverberated 

data, which in turn justifies the use of the HRRE database. As will be shown, the WER for the 

HRRE database drops dramatically (77% relative) when the multi-condition training described in 

Section 4.5.1 is applied.  

4.6.2. Baseline experiments 

Baseline experiments were generated with the four feature sets (MelFB, LNFB, PNCC, and RPLP) 

using the HRRE testing database and multi-condition training as described in Section 4.5.1.  WPE 

 

Table 4.3   WER obtained for the CHiME-2 and HRRE databases using MelFB features. 

Train  Test AVG. 

CHiME-2 (Han [191])  CHiME-2 16.19 

CHiME-2+WPE  CHiME-2+WPE 15.29 

CHiME-2+WPE  HRRE+WPE 38.07 

Multi-condition  HRRE 8.67 
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was always applied in both the training and testing data for this experiment and all of the 

experiments that follow. Results are summarized in Tables 4.4 and 4.5, in which WERs were 

averaged across speaker-to-microphone distances and RTs, respectively. All tested features are 

spectral-based and almost all of them led to similar recognition accuracy, except for RPLP, which 

produced slightly worse results.  It is worth highlighting that all feature sets provided lower WERs 

than the WER obtained with the multi-condition training using MelFB features without WPE 

enhancement (see Table 4.3).   

4.6.3. ASR systems combination with two systems 

This section give attention to experimental results obtained by combining the results of the DNN 

classifiers using two different input features.  First results obtained using the combination methods 

discussed in Sections 4.3.2 and 4.4.1 were considered, with classifiers combined two at a time.  

Subsequently these data were compared to results obtained by combining all features streams at 

once. Statistical significance was estimated according to the NIST matched-pair sentence-segment 

word error test (MAPSSWE) [40]. 

4.6.3.1. LC/MBR 

For comparison reasons, the results obtained with this system combination method are presented 

for two systems in Table 4.6. The LC/MBR provide a reduction in WER equal to 3.4% in average 

when compared with de best single system baseline, i.e. MelFB. It is important to mention that all 

the DNN combination methods presented in Section 4.3.2 and the combination schemes in Section 

4.4.1 that are discussed in the following sections exceed the results obtained with this system 

combination method widely used in the literature. 

Table 4.4   WER obtained using MelFB, LNFB, PNCC and RPLP features.  Results were obtained using multi-

condition training and testing using the HRRE data, as described in Section 4.5.1. WPE was applied to both training 

and testing data.  WER is averaged over the speaker-to-microphone distances for each RT. 

 RT (s)  

Feature 0.47 0.84 1.27 1.77 AVG. 

MelFB 3.35 4.78 6.61 9.22 5.99 

LNFB 3.68 5.15 6.70 9.64 6.29 

PNCC 3.40 5.04 6.64 9.44 6.13 

RPLP 4.33 6.78 8.62 11.92 7.91 

 

Table 4.5   Same as Table 4.4 except that WER is averaged across the RTs for each speaker-to-microphone 

distance. 

 Speaker-to-microphone distance (m)  

Feature 0.16 0.32 0.64 1.28 2.56 AVG. 

MelFB 3.34 3.87 4.88 7.83 10.04 5.99 

LNFB 3.13 4.10 5.37 8.28 10.58 6.29 

PNCC 2.84 3.79 4.80 8.03 11.19 6.13 

RPLP 3.73 4.63 6.28 10.23 14.70 7.91 
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4.6.3.2. Flat-weight combination 

Section 4.3.2.1 above discusses the application of a fixed linear score combination, or Flat-weight 

combination.  Figure 4.4 depicts the actual average WER obtained when scores are combined from 

two classifiers using mixing parameter 𝜔 according to the equation �̂� = 𝜔 ∙ 𝑚1 + (1 − 𝜔) ∙ 𝑚2.  It 

can be seen in Fig. 4.4 that the curve describing WER as a function of 𝜔 generally has a rather 

shallow minimum and the value 𝜔 = 0.5 provides a WER that is close to optimal, which is between 

0.5 and 0.7 depending on the DNN combination. In fact, almost all tested features led to similar 

recognition accuracy individually. Similarly, the boxplots of the optimal value 𝜔 obtained in the 

20 HRRE testing subsets for each DNN pairs are shown in Fig. 4.5. As can be seen in Fig. 4.5, the 

optimal Flat-weight 𝜔 depends on the testing condition. When this subset-dependent value of 𝜔 is 

employed, the average reduction in the WER is about 1.7% relative to the WER obtained with 𝜔 =

0.5  across all testing conditions. Compared to the MelFB baseline system (Tables 4.4 and 4.5), the 

relative improvement using subset-dependent weights is 11.2%, while the Flat-weight equal to 0.5 

leads to an improvement of 9.7%. Recognizing that the best subsequent-dependent must be 

determined by exhaustive search for each condition, it is not considered that this additional 

improvement provided by subset-dependent weights to be particularly useful or practical. In most 

cases of DNN combination with two systems the best result was achieved by the combination using 

Flat-weight method, in just some cases other methods manage to overcome but not significantly. 

4.6.3.3. Frame-based combination 

The combination based on MMI described in Section 4.3.2.2 provided a relative improvement in 

WER equal to 7.4% when compared to the single MelFB-based classifier.  When this weight is 

averaged across all the frames within the testing utterance as in (4.10), a slight increase in WER is 

 
Figure 4.4   WERs obtained from grid search averaged across the 20 HRRE testing subsets vs the Flat-weight 

combination according to Section 4.2.2.  
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observed. Similarly, the metric based on discriminability defined in (4.12) led to a relative 

reduction in WER equal to 6.6% when compared to the MelFB baseline in Table 4.4 or 4.5.  

It is observed that the use of combination procedures based on optimal weighting and frame-

based combination according to mutual information, however well motivated, do not provide better 

WER than simple averaging the scores of the individual DNN-based recognizers. It is worth 

 
 

Figure 4.5   Optimal combination Flat-weight boxplots according to Section 4.3.2.1 for the 20 HRRE testing 

subsets for each pair of DNN. 

 

 

Table 4.6   WER averaged across all 20 HRRE testing data subsets. All possible combinations of two feature sets 

were tested.  Multi-condition training was employed as described in Section 4.5.1. WPE was applied to both 

training and testing data.  

Combination 
MelFB

-LNFB 

MelFB

-PNCC 

MelFB 

-RPLP 

LNFB- 

PNCC 

LNFB- 

RPLP 

PNCC- 

RPLP 
AVG. 

LC/MBR 5.57 5.60 5.90 5.57 5.88 6.21 5.79 

Flat-weight (0.5) 5.24 5.31 5.33 5.41 5.46 5.72 5.41 

Optimal weight 5.19 5.25 5.21 5.38 5.34 5.57 5.32 

MMI 5.45 5.54 5.45 5.62 5.56 5.67 5.55 

MMI avg. 5.47 5.57 5.46 5.70 5.59 5.66 5.57 

Discriminability 5.40 5.54 5.51 5.60 5.54 5.98 5.60 

Flat-weight/MMI + LC/MBR 5.26 5.34 5.23 5.42 5.35 5.62 5.37 

Flat-weight/Discriminability + LC/MBR 5.26 5.34 5.29 5.45 5.41 5.75 5.41 

MMI/Discriminability + LC/MBR 5.31 5.48 5.37 5.53 5.42 5.72 5.47 
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highlighting that the combining using frame-based methods do not require any tuning or prior 

information about the accuracies of the individual DNN-based classifiers. 

4.6.3.4. DNN combination and LC/MBR scheme 

When two DNNs were combined, the best result was obtained by the scheme with Flat-

weight/MMI and LC/MBR leading to an improvement of 10.4% compared to the MelFB baseline 

(Tables III or IV) and 0.8% compared to the Flat-weight (significant at level 𝑝 < 0.002) without 

any tuning or a priori information of the individual ASR accuracy. 

The scheme Flat-weight/MMI+LC/MBR led to significant relative improvements of 1.9% 

(𝑝 <  0.005), 2.0% (𝑝 < 0.002) and 1.6% (𝑝 < 0.011) with MelFB-RPLP, LNFB-RPLP and 

PNCC-RPLP, respectively when compared to the Flat-weight DNNs combination method. In 

addition, on average this method led to a significant improvement of 0.8% (𝑝 < 0.002) when 

compared to Flat-weight method. 

4.6.4. ASR systems combination with four systems 

Table 4.7 describes the results obtained by combining the systems of all four different feature sets 

(MelFB, LNFB, PNCC, and RPLP) and four systems trained with the same feature set (MelFB) 

with different network initialization. 

4.6.4.1. LC/MBR 

The LC/MBR strategy by itself led to an improvement of 11.92% compared to the MelFB baseline. 

However, all proposed methods and schemes manage to overcome this combination method. 

4.6.4.2. Flat-weight and UD (1/N) 

For practical reasons the tuning of the DNNs combination for each testing subset was not 

performed. Combining the classifier outputs with uniform flat coefficients produced a relative 

improvement in WER of 17.5% relative to the best single-classifier baseline using MelFB features 

and 6.4% relative to the LC/MBR. However, the uniform distribution of weights may be a 

consequence of the fact that all the DNNs provide similar recognition accuracy. 

4.6.4.3. DNN combination and LC/MBR 

If the DNNs combination methods and LC/MBR are used together, in all cases improvements with 

respect to using only LC/MBR were achieved. In addition, the best results were obtained using the 

 

Table 4.7   WER obtained when combining the four DNNs trained with different features and trained with 4 

different initializations using the MelFB.  

 
MelFB–LNFB– 

PNCC–RPLP 

MelFB with 4 DNN 

initializations 

LC/MBR 5.28 5.88 

Flat-weight 4.94 5.69 

Flat-weight + LC/MBR 4.91 5.67 

MMI + LC/MBR 5.07 5.71 

MMI avg. + LC/MBR 5.06 5.72 
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Flat-weight+LC/MBR scheme leading to an improvement of 18% compared to the MelFB baseline 

(Tables III or IV). However, this combination scheme does not achieve significant improvements 

with respect to using Flat-weight method by itself. 

4.6.4.4. Different initialization MelFB systems  

Adequate reduction in WER could be obtained with a single set of features simply by combining 

systems that had been subject to different parameter initializations. To address this issue, four ASR 

systems using the best-performing single feature set (MelFB) with different sets of initial 

conditions for the DNN weights were trained, as was done in Section 4.5.2. The results of these 

experiments are summarized in the right column of Table 4.7. It is important to mention that for 

every single testing condition described in Table 4.7 substantially lower WERs were observed 

when ASR systems with different input features were combined (left column) than when ASR 

systems with different system initializations were combined (right column). 

4.7. Conclusions 

In this chapter, DNN and system combination is proposed to address the ASR robustness in highly-

reverberant real environment. The experimental results were mainly obtained using a publicly 

available naturally-recorded highly reverberant speech data. The individual classifiers were trained 

with multi-condition fashion on about 330 hours of artificially-degraded speech and WPE was 

applied consistently to training and testing data. Furthermore, the complementarity of acoustics 

models trained with the same data but with different signal representation in reverberated speech 

data was discussed. DNN fusion methods based on flat-weight combination, the minimization of 

mutual information and the maximization of discrimination metrics were proposed and evaluated. 

Schemes that consider the combination of ASR systems with lattice combination and minimum 

Bayes risk decoding were also tested and combined with DNN fusion techniques. It was shown 

that significant improvements in WER can be achieved by combining the scores of state-of-the-art 

DNN-based ASR systems with different feature sets, obtaining relative improvements of 10.4% 

with two classifiers and 18.0% with four classifiers when compared to the best single-classifier 

baseline, without any tuning or a priori information of the ASR accuracy, on a difficult testing 

database of highly reverberated naturally-recorded speech data. It is worth highlighting that DNN 

combination with uniform flat weights provided reductions in WER equal to 9.7% and 17.5% using 

two and four classifiers, respectively, when compared to the best single-classifier baseline. This 

result must be due to the fact that all the single DNN-HMM systems except one led to similar 

accuracies. As a reference, the lowest WER was achieved when the flat-weight was tuned on each 

testing sub-data. 
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Chapter 5 

Final conclusions and future work 
 

In this thesis, the additive noise problem is addressed using uncertainty variance in noise cancelling 

in the decoding process of the state-of-the-art automatic speech recognition systems. Additionally, 

the problem of additive noise and the time-varying acoustic channel in human-robot interaction 

scenarios is tackled by a proposed an ASR training strategy that considers these disturbances 

produced by the acoustic environment. Moreover, the reverberation problem is also addressed by 

combining different acoustic models to achieve the robust recognition systems in highly-

reverberant real environments.  

According to the results obtained with the proposed uncertainty weighting scheme, 

underweighting frames with high uncertainty leads to significant improvements using clean 

training. The parameters of the proposed scheme can be optimized on a task-dependent or utterance 

dependent basis. Furthermore, the proposed scheme addresses the problem of acoustic/phonetic 

and language model combination that has not been exhaustively explored in the literature. Even 

though the uncertainty weighting scheme does not lead to significant improvements with multi-

noise/multi-condition training, it can still reduce the gap with clean training. This is an important 

issue because it is not always possible or feasible to train a system in the same testing conditions. 

Also, the proposed scheme can thus be applied to any network topology that delivers log-

likelihood-like scores, it can be combined with any distortion removal technique or front end, and 

it requires a very low additional computational cost with some configurations.  

The popular black box integration of automatic speech recognition technology in HRI 

applications was improved with the addition of the HRI environment representation and modeling. 

Also, it was proposed that the robot and user states and contexts should be included in the voice-

based HRI.  Accordingly, this thesis focused on the environment representation and modeling by 

training a deep neural network-hidden Markov model based automatic speech recognition engine 

combining clean utterances with the acoustic-channel responses and noise that were obtained from 

an HRI testbed built with a PR2 mobile manipulation robot. This method avoids recording a 

training database in all the possible acoustic environments given an HRI scenario. Furthermore, 

different speech recognition testing conditions were produced by recording two types of acoustics 

sources, i.e. a loudspeaker and human speakers, using a Microsoft Kinect mounted on top of the 

PR2 robot, while performing head rotations and movements towards and away from the fixed 

sources. In this generic HRI scenario, the resulting automatic speech recognition engine provided 

a word error rate that is at least 26% and 38% lower than publicly available speech recognition 

APIs with the playback (i.e. loudspeaker) and human testing databases, respectively, with a limited 

amount of training data. 

This thesis also addressed the combination of complementary parallel speech recognition 

systems to reduce the error rate of speech recognition systems operating in real highly-reverberant 

environments. The systems considered used four different feature sets and were trained using 

DNN-based techniques on 330 hours of data. The testing environment consists of recordings of 

speech in a calibrated real room with reverberation times from 0.47 to 1.77 seconds and speaker-

to-microphone distances of 0.16 to 2.56 meters. The systems were combined both at the level of 

the DNN outputs and at the level of the final ASR outputs. The use of system combination provided 
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up to 18.0% relative improvement in WER, compared to the best individual system. The greatest 

improvements in WER were obtained when systems were combined both at the outputs of the 

DNNs and at the final hypothesis level. It was also observed that system combination at the level 

of the outputs of the DNNs alone is more effective than system combination at the level of the 

output hypotheses alone, consistent with earlier findings in other domains. On average, a simple 

uniform weighting of DNN outputs provides the best results of all approaches examined at the 

DNN-output level, considering all the data on average. Nevertheless, the optimum linear 

combination weights depend on the experimental conditions such as RT and speaker-microphone 

distance, as well as which pair of systems is being combined. 

Improving the robustness of voice-based HRI with the user and robot context is proposed for 

future research. Also, the use of beamforming schemes in combination with the proposed time-

varying acoustic channel representation and modeling should be explored. Finally, it is worth 

highlighting that the results reported in this thesis were achieved with experiments on English 

databases for comparison purposes with methods published elsewhere. However, the 

implementation of the techniques presented here on Spanish language is straightforward.  
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Glossary of acronyms and abbreviations 
 

ASR Automatic Speech Recognition 

API Application Programming Interface 

ANN Artificial Neural Network 

BP Backpropagation 

CMVN Ceptral Mean and Variance Normalization 

CMN Ceptral Mean Normalization 

CNC Confusion Network Combination 

CDNN Convolutional Deep Neural Network 

CNN Convolutional Neural Network 

CE Cross Entropy 

DOC Damped Oscillator Coefficients 

DBN Deep Belief Network 

DNN Deep Neural Network 

DTW Dynamic Time Warping 

ESR Empty String Rate 

EbT Environment-based Training 

fCNN fused-CNN 

GT Gammatone 

GFC Gammatone Filter Coefficients 

GMM Gaussian Mixture Model 

GSD Generalized Synchrony Detector 

HMM Hidden Markov Model 



 

63 

 

HRRE Highly-Reverberant Real Environments 

HRI Human Robot Interaction 

IR Impulse Response 

LDA Linear Discriminant Analysis 

LNCC Locally Normalized Cepstral Coefficient 

LNFB Locally Normalized Filter Bank 

LLK Log-Likelihood 

LSTM Long Short-Term Memory 

MAPSSWE Matched-Pair Sentence-Segment Word Error  

MBR Minimum Bayes Risk 

LC/MBR Lattice Combination and Minimum Bayes Risk Decoding 

MCS Multiple Classifier Systems 

MLLT Maximum Likelihood Linear Transformation 

MVN Mean and Variance Normalization 

MN Mean Normalization 

MSE Mean Square Error 

MelFB Mel Filter Bank 

MFCC Mel Frequency Cepstral Coefficients 

MMSE Minimum Mean Square Error 

MLP Multilayer Perceptron 

NMF Non-Negative Matrix Factorization 

NMC Normalized Modulation Coefficients 

PLP Perceptual Linear Predictive 

PR2 Personal Robot 2 
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PNCC Power Normalized Cepstral Coefficients 

PCA Principal Components Analysis 

RNN Recurrent Neural Network 

RASTA Relative Spectra 

RPLP Relative Spectra Perceptual Linear Predictive 

RT Reverberation Time 

RIR Room Impulse Response 

STFT Short-Time Fourier Transform 

SS Spectral Subtraction 

SE Speech Enhancement 

SWV Stochastic Weighted Viterbi 

SSF Suppression of Slowly-varying components and the Falling edge 

TVAC Time-Varying Acoustic Channel 

UW Uncertainty Weighting 

UoO Uncertainty-of-Observation 

UT Unscented Transform 

WFST Weighted Finite State Transducer 

WPE Weighted Predicted Error  

WoZ Wizard-of-Oz 

WER Word Error Rate 
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