

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE INGENIERÍA MECÁNICA

A DEEP LEARNING BASED FRAMEWORK FOR

PHYSICAL ASSETS' HEALTH PROGNOSTICS UNDER

UNCERTAINTY FOR BIG MACHINERY DATA

TESIS PARA OPTAR AL GRADO DE

MAGISTER EN CIENCIAS DE LA INGENIERÍA MENCIÓN MECÁNICA

SERGIO MANUEL IGNACIO COFRÉ MARTEL

PROFESOR GUÍA

ENRIQUE LÓPEZ DROGUETT

MIEMBROS DE LA COMISIÓN

VIVIANA MERUANE NARANJO

MARCOS ORCHARD CONCHA

SANTIAGO DE CHILE

2018

RESUMEN DE LA TESIS PARA OPTAR

AL GRADO DE: MAGISTER EN CIENCIAS DE LA

INGENIERÍA, MENCIÓN MECÁNICA

POR: SERGIO COFRÉ MARTEL

FECHA: 2018

PROF. GUÍA: ENRIQUE LÓPEZ DROGUETT

i

A DEEP LEARNING BASED FRAMEWORK FOR PHYSICAL ASSETS'

HEALTH PROGNOSTICS UNDER UNCERTAINTY FOR BIG

MACHINERY DATA

The ongoing development in sensor technology has allowed engineers to monitor complex systems

through multisensorial data, generating thousands of data-points in time. This big machinery

database is commonly stored to later be used by engineers for reliability purposes through

traditional Prognostics and Health Management (PHM) techniques. However, most part of this

valuable information is often wasted since PHM methods frequently rely on expert knowledge for

their implementation, as well as a good understanding of the physics of failure that govern the

system. Hence, to estimate reliability related parameters, such as the State of Health (SOH) or the

Remaining Useful Life (RUL) of electrical and mechanical components, data-driven approaches

can be applied to complement PHM methods.

In this context, the purpose of this thesis is to develop and implement a novel Deep Learning (DL)

framework for the health state estimation of systems and components, based on big machinery data.

Accordingly, the following specific objectives are defined: Develop an architecture capable of

extracting temporal and spatial characteristics from the data. Propose a health state estimation

framework, and validate it using two benchmark datasets: C-MAPSS turbofan engine, and CS2

Lithium-Ion Batteries datasets. Finally, give an estimation of the uncertainty propagation for the

health state prognostics yield by the proposed framework.

This thesis proposes a DL framework, which integrates the advantages of spatial management from

Convolutional Neural Networks, along with the sequential analysis capabilities from Long-Short

Term Memory Recurrent Neural Networks. Dropout is used as a regularization technique, as well

as a Bayesian Approximation for the estimation of the uncertainty of the model. Henceforth, the

proposed architecture is named CNNBiLSTM.

For the C-MAPSS dataset, four different models are trained, one for each sub-dataset, aimed to

estimate the RUL. All four models yield state-of-the-art results for the Root Mean Square Error

(RMSE) on their prognostics, showing robustness in the training process and small uncertainty for

the test RMSE as well as for the RUL prediction. Similar results are obtained for the CS2 dataset,

where the model trained using all battery cells estimates the State of Charge and SOH of the

batteries with a lower RMSE than the state-of-the-art results, and a small uncertainty over its

estimated values.

Results yielded by the trained models show that the proposed DL framework is adaptable to

different systems and can successfully obtain abstract temporal relationship from the sensorial data

for reliability assessment. Furthermore, models show robustness during the training process, as

well as an accurate output estimation with a small uncertainty.

RESUMEN DE LA TESIS PARA OPTAR

AL GRADO DE: MAGISTER EN CIENCIAS DE LA

INGENIERÍA, MENCIÓN MECÁNICA

POR: SERGIO COFRÉ MARTEL

FECHA: 2018

PROF. GUÍA: ENRIQUE LÓPEZ DROGUETT

ii

MARCO DE TRABAJO BASADO EN APRENDIZAJE PROFUNDO PARA

PRONÓSTICO BAJO INCERTIDUMBRE DE SALUD DE ACTIVOS

FISICOS PARA DATOS DE MAQUINARIA

El desarrollo en tecnología de mediciones ha permitido el monitoreo continuo de sistemas

complejos a través de múltiples sensores, generando así grandes bases de datos. Estos datos

normalmente son almacenados para ser posteriormente analizados con técnicas tradicionales de

Prognostics and Health Management (PHM). Sin embargo, muchas veces, gran parte de esta

información es desperdiciada, ya que los métodos tradicionales de PHM requieren de conocimiento

experto sobre el sistema para su implementación. Es por esto que, para estimar parámetros

relacionados a confiabilidad, los enfoques basados en análisis de datos pueden utilizarse para

complementar los métodos de PHM.

El objetivo de esta tesis consiste en desarrollar e implementar un marco de trabajo basado

en técnicas de Aprendizaje Profundo para la estimación del estado de salud de sistemas y

componentes, utilizando datos multisensoriales de monitoreo. Para esto, se definen los siguientes

objetivos específicos: Desarrollar una arquitectura capaz de extraer características temporales y

espaciales de los datos. Proponer un marco de trabajo para la estimación del estado de salud, y

validarlo utilizando dos conjuntos de datos: C-MAPSS turbofan engine, y baterías ion-litio CS2.

Finalmente, entregar una estimación de la propagación de la incertidumbre en los pronósticos del

estado de salud.

Se propone una estructura que integre las ventajas de relación espacial de las Convolutional

Neural Networks, junto con el análisis secuencial de las Long-Short Term Memory Recurrent

Neural Networks. Utilizando Dropout tanto para la regularización, como también para una

aproximación bayesiana para la estimación de incertidumbre de los modelos. De acuerdo con lo

anterior, la arquitectura propuesta recibe el nombre CNNBiLSTM.

Para los datos de C-MAPSS se entrenan cuatro modelos diferentes, uno para cada

subconjunto de datos, con el objetivo de estimar la vida remanente útil. Los modelos arrojan

resultados superiores al estado del arte en la raíz del error medio cuadrado (RMSE), mostrando

robustez en el proceso de entrenamiento, y baja incertidumbre en sus predicciones. Resultados

similares se obtienen para el conjunto de datos CS2, donde el modelo entrenado con todas las celdas

de batería logra estimar el estado de carga y el estado de salud con un bajo RMSE y una pequeña

incertidumbre sobre su estimación de valores.

Los resultados obtenidos por los modelos entrenados muestran que la arquitectura propuesta

es adaptable a diferentes sistemas y puede obtener relaciones temporales abstractas de los datos

sensoriales para la evaluación de confiabilidad. Además, los modelos muestran robustez durante el

proceso de entrenamiento, así como una estimación precisa con baja incertidumbre.

ii

Una tesis es como una cazuela, tiene muchas partes, debe hacerse con
paciencia y añadiendo los ingredientes precisos.

En memoria de Víctor Manuel Cofré Moreno, quién dentro de muchas cosas

importantes en la vida, me enseñó a disfrutar una buena cazuela.

iii

Acknowledgment

En primer lugar, agradecer como siempre a mi profesor guía, Dr. Enrique López Droguett, quién

desde el 2016 ha puesto su confianza en mí para trabajar a su lado y me ha hecho crecer mucho en

el área que más me apasiona, la investigación y docencia. Del mismo modo, agradecer a mis

profesores Co-guía, Dr. Viviana Meruane y Dr. Marcos Orchard, por haber dedicado parte de su

valioso tiempo en hacer ver mis errores, revisar mis trabajos escritos y enseñarme su forma de ver

la docencia en la Universidad.

A mis amigos de siempre: Guido, Piero, Rodrigo y Rosario; quienes han hecho que mi trayectoria

en la Universidad de Chile sea un disfrutar del conocimiento, lo cual hasta el día de hoy se ve

reflejado en largas conversaciones que muchas veces no llegaban a ninguna parte. Son ustedes una

de las fuentes de inspiración más fuerte que tengo para dar lo mejor de mí y así seguir mejorando

cada día. Los amo.

Me gustaría también dar las gracias a aquellas personas que influenciaron la dirección y resultados

de este trabajo de tesis de una u otra forma. Javier, Joaquín, y en general a todos los alumnos de

magíster, de los cuales aprendo cada día. En particular, agradecer a Alejandro ‘Pelao’ Toledo, quien

me facilitó su template de tesis y me ahorró mucho trabajo en la escritura, y a María Paz ‘Pachi’

Valdés por darse el tiempo de revisar la ortografía y gramática de este trabajo. También, me

gustaría mencionar a las funcionarias que día a día facilitan nuestras labores, nos alegran por las

mañanas con una sonrisa de buenos días, y siempre tienen disponibilidad para favores de último

minuto. Soledad, Maricarmen, María Eugenia y Señora Silvia, muchas gracias por todo.

Por último, este trabajo de tesis y eventual título de Magister en Ciencias no hubiese sido

remotamente posible de no ser por tres mujeres que son hoy el pilar de mi vida. Margarita Jullian

por darme techo, calor, y amor, junto a otra infinidad de cosas sin pedir nunca nada a cambio.

Francia Martel, mi amada madre quién ha estado siempre presente para apoyarme y guiarme en lo

que sea que quiera realizar, mostrándome mis capacidades incluso cuando yo mismo no creo

tenerlas. Finalmente, Camila Correa, a quién simplemente no me dan las palabras para decirte

cuánto te amo y de lo feliz que me hace saber cuánto me queda por crecer a tu lado.

Gracias a todos por estar siempre ahí, y espero poder devolverles la mano algún día.

iv

Table of Content

 INTRODUCTION .. - 1 -

1.1 MOTIVATION .. - 2 -
1.2 OBJECTIVES AND STATEMENT .. - 4 -

1.2.1 General Objective ... - 4 -
1.2.2 Specific Objectives .. - 4 -
1.2.3 Statement and Thesis Scope .. - 4 -

 METHODOLOGY .. - 5 -

2.1 LITERATURE REVIEW .. - 5 -
2.2 DEEP LEANING FRAMEWORK PROPOSAL .. - 5 -
2.3 VALIDATION DATASETS.. - 5 -
2.4 MODEL TRAINING ... - 5 -

2.5 RESULTS, METRICS AND UNCERTAINTY ... - 6 -

 BACKGROUND .. - 7 -

3.1 MACHINE LEARNING .. - 7 -
3.1.1 Classification and Regression .. - 8 -

3.1.2 Supervised and Unsupervised Learning ... - 10 -
3.2 DEEP LEARNING ... - 11 -

3.2.1 Deep Neural Networks.. - 12 -
3.2.2 Regularization .. - 15 -

3.2.3 Convolutional Neural Networks ... - 16 -
3.2.4 Recurrent Neural Networks and Long-Short Term Memory Cells - 18 -

3.3 DEEP LEARNING IN PROGNOSTICS FOR MECHANICAL COMPONENTS - 20 -
3.3.1 C-MAPSS Dataset for Turbofan Engines RUL Estimation - 20 -

3.4 DEEP LEARNING IN LITHIUM-ION BATTERY STATE ESTIMATION - 25 -

3.4.1 State of Charge ... - 26 -
3.4.2 State of Health .. - 26 -
3.4.3 CS2 Dataset for Batteries SOC and SOH Estimation .. - 27 -

3.5 UNCERTAINTY WITH DROPOUT AS A BAYESIAN APPROXIMATION - 30 -

 PROPOSED DEEP LEARNING FRAMEWORK - 31 -

4.1 DATA PREPROCESSING .. - 31 -
4.2 TRAINING SAMPLES .. - 32 -
4.3 CONVOLUTIONAL LAYERS .. - 33 -

4.4 BIDIRECTIONAL LSTM ... - 34 -
4.5 TRAINING .. - 35 -
4.6 HYPERPARAMETERS SELECTION AND REGULARIZATION .. - 36 -

v

 C-MAPSS TURBOFAN ENGINES ... - 37 -

5.1 MODEL TRAINING, PERFORMANCE AND COMPARISON ... - 37 -
5.2 UNCERTAINTY MEASUREMENT ON MODELS’ ESTIMATION ... - 39 -

 CS2 LITHIUM-ION BATTERIES .. - 44 -

6.1 MODEL TRAINING, PERFORMANCE AND COMPARISON ... - 44 -

6.2 UNCERTAINTY MEASUREMENT ON THE MODELS’ ESTIMATION .. - 47 -

 CONCLUDING REMARKS .. - 52 -

7.1 CONCLUSIONS ... - 52 -
7.2 FUTURE WORK ... - 55 -

BIBLIOGRAPHY .. - 56 -

vi

List of Tables

Table 3.1: Non-linear Activation Functions examples. ... - 15 -

Table 3.2: C-MAPSS Train and Test Sets Resume. .. - 21 -

Table 3.3: Variables C-MAPSS Dataset. .. - 21 -

Table 3.4: Sensor Measurements. .. - 22 -

Table 3.5 : CS2 Lithium-Ion batteries dataset summary. .. - 27 -

Table 3.6: Variables CS2 Lithium-Ion batteries dataset.. - 28 -

Table 4.1: Dropped columns for the training procedure for each dataset. - 32 -

Table 4.2: Time-window length for C-MAPSS dataset. ... - 33 -

Table 4.4: Hyperparameter values proposed for the architecture’s grid search. - 36 -

Table 5.1: Selected architecture's hyperparameters for the C-MAPSS dataset. - 37 -

Table 5.2: Average results for the C-MAPSS test sets after 10 different trainings. - 38 -

Table 5.3: Uncertainty measures in the C-MAPSS test sets through Dropout. - 39 -

Table 6.1: Selected architecture's hyperparameters for the C-MAPSS dataset. - 44 -

Table 6.2: CNNBiLSTM model training RMSE results for the SOC and SOH. - 45 -

Table 6.3: RMSE [%] SOC comparison when evaluating proposed CNNBiLSTM model with test

set. .. - 46 -

Table 6.4: Uncertainty measures in the CS2 test sets through dropout. - 47 -

file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742135
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742136
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742137
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742138
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742139
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742140
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742141
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742142
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742143
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742144
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742145
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742146
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742147
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742148
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742149
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742149
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742150

vii

List of Figures

Figure 3.1: MNIST digit samples. ... - 9 -

Figure 3.2: Regression sample for some given data. ... - 10 -

Figure 3.3: Three-layer Deep Neural Network sample. .. - 13 -

Figure 3.5: Dropout sample ... - 16 -

Figure 3.6: Convolution operation. ... - 17 -

Figure 3.7: Two-layer CNN example. ... - 18 -

Figure 3.8: Long-Short Term Memory structure example. ... - 19 -

Figure 3.9: RUL labels for the C-MAPSS dataset. Linear and Non-linear target. - 23 -

Figure 3.10: Voltage discharge curves from Cell 38, for different cycles of operation. - 28 -

Figure 4.1: CNN layers of the proposed CNNBiLSTM framework. .. - 34 -

Figure 4.2: Bidirectional LSTM layer of the proposed CNNBiLSTM framework. - 35 -

Figure 5.1: RMSE uncertainty for FD001 and FD002 .. - 40 -

Figure 5.2: RMSE uncertainty for FD003 and FD004 .. - 40 -

Figure 5.3: RUL estimation under uncertainty. Engine sample from FD001. - 41 -

Figure 5.4: RUL estimation under uncertainty. Engine sample from FD002. - 42 -

Figure 5.5: RUL estimation under uncertainty. Engine sample from FD003. - 42 -

Figure 5.6: RUL estimation under uncertainty. Engine sample from FD004. - 43 -

Figure 6.1: RMSE uncertainty for cells 35 and 36. ... - 48 -

Figure 6.2: RMSE uncertainty for cells 37 and 38. ... - 48 -

Figure 6.3: SOC and SOH test RMSE uncertainty for Model 5, trained for all battery cells. .. - 49 -

Figure 6.4: SOC estimation with uncertainty from Model 1. Discharge sample from cell 35. . - 49 -

Figure 6.5: SOC estimation with uncertainty from Model 2. Discharge sample from cell 36. . - 50 -

Figure 6.6: SOC estimation with uncertainty from Model 3. Discharge sample from cell 37. . - 51 -

Figure 6.7: SOC estimation with uncertainty fromModel 4. Discharge sample from cell 38. .. - 51 -

file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742153
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742154
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742155
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742156
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742157
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742158
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742159
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742160
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742161
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742162
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742163
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742164
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742165
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742166
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742167
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742168
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742169
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742170
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742171
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742172
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742173
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742174
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742175
file:///D:/Dropbox/Magister-II%20Semestre/Tesis/Tesis_Empaste_SCM_v4.docx%23_Toc520742176

viii

Abbreviations

ANN - Artificial Neural Network.

BiLSTM - Bidirectional Long-Short Term Memory.

CALCE-UMD - Center of Advanced Cycling Engineering – University of Maryland.

CNN - Convolutional Neural Network.

CNNBiLSTM - Convolutional Neural Network and Bidirectional Long-Short Term

Memory.

DDA - Data-Driven Approaches

DL - Deep Learning.

ESD - Energy Storage Devices.

GPU - Graphis Processing Unit

LSTM - Long-Short Term Memory.

ML - Machine Learning.

MLE - Maximum Likelihood Estimator.

MLP - Multi-Layer Perceptron.

MSE - Mean Square Error.

MTTF - Mean Time to Failure

NN - Neural Network.

PHM - Prognostics and Health Management.

RMSE - Root Mean Squared Error.

RNN - Recurrent Neural Network.

RUL - Remaining Useful Life.

SOC - State of Charge.

SOH - State of Health.

- 1 -

Introduction

Ever since the creation of their first tools and machines1, humans have had to deal with different

kinds of degradation and failure problems in their inventions due to corrosion in materials, fatigue

in structures, or maybe just poor design choices. These issues became more notorious after the

Industrial Revolution, where enormous production plants were created seeking to produce as many

goods at the lowest cost as possible, involving hundreds and perhaps thousands of machines that

were doomed to unexpectedly fail if proper care was not taken through maintenance. Economies

of Scale and production optimization dictate that a fundamental step to effectively achieve such

production levels, is to minimize the downtime of the involved equipment. However, predicting

the future behavior of a system is not an easy task, which is why Reliability Engineering plays a

fundamental role at every stage of the production industry: design, quality control, monitoring, and

maintenance planning. For the latter, reliability engineers have usually applied traditional

Prognostics and Health Management (PHM) techniques based on statistical approaches to obtain

quantitative information from the studied components, where the Mean Time to Failure (MTTF)

and the Remaining Useful Life (RUL) are the most known metrics.

PHM techniques have proven to be effective and reliable in their results. Nevertheless, perhaps one

of their main handicaps is that each studied component must be treated as a new individual

challenge, since not all machines operate in the same manner. For instance, the physics behind the

functionality of a cellphone’s battery completely differs from the mechanisms observed in the

gearbox of a regular automobile. Furthermore, the physics of failure that govern these different

phenomena usually lack numerical models for engineers to rely on. Hence, to properly obtain and

analyze data from reliability tests for a given system, expert knowledge is required for the broad

understanding of its health state. In particular, complex systems that are continuously monitored

through sensor measurements, such as temperature, pressure, vibration, amongst others; generate

thousands of data-points which contain valuable information related to the correlation of their

variables in the temporal space. Most of the time, this information is wasted when analyzed with

traditional PHM methods, since they are not sufficient to fully comprehend the future behavior of

the system, nor to obtain abstract information from the measured variables.

1 Considering a machine as any artefact which can execute a given task, such as a bucket to pull out water from a well.

- 2 -

Lately, many limitations presented by traditional PHM methods have been addressed by reliability

engineers from a data-driven perspective. Indeed, the ongoing development of Machine Learning

(ML) and Deep Learning (DL) techniques, along with computational hardware advances, have

allowed engineers to study and implement such algorithms in different areas. For instance, Support

Vector Machines (SVM) and Random Forest (RF) are two examples of traditional ML techniques

used for classification tasks, which can be applied to classify the health state of a system based on

data measured from its monitoring sensors. Moreover, ML approaches such as Support Vector

Regression (SVR) and Artificial Neural Networks (ANN) are commonly used for regression tasks,

obtaining models which are trained to yield an estimated value of a desired variable based on a

given input data. On the other hand, DL techniques aim to tackle similar challenges than ML

(classification and regression), but with models highly capable of extracting abstract features from

the given data. Architectures such as Convolutional Neural Networks (CNN), Auto-Encoders (AE),

Recurrent Neural Networks (RNN), amongst others, have widely been applied to tasks regarding

image classification, temporal data analysis, fault detection, and speech recognition, to name a few.

These methods are categorized as deep learning algorithms since they perform two or more step-

analysis over the data, also known as layers. However, as powerful as these techniques might be,

for many years their application had been limited in areas which require an immediate response,

due to the excessive computational resources needed by the algorithms, as is the case for Reliability

Engineering problems. Nevertheless, the development of Graphis Processing Units (GPU)

enhanced computation, and this has allowed the implementation of DL techniques in the risk and

reliability area. Thus, by using data obtained from sensor measurements, PHM methods can be

improved or surpassed by data-driven approaches, reducing the computing time needed to yield

model results and data preprocessing, and increasing accuracy.

In this thesis, a deep learning framework is presented to estimate the state of health under

uncertainty of any system, based on big machinery data. That is, the framework analyses

multisensorial data obtained from the equipment monitoring for long periods of time. The approach

consists of two convolutional layers to obtain an abstract representation of the sensors’ correlation

at each time-step, followed by a bidirectional Long-Short Term Memory Recurrent Neural

Network for the temporal analysis. Two different datasets are used to train, test and validate the

proposed architecture. These consist of a Turbofan Engine and a Lithium-Ion Battery Cell.

1.1 Motivation

For the last decade, data-driven machine health monitoring systems (MHMS) approaches have

strongly been introduced in the reliability community, encouraged by the need to accurately predict

future behavior of variables that govern complex machinery [1]–[3]. This is particularly true for

mechanical components, since these systems are usually provided with online monitoring with

sensorial devices such as thermocouples, barometers, and vibration sensors. Machinery data can

- 3 -

be stored to develop indicators which can be used to prevent future loss in production or failure of

the system, such as the remaining useful life (RUL) of a component [4], [5].

Given the advantage of automatic feature extraction and the higher level of abstraction that can be

achieved from the collected data without specific expert knowledge [6]–[8], deep learning

networks have been employed in many reliability problems such as fault diagnostics in gearboxes

[9]–[11], sensorial data interpretation [1], [12], [13], and vibration analysis [14]–[17]. For

example, Oh et al. [15] proposed a deep learning engineering method for the unsupervised feature

extraction from vibration images. The extracted features were then used for classification in

diagnostics of a rotational machinery, acquiring a classification accuracy above 95% for three

different case studies. Another similar application was used by Shao & Jiang [16], who collected

experimental signals from electric locomotive bearings, which were later analyzed with a novel

convolutional deep belief network for automatic feature extraction and classification.

Furthermore, as well as in Mechanical Engineering applications, reliability applied MHMS

methods have been intensively studied for Electrical Engineering problems. Indeed, the ongoing

development in renewable energies and electrical vehicles (EV) [18]–[27] has led researchers to

focus their efforts on improving the control and optimization of Energy Storage Devices (ESD)

through sophisticated Battery Management Systems (BMS). In this context, it is desired to develop

performance indicators such as the State-of-Charge (SOC) and the State-of-Health (SOH), which

can allow the user to estimate the autonomy and remaining useful life of these pieces of equipment

[28]. The SOC reflects the remaining amount of energy available for usage in the device, according

to the maximum energy that it can hold, whereas the SOH gives a measure of the degradation of

the battery based on the loss of a given functionality (such as the capacity to store energy).

There are two main approaches for the estimation of such performance indicators of an ESD. On

one hand, the most widely studied methods are based on Lumped Thevenin equivalent electric

models [29] that characterize the relationship between the battery’s SOC and its internal

impedance. These models usually consider the energy storage capacity to be unalterable during the

discharge process; allowing to approximate the cyclical charge-discharge behavior in laboratory

tests at a reasonable rate. On the other hand, the development on Machine Learning and Deep

Learning techniques have boosted the use of Data-Driven Approaches (DDA) as a complement to

traditional methods for the estimation of the SOC, where Neural Networks are the most commonly

used technique for this task [30]–[37]. Nevertheless, as it will further be discussed, there are still

many DL applications that are yet to be experimented in this area.

- 4 -

1.2 Objectives and Statement

The objectives and scope for the thesis work are presented as follows.

1.2.1 General Objective

Develop and implement a deep learning-based framework for the health state estimation of physical

assets based on big machinery data.

1.2.2 Specific Objectives

• Develop a deep learning architecture capable of extracting temporal and spatial

characteristics from big machinery data obtained from multisensorial measurements.

• Create a framework for the health state estimation.

• Apply and validate the framework’s performance on the Remaining Useful Life prognostics

on the C-MAPSS Turbofans dataset.

• Apply and validate the framework’s performance on the State of Charge and State of Health

prognostics on the CS2 Lithium-Ion Batteries dataset.

• Give an uncertainty propagation estimation for the health state prognostics yielded by the

proposed framework.

1.2.3 Statement and Thesis Scope

This thesis work is intended to propose and validate a deep learning framework to yield accurate

prognostics on the state of health of a system. The proposed framework is validated using two

different datasets, and the performance results are properly presented in tables and figures.

- 5 -

Methodology

In order to successfully fulfill the objectives of the present thesis work, the following steps are

implemented.

2.1 Literature Review

Until recently, Deep Learning and Reliability Engineering had been treated as completely separated

fields. However, nowadays it is not uncommon to see new applications combining both areas

published in Journals and Reliability related conferences. Henceforth, it is necessary to implement

an extensive literature review of these applications, to identify those areas where an innovative

contribution can be made to solve challenges related to the risk and reliability community.

2.2 Deep Leaning Framework Proposal

According to the literature review, a deep learning framework is proposed for the estimation and

prognostics of the health state of an equipment. The framework is meant to be applicable to any

component summited to cycling stresses, whose operational data was measured and stored for later

analysis.

2.3 Validation Datasets

To validate the proposed framework, different datasets are chosen which can later be used to train

models. These datasets correspond to the benchmark turbofan C-MAPSS dataset, as well as the

Lithium-Ion Battery CS2 dataset from the Center for Advanced Cycle Engineering (CALCE) from

the University of Maryland.

2.4 Model Training

For each validation dataset, different models are trained using the proposed deep learning

framework. Here, the hyperparameters which define the framework’s architecture are tuned to fit

- 6 -

the corresponding datasets. Models are trained ten separate times in order to obtain an estimation

on the training robustness of the architecture, and thus evaluate the performance metrics for each

model over the average of all training procedures.

2.5 Results, Metrics and Uncertainty

The models’ performance is evaluated through different metrics associated with the dataset. For

the C-MAPSS dataset, the Root Mean Square Error (RMSE) is used as well as a Score value

assigned by the PHM data challenge. CS2 Lithium-Ion batteries dataset is also evaluated with the

RMSE metrics. Moreover, for both dataset, an uncertainty measurement of the estimated results is

given for the RMSE of each model, along with uncertainty for the estimation value itself.

- 7 -

Background

The following chapter details the necessary background to successfully achieve the objectives

stated for this thesis wok. First, a quick review is given on the definition and purposes of Machine

Learning and Deep Learning. In this context, DL techniques are thoroughly explained, addressing

their advantages and applications. An exhaustive state-of-the-art literature revision is presented on

the applications of DL techniques in health assessment for rotational mechanical equipment, as

well as in ESD. Lastly, to validate the proposed DL framework, two datasets are presented along

with their respective metrics.

3.1 Machine Learning

Traditionally, to describe a process or phenomena, scientists study the behavior of a system under

controlled boundary conditions, seeking to analyze the different effects over the systems’

functionality. After many tests and observations, complex specific models can be obtained which

are adjusted to describe the acquired data. These models are usually dependent on one or many

intrinsic properties of the system. For instance, constants 𝐶 and 𝑚 in the Paris’ Law (Equation 1)

describe how the crack length 𝑎 changes under a cyclical fatigue stress Δ𝐾 over a certain number

of cycles 𝑁. Another example is the mass 𝑚 on Newton’s famous Second Law (Equation 2), where

the force vector 𝐹⃗ needed to accelerate a body by a vector 𝑎⃗, is proportional to its mass. The

process of finding these relationships that can accurately model observable phenomena might take

months, years or even decades. Sometimes a dead end is hit, wasting valuable time and effort.

These models are commonly represented by differential equations or parametric functions and thus

can be extremely limited by boundary conditions or properties such as the geometry of the system.

𝑑𝑎

𝑑𝑁
= 𝐶Δ𝐾𝑚 (1)

𝐹⃗ = 𝑚 ⋅ 𝑎⃗ (2)

In quest of overcoming these issues, Machine Learning techniques became popular in the early

90’s. Machine Learning is the field of study that gives computers the ability to learn to execute a

specific task without being explicitly programmed for it. Based on a given dataset, ML algorithms

use different methods to automatically detect patterns within the data, which are later used to

predict future values of determined variables or some other task regarding decision making [38].

- 8 -

In a more formal manner, it is said that a ML computer program (model) learns from experience E

(data) to complete a certain task T (output) if its performance on T improves with experience E,

where the performance is evaluated by a chosen metric measure P [39]. That is, if the model can

train itself given new input data and yield better results for the evaluation metric P, then the ML

algorithm is capable of learning how to model or interpret the desired output variable from the

input data. Thus, the performance of any ML algorithm depends heavily on the representation of

the data it is given.

Nowadays there are an overwhelming amount of ML techniques designed for thousands and

perhaps millions of different applications. However, the main structure of how these algorithms

work is common for the parametric models. First, it is said that a parametric ML algorithm is

trained to learn from data and perform a given task, meaning that the program has a set of

Parameters which need to be tuned according to the given training data. Parameters are usually

adjusted by minimizing or maximizing a cost function, such as the Mean Square Error (MSE), or

a Maximum Likelihood Estimator (MLE). The algorithm may also depend on other restrictions set

by the programmer beforehand, defined as Hyperparameters. To train itself, a ML algorithm uses

the training set, where each sample within this data corresponds to a training instance. During the

training process, the ML program will become better at one particular task by optimizing the cost

function, using only the information in the training set to do so. The performance of the model is

evaluated through a metric to be defined by the programmer, which will variate depending on the

problem the algorithm is intended to solve (e.g. Root Mean Square Error and Accuracy for

regression and classification, respectively), as it will be further discussed in this chapter.

The principal advantage of ML techniques is that they automatically learn to interpret the data

without explicitly writing down the general rules that govern the system, nor do they need detailed

information about the problem to be solved. Hence, the program is much shorter, easier to maintain,

and most likely more accurate. This makes ML algorithms ideal for problems that are either too

complex for traditional approaches or have no known models that can describe the studied system.

Thus, ML techniques come in handy when dealing with engineering problems where the root cause

of a phenomena, such as the mean time to failure of a component, is unknown.

Given that there are several Machine Learning techniques, these are commonly clustered in specific

groups depending on the objective they are intended for, and on the information the algorithm is

given during the training process. The former separates the algorithms in Regression and

Classification tasks, whereas the latter divides them in Supervised and Unsupervised training.

3.1.1 Classification and Regression

One common sorting for ML algorithms comes from the question: What is the algorithm trying to

achieve with the incoming data? Here, two different approaches arise: Classification and

Regression. On one hand, a Classification problem consists on obtaining a model which can map

and input data 𝒙 into a class 𝑦𝑖, with 𝑦𝑖 = {1, . . . , 𝐶}, where 𝐶 is the number of classes. For instance,

- 9 -

one benchmark dataset to test how well a model can perform in a classification task comes from

the Modified National Institute of Standards (MINST) dataset2 [40], where handwritten digits from

0 to 9 are saved in 28x28 pixels images in a grayscale from 0 to 255, such as the ones shown in

Figure 3.1. The challenge of this dataset consists on correctly classifying each image to its

corresponding digit. As it was previously mentioned, classification algorithms used to solve

problems of this nature can be trained either from a supervised or unsupervised approach,

depending on the available data, computation power, and the particular interest of the programmer.

A Regression algorithm, on the other hand, is trained to estimate a continuous variable

𝑦 = 𝑓(𝒙), where 𝒙 can be a multidimensional input vector. That is, given a training set 𝒙, where

𝒙𝒊 ∈ ℝ
𝑁, the regression task consists on finding a mapping function 𝑓(𝒙𝒊) that can accurately

estimate the value 𝑦𝑖 ∈ ℝ. Figure 3.2 shows two examples of regression models, where the model

on the left hand-side uses a linear regression model, which cannot give a proper estimation of the

data, whereas the model shown on the right hand-side is a good regression model which could

successfully adjust itself to fit the desired output values.

2 Available at http://yann.lecun.com/exdb/mnist/

Figure 3.1: MNIST digit samples.

http://yann.lecun.com/exdb/mnist/

- 10 -

3.1.2 Supervised and Unsupervised Learning

Another common categorization for ML techniques comes from answering the question: What

information is the program given to be trained? The answer to this question will depend on whether

the training set contains information about the desired values that need to be obtained from the

model or not. Supervised models seek to learn a mapping function from an input 𝒙 to an output 𝑦.

Where 𝒙 can be anything from a 𝑁 dimensional vector, where each dimension represents a feature,

as well as more complex data such as images or tensors. Moreover, 𝑦 can represent either a

categorical variable or a real-valued scalar, when dealing with a classification or regression

problem, respectively. During the training process, the algorithm is given a training set of labeled

data pairs 𝐷𝑠 = {(𝒙𝒊, 𝑦𝑖)}𝑖=1
𝑁 . That is, for each input data 𝒙𝒊 in the dataset 𝐷𝑠, the ML algorithm

knows the corresponding label for the output value 𝑦𝑖. Examples of supervised ML techniques are:

Support Vector Machines for classification, and Random Forest for regression.

Unsupervised learning models seek to learn new structures within some training dataset 𝐷𝑢 =

{𝒙𝒊}𝑖=1
𝑁 , where no labels or known outputs are given to train the model. In this case, the tasks consist

on an unconditional density estimation looking to build models 𝑝(𝒙𝒊|𝜽). Since the input vector 𝒙

will most likely be composed by more than one feature, multivariate probability models need to be

created. Unsupervised learning has the advantage that no expert knowledge nor time is needed to

label the training data. However proper care must be taken when choosing performance metrics

since no knowledge is explicitly given for the training process. Two standard applications of

unsupervised training are: Clustering of the training data into classes (clusters) which can later be

used to classify new incoming data, and Principal Component Analysis (PCA), used to reduce

dimensionality of the data, thus eliminating redundant information within the features and helping

to speed data analysis processes.

It is to be noticed that both Supervised and Unsupervised learning models can be used for

regression or classification. However, they differ on the data they are given to be trained.

Figure 3.2: Regression sample for some given data.

- 11 -

3.2 Deep Learning

Nowadays, ML techniques can be found in several applications, from the speech recognition

system used to transform the users’ voice into text in a smartphone, to the advertisement offered

by webpages to each individual user based on his or her previously searched products. However,

processing data in its raw form requires learning capabilities that conventional ML techniques are

still limited to perform. This is due to the difficulties regarding the construction of pattern-

recognition systems, since they require careful engineering and considerable domain expertise to

design a feature extractor which can transform raw data into a suitable internal representation or

feature vector for the ML to interpret [41]. That is, it might take more time, knowledge and effort

to construct the features to feed a ML algorithm, than training the ML model itself. To overcome

this problem, Representation Learning offers a set of methods that allow an algorithm to be fed

with raw data and to discover the representations needed for regression or classification by itself.

The former is exactly what DL techniques are designed to do.

Deep learning methods consists on ML algorithms with multiple levels of representation, obtained

by composing simple non-linear modules that transform the starting raw input into a representation

at a higher abstract level. Through the composition of a learning architecture with enough of such

simple transformations, very complex functions can be learned from unprocessed data. Hence, DL

belongs to one of the many approaches to Artificial Intelligence (AI), which allows computer

systems to improve with experience and data [42]3. DL models can achieve great representative

power and flexibility by learning to represent the world as a nested hierarchy of concepts. This

hierarchy allows the algorithm to learn complicated concepts by building them out of simpler ones.

A graphical representation of this idea would arrange these concepts one on top of each other as a

sequence, meaning the graph has a deepness associated to it given the many layers that constitute

its structure. For this reason, this set of machine learning techniques are called deep learning.

Since its first appearance in the mid-20th century, DL has been associated with human reasoning

capabilities, and hence they have been thought as an alternative to understand and acquire

knowledge from tasks which humans struggle to execute. For instance, AI methods have been used

to train chess gaming models through Reinforcement Learning [43], which have been able to defeat

the best professional chess players in the world, as well as other parametric models, such as the

Stockfish algorithm4. Even though the Reinforcement Learning approach acquires state-of-the-art

performance in chess, simpler programs can still be far superior than human capabilities, since

chess is defined by a 64 slots board, with a total of 32 pieces of 6 different kinds which follow a

known set of rules. Thus, programming a computer to play chess can be relativity easy.

3 Deep Learning book available at www.deeplearningbook.org
4 Stockfish chess engine available at ww.stockfishchess.org

http://www.deeplearningbook.org/
https://stockfishchess.org/

- 12 -

Instead, other challenges rely on the identification of particular features which can only be

identified using sophisticated, nearly human-level understanding of the data. Here, traditional ML

techniques are not a suitable alternative since it can be very difficult to extract high level abstract

features from the raw data. Such challenges are where the true potential of deep learning algorithms

can be seen, given that the studied problems do not follow a certain rule or distinguishable pattern

that can be directly programmed into an algorithm. One such task is image recognition, where any

human can perform accurately at identifying a set of images, however much of the knowledge

needed to correctly label or identify an image is subjective and intuitive, and therefore difficult to

articulate in a formal way. Nevertheless, DL techniques such as Convolutional Neural Networks

(CNN) have proven capable of capturing the knowledge needed to identify and correctly classify

images through feature extractors. Indeed, CNN can easily surpass human accuracy, taking less

time when dealing with large datasets, and most importantly, behaving in an intelligent way.

Even though the concept of DL algorithms has been around for over five decades, its

implementation had been held back due to the high computational power required to tune the great

number of parameters within a DL architecture. Furthermore, to accurately train a model, usually

big datasets need to be analyzed, resulting on slow training and testing procedures. For the last

decade, however, DL algorithms have become popular due to the lower costs on computational

components, which has allowed students, researchers, and nearly everyone in the scientific

community to have access to fast computers. This, along with the development of GPU powered

computation, has boosted the implementation of DL techniques.

3.2.1 Deep Neural Networks

Deep Neural Networks (DNN) are also known as Artificial Neural Networks (ANN) or Multilayer

Perceptron (MLP). It is the most basic and common DL structure, consisting on a mathematical

function that maps a set of input values to a desired output value. Thus, similarly to other ML

algorithms, DNN can create non-linear models for either regression or classification in the form

𝒚 = 𝑓(𝒙, 𝜃), where 𝜃 are the models’ parameters. DNN originally receives its name as a reference

to the human brain, where multiple neurons are connected to each other and can process data as a

flow of information from one group of neurons to another. DNN belong to the “deep networks”

branch of ML because their architecture has two or more layers that transform the input data into

a more complex representation. To do so, each layer within a DNN performs a linear transformation

by multiplying the data from the previous layer by a matrix of weights 𝜃, and adding a bias term

𝑏. The output from this linear transformation is then evaluated through a non-linear activation

function 𝜎, such as the Rectifier Linear Unit (ReLU) or the hyperbolic tangent (tanh). This idea is

formally represented as,

𝒉𝒊 = 𝝈(𝒉𝒊−𝟏
𝑻 𝜃𝑖 + 𝑏𝑖) (3)

- 13 -

where 𝒉𝒊 is the output from layer 𝑖. 𝜃𝑖 and 𝑏𝑖 are the layer’s weights and biases, respectively, while

𝒉𝒊−𝟏 is the output from the previous layer 𝑖 − 1. The relationship between these layers is the reason

why the mapping function created by a DNN is said to be formed by many simpler functions. One

way to understand the purpose of each layer is by considering them as successive mathematical

functions which provide a new representation of the input. Each layer is further divided into

activation units called neurons, where each neuron interacts through Equation 3 with all features

from the previous layer.

Figure 3.3 illustrates an example of a DNN architecture, where a three-layer DNN is presented for

a regression task. The input layer corresponds to the features from the raw data 𝑋, which is

connected to one hidden layer to then output a single value. The output given for each hidden unit

(neuron) from the Hidden Layer is obtained by Equations 4, 5 and 6. These equations can be

resumed in Equation 7, which represents the output of the hidden layer to the output layer, which

is identical to Equation 3. It can be seen that each neuron 𝑖 in the Hidden Layer is assigned one

parameter 𝜃𝑖,𝑗 for each incoming feature 𝑗 from the previous layer (input layer in this particular

case). Finally, Equation 8 represents the output layer.

Formally, the output 𝑎𝑖
(𝑗) is considered as an activation of neuron 𝑖 in layer 𝑗, where the activation

consists on multiplying all input features from the incoming vector from layer 𝑗 − 1 by a vector of

weights Θ𝑖
(𝑗). The activation operation from layer 𝑗 to layer 𝑗 + 1 can then be represented by a

multiplication by a matrix of weights Θ(𝑗), which controls the mapping function and with

dimensions 𝑠𝑗+1 × (𝑠𝑗 + 1), where 𝑠𝑗 and 𝑠𝑗+1 are the number of units in layers 𝑗 and 𝑗 + 1, respectively.

Figure 3.3: Three-layer Deep Neural Network sample.

- 14 -

𝑎1
(2)
= 𝜎(Θ10

(1)𝑥0 + Θ11
(1)𝑥1 + Θ12

(1)𝑥2 + Θ13
(1)𝑥3 + Θ14

(1)𝑥4) = 𝜎(𝑧1
(2)
) (4)

𝑎2
(2)
= 𝜎(Θ20

(1)𝑥0 + Θ21
(1)𝑥1 + Θ22

(1)𝑥2 + Θ23
(1)𝑥3 + Θ24

(1)𝑥4) = 𝜎(𝑧2
(2)) (5)

𝑎3
(2)
= 𝜎(Θ20

(1)𝑥0 + Θ21
(1)𝑥1 + Θ22

(1)𝑥2 + Θ23
(1)𝑥3 + Θ24

(1)𝑥4) = 𝜎(𝑧3
(2)
) (6)

𝑎(2) = 𝜎(𝑥𝑇Θ(1)) + 𝑎0
(2)

 (7)

𝑦 = 𝑎1
(3)
= 𝜎(Θ10

(3)𝑎0 + Θ11
(3)𝑎1 + Θ12

(3)𝑎2 + Θ13
(3)𝑎3) + 𝑎0

(3)
 (8)

Activation Functions

The depth concept in deep learning architectures comes from the creation of consecutive non-linear

mathematical operations. Particularly, since weights and biases from traditional neural networks

are defined to perform a matrix multiplication and an addition, respectively, it is necessary to apply

non-linear functions between each layer of a deep neural network. Otherwise, applying a DNN

with many layers would be mathematically equivalent to apply a single layer with more neurons in

it. These non-linear functions are known as Activation Functions, which can take any non-linear

form. Table 3.1 shows a list of commonly used activation functions. However, some functions have

become more popular than others in the DL community given their performance during the training

and testing procedure for some particular architectures. For instance, the Rectifier Linear Unit

(ReLU) is the most applied activation function when training a CNN architecture, whereas the

sigmoid and hyperbolic tangent (tanh) are used to create complex structures such as the LSTM

networks.

- 15 -

3.2.2 Regularization

Due to the usually high degrees of freedom that a deep learning architecture has, it is easy that

during the training process overfitting will occur. That is, it is possible to obtain as a result of the

training process an over adjustment of the weights and biases of the model to the training data,

resulting in poor generalization performance to unseen data (test data). To prevent this,

regularization techniques can be applied. One of the most commonly used techniques is dropout

[44]. When dropout is used, samples from a Bernoulli distribution 𝑟𝑗
𝑙 are used to determine if a

feature node 𝑗 from layer 𝑙 (e.g. 𝑧𝑗
𝑙, commonly represented by a neuron of the network) is dropped

from entering the next layer 𝑙 + 1. This means that when the cost function is being optimized

through backpropagation, there are fewer trainable parameters to be tuned per training cycle. This

also reduces the dependency of the prediction on a single feature. The value of 𝑟𝑗
𝑙 can be 1 or 0 and

is drawn from the Bernoulli distribution using Equation 9. The output layer 𝒛̃𝒍, after dropout, is

obtained using Equation 10. A graphical representation of the dropout technique is shown in Figure

3.4.

𝒓𝒋
𝒍 ~ 𝐁𝐞𝐫𝐧𝐨𝐮𝐥𝐥𝐢(𝒑) (9)

𝒛̃𝒍 = 𝒓𝒍 ∘ 𝒛𝒍 (10)

Table 3.1: Non-linear Activation Functions examples.

Binary Step 𝑓(𝑥) = {
0 for 𝑥 < 0
1 for 𝑥 ≥ 0

sigmoid 𝑓(𝑥) =
1

1 + 𝑒−𝑥

tanh 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

ReLU 𝑓(𝑥) = {
0 for 𝑥 < 0
𝑥 for 𝑥 ≥ 0

softplus 𝑓(𝑥) = log𝑒(1 + 𝑒
𝑥)

- 16 -

Another regularization technique is early stopping, which stops the training cycle when training

and validation errors begin to diverge. These two techniques together greatly reduce overfitting

and prevent the network from identifying noise and use it as a distinguishing feature.

3.2.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a deep learning neural network that uses convolution

operations instead of matrix multiplication in its layers. The convolution is performed using a

weight matrix K, also known as filter or kernel. The kernel is used to obtain a feature map S from

the input vector A, using the convolution operation as shown in Equation 11.

Figure 3.5 shows a representation of the convolution operation using a 2 × 2 kernel and a 3 × 3

input data matrix to obtain a 2 × 2 output matrix. A bias matrix 𝑩 is added to the convolution and

an activation function is applied to the result to form the feature map 𝑯 as shown in Equation 12.

The training of the weights and biases can be interpreted as a feature extraction. If a value in the

feature map gets activated, it indicates that an important learned feature is in that position. In the

case of data analysis, an activation in the feature map can indicate the location of features such as

changes in a signal, a frequency or specific shapes. This abstract representation can then be

𝑺 = 𝑨 ∗ 𝑲 where 𝑺(𝑖, 𝑗) = ∑∑𝑨(𝑖 − 𝑚, 𝑖 − 𝑛) ⋅ 𝑲(𝑚, 𝑛)

𝑚𝑛

 (11)

Figure 3.4: Dropout sample

- 17 -

processed and associated to a physical measurable characteristic, such as degradation, efficiency

or production loss, amongst others.

𝑯 = 𝑓(𝑨 ∗ 𝑲 + 𝑩) (12)

A convolution layer in a CNN consists of several kernels and biases applied to a single input matrix

to generate a set of feature maps in a hidden layer. Every component in the feature map is computed

using the same kernel. Also, each component of the output feature map is calculated only from a

subset of the input matrix, reducing the amount of connections and, therefore, decreasing the

required computation resources. To achieve higher levels of abstraction and more complex

relations between features, feature maps can be used as input to other convolution layers.

Usually the last section of a CNN is a feed forward neural network that is responsible for generating

the predicted labels as the output vector. Figure 3.6 shows an example of an architecture for a CNN

with three 5x5 convolutional filters as the first layer, one 2x2 pooling layer and a fully connected

feed forward layer. The CNN is trained in the same way as a NN, defining a cost function to be

minimized through an optimizer such as Gradient Descent, Adam or RMSProp.

Figure 3.5: Convolution operation.

- 18 -

3.2.4 Recurrent Neural Networks and Long-Short Term Memory Cells

Recurrent Neural Networks (RNN) are one of the most powerful kinds of NN, capable of creating

and processing memories of arbitrary sequences of input patterns [45]. However, RNN suffer from

optimization problems with long data sequences, making it hard to efficiently tune the networks

parameters during the training process and thus causing great computational power demand. To

overcome this issue, alternative structures have been proposed, such as the Gated Recurrent Units

(GRU) and the Long-Short Term Memory (LSTM) RNN. The classical LSTM structure, called

Vanilla LSTM [46], consists of different processes called gates. These gates compute the desired

output from a new input data at a time 𝑡, along with elements obtained from the previous time-step

𝑡 − 1. Equations 13-17 describe these processes, where Equation 17 corresponds to the cell state

𝑐𝑡, which is the main characteristic of the LSTM structure, as it represents a memory capsule

containing information of all previous states. The cell state is updated in each time-step through

different combinations of Equations 13-15, called input, output and forget gates (Figure 3.7). These

gates use a sigmoid activation function to evaluate the linear combination of the new input data 𝑥𝑡

with the output of the previous LSTM cell ℎ𝑡−1. Additionally, gate 𝑎𝑡 generates the candidates

from the inputs 𝑥𝑡 and ℎ𝑡−1 which will become part of the new cell state when combined with the

element wise multiplication of the previous cell state 𝑐𝑡−1 and the forget gate. Finally, the output

ℎ𝑡 is computed by the element-wise multiplication of the output gate with the activation of the

calculated cell state (Equation 17).

It is to be noted that gates 𝑖𝑡, 𝑜𝑡, 𝑓𝑡 and 𝑎𝑡 represent independent NN, which possess their own

weights and biases. Hence, after training is complete, each gate will have different outputs. Once

the model is trained, it is possible to predict several times steps into the future, given an initial

guess value, allowing the study of future behavior of the observed system.

Figure 3.6: Two-layer CNN example.

- 19 -

𝑖 𝑡 = 𝜎(𝑊𝑖 𝑥
𝑡 + 𝑈𝑖 ℎ

𝑡−1 + 𝑏𝑖) (13)

𝑜𝑡 = 𝜎(𝑊𝑜 𝑥
𝑡 + 𝑈𝑜 ℎ

𝑡−1 + 𝑏0) (14)

𝑓𝑡 = 𝜎(𝑊𝑓 𝑥
𝑡 + 𝑈𝑓 ℎ

𝑡−1 + 𝑏𝑓) (15)

𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 𝑥
𝑡 + 𝑈𝑐 ℎ

𝑡−1 + 𝑏𝑐) (16)

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑎𝑡 (17)

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ (𝑐𝑡) (18)

Figure 3.7: Long-Short Term Memory structure example.

- 20 -

3.3 Deep Learning in Prognostics for Mechanical

Components

Convolutional Neural Networks are one of many data-driven approaches with a high impact on the

reliability field, due to their ability to perform automatic feature extraction from raw data and

obtaining a non-linear representation of the signals, thus giving a higher level of abstraction from

the data. Most CNN applications are implemented for image classification [47]–[52]. Nevertheless,

reliability studies have extrapolated this concept to machinery data analysis [53]–[56]. Indeed, Wen

et al. [54] proposed a new CNN architecture based on LeNet-5, creating a 2D image representation

of the data, which allowed an automatic feature extraction from the acquired machinery signals.

The model was trained for fault classification and tested in a motor bearing dataset, self-priming

centrifugal pump dataset, and an axial piston hydraulic pump, achieving an accuracy over 99% for

each analyzed dataset. CNN, however, as many other deep learning techniques, were designed for

identification and recognition of elements within data arranged as matrices. Given that most sensor

measurements are used to monitor changes within different physical variables throughout time,

then if the input to the CNN consists only of a single entry of time, it might not contain enough

information to correctly predict the future state of a target variable. That is, it is not possible to

accurately recognize temporal patterns hidden within the data. Thus, spatial approaches such as

NN and CNN are not exactly adequate for the analysis of sequential data.

To address this challenge, different methods have been developed to hold-on to a certain memory

of the previous state of the system, enabling the prediction of future health state using not only the

present information, but also those historical operational conditions of the system that may help in

the prediction of the model. One of such techniques are Long-Short Term Memory (LSTM) cells,

which are based on Recurrent Neural Networks. This type of model structure has been widely used

to achieve state-of-the-art results on sequence modeling tasks such as handwriting recognition [57],

automatic rule extraction [58], extreme event forecasting with an end-to-end autoencoder for

feature extraction [59], as well as other time series challenges [60]–[62]. Most importantly, deep

RNN have successfully been used for machine health monitoring from multi-sensor time series

data [63]–[65], obtaining models of the system which can capture the complex temporal behavior

of the system, as well as instantaneous dependencies between sensor readings. These dependencies

can then be applied to estimate temporal evolutions, e.g., the RUL of a system, such as it was done

in [65]–[69]. Hence, in the last couple of years, LSTM have proven to be effective to embrace time

series problems related to reliability and maintenance engineering, especially when it comes to

prognostics and health management [70].

3.3.1 C-MAPSS Dataset for Turbofan Engines RUL Estimation

In the context of reliability models for mechanical systems, the first dataset used to validate the

proposed deep learning framework corresponds to the popular benchmark data generated for the

PHM 08’ data competition [71]. The dataset corresponds to a multivariate time series obtained

- 21 -

from many simulations from the Commercial Modular Aero Propulsion System Simulation (C-

MAPSS), which is divided into training and test sub-datasets. Four different operational conditions

are simulated through a determined number of trajectories, which are detailed in Table 3.2. Each

dataset is contained in a CSV file, where each row represents one time-step measured in cycles,

consisting in 21 sensor measurements, three operational conditions, as well as other useful

information as described in Table 3.3. The variables measured by these sensors are detailed in

Table 3.4.

Table 3.2: C-MAPSS Train and Test Sets Resume.

Dataset Train

Trajectories

Test

Trajectories

Conditions Fault Mode

FD001 100 100 One (Sea level) One (HPC Degrad.)

FD002 260 259 Six One (HPC Degrad.)

FD003 100 100 One (Sea Level) Two (HPC and Fan Degrad.)

FD004 248 249 Six Two (HPC and Fan Degrad.)

Table 3.3: Variables C-MAPSS Dataset.

Column Variable

1) Unit number

2) Time in cycles

3) Operational setting 1

4) Operational setting 2

5) Operational setting 3

6) Sensor measurement 1

7) Sensor measurement 2

…26) Sensor measurement 26

- 22 -

The data from the C-MAPSS dataset can be considered to come from a fleet of engines of the same

type, since each time series is from a different engine (Unit Number). The three operational settings

included in the dataset have a substantial effect on the engine’s performance. For each trajectory

in the training sets, the engine starts operating normally with an unknown initial degradation until

failure is detected. The data is also contaminated with sensor noise. In the test set, the time series

ends at some time prior to system failure, where the RUL for each test engine is provided in a

separated CSV file. However, RUL target is not specified for the engines in the train sets.

Setup and Label Generation

The challenge for this dataset consists on obtaining models through data-driven approaches which

can estimate the RUL for each trajectory contained in the test sets. To do so, one model must be

trained for each sub-dataset using its respective training data (FD001 to FD004). For each engine

(Unit Number) in the test set, a RUL label is given for the last measured Cycle. However, for the

training sets, the RUL label is not provided. Hence, a method must be developed to elaborate the

labels for each measured cycle.

There are two supervised approaches that have been implemented to elaborate the labels for the C-

MAPSS training sets [53], [65], [72]. The first one considers the literal definition of remaining

useful life as the remaining number of cycles to the failure event. Starting from a RUL equal to the

length (in cycles) of each training engine, a linear decay represents the degradation of the

component, reflected in the RUL label for each cycle of every engine. The second approach is more

realistic, where it is assumed that the component degradation cannot be easily detected until a

certain threshold 𝑅𝑒𝑎𝑟𝑙𝑦 has been reached. Hence, for the validation of the proposed deep learning

framework, the second approach is implemented, with 𝑅𝑒𝑎𝑟𝑙𝑦 = 125 cycles as threshold, as it is

proposed in [72]. This means that the linear degradation of the engines will start only 125 cycles

Table 3.4: Sensor Measurements.

Sensor

Measurement
Measured Variable

Sensor

Measurement
Measured Variable

1 Total temperature at fan inlet 12 Ratio of fuel flow to HPC outlet

2 Total temperature at LPC outlet 13 Corrected fan speed

3 Total temperature at HPC outlet 14 Corrected core speed

4 Total temperature at LPT outlet 15 Bypass Ratio

5 Pressure at fan inlet 16 Burner fuel-air ratio

6 Total pressure in bypass-duct 17 Bleed Enthalpy

7 Total pressure at HPC outlet 18 Demanded fan speed

8 Physical fan speed 19 Demanded corrected fan speed

9 Physical core speed 20 HPT coolant bleed

10 Engine pressure ratio 21 LPT coolant bleed

11 Static pressure at HPC outlet

- 23 -

before failure. Figure 3.8 shows an example for both approaches for an engine with 300 measured

cycles, where the blue line represents an example of the labels used for the deep learning framework

validation.

Performance Metrics

To evaluate the performance of the trained models for the C-MAPSS dataset, two evaluation

metrics were presented for the PHM 08’ data challenge: the Root Mean Squared Error (RMSE)

and a Score function [65], [71]–[73]. Both metrics are computed based on a parameter ℎ, defined

in Equation 12 as the difference between the predicted value by the proposed architecture 𝑦𝑝𝑟𝑒𝑑,

and the true label included in the dataset for the test data (𝑦𝑡𝑟𝑢𝑒).

ℎ = 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒 . (19)

RMSE is defined in Equation 20, which is calculated over the 𝑁 predictions from the corresponding

test set. On the other hand, the score function described in Equation 21 outputs different values

depending on the sign of ℎ𝑖, penalizing more those predicted values which are higher than the label

(e.g., overestimation of the RUL), since from a reliability point of view this is more dangerous than

underestimating the RUL for a data point.

Figure 3.8: RUL labels for the C-MAPSS dataset. Linear and Non-linear target.

- 24 -

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ℎ2
𝑁

𝑖

 (20)

𝑆𝑐𝑜𝑟𝑒 =

{

 ∑(𝑒−

ℎ𝑖
13
 − 1)

𝑁

𝑖

 𝑓𝑜𝑟 ℎ𝑖 < 0

∑(𝑒
ℎ𝑖
10
 − 1)

𝑁

𝑖

 𝑓𝑜𝑟 ℎ𝑖 ≥ 0

 (21)

- 25 -

3.4 Deep Learning in Lithium-Ion Battery State Estimation

Accurate State of Charge estimation has been an ongoing research challenge since the massive

proliferation of energy storage devices. In this context, Lumped Thevenin equivalent electric

models have widely been used to characterize the relationship between the battery’s SOC and its

internal impedance, considering the energy storage capacity to be fixed during the discharge

process. Good results have been achieved through this approach applying techniques such as

Unscented Kalman Filtering (UKF) [19], Particle Filtering (PF) [74], Adaptive Cubature Kalman

Filter (ACKF) [75], among others [76]–[82]. For instance, Mu et al. [83] proposes the use of an

UKF on a Fractional Order Impedance Model (FOIM) – inferred from electrochemical impedance

spectroscopy (EIS) – to account for the nonlinearities related to the chemical reactions within a

battery.

Furthermore, the development of DL and ML techniques have boosted the use of data-driven

approaches as a complement to the aforementioned traditional methods for the estimation of the

SOC. From this perspective, NN are the most commonly used techniques for this task [30]–[37].

An example of ML-based estimation frameworks can be found in Yu et al. [84], who proposed a

Deep Belief Network (DBN) to update the parameters from the BMS internal SOC model, based

on data remotely collected from an EV, achieving SOC estimates with less than a 5% error.

Both data-driven and traditional methods have achieved accurate results on their respective tasks.

However, since the performance of a battery is directly affected by its degradation, any SOC

estimator that does not consider the SOH of the studied device will be inevitably biased. This is

usually reflected in a SOC overestimation for a given energy demand. Thus, different works have

been focused on developing models to accurately represent ESD degradation, either by estimating

the SOH [85]–[93] or the Remaining Useful Life [94]–[100]. Most of these schemes are based on

the maximization of a likelihood function, which in turn relies on the observability of the studied

phenomena: there are infinite combinations of battery parameter values that can reflect the same

observed voltage and discharge current response. Nonetheless, due to its difficulty, not as many

research efforts consider schemes that can jointly estimate the SOC and the SOH [23], [26], [109],

[110], [101]–[108].

Hence, it is of interest to characterize both the SOC and SOH of a battery within a small observation

time-window, based on the quantification of the impact of discharge profiles in measured variables

using a deep learning model. To do so, it is important to clearly define what is considered to be the

State of Charge of the system as well as its State of Health, and how these parameters can be

characterized from the measured variables of a functional battery.

- 26 -

3.4.1 State of Charge

There are two popular definitions for the state of charge of a battery. The first comes from the

widely used Capacity concept, which uses the Coulomb Counting Method [36]. Here, to estimate

the SOC of a battery the measured current 𝑖(𝑡) is integrated in time and normalized by the nominal

capacity (𝐶𝑛) of the battery, i.e., the maximum amount of energy that the battery can hold when it

is new. Equation 22 describes this method, where 𝜂𝑖 corresponds to the charge (or discharge)

efficiency. Now, although this method has successfully been used for SOC estimations, it suffers

from a major drawback, which is that it literally counts the amount of current entering (or exiting)

the battery. Therefore, it does not meet the energy conservation principle.

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) + 100 ×∫
𝜂𝑖𝑖(𝜏)

𝐶𝑛
𝑑𝜏

𝑡

𝑡0

 (22)

Hence, a better approach is to consider the SOC of a battery cell as the percentage of the remaining

energy in the battery 𝐸𝑟, in relation to the total energy charged in the last charging cycle 𝐸𝑐𝑦𝑐𝑙𝑒, as

shown in Equation 23.

𝑆𝑂𝐶 =
𝐸𝑟

𝐸𝑐𝑦𝑐𝑙𝑒
× 100 (23)

It is to be noticed that 𝐸𝑟 takes values in the range [0, 𝐸𝑐𝑦𝑐𝑙𝑒]. A quick way to understand the

meaning of the definition of the SOC is by thinking of the percentage of battery left in a cellphone.

Thus, if the battery is fully charged, the SOC yields a value of 100%, whereas a 0% SOC

corresponds to a fully discharged battery. However, the time required to fully discharge the battery

is not constant in time, given that the battery degrades each time it goes through a charge-discharge

cycle. Therefore, it is imperative to consider the degradation of a battery by estimating its state of

health.

3.4.2 State of Health

The State of Health is a representation of the degradation of a battery. However, it is important to

understand that there are many factors that take part during the degradation of any component.

Thus, the SOH is only an approximation for this degradation, and it may consider one or many

parameters for its calculation. One way to represent the SOH of a battery, is by considering the loss

of its capacity to hold energy. That is, by comparing the charged energy at each cycle 𝐸𝑐𝑦𝑐𝑙𝑒 with

- 27 -

the maximum energy charged in the first charge-discharge cycle 𝐸𝑚𝑎𝑥. Thus, the State of Health

of the battery after each cycle can be defined as:

𝑆𝑂𝐻 =
𝐸𝑐𝑦𝑐𝑙𝑒

𝐸𝑚𝑎𝑥
× 100 (24)

In this case, a 100% and 0% SOH represent a new and completely degraded battery cell,

respectively.

3.4.3 CS2 Dataset for Batteries SOC and SOH Estimation

The CS2 Battery dataset from University of Maryland’s Center of Advanced Life Cycle

Engineering (CALCE) [111], [112] is used to test and validate the proposed model. The dataset

corresponds to a multivariate time series obtained from charge-discharge cycles performed at

constant current of 1C for four batteries cells until their end of life. These cells underwent the same

charging profile which was a standard constant current/constant voltage with a constant current

rate of 0.5C until the voltage reached 4.2V. This voltage was then sustained until the charging

current dropped to below 0.05A. The discharge cut off voltage for these batteries was 2.7V.

The data for each battery cell is divided into separated files which are labeled according to the date

of when the charge-discharge cycles were performed. Each file contains consecutive charge-

discharge cycles for a determined date. A summary of the number of files and cycles for each cell

is presented in Table 3.5. Furthermore, for each file, every row consists of 17 sensor measurements,

which are described in Table 3.6.

Naturally, battery capacity diminished as lithium-ion cells degraded. As a result, battery discharge

tests after 1000 cycles of operation took approximately a quarter of the time associated with a

brand-new cell (see Figure 3.9, which shows the voltage measurements of five different discharge

cycles for one of the battery cells). Furthermore, as data was acquired using a constant sampling

period of 10s in all discharge experiments, each file has a different number of samples.

Table 3.5 : CS2 Lithium-Ion batteries dataset summary.

Dataset N Files N Cycles

CS2 35 26 899

CS2 36 26 927

CS2 37 27 992

CS2 38 27 981

- 28 -

The CS2 Battery dataset represents a valuable source of information for the characterization of

degradation in lithium-ion batteries undergoing cyclic usage profiles at constant ambient

temperature. However, it is important to note that the sampling frequency is low (0.1 Hz, compared

to 10 Hz in some experiments, where researchers intended to estimate the polarization impedance)

and that the discharge current is, by design, constant. The latter fact generates an observability

problem in the dynamic time-varying system that represents the evolution in time of battery states;

a problem that ultimately does not allow to estimate the internal impedance of the battery (in fact,

columns 14, 16 and 17 in the dataset are empty) or to implement joint SOC and SOH estimation

approaches based on Thevenin equivalent electric models. Nevertheless, the given data for the

dataset is ideal to be tested by the proposed deep learning-based framework, given how the data is

presented, which is similar to the C-MAPSS dataset, allowing to test both datasets without

modifying the architecture structure.

Table 3.6: Variables CS2 Lithium-Ion batteries dataset.

Column Variable Column Variable

1 Data Point 10 Discharge Capacity (Ah)

2 Test Time (s) 11 Charge Energy (Wh)

3 Date Time 12 Discharge Energy (Wh)

4 Step Time (s) 13 dV/dt (V/s)

5 Step Index 14 Internal Resistance (Ohm)

6 Cycle Index 15 Is FC Data

7 Current (A) 16 AC Impedance (Ohm)

8 Voltage (V) 17 ACI Phase Angle (Deg)

9 Charge Capacity (Ah)

Figure 3.9: Voltage discharge curves from Cell 38, for different cycles of operation.

- 29 -

Setup and Label Generation

Unlike the C-MAPSS dataset, the CS2 lithium-ion batteries do not have a defined task to be used

for. Hence, datafiles are not separated in train and test sets, and no labels of any kind are given for

the measured instances of the charge-discharge processes. Henceforth, for the validation and

performance evaluation of the proposed deep learning framework, this dataset is used to estimate

the SOC and SOH of a battery based on a time-window measurement. Using columns 11 and 12

from Table 3.6, the target labels are generated according to Equations 23 and 24. That is, for the

SOC labels, the maximum amount of energy discharged for the cycle 𝐸𝑐𝑦𝑐𝑙𝑒 is used to as a reference

for the remaining energy in the battery cell 𝐸𝑟, whereas for the SOH, 𝐸𝑐𝑦𝑐𝑙𝑒 is compared to the

maximum amount of energy stored for the first charging cycle 𝐸𝑚𝑎𝑥 .

Performance Metrics

The RMSE defined in Equation 20 is used as the main performance metric for the proposed deep

learning-based framework validation. The metric is evaluated for the SOC and SOH independently,

meaning that for each trained model, two different RMSE are yielded.

- 30 -

3.5 Uncertainty with Dropout as a Bayesian Approximation

Deep learning techniques have successfully been applied for reliability purposes, such as damage

assessment [113], [114], vibration signal analysis [55], [70], [115], and RUL estimation for

mechanical components [66], [72], [116]–[118]. Nevertheless, these models usually do not give

account for the uncertainty of their predictions, which can lead to catastrophic results [119]. Model

uncertainty estimation has been an ongoing subject of interest in the reliability community, and a

key element for state estimation in the context of Bayesian approaches [120]–[124]. However, until

a couple of years ago, deep learning models did not have a reliable estimation of the uncertainty

for their predictions. In this regard, Gal et al. [125]–[127] proposed and proved that a deep learning

network with non-linearities (activation functions), and with dropout applied before every

weighted layer, is mathematically equivalent to a Monte Carlo approximation of a deep Gaussian

Process (GP) [128].

Hence, it is possible to use dropout to estimate the uncertainty in fault diagnostic or any other

reliability model based on a deep learning network. Given the objective (loss) function of any

network with dropout and weight decay regularization, it can be shown that minimizing such

function also minimizes the Kullback-Leibler divergence between the approximate and posterior

distribution of a deep GP. Hence, it is possible to obtain the uncertainty of the deep network directly

from the trained model without any additional assumptions or changes in the network’s architecture

other than it must be trained considering dropout [44], [129] in every single layer. A mathematical

development of dropout uncertainty in LSTM can be found in [130].

A detailed explanation of this approach escapes from the scope of this thesis work. However, it is

important to understand that in order to estimate the uncertainty from the test results of a model,

several forward passes applying dropout must be performed through the model with the test data,

to later analyze the outputs as a Gaussian distribution.

- 31 -

Proposed Deep Learning Framework

As it was discussed in Chapter 3, many deep learning techniques have been applied for sensor

interpretation and analysis of multisensorial measurements. Convolutional and Recurrent Neural

Networks have shown great performance on pattern recognition and temporal analysis,

respectively. However, only a small number of efforts have been presented combining CNN with

LSTM techniques. On one hand, Chen et al. [13] proposed a deep CNN combined with a deep

bidirectional LSTM (BiLSTM) network for a classification task on building occupancy estimation,

analyzing data from environmental sensors. On the other hand, Zhao et al. [64] also trained a deep

network combining CNN and BiLSTM for a regression task on tool wear prediction. Although

both approaches show accurate results on their respective tasks, convolution layers are used to

compute temporal relationships from the data, which implies a double computation in the temporal

space since this is the task intended for the BiLSTM.

Thus, the proposed health state estimator framework is based on a hybrid CNN and LSTM

architecture. The framework is designed to take advantage of the CNN’s capability in building

higher abstraction representations for spatial recognition and the LSTM’s ability to deal with

sequential analysis. A non-linear RUL target is proposed as an objective. Before training the

resulting model, raw data is normalized with a Min-Max scaler in the range [0,1], and those

variables from the dataset that do not contribute valuable information to the model, or were used

for the label generation, are dropped. A cross-fold validation is performed to select critical

hyperparameters. Once these hyperparameters are selected, the proposed architecture is trained and

tested through the validation datasets described in Chapter 3.

4.1 Data Preprocessing

For each dataset, a Min-Max normalization is used along every variable to normalize the data and

thus to avoid overfitting of the model over variables with a high order of magnitude. Given a vector

𝑋, its scaled value 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is calculated as described in Equation 25. Where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥

correspond to the minimum and maximum value of each column feature, respectively.

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
. (25)

- 32 -

Furthermore, variables which do not change in time, and hence could bias the results, are dropped.

A similar approach is taken to select variables for the CS2 dataset. Here, same as the C-MAPSS

dataset, those variables from Table 3.6 which do not change in time, are dropped. Also, variables

that are not relevant for the charge-discharge process or were used to generate the labels for the

SOC or SOH, are not used during the training process. Hence, from Table 3.3 and Table 3.6, the

columns dropped for the C-MAPSS and CS2 datasets, respectively, are listed in Table 4.1.

This results in a total of 14 sensor measurements to train model for the C-MAPSS dataset, and 5

sensor measurements for the CS2 models: Current, Voltage, Charge capacity, Discharge Capacity,

and 𝑑𝑉/𝑑𝑡.

4.2 Training Samples

Unlike regular NN, Convolutional Neural Networks apply a convolution operation instead of a

matrix multiplication. This operation was originally proposed to recognize shapes and patterns in

images through the mathematical relationship between nearby pixels. However, it is possible to

extrapolate this concept to monitor and analyze how the correlation among sensor measurements

change throughout time while the measured equipment deteriorates. To do so, a sliding-window of

length 𝑁𝑡 is used to transform the 𝑁𝑓𝑡 sensor measurements or features into multiple samples from

the dataset. Therefore, each sample is arranged in a 2D matrix of shape 𝑁𝑡 × 𝑁𝑓𝑡, which contains

all sensor measurements for a given period of time. These matrices are then used as input for the

first two layers of the proposed architecture, which correspond to convolutional layers.

Table 4.1: Dropped columns for the training procedure for each dataset.

C-MAPSS Turbofan Engines CS2 Lithium-Ion Battery Cells

Unit Number Data Point

Time in Cycles Test Time

Operational Settings 1 Date Time

Operational Settings 2 Step Time

Operational Settings 3 Step Index

Sensor measurement 1 Cycle Index

Sensor measurement 5 Charge Energy

Sensor measurement 6 Discharge Energy

Sensor measurement 10 Internal Resistance

Sensor measurement 16 IS FC Data

Sensor measurement 18 ACI Impedance

Sensor measurement 19 ACI Phase Angle

- 33 -

For the C-MAPSS dataset, the number of selected sensor measurements after the preprocess of the

data is 𝑁𝑓𝑡 = 14. As for the sample time length 𝑁𝑡, it must be considered that the cell state

(Equation 17) allows the LSTM to handle longer sequences than other techniques such as the RNN.

Thus, the more temporal information the LSTM is given, the better it performs. Yet, if the chosen

time length is too large, then there will be too many parameters to be tuned, slowing both the

training and testing processes.

The work put forward by Li [56], proposed that for a deep CNN (DCNN), the optimal sample

length is 𝑁𝑡 = 30 cycles when comparing accuracy and training time, considering that the shortest

test sequence has 31 time-steps. However, the shortest sequences for the test engines from the

FD002 and FD004 test set correspond to 21 cycles and 19 cycles, respectively. Thus, it is not

possible to use a longer time-window, and therefore each sub-dataset from the C-MAPSS dataset

is analyzed with a time-window length equal to the smallest test engine sample. Table 4.2 shows

the adopted value for each dataset.

On the other hand, for the CS2 dataset, the number of selected features is 𝑁𝑓𝑡 = 5. However, since

there are no defined train and test sets for this dataset, for the sample time length, choosing the

time-window length is less intuitive. Here, it must be considered that as battery cells deteriorate,

the discharge cycle shortens in time. As illustrated in Figure 3.9, over 75% of the total cycles have

discharge length is over three times longer than the last cycle discharge cycle. Hence, a sample

length equal to the shortest discharge cycle of the dataset is a suitable measure, which for the CS2

dataset corresponds to 𝑁𝑡 = 24.

4.3 Convolutional Layers

The first two layers of the proposed framework’s architecture consist on two CNN layers, as

illustrated in Figure 4.1. The first convolution operates a filter of size 1 × 2 with a stride 𝑠 = [1,2].

That is, the convolution takes only sensorial data measured at the same time-step, seeking to obtain

an abstraction representing the relationship between every couple of sensors. The filter is applied

𝐹𝑀1 times, thus generating 𝐹𝑀1 feature maps of size 𝑁𝑡 × 𝑁𝑓𝑡 /2 after the first convolution, which

are then evaluated with an element-wise ReLU activation function. It can be noticed that each

Table 4.2: Time-window length for C-MAPSS dataset.

Dataset 𝑁𝑇

FD001 30

FD002 21

FD003 30

FD004 19

- 34 -

feature map has the same length as the original sample 2D matrices, however each feature (column)

is a new representation from the sensor measurements for each time-step.

Once the first convolution has been performed, the created feature maps are used as inputs into the

second convolutional layer, which this time operates with a filter of size 1 × 𝑁𝑓𝑡/2. Analogous to

the first convolution, the second layer is applied only to features from the same time-step, and then

evaluated with an element-wise ReLU activation function. However, on this occasion, the

convolution operation seeks to get a relationship between all features for each time-step. The

convolution filter is applied 𝐹𝑀2 times, thus generating 𝐹𝑀2 feature maps of size 𝑁𝑡 × 1. These

feature maps are then reshaped into a new matrix, where each column corresponds to one feature

map from the second convolution layer. Thus, the output 2D matrix has a shape of 𝑁𝑡 × 𝐹𝑀2,

which is then used to feed the third layer corresponding to the BiLSTM.

4.4 Bidirectional LSTM

The third and last layer of the proposed architecture consists of a BiLSTM comprising two

independent LSTM cells that run in parallel, as shown in Figure 4.2. One of the cells processes the

input data in sequential order, that is, starting from the first time-step to the last data point 𝑁𝑡. The

second LSTM cell takes the sequential data in the reverse order, starting from time-step 𝑁𝑡 and

ending in the first sequential entry. These cells are called forward and backward cells, respectively.

In the proposed architecture, both forward and backward cells take the higher abstraction

representation generated after the first two convolutional layers as their input. Each LSTM outputs

the hidden units of the cell gates (Equation 17). The outputs of the cells are then concatenated and

Figure 4.1: CNN layers of the proposed CNNBiLSTM framework.

- 35 -

used as an input to a fully connected layer, yielding the predicted variable(s) 𝑦𝑝𝑟𝑒𝑑, corresponding

to the RUL and SOC & SOH for the C-MAPSS and CS2 datasets, respectively.

4.5 Training

For the training procedure, the created input 2D matrices need to be divided in train and test sets.

Then, the train set is again divided into a training and a validation set. In the case of the C-MAPSS

dataset, the train and test sets are already separated, and hence the training and validation sets are

randomly split in 80% and 20% of the train set, respectively. However, the CS2 dataset does not

have a defined train and test set. Therefore, the created input 2D matrices are randomly divided in

three sets: Training set (60%), validation set (20%), and test set (20%). The model is trained over

the training set, leaving the validation set to evaluate the performance of the model at each training

epoch. Samples from the training set are fed in batches to the model. The model is optimized

through backpropagation with the RMSProp optimizer [85]. Training is performed in an Intel Core

i7 6700K CPU, 32 GB DDR4 (2400 MHz) RAM and a NVIDIA Titan XP GPU of 12 GB memory.

For computation, Python 3.5 language with Tensorflow 1.4 [86] was used, along with cuDNN 5.1

and Cuda 8.0 libraries. Ubuntu 64 bits 16.04 LTS was used as operating system.

Figure 4.2: Bidirectional LSTM layer of the proposed CNNBiLSTM framework.

- 36 -

4.6 Hyperparameters Selection and Regularization

The proposed architecture has several hyperparameters that need to be selected carefully. These

hyperparameters are: the number of feature maps for each convolutional layer, the number of

hidden units in the LSTM cells, the batch size fed to the network during training and the number

of epochs when training. To select the best model, a grid search is performed over every

combination of the hyperparameter values presented in Table 4.3, which are trained to fit each of

the datasets presented in this Chapter, giving a total of 3072 different models to be trained.

To prevent overfitting, two regularization methods are implemented. The first method corresponds

to dropout [81], which is applied at each convolutional layer, as well as both cells from the BiLSTM

and the following fully connected layers which yield the final output of the network. The second

regularization method is early stopping, where the training process is stopped if the model’s

accuracy does not improve over the validation set but does for the training set for three consecutive

epochs.

Table 4.3: Hyperparameter values proposed for the architecture’s grid search.

Feature Maps 1st

Convolution

Feature Maps 2nd

Convolution
Epochs

Batch

Size

Number Hidden

Units LSTM

Dropout

Probability

16 32 50 64 50 0.5

32 64 75 128 100 0.6

64 128 100 256 150 0.7

128 256 125 512 200 -

- 37 -

C-MAPSS Turbofan Engines

A grid search is performed for each sub-dataset in the C-MAPSS dataset, to select the

hyperparameters of the proposed model, according to Chapter 4. This is done considering all the

hyperparameters listed in Table 4.3. Out of the 3072 possible combinations, the selected

hyperparameters which yield the best average results for all four sub-datasets are reported in Table

5.1. In addition to the performance over the datasets, the aforementioned procedure showed that

both the batch size used for training as well as the number of hidden units in the LSTM, have the

greatest influence on the training time of the network. For instance, training for 200 LSTM hidden

units takes about four times more than for 50 LSTM hidden units, keeping all other

hyperparameters constant. A similar effect is caused by the batch size, which is more intuitive since

the bigger the batch size, the fewer iterations per epoch are needed to train a model for the same

number of epochs.

5.1 Model Training, Performance and Comparison

With the selected hyperparameters, ten different models are trained and tested for each sub-dataset,

applying a 40% dropout probability after each layer of the proposed architecture. Table 5.2 shows

the average and standard deviation obtained for the evaluation metrics described in Chapter 3 for

each sub-dataset. The results are compared with other relevant research works done over the same

dataset. Indeed, Zheng et al. [65] trained a deep LSTM network, while Zhang et al. [131] proposed

a Multi-objective Deep Belief Network Estimator (MODBNE) for the RUL estimation of the C-

MAPSS dataset. However, both articles report results only for one model trained for each sub-

dataset, thus making the results difficult to compare.

So far, the best average results obtained for the C-MAPSS dataset were reported by Li et al. [72]

who trained a Deep Convolutional Neural Network (DCNN) with four convolutional layers of ten

Table 5.1: Selected architecture's hyperparameters for the C-MAPSS dataset.

Feature Maps

1st Convolution

Feature Maps

2nd Convolution
Epochs Batch Size

Number Hidden

Units LSTM

Dropout

Probability

32 128 75 256 50 0.4

- 38 -

feature maps each. From Table 5.2, it can be seen that the proposed CNNBiLSTM-based model

outputs a better average RMSE than any of the other state of the art models [65], [72], [131], giving

also a similar score value, except for the FD003 sub-dataset where the proposed model does not

perform as well as Li’s model [72]. The latter can be associated to the fact that the RUL target from

the test sets are not modified to meet the 𝑅𝑒𝑎𝑟𝑙𝑦 criteria stated Chapter 3. In particular, the trained

model will not be able to correctly predict 15% of the FD003 test data. Instead, a more conservative

underestimation will be yielded for the RUL in these cases. A similar effect is presented for the

rest of the trained models, implying that even though the test set has not been modified in any way,

better performance is obtained for each test set with score values within the same order of

magnitude. For the RMSE metric, the proposed CNNBiLSTM base model gives a 20%

improvement over FD001, a 6% over FD002, a 11% FD003, and a 3% over FD004 sub-dataset.

From the presented results in Table 5.2 and the dataset description in Table 3.2, it can be observed

that the average RMSE for the FD002 and FD004 datasets are about two times bigger than for the

FD001 and FD003. Furthermore, the average Score values from the former-datasets surpass the

later by more than one order of magnitude. Hence, the proposed CNNBiLSTM-based model

struggles more to yield an accurate prediction when dealing with six operational conditions instead

of one, rather than adding a second failure mode to the setup.

Besides its performance, the proposed architecture also presents other advantages over the

abovementioned models. For example, the trained models take in average 75 epochs to converge,

while when training a DCNN can take over 250 epochs and a DLSTM needs over 2000 epochs.

Furthermore, the CNNBiLSTM-based model has an average training time for the selected

hyperparameters of 64.3s, with an average test evaluation time of 0.01s for a new input data, thus

being suitable for real time monitoring.

Table 5.2: Average results for the C-MAPSS test sets after 10 different trainings.

 MODBNE [125] DCNN [73] DLSTM [65] CNNBiLSTM

Dataset Metric Mean STD Mean STD Mean STD Mean STD

FD001
RMSE 15.04 - 12.61 0.19 16.14 - 10.09 0.60

Score 334 - 273 24 338 - 339 72

FD002
RMSE 25.05 - 22.36 0.32 24.49 - 21.02 0.31

Score 5585 - 10412 544 4450 - 10830 1788

FD003
RMSE 12.51 - 12.64 0.14 16.18 - 11.34 0.70

Score 421 - 284 26 852 - 1189 167

FD004
RMSE 28.66 - 23.31 0.39 28.17 - 22.74 0.42

Score 6557 - 12466 853 5550 - 9849 954

- 39 -

5.2 Uncertainty Measurement on Models’ Estimation

The proposed CNNBiLSTM-based model accounts for the model uncertainty on the RUL

estimation. This is accomplished by means of two different approaches. First, 5,000 forward passes

are performed on a trained model for the test set of each sub-dataset, setting a dropout probability

of 10%, thus obtaining different RMSE values at each iteration. These values can then be used to

determine the uncertainty of the model on the test RMSE by taking the average and standard

deviation of the test RMSE obtained at each iteration, as it was mentioned in Chapter 3.

Table 5.3 summarizes the results for this approach, as well as the results for the Shapiro-Wilk null

hypothesis test [132], which is used to evaluate the normality of the yielded distributions. The null

hypothesis states that the data was given by a Gaussian distribution, where this hypothesis is

rejected for a low test-statistic (W) value, or if the p-value is lower than the desired significance

level. In Table 5.3, it can be seen that all W values obtained from the null hypothesis yield the

highest possible value (good fit) with all p-values higher than 10% significance. Thus, the null

hypothesis can be accepted, meaning that a Gaussian distribution can represent the RMSE

uncertainty for the trained models. It must be noticed that these Gaussian distributions are a direct

result from applying dropout while testing, and it was not imposed in any way to the models during

the training procedure.

Figure 5.1 shows the normalized probability density function for the FD001 and FD002 test RMSE,

showing significant robustness given that the results output a normal distribution with a small

standard deviation. That is, the uncertainty over the test RMSE results (Table 5.2 and Table 5.3) is

small.

Table 5.3: Uncertainty measures in the C-MAPSS test sets through Dropout.

 RMSE

Sub-dataset Mean STD W p-value

FD001 10.09 0.31 1,00 0,66

FD002 21.40 0,21 1,00 0,63

FD003 11.74 0,33 1,00 0,12

FD004 22,98 0,21 1,00 0,15

- 40 -

Similar results are obtained when evaluating the test RMSE’s uncertainty for models trained for

the FD003 and FD004 sub-datasets. The latter is shown in Figure 5.2, where once again a small

standard deviation reflects a small uncertainty over the models’ error. It is to be noticed that Figure

5.1 and Figure 5.2 yield a mean RMSE similar to the ones reported in Table 5.2, evidencing the

robustness on the estimation precision of the proposed CNNBiLSTM model.

The second approach to estimate the models’ uncertainty, consists in taking an entire run of one

sample engine from the training set of each sub-dataset. 2D matrices are generated for every time-

step of the run, as it was described in Chapter 4. For each matrix, 10,000 forward passes through

the trained model are performed with a 10% dropout probability, enabling the estimation of

uncertainty for the predicted RUL at each cycle of the engine’s sample run.

The aforementioned procedure is performed for one random sample engine for each sub-dataset,

evaluating the created 2D matrices over their corresponding model. Figure 5.3 shows the predicted

RUL with a 90% probability interval for each cycle in the sample engine for the FD001 sub-dataset.

Figure 5.1: RMSE uncertainty for FD001 and FD002

Figure 5.2: RMSE uncertainty for FD003 and FD004

- 41 -

It can be observed that the predicted RUL adjusts smoothly to the target RUL before 𝑅𝑒𝑎𝑟𝑙𝑦 is

reached. Afterwards, the model tends to underestimate the RUL value at the beginning of the target

RUL, which is conservative from a reliability point of view. Later, the prediction converges to the

true RUL value for the last cycles of the run with a smaller uncertainty than before.

A similar behavior can be observed when testing different engines from sub-datasets FD002,

FD003 and FD004, as illustrated in Figure 5.4, Figure 5.5 and Figure 5.6, respectively. In this case,

unlike the other three models, the FD002 model tends to overestimate the RUL after 𝑅𝑒𝑎𝑟𝑙𝑦 has

been reached. However, it converges to the expected values when moving towards the failure event.

It must be mentioned that even though these are only one single example of each dataset, it can be

seen from the probability interval showed along the predicted values that the uncertainty decreases

towards the failure event. This is corroborated by the three histograms taken from different points

throughout the engine run, where the standard deviation of the estimated RUL decreases over time

for all the test engine runs.

Figure 5.3: RUL estimation under uncertainty. Engine sample from FD001.

- 42 -

The discussed results show that the trained models can successfully interpret the behavior of the

RUL curve throughout the run. This is a remarkable conclusion for the proposed CNNBiLSTM

framework since the studied dataset had different operational conditions and failure modes.

Particularly, this is true for the results yielded by the model trained for the sub-dataset FD004,

which has the most challenging conditions and two failure modes.

Figure 5.4: RUL estimation under uncertainty. Engine sample from FD002.

Figure 5.5: RUL estimation under uncertainty. Engine sample from FD003.

- 43 -

Figure 5.6: RUL estimation under uncertainty. Engine sample from FD004.

- 44 -

CS2 Lithium-Ion Batteries

As it was done for the C-MAPSS dataset, a grid search is performed using the data from the CS2

lithium-ion battery cells to select the most important hyperparameters of the proposed

CNNBiLSTM architecture, as described in Chapter 4. In this case, different models are trained for

all possible combinations of the hyperparameters listed in Table 4.3, choosing those which yield

the lowest SOC and SOH simultaneously. The selected hyperparameters are presented in Table

6.1. Once again, the grid search shows that the training time is directly proportional to the number

of hidden units in the LSTM cells, as well as to the batch size.

6.1 Model Training, Performance and Comparison

Five models are trained applying a 40% dropout after each layer as described in Chapter 4. One

model is trained for each battery cell individually and a fifth model is trained using all four battery

cells simultaneously. The data used to train and validate the model are randomly selected, and the

data for testing is not used in any way during the training procedure. To avoid overfitting, models

are trained until either the maximum number of epochs is reached, or the validation error does not

improve for three consecutive epochs. Each model is trained 10 different times to obtain a mean

and standard deviation from the training procedure.

The RMSE results for the SOC and SOH of each model are provided in Table 6.2. It can be seen

that for each model, the standard deviation of the RMSE is small compared to its average value.

Thus, the proposed architecture shows robustness on the training procedure. Table 6.2 also shows

that models can accurately estimate both SOC and SOH, where the highest error is associated with

SOH estimates for Model 2, which is trained with data from cell #36 (3.33% average RMSE). It is

important to note that Model 2 also yields the highest average RMSE in SOC estimates, which is

only in the order of 1.98%. When using all four cells in the training stage, Model 5 successfully

generalizes the degradation of the batteries as well as the estimation of remaining energy during

Table 6.1: Selected architecture's hyperparameters for the C-MAPSS dataset.

Feature Maps

1st Convolution

Feature Maps

2nd Convolution
Epochs Batch Size

Number Hidden

Units LSTM

Dropout

Probability

64 128 20 256 50 0.6

- 45 -

the discharge cycle, as it can be corroborated by observing that the average error is lower than three

of the other models for both SOC and SOH.

Other research efforts mainly study the CS2 lithium-ion battery dataset for the RUL estimation,

either through conventional methods [88] or deep learning methods such as LSTM [100]. However,

only one regression model has been developed for the joint estimation of the SOC and SOH.

Indeed, Huang et al. [102] proposes a polynomial regression method for an online estimation model

of both SOC and SOH, where the estimation of the SOH is directly dependent on the previous

estimation of the SOC. This dependency is undesired because of the cumulative error associated to

each regression model as well as the possible bias of the adjusted parameters to the selected training

data. Furthermore, in the approach put forward in [102], models were trained using all data from

each battery cell and tested with samples taken every 25 discharge cycles, starting from N=25

cycles up to N=700 cycles, which is said to be the most relevant interval with respect to the

functionality of the battery, and where the variables’ behavior is more stable. It is important to note

that this chosen evaluation leads to biased results since the resulting model is tested with data used

in the training process. Moreover, the arbitrary selection of a determined range to test the models

guarantees lower RMSE results.

In contrast, the proposed CNNBiLSTM model is trained, validated and tested with independent

randomly selected data from each battery cell. Therefore, in order to compare the performance of

the proposed deep learning framework with [102], the RMSE metric is calculated for each trained

model based on randomly chosen test sets for each battery cell. These results are given in Table

6.3. It can be observed that when compared with [102], the proposed CNNBiLSTM-based model

outputs similar results for the RMSE when evaluating each model with its corresponding test set

(i.e., Table 6.3 diagonal). However, in [102] the test sets consider data within the train set, in an

operational range with more homogeneous data and less uncertainty. Table 6.3 also shows the

results yielded by Model 5, which is trained using training data from all battery cells and delivers

results that outperforms all model evaluations from the regression model. That is, Model 5 is tested

with more heterogeneous data than the other models, since the data is randomly taken from all four

battery cells, and yet delivers better performance results than any other model.

Table 6.2: CNNBiLSTM model training RMSE results for the SOC and SOH.

 Proposed CNNBiLSTM Model

 SOC SOH

Dataset Model # Mean STD Mean STD

CS2 35 Model 1 1.19 0.25 2.01 0.38

CS2 36 Model 2 1.98 0.51 3.33 0.63

CS2 37 Model 3 1.69 0.27 2.70 0.56

CS2 38 Model 4 1.71 0.28 2.96 0.73

All cells Model 5 1.58 0.14 2.49 0.36

- 46 -

Hence, the proposed CNNBiLSTM has a good generalization capability when dealing with non-

homogeneous data and with high variability. Indeed, Model 5 outputs a RMSE equal to 1.40%

when evaluated with all test sets, which is smaller than any of the regression models evaluated in

the different datasets. Also, given the smaller standard deviation obtained when training the

CNNBiLSTM model with data from all battery cells, it can be argued that the proposed model is

robust at training, and has the capability to obtain a better generalization when trained for a bank

of batteries.

Table 6.3: RMSE [%] SOC comparison when evaluating proposed CNNBiLSTM model with test set.

 Tested Cell # 35 36 37 38 All

 Method RMSE RMSE RMSE RMSE RMSE

Model 1
Hung 1.50 2.40 1.90 1.40 -

CNNBiLSTM 1.56 1.63 1.73 2.50 1.91

Model 2
Hung 2.00 1.90 2.10 1.90 -

CNNBiLSTM 1.96 1.79 1.95 3.36 2.38

Model 3
Hung 1.60 2.20 1.80 1.50 -

CNNBiLSTM 2.25 2.10 1.63 2.99 2.31

Model 4
Hung 1.60 2.40 1.90 1.40 -

CNNBiLSTM 2.34 2.39 2.10 1.41 2.08

Model 5
Hung - - - - -

CNNBiLSTM 1.47 1.4 1.36 1.36 1.40

- 47 -

6.2 Uncertainty Measurement on the Models’ Estimation

Uncertainty characterization is a key element in the state estimation problem. Particularly, it is

important to validate assumptions on the structure and probability distribution associated with the

model error. For the CS2 battery cells, the main assumption is that modelling errors can be

characterized as additive Gaussian noise; in other words, that the RMSE is an adequate metric for

uncertainty characterization of SOC and SOH estimates. Hence, two different approaches are

applied to validate this assumption, as well as to quantify the precision of SOC and SOH estimates

in the proposed CNNBiLSTM-based models.

On the one hand, the test set from each cell is evaluated 5,000 times through their respective trained

model using a 10% dropout probability. Then, the RMSE results obtained for the SOC and SOH

of each trained model are used to fit a Gaussian distribution. In it, its standard deviation reflects

the uncertainty of each model on its estimated values. Table 6.4 summarizes the results for this

approach. Furthermore, Figure 6.1 and Figure 6.2 show the obtained distribution for the SOC and

SOH when evaluating Models 1 to 4, and Figure 6.3 shows the obtained distribution for the SOC

and SOH when evaluating Model 5 (trained for all datasets).

The Shapiro-Wilk null hypothesis test [132] is performed to evaluate the normality of the yield

distributions. The null hypothesis states that the data was given by a Gaussian distribution, where

this hypothesis is rejected for a low test-statistic (W) value, or if the p-value is lower than the

desired significance level. As it can be seen from Table 6.4, all W values yield by the distributions

are 1.0 (the best possible result) with a relative high p-value. Hence, the null hypothesis is accepted,

and it can be stated that the uncertainty over the RMSE when applying dropout in each model

yields a Gaussian distribution.

From Table 6.4, it can also be observed that the obtained mean RMSE for each dataset is higher

than the ones reported in Table 6.3, although with smaller standard deviation. In other words,

although model errors are slightly affected, precision on the resulting predicted values is high. This

error increase could be associated to the few number of features that the model receives as input

Table 6.4: Uncertainty measures in the CS2 test sets through dropout.

SOC SOH

Cell # Model # Mean STD W p-value Mean STD W p-value

35 Model 1 2,37 0,02 1,00 0,65 3,51 0,03 1,00 0,50

36 Model 2 2,70 0,02 1,00 0,95 4,48 0,02 1,00 0,69

37 Model 3 2,61 0,02 1,00 0,49 3,57 0,02 1,00 0,71

38 Model 4 2,67 0,02 1,00 0,26 3,97 0,02 1,00 0,37

All Model 5 2,45 0,01 1,00 0,71 3,78 0,01 1,00 0,64

- 48 -

during the dropout-based uncertainty quantification procedure, since the action of “turning off”

neurons leads to information loss. Note that the Gaussian distribution obtained for the evaluation

of each test set is a direct result from applying dropout while testing, and it was not imposed in any

way to the models presented in Table 6.4 during the training procedure.

Figure 6.1: RMSE uncertainty for cells 35 and 36.

Figure 6.2: RMSE uncertainty for cells 37 and 38.

- 49 -

On the other hand, it is also important to evaluate the uncertainty associated with SOC estimates

when using the trained models for real-time battery assessment. For this purpose, an uncertainty

quantification procedure is also implemented based on a 10% dropout probability and using

random discharge cycles from each battery cell. In these cases, the 2D matrices that characterize

each discharge cycle are generated as described in Chapter 4. Each 2D matrix sample from each

discharge cycle is evaluated 10,000 times in through its corresponding trained model. Figure 6.4

to Figure 6.6 show the estimated SOC at each point of the discharge cycle for each sample. The

estimation SOC is considered as the average of the 10,000 SOC yielded by the model for each 2D

matrix sample. Furthermore, a 90% probability interval is given for each estimation point.

Figure 6.3: SOC and SOH test RMSE uncertainty for Model 5, trained for all battery cells.

Figure 6.4: SOC estimation with uncertainty from Model 1. Discharge sample from cell 35.

- 50 -

From this approach, it can be seen that each estimated SOC point represents the mean value of a

Gaussian distribution, such as the ones obtained in Figure 6.1 and Figure 6.2, where its standard

deviation represents the uncertainty over the estimation of the SOC. It can also be observed that

the closer the estimation is to the complete discharged event, the narrower is the 90% probability

interval. Thus, the estimation precision increases when approaching a fully discharged battery. This

is due to the time-window length to create the 2D sample matrices, given that there are more

samples representing a 70% to 100% discharged battery than to a fully charged battery.

The measured uncertainties can be related to many sources implicitly involved on the SOC and

SOH estimation. For instance, the precision on the measured variables, especially those used to

train and evaluate the model such as the voltage and current. Measurement devices often come with

an associated error, which can be further contaminated with noise coming from the environment,

as well as from measuring different battery cells with different measurement instruments. Another

possible source of uncertainty for the estimated results can be related to the low sampling frequency

of the studied dataset. Indeed, each 2D sample matrix evaluated through the proposed

CNNBiLSTM model contains 24 time-steps, equivalent to 240s. Hence, uncertainty on the

estimated SOC and SOH may be reduced if a higher sampling frequency is used to measure the

variables.

Figure 6.5: SOC estimation with uncertainty from Model 2. Discharge sample from cell 36.

- 51 -

Figure 6.6: SOC estimation with uncertainty from Model 3. Discharge sample from cell 37.

Figure 6.7: SOC estimation with uncertainty fromModel 4. Discharge sample from cell 38.

- 52 -

Concluding Remarks

In this thesis, a deep learning framework is presented for the health state estimation of complex

systems based on big machinery data. The framework is validated through two different datasets

and consists of two CNN layers aiming to obtain an abstract relationship between sensor

measurements, combined with a bidirectional LSTM layer capable of understanding the temporal

behavior of such sensors. Thus, the proposed deep learning framework is named CNNBiLSTM.

The C-MAPSS Turbofan Engines and the CS2 Lithium-Ion Battery Cells datasets are used to

validate the proposed architecture through the training and testing of different models.

Furthermore, an estimation of the uncertainty for the models’ prediction is given through dropout

as a Bayesian approximation. Noteworthy results are yielded by the proposed framework, which

are addressed in the following conclusions and comments.

7.1 Conclusions

During the last decade, deep learning methods have become popular in engineering applications,

particularly in data analysis for reliability assessment, which used to be an inefficient process due

to the need of expert knowledge on the studied system, along with the limitation of traditional PHM

techniques. Reliability related, data-driven applications still have many challenges to confront in

order to keep improving the estimation of health state parameters which can guarantee an accurate

diagnosis for systems, equipment and, more importantly, the safety of the industrial working staff.

In the context of estimating and predicting the state of health of industrial machinery, a deep

learning framework is proposed, aiming to analyze sensorial data and obtain a temporal relationship

within measured variables. From a data analysis point of view, the approach combines the

capability of Convolutional and Recurrent Neural Networks to analyze spatial and temporal data,

respectively. Moreover, the architecture of the proposed CNNBiLSTM framework is also thought

from an engineering point of view. The convolutional filters from both CNN layers are applied to

independently process the sensorial data at each time-step. The stride chosen for the CNN filters

process a 2D matrix sample of multisensorial data in time to give an abstract representation of the

relationship among all sensors. Thus, for each time-step, sensor measurements are paired in couples

through the first convolution, to later obtain a relationship among all sensors through the second

convolutional filter. Analyzing 2D matrices comes as a strong asset from a reliability point of view,

given that the trained models do not need any information from the previous behavior or state of

- 53 -

the studied system. This allows trained models to yield an accurate health state assessment of the

system with only a few datapoints.

The proposed framework shows robustness for both prognosis of the remaining useful life for

rotational machinery, as well as for the joint estimation of the State of Charge and State of Health

of lithium-ion batteries, based on multivariate sensor data. For the C-MAPSS dataset, one model

is trained and tested for each sub-dataset. The average results obtained for both metrics, RMSE and

Score, were compared with other state of the art architectures, where the proposed CNNBiLSTM-

based models showed an improvement on the RMSE and similar Score values over the test sets.

Moreover, when comparing the results obtained (Table 5.2) for sub-datasets FD002 and FD004

with sub-datasets FD001 and FD003, it becomes clear that the proposed architecture is more

sensitive to operational conditions rather than the number of fault modes. It is to be noticed that

unlike other studies, the test set was not modified for the testing procedure to meet the 𝑅𝑒𝑎𝑟𝑙𝑦

criteria. Hence, results for both RMSE and Score could be further improved without modifying the

proposed architecture. However, this approach is not correct, since test sets should never be

modified when testing data analysis models.

Uncertainty on the obtained results was estimated through two approaches. For the first approach,

uncertainty over the RMSE results is estimated by applying a 10% dropout on 5,000 forward passes

of the test sets through the trained network. Results presented in Table 5.3 along with Figure 5.1

and Figure 5.2, show a smooth Gaussian distribution with a small standard deviation for all four

models (Table 5.3). Thus, the proposed CNNBiLSTM-based models are robust on their accuracy

to predict the RUL of a turbofan engine. For the second approach, a visualization is presented for

the RUL estimation with its uncertainty for an entire run from one sample engine from each sub-

dataset. Figure 5.3 to Figure 5.6 report a small uncertainty on the models’ predictions, which

decreases towards the failure event. These figures also show that for those engines where only one

operational condition was reported, the proposed model tends to be conservative, given that the

predicted values for the RUL were located under the target curve. Thus, the small uncertainty on

the models’ results makes the proposed CNNBiLSTM model both accurate and precise on its RUL

predictions.

To analyze the CS2 lithium-ion batteries from CALCE-UMD, five different models are trained

from the dataset: one for each battery cell and a fifth using all cells simultaneously. The proposed

CNNBiLSTM-based models show an excellent performance after training, where all models obtain

an average RMSE under 2.0% for the SOC and below 3.5% for the SOH. These results are

compared with a parametric regression model which gives a SOH directly dependent from the

SOC. Here, Model 5, trained and tested for all battery cells, outperforms the parametric regression

model (Table 6.3). Furthermore, the CNNBiLSTM-based model is tested with data randomly

selected from each dataset, whereas the parametric regression model not only uses the same data

to train and test the model, but it also takes only data from a certain range of cycle degradation

where the batteries behavior is more homogeneous. Hence, it is fair to conclude that the proposed

framework stands as a better approach.

- 54 -

Two uncertainty measurements are given for the SOC estimation by applying several forward

passes through the model with a 10% dropout probability. A small standard deviation is obtained

on the tests RMSE (Table 6.4), showing a low estimation uncertainty for the proposed

CNNBiLSTM models. Moreover, a second approach to visualize the uncertainty of the model is

given by predicting an entire discharge cycle for each battery cells, where a 90% confidence

interval is shown with a small standard deviation (Figure 6.4 to Figure 6.7). It can be concluded

that the uncertainty of the model is small for all predictions, and it diminishes towards the complete

discharge event.

The proposed framework presents several advantages when compared with traditional methods for

the joint estimation of the SOC and SOH in battery cells. First, only a small time-window of 24

time-steps is needed to yield an accurate estimation of the state of the battery cell, making the

model suitable for online estimation. This is a remarkable result, also given the fact that the studied

CS2 dataset has a low data sample frequency of 0.1 Hz. Furthermore, the trained models do not

require the number of charge-discharge cycles that the battery has performed before. Therefore,

the SOC and SOH estimation come only from the relationship of the measured variables. Lastly,

the SOH estimation is completely independent from the SOC estimation, thus results are less prone

to be biased and to have cumulative error.

From the presented results for both datasets, C-MAPPS and CS2, it can be concluded that the

trained models successfully combine the spatial recognition capabilities of CNN with the sequential

data processing of bidirectional LSTM. This is reflected in the good results yielded for the RMSE

and Score metrics when testing the C-MAPSS turbofan engines, as well as the RMSE for the CS2

lithium-ion battery cells dataset. These results obtained for the test sets are a compelling proof that

the proposed CNNBiLSTM framework can be a powerful asset for reliability purposes in big

datasets composed by multisensorial measurements. This conclusion is reinforced when

considering the time required to train and test these models. Indeed, training one model for the C-

MAPSS dataset takes an average of 64.3s, while for the CS2 dataset the training time averages

54.4s. Testing a new 2D sample matrix takes an average of 0.01s for both datasets, which advocates

that the trained models could be used for online estimation if a time-window measurement is

available.

Finally, the proposed CNNBiLSTM trained models show improvement from the state-of-the-art

results reported to date for both datasets studied. Even though the improvement over these results

might not be significant enough, it must also be considered that the proposed framework does not

need any expert knowledge on the studied systems to give an accurate assessment. This comes as

a more notable result when considering that the proposed CNNBiLSTM framework was used to

train two completely different datasets, which present different behaviors and operate under diverse

conditions, giving accurate results for both challenges. Hence, it is clear that the proposed

CNNBiLSTM framework can be used for reliability assessment of any monitored equipment.

- 55 -

7.2 Future Work

The results presented and discussed above are a compelling proof of the framework’s feature

extraction and sequential analysis capabilities from raw data. The framework can be adapted to

different circumstances and yield accurate results. However, there are still some aspects where

improvement can be made. For instance, one of the main drawbacks from the proposed

CNNBiLSTM framework is that the training procedure is fully supervised. Hence, although models

can be directly applied to many challenges, there are still many reliability related phenomena where

it is not possible to generate the necessary amount of labeled data to train a fully supervised model.

Thus, a next step for the presented work would be to implement an unsupervised data preprocessing

technique able to generate the labels for the training data, i.e., by applying traditional ML

techniques such a clustering; or perhaps some more elaborated ones such as Variational

Autoencoders or Generative Adversarial Networks.

Another interesting follow-up to the presented CNNBiLSTM framework is to implement an

evaluation software which could be used to continuously monitor the state of health of a system

through data acquired online. This can be accomplished by developing a software with a friendly

Graphical User Interface (GUI), aiming to yield real-time results, as well as updating the trained

models with the new incoming data.

- 56 -

Bibliography

[1] L. Yao and Z. Ge, “Deep Learning of Semisupervised Process Data With Hierarchical

Extreme Learning Machine and Soft Sensor Application,” vol. 65, no. 2, pp. 1490–1498,

2018.

[2] O. Costilla-reyes, P. Scully, and K. B. Ozanyan, “Deep Neural Networks for Learning

Spatio-Temporal Features From Tomography Sensors,” vol. 65, no. 1, pp. 645–653, 2018.

[3] J. Pan, Y. Zi, J. Chen, Z. Zhou, and B. Wang, “LiftingNet: A Novel Deep Learning Network

with Layerwise Feature Learning from Noisy Mechanical Data for Fault Classification,”

IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 4973–4982, 2017.

[4] D. Lund, C. MacGillivray, V. T.-… (IDC), T. Rep, and undefined 2014, “Worldwide and

regional internet of things (iot) 2014–2020 forecast: A virtuous circle of proven value and

demand,” pdfs.semanticscholar.org.

[5] Y. Lei, F. Jia, J. Lin, … S. X.-I. T. on, and undefined 2016, “An intelligent fault diagnosis

method using unsupervised feature learning towards mechanical big data,”

ieeexplore.ieee.org.

[6] Z. Hu and P. Jiang, “An Imbalance Modified Deep Neural Network with Dynamical

Incremental Learning for Chemical Fault Diagnosis,” IEEE Trans. Ind. Electron., vol. 0046,

no. c, pp. 1–1, 2018.

[7] G. Zhao, G. Zhang, Y. Liu, B. Z.-… (ICPHM), 2017 IEEE, and undefined 2017, “Lithium-

ion battery remaining useful life prediction with Deep Belief Network and Relevance Vector

Machine,” ieeexplore.ieee.org.

[8] M. Ma, C. Sun, X. C.-I. T. on Industrial, and undefined 2018, “Deep Coupling Autoencoder

for Fault Diagnosis with Multimodal Sensory Data,” ieeexplore.ieee.org.

[9] Z. Chen, C. Li, and R.-V. Sanchez, “Gearbox Fault Identification and Classification with

Convolutional Neural Networks,” Shock Vib., vol. 2015, pp. 1–10, 2015.

[10] M. Zhao and M. Kang, “Deep Residual NetworksWith Dynamically WeightedWavelet

Coefficients for Fault Diagnosis of Planetary Gearboxes,” vol. 65, no. 5, pp. 4290–4300,

2018.

[11] F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, “Deep neural networks: A promising tool for fault

characteristic mining and intelligent diagnosis of rotating machinery with massive data,”

Mech. Syst. Signal Process., vol. 72–73, pp. 303–315, 2016.

[12] W. Yan, D. Tang, and Y. Lin, “IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS A Data-Driven Soft Sensor Modeling Method Based on Deep Learning

and its Application,” vol. 0046, no. c, pp. 4237–4245, 2016.

[13] Z. Chen, R. Zhao, Q. Zhu, M. K. Masood, Y. C. Soh, and K. Mao, “Building Occupancy

Estimation with Environmental Sensors via CDBLSTM,” IEEE Trans. Ind. Electron., vol.

64, no. 12, pp. 9549–9559, 2017.

[14] O. Janssens et al., “Convolutional Neural Network Based Fault Detection for Rotating

Machinery,” J. Sound Vib., vol. 377, pp. 331–345, 2016.

[15] H. Oh, J. H. Jung, B. C. Jeon, and B. D. Youn, “Scalable and Unsupervised Feature

Engineering Using Vibration-Imaging and Deep Learning for Rotor System Diagnosis,”

IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3539–3549, 2017.

[16] H. Shao, H. Jiang, H. Zhang, and T. Liang, “Electric Locomotive Bearing Fault Diagnosis

- 57 -

Using a Novel Convolutional Deep Belief Network,” vol. 65, no. 3, pp. 2727–2736, 2018.

[17] D. Verstraete et al., “Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image

Analysis of Rolling Element Bearings,” Shock Vib., vol. 2017, pp. 1–17, Oct. 2017.

[18] C. Lin, H. Mu, R. Xiong, and J. Cao, “Multi-model probabilities based state fusion

estimation method of lithium-ion battery for electric vehicles: State-of-energy,” Appl.

Energy, vol. 194, pp. 560–568, 2017.

[19] W. He, N. Williard, C. Chen, and M. Pecht, “State of charge estimation for electric vehicle

batteries using unscented kalman filtering,” Microelectron. Reliab., vol. 53, no. 6, pp. 840–

847, 2013.

[20] J. Yan, G. Xu, H. Qian, and Y. Xu, “Robust state of charge estimation for hybrid electric

vehicles: Framework and algorithms,” Energies, vol. 3, no. 10, pp. 1654–1672, 2010.

[21] H. He, X. Zhang, R. Xiong, Y. Xu, and H. Guo, “Online model-based estimation of state-

of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles,” Energy, vol.

39, no. 1, pp. 310–318, 2012.

[22] R. Yang, R. Xiong, H. He, H. Mu, and C. Wang, “A novel method on estimating the

degradation and state of charge of lithium-ion batteries used for electrical vehicles,” Appl.

Energy, vol. 207, pp. 336–345, 2017.

[23] Y. Zou, X. Hu, H. Ma, and S. E. Li, “Combined State of Charge and State of Health

estimation over lithium-ion battery cell cycle lifespan for electric vehicles,” J. Power

Sources, vol. 273, pp. 793–803, 2015.

[24] Y. Zheng, M. Ouyang, X. Han, L. Lu, and J. Li, “Investigating the error sources of the online

state of charge estimation methods for lithium-ion batteries in electric vehicles,” J. Power

Sources, vol. 377, no. December, pp. 161–188, 2018.

[25] R. Xiong, L. Li, Z. Li, Q. Yu, and H. Mu, “An electrochemical model based degradation

state identification method of Lithium-ion battery for all-climate electric vehicles

application,” Appl. Energy, vol. 219, no. 5, pp. 264–275, 2018.

[26] P. Espinoza, A. Pérez, M. Orchard, H. Navarrete, and D. Pola, “A simulation engine for

predicting state-of-charge and state-of-health in lithium-ion battery packs of electric

vehicles,” Annu. Conf. Progn. Heal. Manag. Soc. 2017, p. 16, 2017.

[27] H. Sheng and J. Xiao, “Electric vehicle state of charge estimation: Nonlinear correlation and

fuzzy support vector machine,” J. Power Sources, vol. 281, pp. 131–137, 2015.

[28] M. A. Hannan, M. S. H. Lipu, A. Hussain, and A. Mohamed, “A review of lithium-ion

battery state of charge estimation and management system in electric vehicle applications:

Challenges and recommendations,” Renew. Sustain. Energy Rev., vol. 78, no. May, pp. 834–

854, 2017.

[29] W. S. Putra, B. R. Dewangga, A. Cahyadi, and O. Wahyunggoro, “Current estimation using

Thevenin battery model,” in Proceedings - Joint International Conference on Electric

Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering,

ICEVT 2015 and IMECE 2015, 2016, pp. 5–9.

[30] L. W. Kang, X. Zhao, and J. Ma, “A new neural network model for the state-of-charge

estimation in the battery degradation process,” Appl. Energy, vol. 121, pp. 20–27, 2014.

[31] J. Chen, Q. Ouyang, C. Xu, and H. Su, “Neural Network-Based State of Charge Observer

Design for Lithium-Ion Batteries,” IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp.

313–320, 2018.

[32] L. Xu, J. Wang, and Q. Chen, “Kalman filtering state of charge estimation for battery

management system based on a stochastic fuzzy neural network battery model,” Energy

Convers. Manag., vol. 53, no. 1, pp. 33–39, 2012.

[33] I. H. Li, W. Y. Wang, S. F. Su, and Y. S. Lee, “A merged fuzzy neural network and its

- 58 -

applications in battery state-of-charge estimation,” IEEE Trans. Energy Convers., vol. 22,

no. 3, pp. 697–708, 2007.

[34] M. A. Hannan, M. S. H. Lipu, A. Hussain, M. H. Saad, and A. Ayob, “Neural Network

Approach for Estimating State of Charge of Lithium-ion Battery Using Backtracking Search

Algorithm,” IEEE Access, vol. 6, pp. 1–1, 2018.

[35] W. He, N. Williard, C. Chen, and M. Pecht, “State of charge estimation for Li-ion batteries

using neural network modeling and unscented Kalman filter-based error cancellation,” Int.

J. Electr. Power Energy Syst., vol. 62, pp. 783–791, 2014.

[36] M. Charkhgard and M. Farrokhi, “State-of-charge estimation for lithium-ion batteries using

neural networks and EKF,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4178–4187,

2010.

[37] Z. Chen, S. Qiu, M. A. Masrur, and Y. L. Murphey, “Battery state of charge estimation based

on a combined model of Extended Kalman Filter and neural networks,” 2011 Int. Jt. Conf.

Neural Networks, pp. 2156–2163, 2011.

[38] K. P. Murphy, Machine Learning: A Probabilistic Perspective. 1991.

[39] A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, First Edit.

O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, 2017.

[40] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to

Document Recognition,” Proc. IEEE, 86(11)2278-2324, 1998.

[41] Y. LeCun, B. Yoshua, and H. Geoffrey, “Deep learning,” Nature, vol. 521, no. 7553, pp.

436–444, 2015.

[42] A. YoshuaBengio, Ian J.Goodfellow, Deep Learning. 2015.

[43] D. Silver et al., “Mastering Chess and Shogi by Self-Play with a General Reinforcement

Learning Algorithm,” pp. 1–19, 2017.

[44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A

Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15,

pp. 1929–1958, 2014.

[45] J. Schmidhuber, “Deep learning in Neural networks: An overview,” Neural Networks, vol.

61, no. 1. pp. 85–117, 2015.

[46] S. Hochreiter and J. J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,

no. 8, pp. 1–32, 1997.

[47] W. Li, G. Wu, S. Member, and F. Zhang, “Hyperspectral Image Classification Using Deep

Pixel-Pair Features,” ieeexplore.ieee.org, pp. 1–10, 2016.

[48] C. Szegedy et al., “Going Deeper with Convolutions,” pp. 1–9, 2014.

[49] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object localization

using Convolutional Networks,” IEEE Conf. Comput. Vis. Pattern Recognit., pp. 648–656,

2015.

[50] C. Zhang et al., “A hybrid MLP-CNN classifier for very fine resolution remotely sensed

image classification,” ISPRS Journal of Photogrammetry and Remote Sensing, 2017.

[51] S. Ren, K. He, R. Girshick, J. S.-I. transactions on pattern, and undefined 2017, “Faster R-

CNN: towards real-time object detection with region proposal networks,”

ieeexplore.ieee.org.

[52] S. Hershey et al., “CNN architectures for large-scale audio classification,” in ICASSP, IEEE

International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2017,

pp. 131–135.

[53] G. Sateesh Babu, P. Zhao, and X.-L. Li, “Deep Convolutional Neural Network Based

Regression Approach for Estimation of Remaining Useful Life,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9642, pp. 214–

- 59 -

228, 2016.

[54] L. Wen, X. Li, L. Gao, and Y. Zhang, “A New Convolutional Neural Network Based Data-

Driven Fault Diagnosis Method,” IEEE Trans. Ind. Electron., vol. 0046, no. c, 2017.

[55] D. Lee, V. Siu, R. Cruz, and C. Yetman, “Convolutional Neural Net and Bearing Fault

Analysis,” Int’l Conf. Data Min. | DMIN’16 |, pp. 194–200, 2016.

[56] F.-C. Chen and R. M. R. Jahanshahi, “NB-CNN: Deep Learning-based Crack Detection

Using Convolutional Neural Network and Naïve Bayes Data Fusion,” IEEE Trans. Ind.

Electron., vol. 65, no. 5, pp. 1–1, 2017.

[57] D. Suryani, P. Doetsch, and H. Ney, “On the benefits of convolutional neural network

combinations in offline handwriting recognition,” Proc. Int. Conf. Front. Handwrit.

Recognition, ICFHR, pp. 193–198, 2017.

[58] W. J. Murdoch and A. Szlam, “Automatic Rule Extraction from Long Short Term Memory

Networks,” no. 2016, pp. 1–12, 2017.

[59] N. Laptev, J. Yosinski, L. Erran, and L. Slawek, “Time-series Extreme Event Forecasting

with Neural Networks at Uber,” Time Ser. Work. @ ICML 2017, 2017.

[60] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical

Machine Translation,” 2014.

[61] J. Wang and C. Zhang, “Software reliability prediction using a deep learning model based

on the RNN encoder–decoder,” Reliab. Eng. Syst. Saf., vol. 170, no. March 2017, pp. 73–

82, 2017.

[62] Z. Zhao et al., “Multi-bearing remaining useful life collaborative prediction: A deep learning

approach,” J. Manuf. Syst., vol. 43, no. 1, pp. 248–256, 2017.

[63] R. Zhao, J. Wang, R. Yan, and K. Mao, “Machine health monitoring with LSTM networks,”

Proc. Int. Conf. Sens. Technol. ICST, 2016.

[64] R. Zhao, R. Yan, J. Wang, and K. Mao, “Learning to monitor machine health with

convolutional Bi-directional LSTM networks,” Sensors (Switzerland), vol. 17, no. 2, pp. 1–

19, 2017.

[65] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long Short-Term Memory Network for

Remaining Useful Life estimation,” 2017 IEEE Int. Conf. Progn. Heal. Manag., pp. 88–95,

2017.

[66] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, “Remaining useful life estimation of

engineered systems using vanilla LSTM neural networks,” Neurocomputing, vol. 0, pp. 1–

13, 2017.

[67] M. Yuan, Y. Wu, and L. Lin, “Fault diagnosis and remaining useful life estimation of aero

engine using LSTM neural network,” Int. Conf. Aircr. Util. Syst., pp. 135–140, 2016.

[68] H. Liu, L. Li, and J. Ma, “Rolling Bearing Fault Diagnosis Based on STFT-Deep Learning

and Sound Signals,” Shock Vib., vol. 2016, 2016.

[69] N. Gugulothu, V. TV, P. Malhotra, L. Vig, P. Agarwal, and G. Shroff, “Predicting

Remaining Useful Life using Time Series Embeddings based on Recurrent Neural

Networks,” CEUR Workshop Proc., vol. 1828, pp. 89–93, 2017.

[70] P. Malhotra et al., “Multi-Sensor Prognostics using an Unsupervised Health Index based on

LSTM Encoder-Decoder,” 2016.

[71] A. Saxena, M. Ieee, K. Goebel, D. Simon, and N. Eklund, “Damage Propagation Modeling

for Aircraft Engine Prognostics,” Response, 2008.

[72] X. Li, Q. Ding, and J. Q. Sun, “Remaining useful life estimation in prognostics using deep

convolution neural networks,” Reliab. Eng. Syst. Saf., vol. 172, no. October 2017, pp. 1–11,

2018.

[73] G. Sateesh Babu, P. Zhao, and X.-L. Li, “Deep Convolutional Neural Network Based

- 60 -

Regression Approach for Estimation of Remaining Useful Life,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9642, pp. 214–

228, 2016.

[74] M. E. Orchard, P. Hevia-Koch, B. Zhang, and L. Tang, “Risk measures for particle-filtering-

based state-of-charge prognosis in lithium-ion batteries,” IEEE Trans. Ind. Electron., vol.

60, no. 11, pp. 5260–5269, 2013.

[75] B. Xia, H. Wang, Y. Tian, M. Wang, W. Sun, and Z. Xu, “State of charge estimation of

lithium-ion batteries using an Adaptive Cubature Kalman filter,” Energies, vol. 8, no. 6, pp.

5916–5936, 2015.

[76] B. E. Olivares, M. A. Cerda Muñoz, M. E. Orchard, and J. F. Silva, “Particle-filtering-based

prognosis framework for energy storage devices with a statistical characterization of state-

of-health regeneration phenomena,” IEEE Trans. Instrum. Meas., vol. 62, no. 2, pp. 364–

376, 2013.

[77] C. Burgos-Mellado, M. E. Orchard, M. Kazerani, R. Cárdenas, and D. Sáez, “Particle-

filtering-based estimation of maximum available power state in Lithium-Ion batteries,”

Appl. Energy, vol. 161, pp. 349–363, 2016.

[78] M. Ye, H. Guo, and B. Cao, “A model-based adaptive state of charge estimator for a lithium-

ion battery using an improved adaptive particle filter,” Appl. Energy, vol. 190, pp. 740–748,

2017.

[79] D. E. Acuña and M. E. Orchard, “Particle-filtering-based failure prognosis via sigma-points:

Application to Lithium-Ion battery State-of-Charge monitoring,” Mech. Syst. Signal

Process., vol. 85, pp. 827–848, 2017.

[80] D. A. Pola et al., “Particle-filtering-based discharge time prognosis for lithium-ion batteries

with a statistical characterization of use profiles,” IEEE Trans. Reliab., vol. 64, no. 2, pp.

710–720, 2015.

[81] C. P. Ley and M. E. Orchard, “Chi-squared smoothed adaptive particle-filtering based

prognosis,” Mech. Syst. Signal Process., vol. 82, pp. 148–165, 2017.

[82] X. Zhang, Y. Wang, J. Wu, and Z. Chen, “A novel method for lithium-ion battery state of

energy and state of power estimation based on multi-time-scale filter,” Appl. Energy, vol.

216, no. February, pp. 442–451, 2018.

[83] H. Mu, R. Xiong, H. Zheng, Y. Chang, and Z. Chen, “A novel fractional order model based

state-of-charge estimation method for lithium-ion battery,” Appl. Energy, vol. 207, pp. 384–

393, 2017.

[84] J. Yu, “Remote Correction Analysis of SOC Accuracy Based On Deep Belief Network,”

2017.

[85] J. Yang, B. Xia, W. Huang, Y. Fu, and C. Mi, “Online state-of-health estimation for lithium-

ion batteries using constant-voltage charging current analysis,” Appl. Energy, vol. 212, no.

August 2017, pp. 1589–1600, 2018.

[86] J. Li, K. Adewuyi, N. Lotfi, R. G. Landers, and J. Park, “A single particle model with

chemical/mechanical degradation physics for lithium ion battery State of Health (SOH)

estimation,” Appl. Energy, vol. 212, no. January, pp. 1178–1190, 2018.

[87] R. Xiong, J. Tian, H. Mu, and C. Wang, “A systematic model-based degradation behavior

recognition and health monitoring method for lithium-ion batteries,” Appl. Energy, vol. 207,

pp. 372–383, 2017.

[88] W. He, N. Williard, M. Osterman, and M. Pecht, “Prognostics of lithium-ion batteries based

on Dempster-Shafer theory and the Bayesian Monte Carlo method,” J. Power Sources, vol.

196, no. 23, pp. 10314–10321, 2011.

[89] J. Wu, Y. Wang, X. Zhang, and Z. Chen, “A novel state of health estimation method of Li-

- 61 -

ion battery using group method of data handling,” J. Power Sources, vol. 327, pp. 457–464,

2016.

[90] B. Saha, K. Goebel, S. Poll, and J. Christophersen, “Prognostics methods for battery health

monitoring using a Bayesian framework,” IEEE Trans. Instrum. Meas., vol. 58, no. 2, pp.

291–296, 2009.

[91] N. Williard, W. He, M. Osterman, and M. Pecht, “Comparative Analysis of Features for

Determining State of Health in Lithium-Ion Batteries,” 2013.

[92] S. Li, S. Pischinger, C. He, L. Liang, and M. Stapelbroek, “A comparative study of model-

based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries

under an accelerated aging test,” Appl. Energy, vol. 212, no. January, pp. 1522–1536, 2018.

[93] D. Yang, Y. Wang, R. Pan, R. Chen, and Z. Chen, “State-of-health estimation for the

lithium-ion battery based on support vector regression,” Appl. Energy, no. August, pp. 0–1,

2017.

[94] D. Liu, Y. Luo, Y. Peng, X. Peng, and M. Pecht, “Lithium-ion Battery Remaining Useful

Life Estimation Based on Nonlinear AR Model Combined with Degradation Feature,” Annu.

Conf. Progn. Heal. Manag. Soc. 2012, pp. 1–7, 2012.

[95] S. Yin, J. Pang, D. Liu, and Y. Peng, “Remaining Useful Life Prognostics for Lithium-ion

Battery Based on Gaussian Processing Regression Combined with the Empirical Model,”

Progn. Heal. Manag. Soc., 2013.

[96] Y. Liu, G. Zhao, X. Peng, and C. Hu, “Lithium-ion Battery Remaining Useful Life

Prediction with Long Short-term Memory Recurrent Neural Network,” no. 1, pp. 1–7, 2016.

[97] C. Tampier, A. Pérez, F. Jaramillo, V. Quintero, M. E. Orchard, and J. F. Silva, “Lithium-

ion battery end-of-discharge time estimation and prognosis based on Bayesian algorithms

and outer feedback correction loops: A comparative analysis,” Proc. Annu. Conf. Progn.

Heal. Manag. Soc. PHM, pp. 182–195, 2015.

[98] Y. Chang, H. Fang, and Y. Zhang, “A new hybrid method for the prediction of the remaining

useful life of a lithium-ion battery,” Appl. Energy, vol. 206, no. May, pp. 1564–1578, 2017.

[99] D. Liu, L. Guo, J. Pang, and Y. Peng, “A Fusion Framework with Nonlinear Degradation

Improvement for Remaining Useful Life Estimation of Lithium-ion Batteries,” 2011.

[100] Y. Zhang, R. Xiong, H. He, and M. Pecht, “Long short-term memory recurrent neural

network for remaining useful life prediction of lithium-ion batteries,” IEEE Trans. Veh.

Technol., vol. 9545, no. c, 2018.

[101] T. Kim, W. Qiao, and L. Qu, “Online SOC and SOH estimation for multicell lithium-ion

batteries based on an adaptive hybrid battery model and sliding-mode observer,” 2013 IEEE

Energy Convers. Congr. Expo. ECCE 2013, pp. 292–298, 2013.

[102] S. C. Huang, K. H. Tseng, J. W. Liang, C. L. Chang, and M. G. Pecht, “An online SOC and

SOH estimation model for lithium-ion batteries,” Energies, vol. 10, no. 4, 2017.

[103] G. L. Plett, “Dual and Joint EKF for Simultaneous SOC and SOH Estimation,” Proc. 21st

Electr. Veh. Symp., pp. 1–12, 2005.

[104] A. Zenati, P. Desprez, and H. Razik, “Estimation of the SOC and the SOH of Li-ion batteries,

by combining impedance measurements with the fuzzy logic inference,” in IECON

Proceedings (Industrial Electronics Conference), 2010, pp. 1773–1778.

[105] D. Andre, C. Appel, T. Soczka-Guth, and D. U. Sauer, “Advanced mathematical methods

of SOC and SOH estimation for lithium-ion batteries,” J. Power Sources, vol. 224, pp. 20–

27, 2013.

[106] “Prediction , estimation & inference of lithium-ion battery state of charge & health

simultaneously using machine learning,” 2017.

[107] S. Dey, B. Ayalew, and P. Pisu, “Combined estimation of State-of-Charge and State-of-

- 62 -

Health of Li-ion battery cells using SMO on electrochemical model,” Proc. IEEE Work.

Appl. Comput. Vis., 2014.

[108] K. S. Ng, C. S. Moo, Y. P. Chen, and Y. C. Hsieh, “Enhanced coulomb counting method for

estimating state-of-charge and state-of-health of lithium-ion batteries,” Appl. Energy, vol.

86, no. 9, pp. 1506–1511, 2009.

[109] G. L. Plett, “Battery management system algorithms for HEV battery state-of-charge and

state-of-health estimation,” Adv. Mater. Methods Lithium-Ion Batter., vol. 661, no. 2, 2007.

[110] Z. Wei, J. Zhao, D. Ji, and K. J. Tseng, “A multi-timescale estimator for battery state of

charge and capacity dual estimation based on an online identified model,” Appl. Energy, vol.

204, pp. 1264–1274, 2017.

[111] Y. Xing, E. W. M. Ma, K.-L. Tsui, and M. Pecht, “An ensemble model for predicting the

remaining useful performance of lithium-ion batteries,” Microelectron. Reliab., vol. 53, no.

6, pp. 811–820, 2013.

[112] W. He, N. Williard, M. Osterman, and M. Pecht, “Prognostics of lithium-ion batteries based

on Dempster–Shafer theory and the Bayesian Monte Carlo method,” Elsevier, 2011.

[113] M. H. Rafiei and H. Adeli, “A novel unsupervised deep learning model for global and local

health condition assessment of structures,” Eng. Struct., 2018.

[114] Y.-J. Cha, W. Choi, and O. Büyüköztürk, “Deep Learning-Based Crack Damage Detection

Using Convolutional Neural Networks,” Comput. Civ. Infrastruct. Eng., 2017.

[115] C. Li, R. V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez, “Multimodal

deep support vector classification with homologous features and its application to gearbox

fault diagnosis,” Neurocomputing, vol. 168, pp. 119–127, 2015.

[116] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery health prognostics: A systematic

review from data acquisition to RUL prediction,” Mech. Syst. Signal Process., vol. 104, pp.

799–834, 2018.

[117] G. Sateesh Babu, P. Zhao, and X.-L. Li, “Deep Convolutional Neural Network Based

Regression Approach for Estimation of Remaining Useful Life,” pp. 214–228, 2016.

[118] L. Ren, J. Cui, Y. Sun, and X. Cheng, “Multi-bearing remaining useful life collaborative

prediction: A deep learning approach,” J. Manuf. Syst., vol. 43, pp. 248–256, 2017.

[119] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian Deep Learning for

Computer Vision?,” no. Nips, 2017.

[120] N. Lotfi, R. G. Landers, S. Member, J. Li, and J. Park, “Reduced-Order Electrochemical

Model-Based Uncertainty Estimation,” Ieee Trans. Control Syst. Technol., vol. 25, no. 4,

pp. 1217–1230, 2017.

[121] Z. Zhao, Y. Yang, S. Member, S. X. Ding, and L. Li, “Fault-Tolerant Control for Systems

With Model Uncertainty and Multiplicative Faults,” pp. 1–11, 2017.

[122] E. L. Droguett and A. Mosleh, “Bayesian methodology for model uncertainty using model

performance data,” Risk Anal., vol. 28, no. 5, pp. 1457–1476, 2008.

[123] E. López Droguett and A. Mosleh, “Bayesian treatment of model uncertainty for partially

applicable models,” Risk Anal., vol. 34, no. 2, pp. 252–270, 2014.

[124] E. L. Droguett and A. Mosleh, “Integrated treatment of model and parameter uncertainties

through a Bayesian approach,” Proc. Inst. Mech. Eng. Part O J. Risk Reliab., vol. 227, no.

1, pp. 41–54, 2013.

[125] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation: Representing Model

Uncertainty in Deep Learning,” vol. 48, 2015.

[126] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation: Appendix,” pp. 1–20,

2015.

[127] Y. Gal, “Uncertainty in Deep Learning,” PhD Thesis, no. October, p. 174, 2016.

- 63 -

[128] A. C. Damianou and N. D. Lawrence, “Deep Gaussian Processes,” vol. 31, 2013.

[129] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour, “Dropout Improves Recurrent Neural

Networks for Handwriting Recognition,” Proc. Int. Conf. Front. Handwrit. Recognition,

ICFHR, vol. 2014–Decem, no. October, pp. 285–290, 2014.

[130] Y. Gal and Z. Ghahramani, “A Theoretically Grounded Application of Dropout in Recurrent

Neural Networks,” 2015.

[131] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective Deep Belief Networks

Ensemble for Remaining Useful Life Estimation in Prognostics,” IEEE Trans. Neural

Networks Learn. Syst., vol. 28, no. 10, pp. 2306–2318, 2017.

[132] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance Test for Normality,” Biometrika,

vol. 52, no. 3, pp. 591–6, 1965.

