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A DEEP LEARNING BASED FRAMEWORK FOR PHYSICAL ASSETS' 

HEALTH PROGNOSTICS UNDER UNCERTAINTY FOR BIG 

MACHINERY DATA 

The ongoing development in sensor technology has allowed engineers to monitor complex systems 

through multisensorial data, generating thousands of data-points in time. This big machinery 

database is commonly stored to later be used by engineers for reliability purposes through 

traditional Prognostics and Health Management (PHM) techniques. However, most part of this 

valuable information is often wasted since PHM methods frequently rely on expert knowledge for 

their implementation, as well as a good understanding of the physics of failure that govern the 

system. Hence, to estimate reliability related parameters, such as the State of Health (SOH) or the 

Remaining Useful Life (RUL) of electrical and mechanical components, data-driven approaches 

can be applied to complement PHM methods. 

In this context, the purpose of this thesis is to develop and implement a novel Deep Learning (DL) 

framework for the health state estimation of systems and components, based on big machinery data. 

Accordingly, the following specific objectives are defined: Develop an architecture capable of 

extracting temporal and spatial characteristics from the data. Propose a health state estimation 

framework, and validate it using two benchmark datasets: C-MAPSS turbofan engine, and CS2 

Lithium-Ion Batteries datasets. Finally, give an estimation of the uncertainty propagation for the 

health state prognostics yield by the proposed framework. 

This thesis proposes a DL framework, which integrates the advantages of spatial management from 

Convolutional Neural Networks, along with the sequential analysis capabilities from Long-Short 

Term Memory Recurrent Neural Networks. Dropout is used as a regularization technique, as well 

as a Bayesian Approximation for the estimation of the uncertainty of the model. Henceforth, the 

proposed architecture is named CNNBiLSTM. 

For the C-MAPSS dataset, four different models are trained, one for each sub-dataset, aimed to 

estimate the RUL. All four models yield state-of-the-art results for the Root Mean Square Error 

(RMSE) on their prognostics, showing robustness in the training process and small uncertainty for 

the test RMSE as well as for the RUL prediction. Similar results are obtained for the CS2 dataset, 

where the model trained using all battery cells estimates the State of Charge and SOH of the 

batteries with a lower RMSE than the state-of-the-art results, and a small uncertainty over its 

estimated values. 

Results yielded by the trained models show that the proposed DL framework is adaptable to 

different systems and can successfully obtain abstract temporal relationship from the sensorial data 

for reliability assessment. Furthermore, models show robustness during the training process, as 

well as an accurate output estimation with a small uncertainty. 



RESUMEN DE LA TESIS PARA OPTAR 

AL GRADO DE: MAGISTER EN CIENCIAS DE LA  

INGENIERÍA, MENCIÓN MECÁNICA 

POR: SERGIO COFRÉ MARTEL 

FECHA: 2018 

PROF. GUÍA: ENRIQUE LÓPEZ DROGUETT 

 

ii 

 

MARCO DE TRABAJO BASADO EN APRENDIZAJE PROFUNDO PARA 

PRONÓSTICO BAJO INCERTIDUMBRE DE SALUD DE ACTIVOS 

FISICOS PARA DATOS DE MAQUINARIA 

El desarrollo en tecnología de mediciones ha permitido el monitoreo continuo de sistemas 

complejos a través de múltiples sensores, generando así grandes bases de datos. Estos datos 

normalmente son almacenados para ser posteriormente analizados con técnicas tradicionales de 

Prognostics and Health Management (PHM). Sin embargo, muchas veces, gran parte de esta 

información es desperdiciada, ya que los métodos tradicionales de PHM requieren de conocimiento 

experto sobre el sistema para su implementación. Es por esto que, para estimar parámetros 

relacionados a confiabilidad, los enfoques basados en análisis de datos pueden utilizarse para 

complementar los métodos de PHM. 

El objetivo de esta tesis consiste en desarrollar e implementar un marco de trabajo basado 

en técnicas de Aprendizaje Profundo para la estimación del estado de salud de sistemas y 

componentes, utilizando datos multisensoriales de monitoreo. Para esto, se definen los siguientes 

objetivos específicos: Desarrollar una arquitectura capaz de extraer características temporales y 

espaciales de los datos. Proponer un marco de trabajo para la estimación del estado de salud, y 

validarlo utilizando dos conjuntos de datos: C-MAPSS turbofan engine, y baterías ion-litio CS2. 

Finalmente, entregar una estimación de la propagación de la incertidumbre en los pronósticos del 

estado de salud.  

Se propone una estructura que integre las ventajas de relación espacial de las Convolutional 

Neural Networks, junto con el análisis secuencial de las Long-Short Term Memory Recurrent 

Neural Networks. Utilizando Dropout tanto para la regularización, como también para una 

aproximación bayesiana para la estimación de incertidumbre de los modelos. De acuerdo con lo 

anterior, la arquitectura propuesta recibe el nombre CNNBiLSTM.  

Para los datos de C-MAPSS se entrenan cuatro modelos diferentes, uno para cada 

subconjunto de datos, con el objetivo de estimar la vida remanente útil. Los modelos arrojan 

resultados superiores al estado del arte en la raíz del error medio cuadrado (RMSE), mostrando 

robustez en el proceso de entrenamiento, y baja incertidumbre en sus predicciones. Resultados 

similares se obtienen para el conjunto de datos CS2, donde el modelo entrenado con todas las celdas 

de batería logra estimar el estado de carga y el estado de salud con un bajo RMSE y una pequeña 

incertidumbre sobre su estimación de valores.  

Los resultados obtenidos por los modelos entrenados muestran que la arquitectura propuesta 

es adaptable a diferentes sistemas y puede obtener relaciones temporales abstractas de los datos 

sensoriales para la evaluación de confiabilidad. Además, los modelos muestran robustez durante el 

proceso de entrenamiento, así como una estimación precisa con baja incertidumbre.  
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Introduction 

 

Ever since the creation of their first tools and machines1, humans have had to deal with different 

kinds of degradation and failure problems in their inventions due to corrosion in materials, fatigue 

in structures, or maybe just poor design choices. These issues became more notorious after the 

Industrial Revolution, where enormous production plants were created seeking to produce as many 

goods at the lowest cost as possible, involving hundreds and perhaps thousands of machines that 

were doomed to unexpectedly fail if proper care was not taken through maintenance. Economies 

of Scale and production optimization dictate that a fundamental step to effectively achieve such 

production levels, is to minimize the downtime of the involved equipment. However, predicting 

the future behavior of a system is not an easy task, which is why Reliability Engineering plays a 

fundamental role at every stage of the production industry: design, quality control, monitoring, and 

maintenance planning. For the latter, reliability engineers have usually applied traditional 

Prognostics and Health Management (PHM) techniques based on statistical approaches to obtain 

quantitative information from the studied components, where the Mean Time to Failure (MTTF) 

and the Remaining Useful Life (RUL) are the most known metrics.  

 

PHM techniques have proven to be effective and reliable in their results. Nevertheless, perhaps one 

of their main handicaps is that each studied component must be treated as a new individual 

challenge, since not all machines operate in the same manner. For instance, the physics behind the 

functionality of a cellphone’s battery completely differs from the mechanisms observed in the 

gearbox of a regular automobile.  Furthermore, the physics of failure that govern these different 

phenomena usually lack numerical models for engineers to rely on. Hence, to properly obtain and 

analyze data from reliability tests for a given system, expert knowledge is required for the broad 

understanding of its health state. In particular, complex systems that are continuously monitored 

through sensor measurements, such as temperature, pressure, vibration, amongst others; generate 

thousands of data-points which contain valuable information related to the correlation of their 

variables in the temporal space. Most of the time, this information is wasted when analyzed with 

traditional PHM methods, since they are not sufficient to fully comprehend the future behavior of 

the system, nor to obtain abstract information from the measured variables. 

                                                 

 

 
1 Considering a machine as any artefact which can execute a given task, such as a bucket to pull out water from a well. 
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Lately, many limitations presented by traditional PHM methods have been addressed by reliability 

engineers from a data-driven perspective. Indeed, the ongoing development of Machine Learning 

(ML) and Deep Learning (DL) techniques, along with computational hardware advances, have 

allowed engineers to study and implement such algorithms in different areas. For instance, Support 

Vector Machines (SVM) and Random Forest (RF) are two examples of traditional ML techniques 

used for classification tasks, which can be applied to classify the health state of a system based on 

data measured from its monitoring sensors. Moreover, ML approaches such as Support Vector 

Regression (SVR) and Artificial Neural Networks (ANN) are commonly used for regression tasks, 

obtaining models which are trained to yield an estimated value of a desired variable based on a 

given input data. On the other hand, DL techniques aim to tackle similar challenges than ML 

(classification and regression), but with models highly capable of extracting abstract features from 

the given data. Architectures such as Convolutional Neural Networks (CNN), Auto-Encoders (AE), 

Recurrent Neural Networks (RNN), amongst others, have widely been applied to tasks regarding 

image classification, temporal data analysis, fault detection, and speech recognition, to name a few. 

These methods are categorized as deep learning algorithms since they perform two or more step-

analysis over the data, also known as layers. However, as powerful as these techniques might be, 

for many years their application had been limited in areas which require an immediate response, 

due to the excessive computational resources needed by the algorithms, as is the case for Reliability 

Engineering problems. Nevertheless, the development of Graphis Processing Units (GPU) 

enhanced computation, and this has allowed the implementation of DL techniques in the risk and 

reliability area. Thus, by using data obtained from sensor measurements, PHM methods can be 

improved or surpassed by data-driven approaches, reducing the computing time needed to yield 

model results and data preprocessing, and increasing accuracy.  

 

In this thesis, a deep learning framework is presented to estimate the state of health under 

uncertainty of any system, based on big machinery data. That is, the framework analyses 

multisensorial data obtained from the equipment monitoring for long periods of time. The approach 

consists of two convolutional layers to obtain an abstract representation of the sensors’ correlation 

at each time-step, followed by a bidirectional Long-Short Term Memory Recurrent Neural 

Network for the temporal analysis. Two different datasets are used to train, test and validate the 

proposed architecture. These consist of a Turbofan Engine and a Lithium-Ion Battery Cell.   

1.1 Motivation 

For the last decade, data-driven machine health monitoring systems (MHMS) approaches have 

strongly been introduced in the reliability community, encouraged by the need to accurately predict 

future behavior of variables that govern complex machinery [1]–[3]. This is particularly true for 

mechanical components, since these systems are usually provided with online monitoring with 

sensorial devices such as thermocouples, barometers, and vibration sensors. Machinery data can 
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be stored to develop indicators which can be used to prevent future loss in production or failure of 

the system, such as the remaining useful life (RUL) of a component [4], [5].  

 

Given the advantage of automatic feature extraction and the higher level of abstraction that can be 

achieved from the collected data without specific expert knowledge [6]–[8], deep learning 

networks have been employed in many reliability problems such as fault diagnostics in gearboxes 

[9]–[11], sensorial data interpretation [1], [12], [13],  and vibration analysis [14]–[17].  For 

example, Oh et al. [15] proposed a deep learning engineering method for the unsupervised feature 

extraction from vibration images. The extracted features were then used for classification in 

diagnostics of a rotational machinery, acquiring a classification accuracy above 95% for three 

different case studies. Another similar application was used by Shao & Jiang [16], who collected 

experimental signals from electric locomotive bearings, which were later analyzed with a novel 

convolutional deep belief network for automatic feature extraction and classification. 

 

Furthermore, as well as in Mechanical Engineering applications, reliability applied MHMS 

methods have been intensively studied for Electrical Engineering problems. Indeed, the ongoing 

development in renewable energies and electrical vehicles (EV) [18]–[27] has led researchers to 

focus their efforts on improving the control and optimization of Energy Storage Devices (ESD) 

through sophisticated Battery Management Systems (BMS).  In this context, it is desired to develop 

performance indicators such as the State-of-Charge (SOC) and the State-of-Health (SOH), which 

can allow the user to estimate the autonomy and remaining useful life of these pieces of equipment 

[28]. The SOC reflects the remaining amount of energy available for usage in the device, according 

to the maximum energy that it can hold, whereas the SOH gives a measure of the degradation of 

the battery based on the loss of a given functionality (such as the capacity to store energy).  

 

There are two main approaches for the estimation of such performance indicators of an ESD. On 

one hand, the most widely studied methods are based on Lumped Thevenin equivalent electric 

models [29] that characterize the relationship between the battery’s SOC and its internal 

impedance. These models usually consider the energy storage capacity to be unalterable during the 

discharge process; allowing to approximate the cyclical charge-discharge behavior in laboratory 

tests at a reasonable rate. On the other hand, the development on Machine Learning and Deep 

Learning techniques have boosted the use of Data-Driven Approaches (DDA) as a complement to 

traditional methods for the estimation of the SOC, where Neural Networks are the most commonly 

used technique for this task [30]–[37]. Nevertheless, as it will further be discussed, there are still 

many DL applications that are yet to be experimented in this area. 
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1.2 Objectives and Statement  

The objectives and scope for the thesis work are presented as follows. 

1.2.1 General Objective 

Develop and implement a deep learning-based framework for the health state estimation of physical 

assets based on big machinery data. 

1.2.2 Specific Objectives 

• Develop a deep learning architecture capable of extracting temporal and spatial 

characteristics from big machinery data obtained from multisensorial measurements. 

• Create a framework for the health state estimation. 

• Apply and validate the framework’s performance on the Remaining Useful Life prognostics 

on the C-MAPSS Turbofans dataset. 

• Apply and validate the framework’s performance on the State of Charge and State of Health 

prognostics on the CS2 Lithium-Ion Batteries dataset. 

• Give an uncertainty propagation estimation for the health state prognostics yielded by the 

proposed framework. 

1.2.3 Statement and Thesis Scope 

This thesis work is intended to propose and validate a deep learning framework to yield accurate 

prognostics on the state of health of a system. The proposed framework is validated using two 

different datasets, and the performance results are properly presented in tables and figures. 
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Methodology 

In order to successfully fulfill the objectives of the present thesis work, the following steps are 

implemented.  

2.1 Literature Review 

Until recently, Deep Learning and Reliability Engineering had been treated as completely separated 

fields. However, nowadays it is not uncommon to see new applications combining both areas 

published in Journals and Reliability related conferences. Henceforth, it is necessary to implement 

an extensive literature review of these applications, to identify those areas where an innovative 

contribution can be made to solve challenges related to the risk and reliability community. 

2.2 Deep Leaning Framework Proposal 

According to the literature review, a deep learning framework is proposed for the estimation and 

prognostics of the health state of an equipment. The framework is meant to be applicable to any 

component summited to cycling stresses, whose operational data was measured and stored for later 

analysis. 

2.3 Validation Datasets 

To validate the proposed framework, different datasets are chosen which can later be used to train 

models. These datasets correspond to the benchmark turbofan C-MAPSS dataset, as well as the 

Lithium-Ion Battery CS2 dataset from the Center for Advanced Cycle Engineering (CALCE) from 

the University of Maryland. 

2.4 Model Training 

For each validation dataset, different models are trained using the proposed deep learning 

framework. Here, the hyperparameters which define the framework’s architecture are tuned to fit 
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the corresponding datasets. Models are trained ten separate times in order to obtain an estimation 

on the training robustness of the architecture, and thus evaluate the performance metrics for each 

model over the average of all training procedures.  

 

2.5 Results, Metrics and Uncertainty 

The models’ performance is evaluated through different metrics associated with the dataset. For 

the C-MAPSS dataset, the Root Mean Square Error (RMSE) is used as well as a Score value 

assigned by the PHM data challenge. CS2 Lithium-Ion batteries dataset is also evaluated with the 

RMSE metrics. Moreover, for both dataset, an uncertainty measurement of the estimated results is 

given for the RMSE of each model, along with uncertainty for the estimation value itself.  
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Background 

The following chapter details the necessary background to successfully achieve the objectives 

stated for this thesis wok. First, a quick review is given on the definition and purposes of Machine 

Learning and Deep Learning. In this context, DL techniques are thoroughly explained, addressing 

their advantages and applications. An exhaustive state-of-the-art literature revision is presented on 

the applications of DL techniques in health assessment for rotational mechanical equipment, as 

well as in ESD. Lastly, to validate the proposed DL framework, two datasets are presented along 

with their respective metrics.  

3.1 Machine Learning 

Traditionally, to describe a process or phenomena, scientists study the behavior of a system under 

controlled boundary conditions, seeking to analyze the different effects over the systems’ 

functionality. After many tests and observations, complex specific models can be obtained which 

are adjusted to describe the acquired data. These models are usually dependent on one or many 

intrinsic properties of the system. For instance, constants 𝐶 and 𝑚 in the Paris’ Law (Equation 1) 

describe how the crack length 𝑎 changes under a cyclical fatigue stress Δ𝐾 over a certain number 

of cycles 𝑁. Another example is the mass 𝑚 on Newton’s famous Second Law (Equation 2), where 

the force vector  𝐹⃗ needed to accelerate a body by a vector 𝑎⃗, is proportional to its mass. The 

process of finding these relationships that can accurately model observable phenomena might take 

months, years or even decades. Sometimes a dead end is hit, wasting valuable time and effort. 

These models are commonly represented by differential equations or parametric functions and thus 

can be extremely limited by boundary conditions or properties such as the geometry of the system.   

 

𝑑𝑎

𝑑𝑁
= 𝐶Δ𝐾𝑚 (1) 

 

𝐹⃗ = 𝑚 ⋅ 𝑎⃗ (2) 

 

In quest of overcoming these issues, Machine Learning techniques became popular in the early 

90’s. Machine Learning is the field of study that gives computers the ability to learn to execute a 

specific task without being explicitly programmed for it. Based on a given dataset, ML algorithms 

use different methods to automatically detect patterns within the data, which are later used to 

predict future values of determined variables or some other task regarding decision making [38]. 
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In a more formal manner, it is said that a ML computer program (model) learns from experience E 

(data) to complete a certain task T (output) if its performance on T improves with experience E, 

where the performance is evaluated by a chosen metric measure P [39]. That is, if the model can 

train itself given new input data and yield better results for the evaluation metric P, then the ML 

algorithm is capable of learning how to model or interpret the desired output variable from the 

input data. Thus, the performance of any ML algorithm depends heavily on the representation of 

the data it is given. 

 

Nowadays there are an overwhelming amount of ML techniques designed for thousands and 

perhaps millions of different applications. However, the main structure of how these algorithms 

work is common for the parametric models. First, it is said that a parametric ML algorithm is 

trained to learn from data and perform a given task, meaning that the program has a set of 

Parameters which need to be tuned according to the given training data. Parameters are usually 

adjusted by minimizing or maximizing a cost function, such as the Mean Square Error (MSE), or 

a Maximum Likelihood Estimator (MLE). The algorithm may also depend on other restrictions set 

by the programmer beforehand, defined as Hyperparameters. To train itself, a ML algorithm uses 

the training set, where each sample within this data corresponds to a training instance. During the 

training process, the ML program will become better at one particular task by optimizing the cost 

function, using only the information in the training set to do so. The performance of the model is 

evaluated through a metric to be defined by the programmer, which will variate depending on the 

problem the algorithm is intended to solve (e.g. Root Mean Square Error and Accuracy for 

regression and classification, respectively), as it will be further discussed in this chapter.  

 

The principal advantage of ML techniques is that they automatically learn to interpret the data 

without explicitly writing down the general rules that govern the system, nor do they need detailed 

information about the problem to be solved. Hence, the program is much shorter, easier to maintain, 

and most likely more accurate. This makes ML algorithms ideal for problems that are either too 

complex for traditional approaches or have no known models that can describe the studied system. 

Thus, ML techniques come in handy when dealing with engineering problems where the root cause 

of a phenomena, such as the mean time to failure of a component, is unknown. 

 

Given that there are several Machine Learning techniques, these are commonly clustered in specific 

groups depending on the objective they are intended for, and on the information the algorithm is 

given during the training process. The former separates the algorithms in Regression and 

Classification tasks, whereas the latter divides them in Supervised and Unsupervised training. 

3.1.1 Classification and Regression 

One common sorting for ML algorithms comes from the question: What is the algorithm trying to 

achieve with the incoming data? Here, two different approaches arise: Classification and 

Regression. On one hand, a Classification problem consists on obtaining a model which can map 

and input data 𝒙 into a class 𝑦𝑖, with 𝑦𝑖 = {1, . . . , 𝐶}, where 𝐶 is the number of classes. For instance, 
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one benchmark dataset to test how well a model can perform in a classification task comes from 

the Modified National Institute of Standards (MINST) dataset2 [40], where handwritten digits from 

0 to 9 are saved in 28x28 pixels images in a grayscale from 0 to 255, such as the ones shown in 

Figure 3.1. The challenge of this dataset consists on correctly classifying each image to its 

corresponding digit. As it was previously mentioned, classification algorithms used to solve 

problems of this nature can be trained either from a supervised or unsupervised approach, 

depending on the available data, computation power, and the particular interest of the programmer. 

 

 

 
 

 

A Regression algorithm, on the other hand, is trained to estimate a continuous variable 

𝑦 = 𝑓(𝒙), where 𝒙 can be a multidimensional input vector. That is, given a training set 𝒙, where 

𝒙𝒊 ∈ ℝ
𝑁, the regression task consists on finding a mapping function 𝑓(𝒙𝒊) that can accurately 

estimate the value 𝑦𝑖 ∈ ℝ. Figure 3.2 shows two examples of regression models, where the model 

on the left hand-side uses a linear regression model, which cannot give a proper estimation of the 

data, whereas the model shown on the right hand-side is a good regression model which could 

successfully adjust itself to fit the desired output values. 

 

                                                 

 

 
2 Available at http://yann.lecun.com/exdb/mnist/ 

 
Figure 3.1: MNIST digit samples. 

 

http://yann.lecun.com/exdb/mnist/
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3.1.2 Supervised and Unsupervised Learning 

Another common categorization for ML techniques comes from answering the question: What 

information is the program given to be trained? The answer to this question will depend on whether 

the training set contains information about the desired values that need to be obtained from the 

model or not. Supervised models seek to learn a mapping function from an input 𝒙 to an output 𝑦. 

Where 𝒙 can be anything from a 𝑁 dimensional vector, where each dimension represents a feature, 

as well as more complex data such as images or tensors. Moreover, 𝑦 can represent either a 

categorical variable or a real-valued scalar, when dealing with a classification or regression 

problem, respectively. During the training process, the algorithm is given a training set of labeled 

data pairs 𝐷𝑠 = {(𝒙𝒊, 𝑦𝑖)}𝑖=1
𝑁 . That is, for each input data 𝒙𝒊 in the dataset 𝐷𝑠, the ML algorithm 

knows the corresponding label for the output value 𝑦𝑖. Examples of supervised ML techniques are: 

Support Vector Machines for classification, and Random Forest for regression.  

 

Unsupervised learning models seek to learn new structures within some training dataset 𝐷𝑢 =

{𝒙𝒊}𝑖=1
𝑁 , where no labels or known outputs are given to train the model. In this case, the tasks consist 

on an unconditional density estimation looking to build models 𝑝(𝒙𝒊|𝜽). Since the input vector 𝒙 

will most likely be composed by more than one feature, multivariate probability models need to be 

created. Unsupervised learning has the advantage that no expert knowledge nor time is needed to 

label the training data. However proper care must be taken when choosing performance metrics 

since no knowledge is explicitly given for the training process. Two standard applications of 

unsupervised training are: Clustering of the training data into classes (clusters) which can later be 

used to classify new incoming data, and Principal Component Analysis (PCA), used to reduce 

dimensionality of the data, thus eliminating redundant information within the features and helping 

to speed data analysis processes.  

 

It is to be noticed that both Supervised and Unsupervised learning models can be used for 

regression or classification. However, they differ on the data they are given to be trained. 

  
Figure 3.2: Regression sample for some given data. 
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3.2 Deep Learning 

Nowadays, ML techniques can be found in several applications, from the speech recognition 

system used to transform the users’ voice into text in a smartphone, to the advertisement offered 

by webpages to each individual user based on his or her previously searched products. However, 

processing data in its raw form requires learning capabilities that conventional ML techniques are 

still limited to perform. This is due to the difficulties regarding the construction of pattern-

recognition systems, since they require careful engineering and considerable domain expertise to 

design a feature extractor which can transform raw data into a suitable internal representation or 

feature vector for the ML to interpret [41]. That is, it might take more time, knowledge and effort 

to construct the features to feed a ML algorithm, than training the ML model itself. To overcome 

this problem, Representation Learning offers a set of methods that allow an algorithm to be fed 

with raw data and to discover the representations needed for regression or classification by itself. 

The former is exactly what DL techniques are designed to do.  

 

Deep learning methods consists on ML algorithms with multiple levels of representation, obtained 

by composing simple non-linear modules that transform the starting raw input into a representation 

at a higher abstract level. Through the composition of a learning architecture with enough of such 

simple transformations, very complex functions can be learned from unprocessed data. Hence, DL 

belongs to one of the many approaches to Artificial Intelligence (AI), which allows computer 

systems to improve with experience and data [42]3. DL models can achieve great representative 

power and flexibility by learning to represent the world as a nested hierarchy of concepts. This 

hierarchy allows the algorithm to learn complicated concepts by building them out of simpler ones. 

A graphical representation of this idea would arrange these concepts one on top of each other as a 

sequence, meaning the graph has a deepness associated to it given the many layers that constitute 

its structure. For this reason, this set of machine learning techniques are called deep learning.  

 

Since its first appearance in the mid-20th century, DL has been associated with human reasoning 

capabilities, and hence they have been thought as an alternative to understand and acquire 

knowledge from tasks which humans struggle to execute. For instance, AI methods have been used 

to train chess gaming models through Reinforcement Learning [43], which have been able to defeat 

the best professional chess players in the world, as well as other parametric models, such as the 

Stockfish algorithm4. Even though the Reinforcement Learning approach acquires state-of-the-art 

performance in chess, simpler programs can still be far superior than human capabilities, since 

chess is defined by a 64 slots board, with a total of 32 pieces of 6 different kinds which follow a 

known set of rules. Thus, programming a computer to play chess can be relativity easy.  

                                                 

 

 
3 Deep Learning book available at www.deeplearningbook.org 
4 Stockfish chess engine available at ww.stockfishchess.org 

http://www.deeplearningbook.org/
https://stockfishchess.org/
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Instead, other challenges rely on the identification of particular features which can only be 

identified using sophisticated, nearly human-level understanding of the data. Here, traditional ML 

techniques are not a suitable alternative since it can be very difficult to extract high level abstract 

features from the raw data. Such challenges are where the true potential of deep learning algorithms 

can be seen, given that the studied problems do not follow a certain rule or distinguishable pattern 

that can be directly programmed into an algorithm. One such task is image recognition, where any 

human can perform accurately at identifying a set of images, however much of the knowledge 

needed to correctly label or identify an image is subjective and intuitive, and therefore difficult to 

articulate in a formal way. Nevertheless, DL techniques such as Convolutional Neural Networks 

(CNN) have proven capable of capturing the knowledge needed to identify and correctly classify 

images through feature extractors. Indeed, CNN can easily surpass human accuracy, taking less 

time when dealing with large datasets, and most importantly, behaving in an intelligent way. 

 

Even though the concept of DL algorithms has been around for over five decades, its 

implementation had been held back due to the high computational power required to tune the great 

number of parameters within a DL architecture. Furthermore, to accurately train a model, usually 

big datasets need to be analyzed, resulting on slow training and testing procedures. For the last 

decade, however, DL algorithms have become popular due to the lower costs on computational 

components, which has allowed students, researchers, and nearly everyone in the scientific 

community to have access to fast computers. This, along with the development of GPU powered 

computation, has boosted the implementation of DL techniques. 

3.2.1 Deep Neural Networks 

Deep Neural Networks (DNN) are also known as Artificial Neural Networks (ANN) or Multilayer 

Perceptron (MLP). It is the most basic and common DL structure, consisting on a mathematical 

function that maps a set of input values to a desired output value. Thus, similarly to other ML 

algorithms, DNN can create non-linear models for either regression or classification in the form 

𝒚 = 𝑓(𝒙, 𝜃), where 𝜃 are the models’ parameters. DNN originally receives its name as a reference 

to the human brain, where multiple neurons are connected to each other and can process data as a 

flow of information from one group of neurons to another. DNN belong to the “deep networks” 

branch of ML because their architecture has two or more layers that transform the input data into 

a more complex representation. To do so, each layer within a DNN performs a linear transformation 

by multiplying the data from the previous layer by a matrix of weights 𝜃, and adding a bias term 

𝑏. The output from this linear transformation is then evaluated through a non-linear activation 

function 𝜎, such as the Rectifier Linear Unit (ReLU) or the hyperbolic tangent (tanh). This idea is 

formally represented as, 

 

 

𝒉𝒊 = 𝝈(𝒉𝒊−𝟏
𝑻 𝜃𝑖 + 𝑏𝑖) (3) 
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where 𝒉𝒊 is the output from layer 𝑖. 𝜃𝑖 and 𝑏𝑖 are the layer’s weights and biases, respectively, while 

𝒉𝒊−𝟏  is the output from the previous layer 𝑖 − 1. The relationship between these layers is the reason 

why the mapping function created by a DNN is said to be formed by many simpler functions. One 

way to understand the purpose of each layer is by considering them as successive mathematical 

functions which provide a new representation of the input. Each layer is further divided into 

activation units called neurons, where each neuron interacts through Equation 3 with all features 

from the previous layer.  

 

Figure 3.3 illustrates an example of a DNN architecture, where a three-layer DNN is presented for 

a regression task. The input layer corresponds to the features from the raw data 𝑋, which is 

connected to one hidden layer to then output a single value. The output given for each hidden unit 

(neuron) from the Hidden Layer is obtained by Equations 4, 5 and 6. These equations can be 

resumed in Equation 7, which represents the output of the hidden layer to the output layer, which 

is identical to Equation 3. It can be seen that each neuron 𝑖 in the Hidden Layer is assigned one 

parameter 𝜃𝑖,𝑗 for each incoming feature 𝑗 from the previous layer (input layer in this particular 

case). Finally, Equation 8 represents the output layer. 

 

Formally, the output 𝑎𝑖
(𝑗) is considered as an activation of neuron 𝑖 in layer 𝑗, where the activation 

consists on multiplying all input features from the incoming vector from layer 𝑗 − 1 by a vector of 

weights Θ𝑖
(𝑗). The activation operation from layer 𝑗 to layer 𝑗 + 1 can then be represented by a 

multiplication by a matrix of weights Θ(𝑗), which controls the mapping function and with 

dimensions 𝑠𝑗+1 × (𝑠𝑗 + 1), where 𝑠𝑗 and 𝑠𝑗+1 are the number of units in layers 𝑗 and 𝑗 + 1, respectively.  

 

 

 
 

 

 

 
Figure 3.3: Three-layer Deep Neural Network sample. 
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𝑎1
(2)
= 𝜎(Θ10

(1)𝑥0 + Θ11
(1)𝑥1 + Θ12

(1)𝑥2 + Θ13
(1)𝑥3 + Θ14

(1)𝑥4) = 𝜎(𝑧1
(2)
) (4) 

 

𝑎2
(2)
= 𝜎(Θ20

(1)𝑥0 + Θ21
(1)𝑥1 + Θ22

(1)𝑥2 + Θ23
(1)𝑥3 + Θ24

(1)𝑥4) = 𝜎(𝑧2
(2)) (5) 

 

𝑎3
(2)
= 𝜎(Θ20

(1)𝑥0 + Θ21
(1)𝑥1 + Θ22

(1)𝑥2 + Θ23
(1)𝑥3 + Θ24

(1)𝑥4) = 𝜎(𝑧3
(2)
) (6) 

 

 

𝑎(2) = 𝜎(𝑥𝑇Θ(1)) + 𝑎0
(2)

 (7) 

 

 

𝑦 = 𝑎1
(3)
= 𝜎(Θ10

(3)𝑎0 + Θ11
(3)𝑎1 + Θ12

(3)𝑎2 + Θ13
(3)𝑎3) + 𝑎0

(3)
 (8) 

 

Activation Functions 

The depth concept in deep learning architectures comes from the creation of consecutive non-linear 

mathematical operations. Particularly, since weights and biases from traditional neural networks 

are defined to perform a matrix multiplication and an addition, respectively, it is necessary to apply 

non-linear functions between each layer of a deep neural network. Otherwise, applying a DNN 

with many layers would be mathematically equivalent to apply a single layer with more neurons in 

it. These non-linear functions are known as Activation Functions, which can take any non-linear 

form. Table 3.1 shows a list of commonly used activation functions. However, some functions have 

become more popular than others in the DL community given their performance during the training 

and testing procedure for some particular architectures. For instance, the Rectifier Linear Unit 

(ReLU) is the most applied activation function when training a CNN architecture, whereas the 

sigmoid and hyperbolic tangent (tanh) are used to create complex structures such as the LSTM 

networks. 
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3.2.2 Regularization  

Due to the usually high degrees of freedom that a deep learning architecture has, it is easy that 

during the training process overfitting will occur. That is, it is possible to obtain as a result of the 

training process an over adjustment of the weights and biases of the model to the training data, 

resulting in poor generalization performance to unseen data (test data). To prevent this, 

regularization techniques can be applied. One of the most commonly used techniques is dropout 

[44]. When dropout is used, samples from a Bernoulli distribution 𝑟𝑗
𝑙 are used to determine if a 

feature node 𝑗 from layer 𝑙 (e.g. 𝑧𝑗
𝑙, commonly represented by a neuron of the network) is dropped 

from entering the next layer 𝑙 + 1. This means that when the cost function is being optimized 

through backpropagation, there are fewer trainable parameters to be tuned per training cycle. This 

also reduces the dependency of the prediction on a single feature. The value of 𝑟𝑗
𝑙 can be 1 or 0 and 

is drawn from the Bernoulli distribution using Equation 9. The output layer 𝒛̃𝒍, after dropout, is 

obtained using Equation 10. A graphical representation of the dropout technique is shown in Figure 

3.4.  

 

 

𝒓𝒋
𝒍 ~ 𝐁𝐞𝐫𝐧𝐨𝐮𝐥𝐥𝐢(𝒑) (9) 

 

𝒛̃𝒍 = 𝒓𝒍 ∘ 𝒛𝒍 (10) 

 

Table 3.1: Non-linear Activation Functions examples. 

Binary Step 𝑓(𝑥) = {
0  for  𝑥 < 0 
1  for  𝑥 ≥ 0

 

sigmoid 𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

tanh 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

ReLU 𝑓(𝑥) = {
0  for  𝑥 < 0 
𝑥  for  𝑥 ≥ 0

 

softplus 𝑓(𝑥) = log𝑒(1 + 𝑒
𝑥) 
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Another regularization technique is early stopping, which stops the training cycle when training 

and validation errors begin to diverge. These two techniques together greatly reduce overfitting 

and prevent the network from identifying noise and use it as a distinguishing feature. 

3.2.3 Convolutional Neural Networks 

A Convolutional Neural Network (CNN) is a deep learning neural network that uses convolution 

operations instead of matrix multiplication in its layers. The convolution is performed using a 

weight matrix K, also known as filter or kernel. The kernel is used to obtain a feature map S from 

the input vector A, using the convolution operation as shown in Equation 11.  

 

 

 

 

 

 

Figure 3.5 shows a representation of the convolution operation using a 2 × 2 kernel and a 3 × 3 

input data matrix to obtain a 2 × 2 output matrix. A bias matrix 𝑩 is added to the convolution and 

an activation function is applied to the result to form the feature map 𝑯 as shown in Equation 12. 

The training of the weights and biases can be interpreted as a feature extraction. If a value in the 

feature map gets activated, it indicates that an important learned feature is in that position. In the 

case of data analysis, an activation in the feature map can indicate the location of features such as 

changes in a signal, a frequency or specific shapes. This abstract representation can then be 

𝑺 = 𝑨 ∗ 𝑲    where   𝑺(𝑖, 𝑗) = ∑∑𝑨(𝑖 − 𝑚, 𝑖 − 𝑛) ⋅ 𝑲(𝑚, 𝑛)

𝑚𝑛

 (11) 

 
Figure 3.4: Dropout sample 
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processed and associated to a physical measurable characteristic, such as degradation, efficiency 

or production loss, amongst others.  

 

 

𝑯 = 𝑓(𝑨 ∗ 𝑲 + 𝑩) (12) 

 

 

 
 

 

A convolution layer in a CNN consists of several kernels and biases applied to a single input matrix 

to generate a set of feature maps in a hidden layer. Every component in the feature map is computed 

using the same kernel. Also, each component of the output feature map is calculated only from a 

subset of the input matrix, reducing the amount of connections and, therefore, decreasing the 

required computation resources. To achieve higher levels of abstraction and more complex 

relations between features, feature maps can be used as input to other convolution layers. 

 

Usually the last section of a CNN is a feed forward neural network that is responsible for generating 

the predicted labels as the output vector. Figure 3.6 shows an example of an architecture for a CNN 

with three 5x5 convolutional filters as the first layer, one 2x2 pooling layer and a fully connected 

feed forward layer. The CNN is trained in the same way as a NN, defining a cost function to be 

minimized through an optimizer such as Gradient Descent, Adam or RMSProp. 

 

 
Figure 3.5: Convolution operation. 
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3.2.4 Recurrent Neural Networks and Long-Short Term Memory Cells 

Recurrent Neural Networks (RNN) are one of the most powerful kinds of NN, capable of creating 

and processing memories of arbitrary sequences of input patterns [45]. However, RNN suffer from 

optimization problems with long data sequences, making it hard to efficiently tune the networks 

parameters during the training process and thus causing great computational power demand. To 

overcome this issue, alternative structures have been proposed, such as the Gated Recurrent Units 

(GRU) and the Long-Short Term Memory (LSTM) RNN. The classical LSTM structure, called 

Vanilla LSTM [46], consists of different processes called gates. These gates compute the desired 

output from a new input data at a time 𝑡, along with elements obtained from the previous time-step 

𝑡 − 1. Equations 13-17 describe these processes, where Equation 17 corresponds to the cell state 

𝑐𝑡, which is the main characteristic of the LSTM structure, as it represents a memory capsule 

containing information of all previous states. The cell state is updated in each time-step through 

different combinations of Equations 13-15, called input, output and forget gates (Figure 3.7). These 

gates use a sigmoid activation function to evaluate the linear combination of the new input data 𝑥𝑡 

with the output of the previous LSTM cell ℎ𝑡−1. Additionally, gate 𝑎𝑡 generates the candidates 

from the inputs 𝑥𝑡  and ℎ𝑡−1 which will become part of the new cell state when combined with the 

element wise multiplication of the previous cell state 𝑐𝑡−1 and the forget gate. Finally, the output 

ℎ𝑡 is computed by the element-wise multiplication of the output gate with the activation of the 

calculated cell state (Equation 17).  

 

It is to be noted that gates 𝑖𝑡, 𝑜𝑡, 𝑓𝑡 and  𝑎𝑡 represent independent NN, which possess their own 

weights and biases. Hence, after training is complete, each gate will have different outputs. Once 

the model is trained, it is possible to predict several times steps into the future, given an initial 

guess value, allowing the study of future behavior of the observed system.  

 

 

 
Figure 3.6: Two-layer CNN example. 
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𝑖   𝑡 = 𝜎(𝑊𝑖 𝑥
𝑡 + 𝑈𝑖  ℎ

𝑡−1 + 𝑏𝑖) (13) 

 

𝑜𝑡 = 𝜎(𝑊𝑜 𝑥
𝑡 + 𝑈𝑜 ℎ

𝑡−1 + 𝑏0) (14) 

 

𝑓𝑡 = 𝜎(𝑊𝑓 𝑥
𝑡 + 𝑈𝑓 ℎ

𝑡−1 + 𝑏𝑓) (15) 

 

𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 𝑥
𝑡 + 𝑈𝑐 ℎ

𝑡−1 + 𝑏𝑐) (16) 

 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑎𝑡 (17) 

 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ (𝑐𝑡) (18) 

 

 

 

  

 
Figure 3.7: Long-Short Term Memory structure example. 
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3.3 Deep Learning in Prognostics for Mechanical 

Components 

Convolutional Neural Networks are one of many data-driven approaches with a high impact on the 

reliability field, due to their ability to perform automatic feature extraction from raw data and 

obtaining a non-linear representation of the signals, thus giving a higher level of abstraction from 

the data. Most CNN applications are implemented for image classification [47]–[52]. Nevertheless, 

reliability studies have extrapolated this concept to machinery data analysis [53]–[56]. Indeed, Wen 

et al. [54] proposed a new CNN architecture based on LeNet-5, creating a 2D image representation 

of the data, which allowed an automatic feature extraction from the acquired machinery signals. 

The model was trained for fault classification and tested in a motor bearing dataset, self-priming 

centrifugal pump dataset, and an axial piston hydraulic pump, achieving an accuracy over 99% for 

each analyzed dataset. CNN, however, as many other deep learning techniques, were designed for 

identification and recognition of elements within data arranged as matrices. Given that most sensor 

measurements are used to monitor changes within different physical variables throughout time, 

then if the input to the CNN consists only of a single entry of time, it might not contain enough 

information to correctly predict the future state of a target variable. That is, it is not possible to 

accurately recognize temporal patterns hidden within the data. Thus, spatial approaches such as 

NN and CNN are not exactly adequate for the analysis of sequential data.  

 

To address this challenge, different methods have been developed to hold-on to a certain memory 

of the previous state of the system, enabling the prediction of future health state using not only the 

present information, but also those historical operational conditions of the system that may help in 

the prediction of the model. One of such techniques are Long-Short Term Memory (LSTM) cells, 

which are based on Recurrent Neural Networks. This type of model structure has been widely used 

to achieve state-of-the-art results on sequence modeling tasks such as handwriting recognition [57], 

automatic rule extraction [58], extreme event forecasting with an end-to-end autoencoder for 

feature extraction  [59], as well as other time series challenges [60]–[62]. Most importantly, deep 

RNN have successfully been used for machine health monitoring from multi-sensor time series 

data [63]–[65], obtaining models of the system which can capture the complex temporal behavior 

of the system, as well as instantaneous dependencies between sensor readings. These dependencies 

can then be applied to estimate temporal evolutions, e.g., the RUL of a system, such as it was done 

in [65]–[69]. Hence, in the last couple of years, LSTM have proven to be effective to embrace time 

series problems related to reliability and maintenance engineering, especially when it comes to 

prognostics and health management [70]. 

3.3.1 C-MAPSS Dataset for Turbofan Engines RUL Estimation 

In the context of reliability models for mechanical systems, the first dataset used to validate the 

proposed deep learning framework corresponds to the popular benchmark data generated for the 

PHM 08’ data competition [71]. The dataset corresponds to a multivariate time series obtained 
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from many simulations from the Commercial Modular Aero Propulsion System Simulation (C-

MAPSS), which is divided into training and test sub-datasets. Four different operational conditions 

are simulated through a determined number of trajectories, which are detailed in Table 3.2. Each 

dataset is contained in a CSV file, where each row represents one time-step measured in cycles, 

consisting in 21 sensor measurements, three operational conditions, as well as other useful 

information as described in Table 3.3. The variables measured by these sensors are detailed in 

Table 3.4. 

 

 

 
 

 

 
 

Table 3.2: C-MAPSS Train and Test Sets Resume. 

Dataset Train 

Trajectories 

Test 

Trajectories 

Conditions Fault Mode 

FD001 100 100 One (Sea level) One (HPC Degrad.) 

FD002 260 259 Six One (HPC Degrad.) 

FD003 100 100 One (Sea Level) Two (HPC and Fan Degrad.) 

FD004 248 249 Six Two (HPC and Fan Degrad.) 
 

 

 

 

 

 

 

 

 

 

Table 3.3: Variables C-MAPSS Dataset. 

Column Variable 

1) Unit number 

2) Time in cycles 

3) Operational setting 1 

4) Operational setting 2 

5) Operational setting 3 

6) Sensor measurement 1 

7) Sensor measurement 2 

…26) Sensor measurement 26 
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The data from the C-MAPSS dataset can be considered to come from a fleet of engines of the same 

type, since each time series is from a different engine (Unit Number). The three operational settings 

included in the dataset have a substantial effect on the engine’s performance. For each trajectory 

in the training sets, the engine starts operating normally with an unknown initial degradation until 

failure is detected. The data is also contaminated with sensor noise. In the test set, the time series 

ends at some time prior to system failure, where the RUL for each test engine is provided in a 

separated CSV file. However, RUL target is not specified for the engines in the train sets.  

 

Setup and Label Generation 

The challenge for this dataset consists on obtaining models through data-driven approaches which 

can estimate the RUL for each trajectory contained in the test sets. To do so, one model must be 

trained for each sub-dataset using its respective training data (FD001 to FD004). For each engine 

(Unit Number) in the test set, a RUL label is given for the last measured Cycle. However, for the 

training sets, the RUL label is not provided. Hence, a method must be developed to elaborate the 

labels for each measured cycle.  

 

There are two supervised approaches that have been implemented to elaborate the labels for the C-

MAPSS training sets [53], [65], [72]. The first one considers the literal definition of remaining 

useful life as the remaining number of cycles to the failure event. Starting from a RUL equal to the 

length (in cycles) of each training engine, a linear decay represents the degradation of the 

component, reflected in the RUL label for each cycle of every engine. The second approach is more 

realistic, where it is assumed that the component degradation cannot be easily detected until a 

certain threshold 𝑅𝑒𝑎𝑟𝑙𝑦 has been reached. Hence, for the validation of the proposed deep learning 

framework, the second approach is implemented, with 𝑅𝑒𝑎𝑟𝑙𝑦 = 125 cycles as threshold, as it is 

proposed in [72]. This means that the linear degradation of the engines will start only 125 cycles 

Table 3.4: Sensor Measurements. 

Sensor 

Measurement 
Measured Variable 

Sensor 

Measurement 
Measured Variable 

1 Total temperature at fan inlet 12 Ratio of fuel flow to HPC outlet 

2 Total temperature at LPC outlet 13 Corrected fan speed 

3 Total temperature at HPC outlet 14 Corrected core speed 

4 Total temperature at LPT outlet 15 Bypass Ratio 

5 Pressure at fan inlet 16 Burner fuel-air ratio 

6 Total pressure in bypass-duct 17 Bleed Enthalpy 

7 Total pressure at HPC outlet 18 Demanded fan speed 

8 Physical fan speed 19 Demanded corrected fan speed 

9 Physical core speed 20 HPT coolant bleed 

10 Engine pressure ratio 21 LPT coolant bleed 

11 Static pressure at HPC outlet   
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before failure. Figure 3.8 shows an example for both approaches for an engine with 300 measured 

cycles, where the blue line represents an example of the labels used for the deep learning framework 

validation.  

 

 

 
 

 

Performance Metrics 

To evaluate the performance of the trained models for the C-MAPSS dataset, two evaluation 

metrics were presented for the PHM 08’ data challenge: the Root Mean Squared Error (RMSE) 

and a Score function [65], [71]–[73]. Both metrics are computed based on a parameter ℎ, defined 

in Equation 12 as the difference between the predicted value by the proposed architecture 𝑦𝑝𝑟𝑒𝑑, 

and the true label included in the dataset for the test data (𝑦𝑡𝑟𝑢𝑒). 

 

 

ℎ = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒 . (19) 

 

 

RMSE is defined in Equation 20, which is calculated over the 𝑁 predictions from the corresponding 

test set. On the other hand, the score function described in Equation 21 outputs different values 

depending on the sign of ℎ𝑖, penalizing more those predicted values which are higher than the label 

(e.g., overestimation of the RUL), since from a reliability point of view this is more dangerous than 

underestimating the RUL for a data point.  

 

 
Figure 3.8: RUL labels for the C-MAPSS dataset. Linear and Non-linear target. 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ℎ2
𝑁

𝑖

 (20) 

 

 

 

𝑆𝑐𝑜𝑟𝑒 =

{
 
 

 
 ∑(𝑒−

ℎ𝑖
13
 − 1)

𝑁

𝑖

   𝑓𝑜𝑟 ℎ𝑖 < 0

∑(𝑒
ℎ𝑖
10
 − 1)

𝑁

𝑖

   𝑓𝑜𝑟 ℎ𝑖 ≥ 0

 (21) 
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3.4 Deep Learning in Lithium-Ion Battery State Estimation 

Accurate State of Charge estimation has been an ongoing research challenge since the massive 

proliferation of energy storage devices. In this context, Lumped Thevenin equivalent electric 

models have widely been used to characterize the relationship between the battery’s SOC and its 

internal impedance, considering the energy storage capacity to be fixed during the discharge 

process. Good results have been achieved through this approach applying techniques such as 

Unscented Kalman Filtering (UKF) [19], Particle Filtering (PF) [74], Adaptive Cubature Kalman 

Filter (ACKF) [75], among others [76]–[82]. For instance, Mu et al. [83] proposes the use of an 

UKF on a Fractional Order Impedance Model (FOIM) – inferred from electrochemical impedance 

spectroscopy (EIS) – to account for the nonlinearities related to the chemical reactions within a 

battery.  

 

Furthermore, the development of DL and ML techniques have boosted the use of data-driven 

approaches as a complement to the aforementioned traditional methods for the estimation of the 

SOC. From this perspective, NN are the most commonly used techniques for this task [30]–[37]. 

An example of ML-based estimation frameworks can be found in Yu et al. [84], who proposed a 

Deep Belief Network (DBN) to update the parameters from the BMS internal SOC model, based 

on data remotely collected from an EV, achieving SOC estimates with less than a 5% error. 

 

Both data-driven and traditional methods have achieved accurate results on their respective tasks. 

However, since the performance of a battery is directly affected by its degradation, any SOC 

estimator that does not consider the SOH of the studied device will be inevitably biased. This is 

usually reflected in a SOC overestimation for a given energy demand. Thus, different works have 

been focused on developing models to accurately represent ESD degradation, either by estimating 

the SOH [85]–[93] or the Remaining Useful Life [94]–[100]. Most of these schemes are based on 

the maximization of a likelihood function, which in turn relies on the observability of the studied 

phenomena: there are infinite combinations of battery parameter values that can reflect the same 

observed voltage and discharge current response. Nonetheless, due to its difficulty, not as many 

research efforts consider schemes that can jointly estimate the SOC and the SOH [23], [26], [109], 

[110], [101]–[108].  

 

Hence, it is of interest to characterize both the SOC and SOH of a battery within a small observation 

time-window, based on the quantification of the impact of discharge profiles in measured variables 

using a deep learning model. To do so, it is important to clearly define what is considered to be the 

State of Charge of the system as well as its State of Health, and how these parameters can be 

characterized from the measured variables of a functional battery. 
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3.4.1 State of Charge 

There are two popular definitions for the state of charge of a battery. The first comes from the 

widely used Capacity concept, which uses the Coulomb Counting Method [36]. Here, to estimate 

the SOC of a battery the measured current 𝑖(𝑡) is integrated in time and normalized by the nominal 

capacity (𝐶𝑛) of the battery, i.e., the maximum amount of energy that the battery can hold when it 

is new. Equation 22 describes this method, where 𝜂𝑖 corresponds to the charge (or discharge) 

efficiency. Now, although this method has successfully been used for SOC estimations, it suffers 

from a major drawback, which is that it literally counts the amount of current entering (or exiting) 

the battery. Therefore, it does not meet the energy conservation principle. 

 

 

𝑆𝑂𝐶(𝑡) =  𝑆𝑂𝐶(𝑡0) + 100 ×∫
𝜂𝑖𝑖(𝜏)

𝐶𝑛
𝑑𝜏

𝑡

𝑡0

 (22) 

 

 

 

Hence, a better approach is to consider the SOC of a battery cell as the percentage of the remaining 

energy in the battery 𝐸𝑟, in relation to the total energy charged in the last charging cycle 𝐸𝑐𝑦𝑐𝑙𝑒, as 

shown in Equation 23.  

 

 

𝑆𝑂𝐶 =
𝐸𝑟

𝐸𝑐𝑦𝑐𝑙𝑒
× 100 (23) 

 

 

It is to be noticed that 𝐸𝑟 takes values in the range [0, 𝐸𝑐𝑦𝑐𝑙𝑒]. A quick way to understand the 

meaning of the definition of the SOC is by thinking of the percentage of battery left in a cellphone. 

Thus, if the battery is fully charged, the SOC yields a value of 100%, whereas a 0% SOC 

corresponds to a fully discharged battery. However, the time required to fully discharge the battery 

is not constant in time, given that the battery degrades each time it goes through a charge-discharge 

cycle. Therefore, it is imperative to consider the degradation of a battery by estimating its state of 

health. 

3.4.2 State of Health 

The State of Health is a representation of the degradation of a battery. However, it is important to 

understand that there are many factors that take part during the degradation of any component. 

Thus, the SOH is only an approximation for this degradation, and it may consider one or many 

parameters for its calculation. One way to represent the SOH of a battery, is by considering the loss 

of its capacity to hold energy. That is, by comparing the charged energy at each cycle 𝐸𝑐𝑦𝑐𝑙𝑒 with 
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the maximum energy charged in the first charge-discharge cycle 𝐸𝑚𝑎𝑥. Thus, the State of Health 

of the battery after each cycle can be defined as: 

 

𝑆𝑂𝐻 =
𝐸𝑐𝑦𝑐𝑙𝑒

𝐸𝑚𝑎𝑥
× 100 (24) 

 

 

In this case, a 100% and 0% SOH represent a new and completely degraded battery cell, 

respectively.  

3.4.3 CS2 Dataset for Batteries SOC and SOH Estimation 

The CS2 Battery dataset from University of Maryland’s Center of Advanced Life Cycle 

Engineering (CALCE) [111], [112] is used to test and validate the proposed model. The dataset 

corresponds to a multivariate time series obtained from charge-discharge cycles performed at 

constant current of 1C for four batteries cells until their end of life. These cells underwent the same 

charging profile which was a standard constant current/constant voltage with a constant current 

rate of 0.5C until the voltage reached 4.2V. This voltage was then sustained until the charging 

current dropped to below 0.05A. The discharge cut off voltage for these batteries was 2.7V.  

 

The data for each battery cell is divided into separated files which are labeled according to the date 

of when the charge-discharge cycles were performed. Each file contains consecutive charge-

discharge cycles for a determined date. A summary of the number of files and cycles for each cell 

is presented in Table 3.5. Furthermore, for each file, every row consists of 17 sensor measurements, 

which are described in Table 3.6. 

 

 

 
 

 

Naturally, battery capacity diminished as lithium-ion cells degraded. As a result, battery discharge 

tests after 1000 cycles of operation took approximately a quarter of the time associated with a 

brand-new cell (see Figure 3.9, which shows the voltage measurements of five different discharge 

cycles for one of the battery cells). Furthermore, as data was acquired using a constant sampling 

period of 10s in all discharge experiments, each file has a different number of samples. 

 

 

Table 3.5 : CS2 Lithium-Ion batteries dataset summary. 

Dataset N Files N Cycles 

CS2 35 26 899 

CS2 36 26 927 

CS2 37 27 992 

CS2 38 27 981 
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The CS2 Battery dataset represents a valuable source of information for the characterization of 

degradation in lithium-ion batteries undergoing cyclic usage profiles at constant ambient 

temperature. However, it is important to note that the sampling frequency is low (0.1 Hz, compared 

to 10 Hz in some experiments, where researchers intended to estimate the polarization impedance) 

and that the discharge current is, by design, constant. The latter fact generates an observability 

problem in the dynamic time-varying system that represents the evolution in time of battery states; 

a problem that ultimately does not allow to estimate the internal impedance of the battery (in fact, 

columns 14, 16 and 17 in the dataset are empty) or to implement joint SOC and SOH estimation 

approaches based on Thevenin equivalent electric models. Nevertheless, the given data for the 

dataset is ideal to be tested by the proposed deep learning-based framework, given how the data is 

presented, which is similar to the C-MAPSS dataset, allowing to test both datasets without 

modifying the architecture structure. 

 

Table 3.6: Variables CS2 Lithium-Ion batteries dataset. 

Column Variable Column Variable 

1 Data Point 10 Discharge Capacity (Ah) 

2 Test Time (s) 11 Charge Energy (Wh) 

3 Date Time 12 Discharge Energy (Wh) 

4 Step Time (s) 13 dV/dt (V/s) 

5 Step Index 14 Internal Resistance (Ohm) 

6 Cycle Index 15 Is FC Data 

7 Current (A) 16 AC Impedance (Ohm) 

8 Voltage (V) 17 ACI Phase Angle (Deg) 

9 Charge Capacity (Ah)   

 

 
Figure 3.9: Voltage discharge curves from Cell 38, for different cycles of operation. 
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Setup and Label Generation 

Unlike the C-MAPSS dataset, the CS2 lithium-ion batteries do not have a defined task to be used 

for. Hence, datafiles are not separated in train and test sets, and no labels of any kind are given for 

the measured instances of the charge-discharge processes. Henceforth, for the validation and 

performance evaluation of the proposed deep learning framework, this dataset is used to estimate 

the SOC and SOH of a battery based on a time-window measurement. Using columns 11 and 12 

from Table 3.6, the target labels are generated according to Equations 23 and 24. That is, for the 

SOC labels, the maximum amount of energy discharged for the cycle 𝐸𝑐𝑦𝑐𝑙𝑒 is used to as a reference 

for the remaining energy in the battery cell 𝐸𝑟, whereas for the SOH, 𝐸𝑐𝑦𝑐𝑙𝑒 is compared to the 

maximum amount of energy stored for the first charging cycle 𝐸𝑚𝑎𝑥 . 

 

Performance Metrics 

The RMSE defined in Equation 20 is used as the main performance metric for the proposed deep 

learning-based framework validation. The metric is evaluated for the SOC and SOH independently, 

meaning that for each trained model, two different RMSE are yielded. 
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3.5 Uncertainty with Dropout as a Bayesian Approximation 

Deep learning techniques have successfully been applied for reliability purposes, such as damage 

assessment [113], [114], vibration signal analysis [55], [70], [115], and RUL estimation for 

mechanical components [66], [72], [116]–[118]. Nevertheless, these models usually do not give 

account for the uncertainty of their predictions, which can lead to catastrophic results [119]. Model 

uncertainty estimation has been an ongoing subject of interest in the reliability community, and a 

key element for state estimation in the context of Bayesian approaches [120]–[124]. However, until 

a couple of years ago, deep learning models did not have a reliable estimation of the uncertainty 

for their predictions. In this regard, Gal et al. [125]–[127] proposed and proved that a deep learning 

network with non-linearities (activation functions), and with dropout applied before every 

weighted layer, is mathematically equivalent to a Monte Carlo approximation of a deep Gaussian 

Process (GP) [128].   

 

Hence, it is possible to use dropout to estimate the uncertainty in fault diagnostic or any other 

reliability model based on a deep learning network. Given the objective (loss) function of any 

network with dropout and weight decay regularization, it can be shown that minimizing such 

function also minimizes the Kullback-Leibler divergence between the approximate and posterior 

distribution of a deep GP. Hence, it is possible to obtain the uncertainty of the deep network directly 

from the trained model without any additional assumptions or changes in the network’s architecture 

other than it must be trained considering dropout [44], [129] in every single layer. A mathematical 

development of dropout uncertainty in LSTM can be found in [130].  

 

A detailed explanation of this approach escapes from the scope of this thesis work. However, it is 

important to understand that in order to estimate the uncertainty from the test results of a model, 

several forward passes applying dropout must be performed through the model with the test data, 

to later analyze the outputs as a Gaussian distribution. 
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Proposed Deep Learning Framework 

As it was discussed in Chapter 3, many deep learning techniques have been applied for sensor 

interpretation and analysis of multisensorial measurements. Convolutional and Recurrent Neural 

Networks have shown great performance on pattern recognition and temporal analysis, 

respectively. However, only a small number of efforts have been presented combining CNN with 

LSTM techniques. On one hand, Chen et al. [13] proposed a deep CNN combined with a deep 

bidirectional LSTM (BiLSTM) network for a classification task on building occupancy estimation, 

analyzing data from environmental sensors.  On the other hand, Zhao et al. [64] also trained a deep 

network combining CNN and BiLSTM for a regression task on tool wear prediction. Although 

both approaches show accurate results on their respective tasks, convolution layers are used to 

compute temporal relationships from the data, which implies a double computation in the temporal 

space since this is the task intended for the BiLSTM. 

 

Thus, the proposed health state estimator framework is based on a hybrid CNN and LSTM 

architecture. The framework is designed to take advantage of the CNN’s capability in building 

higher abstraction representations for spatial recognition and the LSTM’s ability to deal with 

sequential analysis. A non-linear RUL target is proposed as an objective. Before training the 

resulting model, raw data is normalized with a Min-Max scaler in the range [0,1], and those 

variables from the dataset that do not contribute valuable information to the model, or were used 

for the label generation, are dropped. A cross-fold validation is performed to select critical 

hyperparameters. Once these hyperparameters are selected, the proposed architecture is trained and 

tested through the validation datasets described in Chapter 3.  

4.1 Data Preprocessing 

For each dataset, a Min-Max normalization is used along every variable to normalize the data and 

thus to avoid overfitting of the model over variables with a high order of magnitude. Given a vector 

𝑋, its scaled value 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is calculated as described in Equation 25. Where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 

correspond to the minimum and maximum value of each column feature, respectively.  

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 
. (25) 
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Furthermore, variables which do not change in time, and hence could bias the results, are dropped. 

A similar approach is taken to select variables for the CS2 dataset. Here, same as the C-MAPSS 

dataset, those variables from Table 3.6 which do not change in time, are dropped. Also, variables 

that are not relevant for the charge-discharge process or were used to generate the labels for the 

SOC or SOH, are not used during the training process. Hence, from Table 3.3 and Table 3.6, the 

columns dropped for the C-MAPSS and CS2 datasets, respectively, are listed in Table 4.1. 

 

This results in a total of 14 sensor measurements to train model for the C-MAPSS dataset, and 5 

sensor measurements for the CS2 models: Current, Voltage, Charge capacity, Discharge Capacity, 

and  𝑑𝑉/𝑑𝑡. 

 

 

 

4.2 Training Samples 

Unlike regular NN, Convolutional Neural Networks apply a convolution operation instead of a 

matrix multiplication. This operation was originally proposed to recognize shapes and patterns in 

images through the mathematical relationship between nearby pixels. However, it is possible to 

extrapolate this concept to monitor and analyze how the correlation among sensor measurements 

change throughout time while the measured equipment deteriorates. To do so, a sliding-window of 

length 𝑁𝑡 is used to transform the 𝑁𝑓𝑡 sensor measurements or features into multiple samples from 

the dataset. Therefore, each sample is arranged in a 2D matrix of shape 𝑁𝑡 × 𝑁𝑓𝑡, which contains 

all sensor measurements for a given period of time. These matrices are then used as input for the 

first two layers of the proposed architecture, which correspond to convolutional layers. 

 

Table 4.1: Dropped columns for the training procedure for each dataset. 

C-MAPSS Turbofan Engines CS2 Lithium-Ion Battery Cells 

Unit Number Data Point 

Time in Cycles Test Time 

Operational Settings 1 Date Time 

Operational Settings 2 Step Time 

Operational Settings 3 Step Index 

Sensor measurement 1 Cycle Index 

Sensor measurement 5 Charge Energy 

Sensor measurement 6 Discharge Energy 

Sensor measurement 10 Internal Resistance 

Sensor measurement 16 IS FC Data 

Sensor measurement 18 ACI Impedance 

Sensor measurement 19 ACI Phase Angle  
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For the C-MAPSS dataset, the number of selected sensor measurements after the preprocess of the 

data is 𝑁𝑓𝑡 = 14. As for the sample time length 𝑁𝑡, it must be considered that the cell state 

(Equation 17) allows the LSTM to handle longer sequences than other techniques such as the RNN. 

Thus, the more temporal information the LSTM is given, the better it performs. Yet, if the chosen 

time length is too large, then there will be too many parameters to be tuned, slowing both the 

training and testing processes. 

 

The work put forward by Li [56], proposed that for a deep CNN (DCNN), the optimal sample 

length is 𝑁𝑡 = 30 cycles when comparing accuracy and training time, considering that the shortest 

test sequence has 31 time-steps. However, the shortest sequences for the test engines from the 

FD002 and FD004 test set correspond to 21 cycles and 19 cycles, respectively. Thus, it is not 

possible to use a longer time-window, and therefore each sub-dataset from the C-MAPSS dataset 

is analyzed with a time-window length equal to the smallest test engine sample. Table 4.2 shows 

the adopted value for each dataset. 

 

 
 

On the other hand, for the CS2 dataset, the number of selected features is 𝑁𝑓𝑡 = 5. However, since 

there are no defined train and test sets for this dataset, for the sample time length, choosing the 

time-window length is less intuitive. Here, it must be considered that as battery cells deteriorate, 

the discharge cycle shortens in time. As illustrated in Figure 3.9, over 75% of the total cycles have 

discharge length is over three times longer than the last cycle discharge cycle. Hence, a sample 

length equal to the shortest discharge cycle of the dataset is a suitable measure, which for the CS2 

dataset corresponds to 𝑁𝑡 = 24. 

4.3 Convolutional Layers 

The first two layers of the proposed framework’s architecture consist on two CNN layers, as 

illustrated in Figure 4.1. The first convolution operates a filter of size 1 × 2 with a stride 𝑠 = [1,2]. 

That is, the convolution takes only sensorial data measured at the same time-step, seeking to obtain 

an abstraction representing the relationship between every couple of sensors. The filter is applied 

𝐹𝑀1 times, thus generating 𝐹𝑀1 feature maps of size 𝑁𝑡 × 𝑁𝑓𝑡 /2  after the first convolution, which 

are then evaluated with an element-wise ReLU activation function. It can be noticed that each 

Table 4.2: Time-window length for C-MAPSS dataset. 

Dataset 𝑁𝑇 

FD001 30 

FD002 21 

FD003 30 

FD004 19 
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feature map has the same length as the original sample 2D matrices, however each feature (column) 

is a new representation from the sensor measurements for each time-step. 

 

 

 
 

Once the first convolution has been performed, the created feature maps are used as inputs into the 

second convolutional layer, which this time operates with a filter of size 1 × 𝑁𝑓𝑡/2. Analogous to 

the first convolution, the second layer is applied only to features from the same time-step, and then 

evaluated with an element-wise ReLU activation function. However, on this occasion, the 

convolution operation seeks to get a relationship between all features for each time-step.  The 

convolution filter is applied 𝐹𝑀2 times, thus generating 𝐹𝑀2 feature maps of size 𝑁𝑡 × 1. These 

feature maps are then reshaped into a new matrix, where each column corresponds to one feature 

map from the second convolution layer. Thus, the output 2D matrix has a shape of 𝑁𝑡 × 𝐹𝑀2, 

which is then used to feed the third layer corresponding to the BiLSTM. 

4.4 Bidirectional LSTM 

The third and last layer of the proposed architecture consists of a BiLSTM comprising two 

independent LSTM cells that run in parallel, as shown in Figure 4.2. One of the cells processes the 

input data in sequential order, that is, starting from the first time-step to the last data point 𝑁𝑡. The 

second LSTM cell takes the sequential data in the reverse order, starting from time-step 𝑁𝑡 and 

ending in the first sequential entry. These cells are called forward and backward cells, respectively. 

In the proposed architecture, both forward and backward cells take the higher abstraction 

representation generated after the first two convolutional layers as their input. Each LSTM outputs 

the hidden units of the cell gates (Equation 17). The outputs of the cells are then concatenated and 

 
Figure 4.1: CNN layers of the proposed CNNBiLSTM framework. 

 



 

- 35 - 

 

used as an input to a fully connected layer, yielding the predicted variable(s) 𝑦𝑝𝑟𝑒𝑑, corresponding 

to the RUL and SOC & SOH for the C-MAPSS and CS2 datasets, respectively. 

 

 

 
 

4.5 Training  

For the training procedure, the created input 2D matrices need to be divided in train and test sets. 

Then, the train set is again divided into a training and a validation set. In the case of the C-MAPSS 

dataset, the train and test sets are already separated, and hence the training and validation sets are 

randomly split in 80% and 20% of the train set, respectively. However, the CS2 dataset does not 

have a defined train and test set. Therefore, the created input 2D matrices are randomly divided in 

three sets: Training set (60%), validation set (20%), and test set (20%). The model is trained over 

the training set, leaving the validation set to evaluate the performance of the model at each training 

epoch. Samples from the training set are fed in batches to the model. The model is optimized 

through backpropagation with the RMSProp optimizer [85]. Training is performed in an Intel Core 

i7 6700K CPU, 32 GB DDR4 (2400 MHz) RAM and a NVIDIA Titan XP GPU of 12 GB memory. 

For computation, Python 3.5 language with Tensorflow 1.4 [86] was used, along with cuDNN 5.1 

and Cuda 8.0 libraries. Ubuntu 64 bits 16.04 LTS was used as operating system. 

 

 

 

 
Figure 4.2: Bidirectional LSTM layer of the proposed CNNBiLSTM framework. 
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4.6 Hyperparameters Selection and Regularization  

The proposed architecture has several hyperparameters that need to be selected carefully. These 

hyperparameters are: the number of feature maps for each convolutional layer, the number of 

hidden units in the LSTM cells, the batch size fed to the network during training and the number 

of epochs when training. To select the best model, a grid search is performed over every 

combination of the hyperparameter values presented in Table 4.3, which are trained to fit each of 

the datasets presented in this Chapter, giving a total of 3072 different models to be trained.  

 

To prevent overfitting, two regularization methods are implemented. The first method corresponds 

to dropout [81], which is applied at each convolutional layer, as well as both cells from the BiLSTM 

and the following fully connected layers which yield the final output of the network. The second 

regularization method is early stopping, where the training process is stopped if the model’s 

accuracy does not improve over the validation set but does for the training set for three consecutive 

epochs.    

 

 
 

Table 4.3: Hyperparameter values proposed for the architecture’s grid search. 

Feature Maps 1st 

Convolution 

Feature Maps 2nd 

Convolution 
Epochs 

Batch 

Size 

Number Hidden 

Units LSTM 

Dropout 

Probability 

16 32 50 64 50 0.5 

32 64 75 128 100 0.6 

64 128 100 256 150 0.7 

128 256 125 512 200 - 
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C-MAPSS Turbofan Engines 

 

A grid search is performed for each sub-dataset in the C-MAPSS dataset, to select the 

hyperparameters of the proposed model, according to Chapter 4. This is done considering all the 

hyperparameters listed in Table 4.3. Out of the 3072 possible combinations, the selected 

hyperparameters which yield the best average results for all four sub-datasets are reported in Table 

5.1. In addition to the performance over the datasets, the aforementioned procedure showed that 

both the batch size used for training as well as the number of hidden units in the LSTM, have the 

greatest influence on the training time of the network. For instance, training for 200 LSTM hidden 

units takes about four times more than for 50 LSTM hidden units, keeping all other 

hyperparameters constant. A similar effect is caused by the batch size, which is more intuitive since 

the bigger the batch size, the fewer iterations per epoch are needed to train a model for the same 

number of epochs.  

 

 

 
 

5.1 Model Training, Performance and Comparison  

With the selected hyperparameters, ten different models are trained and tested for each sub-dataset, 

applying a 40% dropout probability after each layer of the proposed architecture. Table 5.2 shows 

the average and standard deviation obtained for the evaluation metrics described in Chapter 3 for 

each sub-dataset. The results are compared with other relevant research works done over the same 

dataset. Indeed, Zheng et al. [65] trained a deep LSTM network, while Zhang et al. [131] proposed 

a Multi-objective Deep Belief Network Estimator (MODBNE) for the RUL estimation of the C-

MAPSS dataset. However, both articles report results only for one model trained for each sub-

dataset, thus making the results difficult to compare.  

 

So far, the best average results obtained for the C-MAPSS dataset were reported by Li et al. [72] 

who trained a Deep Convolutional Neural Network (DCNN) with four convolutional layers of ten 

Table 5.1: Selected architecture's hyperparameters for the C-MAPSS dataset. 

Feature Maps 

1st Convolution 

Feature Maps 

2nd Convolution 
Epochs Batch Size 

Number Hidden 

Units LSTM 

Dropout 

Probability 

32 128 75 256 50 0.4 
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feature maps each. From Table 5.2, it can be seen that the proposed CNNBiLSTM-based model 

outputs a better average RMSE than any of the other state of the art models [65], [72], [131], giving 

also a similar score value, except for the FD003 sub-dataset where the proposed model does not 

perform as well as Li’s model [72]. The latter can be associated to the fact that the RUL target from 

the test sets are not modified to meet the 𝑅𝑒𝑎𝑟𝑙𝑦 criteria stated Chapter 3. In particular, the trained 

model will not be able to correctly predict 15% of the FD003 test data. Instead, a more conservative 

underestimation will be yielded for the RUL in these cases. A similar effect is presented for the 

rest of the trained models, implying that even though the test set has not been modified in any way, 

better performance is obtained for each test set with score values within the same order of 

magnitude. For the RMSE metric, the proposed CNNBiLSTM base model gives a 20% 

improvement over FD001, a 6% over FD002, a 11% FD003, and a 3% over FD004 sub-dataset.  

 

 

 
 

 

From the presented results in Table 5.2 and the dataset description in Table 3.2, it can be observed 

that the average RMSE for the FD002 and FD004 datasets are about two times bigger than for the 

FD001 and FD003. Furthermore, the average Score values from the former-datasets surpass the 

later by more than one order of magnitude. Hence, the proposed CNNBiLSTM-based model 

struggles more to yield an accurate prediction when dealing with six operational conditions instead 

of one, rather than adding a second failure mode to the setup.  

 

Besides its performance, the proposed architecture also presents other advantages over the 

abovementioned models. For example, the trained models take in average 75 epochs to converge, 

while when training a DCNN can take over 250 epochs and a DLSTM needs over 2000 epochs. 

Furthermore, the CNNBiLSTM-based model has an average training time for the selected 

hyperparameters of 64.3s, with an average test evaluation time of 0.01s for a new input data, thus 

being suitable for real time monitoring. 

 

Table 5.2: Average results for the C-MAPSS test sets after 10 different trainings. 

  MODBNE [125] DCNN [73] DLSTM [65] CNNBiLSTM 

Dataset Metric Mean STD Mean STD Mean STD Mean STD 

FD001 
RMSE 15.04 - 12.61 0.19 16.14 - 10.09 0.60 

Score 334 - 273 24 338 - 339 72 

FD002 
RMSE 25.05 - 22.36 0.32 24.49 - 21.02 0.31 

Score 5585 - 10412 544 4450 - 10830 1788 

FD003 
RMSE 12.51 - 12.64 0.14 16.18 - 11.34 0.70 

Score 421 - 284 26 852 - 1189 167 

FD004 
RMSE 28.66 - 23.31 0.39 28.17 - 22.74 0.42 

Score 6557 - 12466 853 5550 - 9849 954 
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5.2 Uncertainty Measurement on Models’ Estimation 

The proposed CNNBiLSTM-based model accounts for the model uncertainty on the RUL 

estimation. This is accomplished by means of two different approaches. First, 5,000 forward passes 

are performed on a trained model for the test set of each sub-dataset, setting a dropout probability 

of 10%, thus obtaining different RMSE values at each iteration. These values can then be used to 

determine the uncertainty of the model on the test RMSE by taking the average and standard 

deviation of the test RMSE obtained at each iteration, as it was mentioned in Chapter 3. 

 

Table 5.3 summarizes the results for this approach, as well as the results for the Shapiro-Wilk null 

hypothesis test [132], which is used to evaluate the normality of the yielded distributions. The null 

hypothesis states that the data was given by a Gaussian distribution, where this hypothesis is 

rejected for a low test-statistic (W) value, or if the p-value is lower than the desired significance 

level. In Table 5.3, it can be seen that all W values obtained from the null hypothesis yield the 

highest possible value (good fit) with all p-values higher than 10% significance. Thus, the null 

hypothesis can be accepted, meaning that a Gaussian distribution can represent the RMSE 

uncertainty for the trained models. It must be noticed that these Gaussian distributions are a direct 

result from applying dropout while testing, and it was not imposed in any way to the models during 

the training procedure. 

 

  

 
 

 

Figure 5.1 shows the normalized probability density function for the FD001 and FD002 test RMSE, 

showing significant robustness given that the results output a normal distribution with a small 

standard deviation. That is, the uncertainty over the test RMSE results (Table 5.2 and Table 5.3) is 

small. 

 

Table 5.3: Uncertainty measures in the C-MAPSS test sets through Dropout. 

 RMSE 

Sub-dataset Mean STD W p-value 

FD001 10.09 0.31 1,00 0,66 

FD002 21.40 0,21 1,00 0,63 

FD003 11.74 0,33 1,00 0,12 

FD004 22,98 0,21 1,00 0,15 
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Similar results are obtained when evaluating the test RMSE’s uncertainty for models trained for 

the FD003 and FD004 sub-datasets. The latter is shown in Figure 5.2, where once again a small 

standard deviation reflects a small uncertainty over the models’ error. It is to be noticed that Figure 

5.1 and Figure 5.2 yield a mean RMSE similar to the ones reported in Table 5.2, evidencing the 

robustness on the estimation precision of the proposed CNNBiLSTM model. 

 

 

 
The second approach to estimate the models’ uncertainty, consists in taking an entire run of one 

sample engine from the training set of each sub-dataset. 2D matrices are generated for every time-

step of the run, as it was described in Chapter 4. For each matrix, 10,000 forward passes through 

the trained model are performed with a 10% dropout probability, enabling the estimation of 

uncertainty for the predicted RUL at each cycle of the engine’s sample run. 

 

The aforementioned procedure is performed for one random sample engine for each sub-dataset, 

evaluating the created 2D matrices over their corresponding model. Figure 5.3 shows the predicted 

RUL with a 90% probability interval for each cycle in the sample engine for the FD001 sub-dataset. 

  
Figure 5.1: RMSE uncertainty for FD001 and FD002 

  
Figure 5.2: RMSE uncertainty for FD003 and FD004 
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It can be observed that the predicted RUL adjusts smoothly to the target RUL before 𝑅𝑒𝑎𝑟𝑙𝑦 is 

reached. Afterwards, the model tends to underestimate the RUL value at the beginning of the target 

RUL, which is conservative from a reliability point of view. Later, the prediction converges to the 

true RUL value for the last cycles of the run with a smaller uncertainty than before.  

 

 

 
 

 

A similar behavior can be observed when testing different engines from sub-datasets FD002, 

FD003 and FD004, as illustrated in Figure 5.4, Figure 5.5 and Figure 5.6, respectively. In this case, 

unlike the other three models, the FD002 model tends to overestimate the RUL after 𝑅𝑒𝑎𝑟𝑙𝑦 has 

been reached. However, it converges to the expected values when moving towards the failure event. 

It must be mentioned that even though these are only one single example of each dataset, it can be 

seen from the probability interval showed along the predicted values that the uncertainty decreases 

towards the failure event. This is corroborated by the three histograms taken from different points 

throughout the engine run, where the standard deviation of the estimated RUL decreases over time 

for all the test engine runs.  

 

 

 
Figure 5.3: RUL estimation under uncertainty. Engine sample from FD001. 
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The discussed results show that the trained models can successfully interpret the behavior of the 

RUL curve throughout the run. This is a remarkable conclusion for the proposed CNNBiLSTM 

framework since the studied dataset had different operational conditions and failure modes. 

Particularly, this is true for the results yielded by the model trained for the sub-dataset FD004, 

which has the most challenging conditions and two failure modes.  

 

 

 
Figure 5.4: RUL estimation under uncertainty. Engine sample from FD002. 

 

 

 

 
Figure 5.5: RUL estimation under uncertainty. Engine sample from FD003. 
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Figure 5.6: RUL estimation under uncertainty. Engine sample from FD004. 
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CS2 Lithium-Ion Batteries 

As it was done for the C-MAPSS dataset, a grid search is performed using the data from the CS2 

lithium-ion battery cells to select the most important hyperparameters of the proposed 

CNNBiLSTM architecture, as described in Chapter 4. In this case, different models are trained for 

all possible combinations of the hyperparameters listed in Table 4.3, choosing those which yield 

the lowest SOC and SOH simultaneously. The selected hyperparameters are presented in Table 

6.1. Once again, the grid search shows that the training time is directly proportional to the number 

of hidden units in the LSTM cells, as well as to the batch size.  

 

 

 
 

6.1 Model Training, Performance and Comparison 

Five models are trained applying a 40% dropout after each layer as described in Chapter 4. One 

model is trained for each battery cell individually and a fifth model is trained using all four battery 

cells simultaneously. The data used to train and validate the model are randomly selected, and the 

data for testing is not used in any way during the training procedure. To avoid overfitting, models 

are trained until either the maximum number of epochs is reached, or the validation error does not 

improve for three consecutive epochs. Each model is trained 10 different times to obtain a mean 

and standard deviation from the training procedure.  

 

The RMSE results for the SOC and SOH of each model are provided in Table 6.2. It can be seen 

that for each model, the standard deviation of the RMSE is small compared to its average value. 

Thus, the proposed architecture shows robustness on the training procedure. Table 6.2 also shows 

that models can accurately estimate both SOC and SOH, where the highest error is associated with 

SOH estimates for Model 2, which is trained with data from cell #36 (3.33% average RMSE). It is 

important to note that Model 2 also yields the highest average RMSE in SOC estimates, which is 

only in the order of 1.98%. When using all four cells in the training stage, Model 5 successfully 

generalizes the degradation of the batteries as well as the estimation of remaining energy during 

Table 6.1: Selected architecture's hyperparameters for the C-MAPSS dataset. 

Feature Maps 

1st Convolution 

Feature Maps 

2nd Convolution 
Epochs Batch Size 

Number Hidden 

Units LSTM 

Dropout 

Probability 

64 128 20 256 50 0.6 
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the discharge cycle, as it can be corroborated by observing that the average error is lower than three 

of the other models for both SOC and SOH. 

 

 

 
 

 

Other research efforts mainly study the CS2 lithium-ion battery dataset for the RUL estimation, 

either through conventional methods [88] or deep learning methods such as LSTM [100]. However, 

only one regression model has been developed for the joint estimation of the SOC and SOH. 

Indeed, Huang et al. [102] proposes a polynomial regression method for an online estimation model 

of both SOC and SOH, where the estimation of the SOH is directly dependent on the previous 

estimation of the SOC. This dependency is undesired because of the cumulative error associated to 

each regression model as well as the possible bias of the adjusted parameters to the selected training 

data. Furthermore, in the approach put forward in [102], models were trained using all data from 

each battery cell and tested with samples taken every 25 discharge cycles, starting from N=25 

cycles up to N=700 cycles, which is said to be the most relevant interval with respect to the 

functionality of the battery, and where the variables’ behavior is more stable. It is important to note 

that this chosen evaluation leads to biased results since the resulting model is tested with data used 

in the training process. Moreover, the arbitrary selection of a determined range to test the models 

guarantees lower RMSE results.  

 

In contrast, the proposed CNNBiLSTM model is trained, validated and tested with independent 

randomly selected data from each battery cell. Therefore, in order to compare the performance of 

the proposed deep learning framework with [102], the RMSE metric is calculated for each trained 

model based on randomly chosen test sets for each battery cell. These results are given in Table 

6.3. It can be observed that when compared with [102], the proposed CNNBiLSTM-based model 

outputs similar results for the RMSE when evaluating each model with its corresponding test set 

(i.e., Table 6.3 diagonal). However, in [102] the test sets consider data within the train set, in an 

operational range with more homogeneous data and less uncertainty. Table 6.3 also shows the 

results yielded by Model 5, which is trained using training data from all battery cells and delivers 

results that outperforms all model evaluations from the regression model. That is, Model 5 is tested 

with more heterogeneous data than the other models, since the data is randomly taken from all four 

battery cells, and yet delivers better performance results than any other model.  

Table 6.2: CNNBiLSTM model training RMSE results for the SOC and SOH. 

  Proposed CNNBiLSTM Model 

  SOC SOH 

Dataset Model # Mean STD Mean STD 

CS2 35 Model 1 1.19 0.25 2.01 0.38 

CS2 36 Model 2 1.98 0.51 3.33 0.63 

CS2 37 Model 3 1.69 0.27 2.70 0.56 

CS2 38 Model 4 1.71 0.28 2.96 0.73 

All cells Model 5 1.58 0.14 2.49 0.36 
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Hence, the proposed CNNBiLSTM has a good generalization capability when dealing with non-

homogeneous data and with high variability. Indeed, Model 5 outputs a RMSE equal to 1.40% 

when evaluated with all test sets, which is smaller than any of the regression models evaluated in 

the different datasets. Also, given the smaller standard deviation obtained when training the 

CNNBiLSTM model with data from all battery cells, it can be argued that the proposed model is 

robust at training, and has the capability to obtain a better generalization when trained for a bank 

of batteries. 

 

 

 
 

 

 

 

 

  

Table 6.3: RMSE [%] SOC comparison when evaluating proposed CNNBiLSTM model with test set. 

 Tested Cell # 35 36 37 38 All 

 Method RMSE RMSE RMSE RMSE RMSE 

Model 1 
Hung 1.50 2.40 1.90 1.40 - 

CNNBiLSTM 1.56 1.63 1.73 2.50 1.91 

Model 2 
Hung 2.00 1.90 2.10 1.90 - 

CNNBiLSTM 1.96 1.79 1.95 3.36 2.38 

Model 3 
Hung 1.60 2.20 1.80 1.50 - 

CNNBiLSTM 2.25 2.10 1.63 2.99 2.31 

Model 4 
Hung 1.60 2.40 1.90 1.40 - 

CNNBiLSTM 2.34 2.39 2.10 1.41 2.08 

Model 5 
Hung - - - - - 

CNNBiLSTM 1.47 1.4 1.36 1.36 1.40 
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6.2 Uncertainty Measurement on the Models’ Estimation 

Uncertainty characterization is a key element in the state estimation problem. Particularly, it is 

important to validate assumptions on the structure and probability distribution associated with the 

model error. For the CS2 battery cells, the main assumption is that modelling errors can be 

characterized as additive Gaussian noise; in other words, that the RMSE is an adequate metric for 

uncertainty characterization of SOC and SOH estimates. Hence, two different approaches are 

applied to validate this assumption, as well as to quantify the precision of SOC and SOH estimates 

in the proposed CNNBiLSTM-based models.  

 

On the one hand, the test set from each cell is evaluated 5,000 times through their respective trained 

model using a 10% dropout probability. Then, the RMSE results obtained for the SOC and SOH 

of each trained model are used to fit a Gaussian distribution. In it, its standard deviation reflects 

the uncertainty of each model on its estimated values. Table 6.4 summarizes the results for this 

approach. Furthermore, Figure 6.1 and Figure 6.2 show the obtained distribution for the SOC and 

SOH when evaluating Models 1 to 4, and Figure 6.3 shows the obtained distribution for the SOC 

and SOH when evaluating Model 5 (trained for all datasets).  

 

The Shapiro-Wilk null hypothesis test [132] is performed to evaluate the normality of the yield 

distributions. The null hypothesis states that the data was given by a Gaussian distribution, where 

this hypothesis is rejected for a low test-statistic (W) value, or if the p-value is lower than the 

desired significance level. As it can be seen from Table 6.4, all W values yield by the distributions 

are 1.0 (the best possible result) with a relative high p-value. Hence, the null hypothesis is accepted, 

and it can be stated that the uncertainty over the RMSE when applying dropout in each model 

yields a Gaussian distribution. 

 

 

 
 

 

From Table 6.4, it can also be observed that the obtained mean RMSE for each dataset is higher 

than the ones reported in Table 6.3, although with smaller standard deviation. In other words, 

although model errors are slightly affected, precision on the resulting predicted values is high. This 

error increase could be associated to the few number of features that the model receives as input 

Table 6.4: Uncertainty measures in the CS2 test sets through dropout. 

 
 

SOC SOH 

Cell # Model # Mean STD W p-value Mean STD W p-value 

35 Model 1 2,37 0,02 1,00 0,65 3,51 0,03 1,00 0,50 

36 Model 2 2,70 0,02 1,00 0,95 4,48 0,02 1,00 0,69 

37 Model 3 2,61 0,02 1,00 0,49 3,57 0,02 1,00 0,71 

38 Model 4 2,67 0,02 1,00 0,26 3,97 0,02 1,00 0,37 

All Model 5 2,45 0,01 1,00 0,71 3,78 0,01 1,00 0,64 
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during the dropout-based uncertainty quantification procedure, since the action of “turning off” 

neurons leads to information loss. Note that the Gaussian distribution obtained for the evaluation 

of each test set is a direct result from applying dropout while testing, and it was not imposed in any 

way to the models presented in Table 6.4 during the training procedure. 

 

 

 
 

 

 

  
Figure 6.1: RMSE uncertainty for cells 35 and 36. 

 

  
Figure 6.2: RMSE uncertainty for cells 37 and 38. 
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On the other hand, it is also important to evaluate the uncertainty associated with SOC estimates 

when using the trained models for real-time battery assessment. For this purpose, an uncertainty 

quantification procedure is also implemented based on a 10% dropout probability and using 

random discharge cycles from each battery cell. In these cases, the 2D matrices that characterize 

each discharge cycle are generated as described in Chapter 4. Each 2D matrix sample from each 

discharge cycle is evaluated 10,000 times in through its corresponding trained model. Figure 6.4 

to Figure 6.6 show the estimated SOC at each point of the discharge cycle for each sample. The 

estimation SOC is considered as the average of the 10,000 SOC yielded by the model for each 2D 

matrix sample. Furthermore, a 90% probability interval is given for each estimation point.  

 

 

 
 

 

  

Figure 6.3: SOC and SOH test RMSE uncertainty for Model 5, trained for all battery cells. 

 
Figure 6.4: SOC estimation with uncertainty from Model 1. Discharge sample from cell 35. 
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From this approach, it can be seen that each estimated SOC point represents the mean value of a 

Gaussian distribution, such as the ones obtained in Figure 6.1 and Figure 6.2, where its standard 

deviation represents the uncertainty over the estimation of the SOC. It can also be observed that 

the closer the estimation is to the complete discharged event, the narrower is the 90% probability 

interval. Thus, the estimation precision increases when approaching a fully discharged battery. This 

is due to the time-window length to create the 2D sample matrices, given that there are more 

samples representing a 70% to 100% discharged battery than to a fully charged battery. 

 

 

 
 

The measured uncertainties can be related to many sources implicitly involved on the SOC and 

SOH estimation. For instance, the precision on the measured variables, especially those used to 

train and evaluate the model such as the voltage and current. Measurement devices often come with 

an associated error, which can be further contaminated with noise coming from the environment, 

as well as from measuring different battery cells with different measurement instruments. Another 

possible source of uncertainty for the estimated results can be related to the low sampling frequency 

of the studied dataset. Indeed, each 2D sample matrix evaluated through the proposed 

CNNBiLSTM model contains 24 time-steps, equivalent to 240s. Hence, uncertainty on the 

estimated SOC and SOH may be reduced if a higher sampling frequency is used to measure the 

variables. 

 

  

 

 

 
Figure 6.5: SOC estimation with uncertainty from Model 2. Discharge sample from cell 36. 
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Figure 6.6: SOC estimation with uncertainty from Model 3. Discharge sample from cell 37. 

 

 
Figure 6.7: SOC estimation with uncertainty fromModel 4. Discharge sample from cell 38. 

 



 

- 52 - 

 

  

 

Concluding Remarks  

In this thesis, a deep learning framework is presented for the health state estimation of complex 

systems based on big machinery data. The framework is validated through two different datasets 

and consists of two CNN layers aiming to obtain an abstract relationship between sensor 

measurements, combined with a bidirectional LSTM layer capable of understanding the temporal 

behavior of such sensors. Thus, the proposed deep learning framework is named CNNBiLSTM. 

The C-MAPSS Turbofan Engines and the CS2 Lithium-Ion Battery Cells datasets are used to 

validate the proposed architecture through the training and testing of different models. 

Furthermore, an estimation of the uncertainty for the models’ prediction is given through dropout 

as a Bayesian approximation. Noteworthy results are yielded by the proposed framework, which 

are addressed in the following conclusions and comments.  

7.1 Conclusions 

During the last decade, deep learning methods have become popular in engineering applications, 

particularly in data analysis for reliability assessment, which used to be an inefficient process due 

to the need of expert knowledge on the studied system, along with the limitation of traditional PHM 

techniques. Reliability related, data-driven applications still have many challenges to confront in 

order to keep improving the estimation of health state parameters which can guarantee an accurate 

diagnosis for systems, equipment and, more importantly, the safety of the industrial working staff. 

 

In the context of estimating and predicting the state of health of industrial machinery, a deep 

learning framework is proposed, aiming to analyze sensorial data and obtain a temporal relationship 

within measured variables. From a data analysis point of view, the approach combines the 

capability of Convolutional and Recurrent Neural Networks to analyze spatial and temporal data, 

respectively. Moreover, the architecture of the proposed CNNBiLSTM framework is also thought 

from an engineering point of view. The convolutional filters from both CNN layers are applied to 

independently process the sensorial data at each time-step. The stride chosen for the CNN filters 

process a 2D matrix sample of multisensorial data in time to give an abstract representation of the 

relationship among all sensors. Thus, for each time-step, sensor measurements are paired in couples 

through the first convolution, to later obtain a relationship among all sensors through the second 

convolutional filter. Analyzing 2D matrices comes as a strong asset from a reliability point of view, 

given that the trained models do not need any information from the previous behavior or state of 
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the studied system. This allows trained models to yield an accurate health state assessment of the 

system with only a few datapoints.  

 

The proposed framework shows robustness for both prognosis of the remaining useful life for 

rotational machinery, as well as for the joint estimation of the State of Charge and State of Health 

of lithium-ion batteries, based on multivariate sensor data. For the C-MAPSS dataset, one model 

is trained and tested for each sub-dataset. The average results obtained for both metrics, RMSE and 

Score, were compared with other state of the art architectures, where the proposed CNNBiLSTM-

based models showed an improvement on the RMSE and similar Score values over the test sets. 

Moreover, when comparing the results obtained (Table 5.2) for sub-datasets FD002 and FD004 

with sub-datasets FD001 and FD003, it becomes clear that the proposed architecture is more 

sensitive to operational conditions rather than the number of fault modes. It is to be noticed that 

unlike other studies, the test set was not modified for the testing procedure to meet the 𝑅𝑒𝑎𝑟𝑙𝑦 

criteria. Hence, results for both RMSE and Score could be further improved without modifying the 

proposed architecture. However, this approach is not correct, since test sets should never be 

modified when testing data analysis models. 

 

Uncertainty on the obtained results was estimated through two approaches. For the first approach, 

uncertainty over the RMSE results is estimated by applying a 10% dropout on 5,000 forward passes 

of the test sets through the trained network. Results presented in Table 5.3 along with Figure 5.1 

and Figure 5.2, show a smooth Gaussian distribution with a small standard deviation for all four 

models (Table 5.3). Thus, the proposed CNNBiLSTM-based models are robust on their accuracy 

to predict the RUL of a turbofan engine. For the second approach, a visualization is presented for 

the RUL estimation with its uncertainty for an entire run from one sample engine from each sub-

dataset. Figure 5.3 to Figure 5.6 report a small uncertainty on the models’ predictions, which 

decreases towards the failure event. These figures also show that for those engines where only one 

operational condition was reported, the proposed model tends to be conservative, given that the 

predicted values for the RUL were located under the target curve. Thus, the small uncertainty on 

the models’ results makes the proposed CNNBiLSTM model both accurate and precise on its RUL 

predictions.  

 

To analyze the CS2 lithium-ion batteries from CALCE-UMD, five different models are trained 

from the dataset: one for each battery cell and a fifth using all cells simultaneously. The proposed 

CNNBiLSTM-based models show an excellent performance after training, where all models obtain 

an average RMSE under 2.0% for the SOC and below 3.5% for the SOH. These results are 

compared with a parametric regression model which gives a SOH directly dependent from the 

SOC. Here, Model 5, trained and tested for all battery cells, outperforms the parametric regression 

model (Table 6.3). Furthermore, the CNNBiLSTM-based model is tested with data randomly 

selected from each dataset, whereas the parametric regression model not only uses the same data 

to train and test the model, but it also takes only data from a certain range of cycle degradation 

where the batteries behavior is more homogeneous. Hence, it is fair to conclude that the proposed 

framework stands as a better approach. 
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Two uncertainty measurements are given for the SOC estimation by applying several forward 

passes through the model with a 10% dropout probability. A small standard deviation is obtained 

on the tests RMSE (Table 6.4), showing a low estimation uncertainty for the proposed 

CNNBiLSTM models. Moreover, a second approach to visualize the uncertainty of the model is 

given by predicting an entire discharge cycle for each battery cells, where a 90% confidence 

interval is shown with a small standard deviation (Figure 6.4 to Figure 6.7). It can be concluded 

that the uncertainty of the model is small for all predictions, and it diminishes towards the complete 

discharge event.  

 

The proposed framework presents several advantages when compared with traditional methods for 

the joint estimation of the SOC and SOH in battery cells. First, only a small time-window of 24 

time-steps is needed to yield an accurate estimation of the state of the battery cell, making the 

model suitable for online estimation. This is a remarkable result, also given the fact that the studied 

CS2 dataset has a low data sample frequency of 0.1 Hz. Furthermore, the trained models do not 

require the number of charge-discharge cycles that the battery has performed before. Therefore, 

the SOC and SOH estimation come only from the relationship of the measured variables. Lastly, 

the SOH estimation is completely independent from the SOC estimation, thus results are less prone 

to be biased and to have cumulative error. 

 

From the presented results for both datasets, C-MAPPS and CS2, it can be concluded that the 

trained models successfully combine the spatial recognition capabilities of CNN with the sequential 

data processing of bidirectional LSTM. This is reflected in the good results yielded for the RMSE 

and Score metrics when testing the C-MAPSS turbofan engines, as well as the RMSE for the CS2 

lithium-ion battery cells dataset. These results obtained for the test sets are a compelling proof that 

the proposed CNNBiLSTM framework can be a powerful asset for reliability purposes in big 

datasets composed by multisensorial measurements. This conclusion is reinforced when 

considering the time required to train and test these models. Indeed, training one model for the C-

MAPSS dataset takes an average of 64.3s, while for the CS2 dataset the training time averages 

54.4s. Testing a new 2D sample matrix takes an average of 0.01s for both datasets, which advocates 

that the trained models could be used for online estimation if a time-window measurement is 

available. 

 

Finally, the proposed CNNBiLSTM trained models show improvement from the state-of-the-art 

results reported to date for both datasets studied. Even though the improvement over these results 

might not be significant enough, it must also be considered that the proposed framework does not 

need any expert knowledge on the studied systems to give an accurate assessment. This comes as 

a more notable result when considering that the proposed CNNBiLSTM framework was used to 

train two completely different datasets, which present different behaviors and operate under diverse 

conditions, giving accurate results for both challenges. Hence, it is clear that the proposed 

CNNBiLSTM framework can be used for reliability assessment of any monitored equipment.  
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7.2 Future Work 

The results presented and discussed above are a compelling proof of the framework’s feature 

extraction and sequential analysis capabilities from raw data. The framework can be adapted to 

different circumstances and yield accurate results. However, there are still some aspects where 

improvement can be made. For instance, one of the main drawbacks from the proposed 

CNNBiLSTM framework is that the training procedure is fully supervised. Hence, although models 

can be directly applied to many challenges, there are still many reliability related phenomena where 

it is not possible to generate the necessary amount of labeled data to train a fully supervised model. 

Thus, a next step for the presented work would be to implement an unsupervised data preprocessing 

technique able to generate the labels for the training data, i.e., by applying traditional ML 

techniques such a clustering; or perhaps some more elaborated ones such as Variational 

Autoencoders or Generative Adversarial Networks. 

 

Another interesting follow-up to the presented CNNBiLSTM framework is to implement an 

evaluation software which could be used to continuously monitor the state of health of a system 

through data acquired online. This can be accomplished by developing a software with a friendly 

Graphical User Interface (GUI), aiming to yield real-time results, as well as updating the trained 

models with the new incoming data.    
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