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ADVICE

Esta tesis presenta un método que permite que usuarios no expertos enseñen agentes a
ejecutar tareas complejas durante tiempo de ejecución, con el principal propósito de acelerar
la convergencia del aprendizaje y mejorar el desempeño �nal de las políticas aprendidas.
En este sentido, se propone COrrective Advice Communicated by Humans (COACH), un
framework interactivo para entrenar políticas con vagas correcciones respecto a las acciones
ejecutadas, las cuales son cambios relativos de la magnitud de las acciones que están siendo
ejecutadas. Así, los usuarios sugieren correcciones como: incrementar la fuerza, reducir la
velocidad, ir más hacia la izquierda, etc.

Inicialmente, se propone un esquema de aprendizaje que permite a humanos enseñar políti-
cas de acciones continuas por medio de correcciones correctivas, para problemas de acciones
de una dimensión. Se incluye en el framework de aprendizaje un módulo que representa las
intenciones del profesor, el cual se basa en la historia pasada de las correcciones. Luego, el
framework se extiende a problemas de acciones de más de una dimensión, incluso para casos
en los que las correcciones del usuario no están en el mismo espacio de la política.

Adicionalmente, el COACH propuesto es combinado con aprendizaje reforzado Policy
Search con el �n de obtener la ventajas de ambas fuentes de información (correcciones hu-
manas y funciones de recompensa) en el proceso de aprendizaje. Se proponen dos enfoques
híbridos que combinan los dos enfoques, uno secuencial y uno simultáneo. Los resultados
muestran que estos esquemas se bene�cian de las ventajas de cada uno de sus componentes,
es decir se obtiene i) rápido progreso al principio del proceso de aprendizaje, y ii) aprendizaje
robusto a errores humanos, junto con optimalidad local.

Además, este enfoque híbrido es extendido para entrenar primitivas de movimiento. Así,
las ventajas previamente mencionadas son extendidas para aprender también políticas repre-
sentadas como Dynamic Movement Primitives (DMP) y Probabilistic Movement Primitives
(ProMP), las cuales son convenientes para aprender trayectorias.

El uso del enfoque propuesto es validado en muchos problemas tanto simulados como
reales, con variadas características, recorriendo problemas de equilibrio, navegación con
robots bípedos en el contexto del fútbol robótico, y también habilidades motoras con brazos
robóticos en tareas como escritura de símbolos y el conocido juego "emboque". Los resulta-
dos muestran que el conocimiento de los usuarios no expertos puede apalancar procesos de
aprendizaje de máquina, guiando hacia desempeños más altos con respecto a otros enfoques
de aprendizaje de máquina interactivo y de aprendizaje reforzado, e incluso superando las
capacidades de usuarios aprendiendo a tele-operar los agentes. Adicionalmente, los méto-
dos presentados obtienen convergencias las cuales varían desde 3 hasta más de 40 veces más
rápido que otras técnicas, dependiendo del problema.
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Abstract

This thesis introduce methods that allow non-expert users to train agents to execute com-
plex tasks during execution time, considering to accelerate the learning convergence and to
improve the performance of the learned policies as main purpose. In this regard, it is pro-
posed COrrective Advice Communicated by Humans (COACH), an interactive framework
for training policies with vague and coarse corrections of the executed actions, which are
relative changes of the actions magnitudes that are being executed. So the users advise cor-
rections of the actions during execution time of the task, for instance the teacher advises
corrections like, increase the force, decrease the velocity, go more to the left, etc.

Initially, it is proposed a learning scheme that allows humans to teach continuous action
policies with corrective advice for one-dimensional action problems. A module that represents
the teacher's intentions based in past history is included in the learning framework. Then,
the framework is extended to multi-dimensional action problems, even for cases wherein the
corrections of the user are not in the same domain that the policy.

Furthermore, the proposed COACH is combined with Reinforcement Learning Policy
Search for obtaining the advantages of both sources of information (human corrections and
encoded rewards) in the learning process. Two hybrid learning schemes that combine the two
approaches are proposed, one sequential, and a second simultaneous. Validation experiments
show that these learning schemes bene�t from the advantages of each of its parts, that
obtains: i) fast improvement in the �rst stage of the learning porcess, and ii) learning robust
to human mistakes, and local optimality, both based in the cost function.

Additionally, the hybrid approach of human corrections and Policy Search is extended
for training movement primitives. So the advantages of the previously metioned hybrid
scheme for Markov Decision Processes is extended to policy representations like the Dynamic
Movement Primitives (DMP) and the Probabilistic Movement Primitives (ProMP), which
are convenient for learning trayectories.

The use of the proposed framework is validated in several simulated and real problems
with varying characteristics, ranging from balancing tasks, navigation with biped robots in
the context of robot soccer, and also motor skills with robot arms in tasks like writing and the
game ball in a cup. Results show that the knowledge of non-expert users can leverage learning
processes, heading to higher performances with respect to other Interactive Machine Learning,
Reinforcement Learning approaches, and even outperforming the capabilities of users learning
to teleoperate the agents. Additionally, the introduced methods obtain convergences which
range from 3 to more than 40 times faster than other techniques, depending on the problem.
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Chapter 1

Introduction

1.1 Motivation and De�nition of the Problem

The ongoing developments of the new industry revolution are demanding speci�c characteris-
tics of the applied technology, which will shape the advance during the coming years. Among
some other principles, the cyber physical systems industry is characterized by the Flexibility
in the development, maintenance, and the operation of automated systems, and Integration
of customers for obtaining products able to be personalized to speci�c and individual needs
[42]. These features shrink distances between system designers and end-users �operators of
factory tools are also considered end-users� and make more necessary to have techniques
that allow non-experts to design or modify the behavior of the systems.

The design of decision making systems for robots has an important role in most of
the automation processes, especially in �elds like manufacturing, agriculture, food, mining,
aerospace, etc. along with upcoming household applications. So machine learning techniques
can give to end-users capabilities for customizing and adapting robots to new situations or
applications. Techniques that include human knowledge to leverage the process of learning
agents have been developed in the last decades, Learning from Demonstration (LfD), Pro-
gramming by Demonstration (PbD), Imitation Learning (IL), Interactive Machine Learning
(IML), among others are the key words for the set of methods that include human teachers
completely or partially in the learning loop. Through this thesis we refer to all this complete
set of learning methods in general with the acronym IML.

These solutions are especially given for applications wherein the policy's de�nition or
update requirement is detected by a �nal user, who likely is not a skilled programmer able
to modify either the policy's code, or the goal de�nition for an autonomous RL learning
process. In this case, the training time could be decreased with the inclusion of humans
into the agent-environment interaction, for transferring the knowledge that is possessed or
discovered during interaction.

The most widely known IML approaches are based on LfD. In this paradigm the agent
receives information about how to do the tasks from several demonstration sources. The
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advantage of this approach is the fact that the information given by the user is communicated
in a natural and intuitive way, but as long as the teacher is able to perform the demonstration,
it means, he/she has to be an expert at executing the task.

This required expertise is the main disadvantage of LfD. Therefore it is limited to skilled
users who could teach to solve a problem at a speci�c context; otherwise, non-experts would
provide low quality demonstrations that require additional tuning.

On the other hand, there is a kind of techniques called Learning from critique; where the
human teacher provides feedback with a signal of the desirability of the actions executed
by the agent. The teacher supplies a measure of approval/disapproval. Most of these types
of frameworks are based on RL algorithms in which the reward function is replaced by the
human reinforcement.

The advantage of this kind of learning is that it does not need expert teachers (i.e. experts
performing the task), since a non-expert teacher could evaluate whether the executed actions
are appropriate or not. When the user considers the action inappropriate, the agent is forced
by punishments to explore other actions until a better action is performed according to the
teacher's criteria. However, evaluative feedback is not as intuitive or natural as feedback in
the actions domain, people prefer �to tell the robot what to do� [94]. It means they prefer to
provide feedback in the actions domain rather than evaluate the executed actions.

As it was mentioned, IML has two main branches depending on the type of information
provided by the human teacher in the learning loop. Each of both branches has advantages
that would be desirable to have in one scheme, i.e. it is desirable to have an algorithm that
allows non-experts users to correct the agent while it is interacting with its environment,
but based on a feedback in the actions domain, not like in an evaluative scheme.

Therefore, taking the previous idea into account, the proposed problem to approach is the
fact that in an LfD scheme it could be eliminated the requirement of perfect demonstrations
from expert users of the task execution to teach, but yet to obtain high performance policies
of expert users level or better.

To solve this problem it is necessary to approach other intrinsic sub-problems of these
approaches:

• The time delays that exist from the instant that the user observes the action execution
until he/she communicates to the agent a feedback signal.

• The human teachers have di�erent observability from the one of the agents (it could be
more or less information available from the environment depending on the problem's
nature).

• It is not easy for humans to provide feedback to high dimensional state-actions spaces,
especially when there is no direct mapping between the space observed by the human
(e�ector space) and the actuator space where the feedback has to take in�uence.

• The occasional mistakes human perform at advising learning agents that might harm
the policy that is being learned.

With the solution of this list of problems, Interactive Machine Learning algorithms could
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have more adaptation capabilities to the users. Then the teacher does not have to adapt to
the learning frameworks, instead machines would adapt to human users.

This thesis aims to propose a framework that eliminates or at least decreases the afore-
mentioned problems, speci�cally oriented to most of the challenges of skill learning, which
are focused on low level continuous actions problems. The main feature that is addressed
in the proposal is about using the feedback as advice of corrections or modi�cations of the
executed actions rather than actual demonstrations, so the user does not necessarily have
to be quali�ed to operate the agent in order to perform the task. In other words, while the
teacher observes the task execution by the current policy, he/she is advising how it has to be
gradually modi�ed.

1.2 Objectives

1.2.1 General Objective

To design, implement and validate with robotic tasks, a learning from corrections based
framework, which models the human feedback and incorporates it into the learning process,
in order to facilitate and improve the knowledge transference process between a human
teacher and a machine learner.

1.2.2 Speci�c Objectives

• To propose, implement, and validate a framework that allows robots to learn tasks in
continuous actions domains of one dimension, based on human feedback signals in the
actions space. All in an on-line and interactive fashion that contribute to the reduction
of the learning time and the improvement of the �nal performances regarding other
learning approaches.

• To design a module that models the past of the feedback signals provided by a human
teacher, for computing the correction value used in the current update, and to include
this module in the proposed framework.

• To extend the learning framework to multi-dimensional action problems, even to tasks
with non-obvious correspondence between the state-action space of the human teacher
and the agent.

• To implement and validate the proposed framework, over real robotic platforms that
perform complex tasks.
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1.3 Hypotheses

• An on-line IML strategy for agents with continuous actions based on the feedback of
human advice of corrections over the actions space, will contribute with reduction of the
learning time, and also to improve the agent's �nal performance. This is with respect
to the performance achieved by reinforcement based IML or autonomous agent. This
type of learning process will allow learning from non-expert human teachers, even when
they are not skilled to control the agent manually.

• The use of past information about the human feedback, during the learning process,
will allow having user adaptive algorithms that facilitate the knowledge transference
between the human teachers to the machine learners. The human decision processes
take into account the current states like MDPs, but also the past history. Therefore, it
is necessary to consider the use of more information than what was used by an MDP,
when human teachers participate in the learning loop.

• The generalization of the proposed learning strategy based on corrective advice, for
tasks with multiple actions, will attain improvements of the learning time and the �nal
performances in more complex applications. A module that solves the correspondence
issues between the human corrections and the agent's actions, can support the policy
updating process for those problems where the human advice is not in the same domain
or space that the actual policy.

1.4 Contribution

This thesis contributes to the �elds of Machine Learning applied to robotics. The methods
proposed belong speci�cally to the area of IML, wherein humans are in the learning loop.

Currently, most of the methods used for policy learning with robots are widely covered
by RL, and Learning from Demonstration. These approaches possess limitations in time and
availability of expert demonstrators, respectively, that make unfeasible to obtain successful
learning processes for several applications with real physical systems.

In this regard, this thesis presents COrrective Advice Communicated by Humans (COACH),
a framework which allows humans to teach agents with corrective feedback during policy exe-
cution in the context of continuous action Markov Decision Processes (MDPs). This method
bene�ts from the user's rough insights about how the task may be corrected. The insights are
part of the prior knowledge of the user or discovered along the agent's learning process. From
the user's point of view, it is easier to have the rough insights about how to correct a policy
than to gather high quality task execution demonstrations. Therefore, the proposed learning
method can be applied to a wider range of applications than conventional LfD techniques,
since the human teachers who advise the corrections do not need to be experts at the task
execution. Additionally, the corrections based on the teacher's knowledge are more e�cient
than RL exploration techniques. Humans may conclude from the environment interaction,
that some actions are not necessary to explore in certain regions of the state space, then, the
learning process can be accelerated.
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COACH updates the policy model immediately after each piece of advice is received from
the teacher during policy execution, this is based on stochastic gradient descent. Moreover,
the algorithm models the teacher's intention with the prediction of the corrections for adapt-
ing the size of the correction to be performed. Also, COACH uses a Credit Assigner module
borrowed from TAMER [47, 56], which deals with the delay of the human response, in order
to match the corrections with the actions the teacher expects to modify.

Since cost functions sometimes are not completely understood by human teachers, we
introduce a method that combines COACH with Reinforcement Learning in order to bene�t
from the encoded reward functions that represent the objective of the task. This hybrid
method allows to reach optimal policies faster than classical RL methods. The combined
method is intended for Policy Search RL methods, which learn directly in the policy domain
without estimating the value function, similarly to the original COACH.

Several skills can be modelled with trajectories encoded with movement primitives like
Dynamic Movement Primitives (DMP) [41], primitives based on Gaussian Mixture Models
[44], or Probabilistic Movement Primitives (ProMP) [79]. So for these policy representa-
tions, all the developments of COACH intended for learning policies in the context of MDPs
are extended to learn trajectories. Both approaches of COACH with pure human feedback
and the hybrid of COACH and Policy Search are �xed to train motor primitives, with the
same advantages of learning faster and reaching higher performances than the obtained with
conventional LfD and RL strategies.

All the developed algorithms are validated in simulations and with real systems, ranging
from very simple toy problems like the "Mountain-Cart" to complex skills with real robots.
The type of the explored tasks varies widely:

• Navigation as in the case of Ball-Dribbling with biped robots in the context of robot
football soccer (at RoboCup competition) in simulation and with the real Nao robot.

• Balancing agents as the simulated Cart-Pole, and Bike balancing. on the other hand
the methods were validated with real physical systems like the Inverted swing-up pen-
dulum and an Inverted wedge.

• Motor skills with robot arms in a simulated task of reaching movements through
via-points, learning to write symbols in simulation and with a real UR5 arm, and �nally
the ball in a cup task with a real lightweight Kuka arm.

In general, the results of the experiments outperform important state of the art approaches
in terms of learning time and the performance of the learned policies, which validate the scope
and the advantages of the methods presented in this thesis.

1.5 Outline

The contributions of this thesis are presented in the chapters 3-5, wherein the original frame-
work COACH is presented and validated, along with its variations.
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• Chapter 2 presents a brief introduction to the context of robots learning. A short
overview of RL and IML is discussed, speci�cally, the methods more related and that
have inspired this work.

• Chapter 3 introduces the interactive learning method based on corrective advice
COACH. The learning strategy based on stochastic gradient descent and its modules
is explained in detail and validated with several MDP problems. The performance of
COACH is compared to other interactive learning, autonomous RL methods, and also
with the learning curves of human operators that execute the tasks.

• Chapter 4 discusses the combination of COACH with Reinforcement Learning (Pol-
icy Search), in which the learning agent uses the reward function for evaluating and
updating the policy after some roll-outs, whereas the human corrections are used as
"guidance" for the exploration in the actions domain. The approach is validated with
simulated and real systems.

• Chapter 5 presents the application of the methods proposed in Chapters 3 and 4 to
problems of motor skills learning, which are controlled with movement primitives. Both
pure COACH and the hybrid COACH with Policy Search are described for this type
of policy representation. Additionally, this chapter discusses considerations of COACH
for learning policies de�ned in the end e�ector domain, and in the actuator domain.
This considerations can be applied in the context of COACH with MDPs (cases of
Chapters 3 and 4).

• Chapter 6 gathers the main conclusions obtained with the contributions and the
experiments described in this thesis. Additionally, a short discussion of the inmediate
future work is presented.
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Chapter 2

State of the Art

In nature, learning capabilities give to animals bene�ts that are desirable in arti�cial systems.
In biological systems there are two main bene�ts of learning: �rst, to adapt to di�erent and
new circumstances of the world; second, to reduce the amount of genetic information to be
inherited. These bene�ts could be available to robots when Machine Learning is applied
[21]. In the robotic case, the �rst aforementioned bene�t is about the changes of the robot's
environment, the second one, is about speci�cation of the programming (genetic material).

The use of Machine Learning (ML) for solving problems in the context of robotics has
been in classi�cation and pattern recognition domains, but also for challenges in domains of
control and decision making. The two main branches of ML developed for decision making
problems with robots (the topic of interest of this thesis) are: Autonomous Learning, and
IML. For the �rst case, in [21] is reported that autonomous learning is mostly based on
Genetic Programming (GP) [14] and Reinforcement Learning (RL) [95], but RL has been
most widely and successfully explored since long time ago [30]. The second branch is IML
[27]. Both perspectives learn a policy which is a function that maps observations (states) of
the robot's environment onto the actions space, and then the action is executed by the robot.

2.1 Reinforcement Learning

RL is an approach of autonomous learning wherein the robot has to explore the solution
space, for deriving a policy from its experience. In this scenario the robot has a set of
available actions, and depending on the states, the policy has to compute the associated
action to accomplish the task. The agent or robot observes its actions in�uence over the
environment, and then an assessment of the current policy is given based on the Reward
Function, as shown in Figure 2.1. This function is one of the outstanding features of RL; it
is the element that the user designs for formalizing what is the objective to the agent, i.e.
the signal which determines the purpose or goal of the task to be performed [95].

The objective of RL algorithms is to maximize the cumulative reward obtained by the
agent. The reward function, rather than policy is the most succinct, robust, and transferable
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Figure 2.1: Reinforcement Learning scheme

de�nition of the task [76]. For complex domains, designers face the problem of de�ning a
good reward or in general an objective function, to let the agent e�ciently attain an intended
goal [33].

RL has been successfully applied in several domains: games like a simple simulation of
soccer with two players in a 4x5 grid [66], the game backgammon [100], Chess [15, 105],
the Mountain-Car problem [95], the learning to drive a bicycle problem [84], the Cart-pole
problem [95], packet routing in communication networks [18], and so many other applications.

There have been reported less cases of RL with real robots. Some of them are: In [86] an
armed robot learn to juggle a "devil sticking" task. Also, robots controlling arms learning to
solve problems like ball-in-a-cup and ball-paddling have been presented in [58], and the task
of hitting in table tennis, and movements for tasks of throwing darts and throwing balls in
[60]. Walking engines have been learned with RL algorithms by four legged [61] and biped
robots [113] among others, usually those experiments are developed in the context of robotic
soccer.

There are RL applications in the robotic soccer context to other problems like penalty
scoring [40], ball-dribbling [64], and some other of behavior referenced in [85]. Another very
challenging problem approached with RL is the helicopter �ight [13, 45]. The aforementioned
cases are just few of the examples available in literature, more applications and considerations
of RL in robotics could be found in [43, 57].

The use of machine learning techniques such as RL allows robots and agents in general,
to address complex decision-making tasks. However, one of the main limitations of the use
of learning approaches in real-world problems is the large number of learning trials required
to learn complex behaviors (many trials are required for the Reward Function tuning and for
the learning process by itself).

This can make non-viable the use of many learning approaches in problems where the
implementation of learning trials with real robots, in the real world, may have a high cost.
This drawback can be addressed by using human feedback during learning, i.e., the learning
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Figure 2.2: Interactive Machine Learning scheme

process can be assisted by a human teacher who supervises the agent-environment interaction.
The participation of a human in the learning loop is given in the second perspective of
Machine Learning with robots presented below.

2.2 Interactive Machine Learning

IML is another perspective of machine learning in which a human teacher takes part in the
agent's learning process, for supervising the policy's improvement. Most of the general ideas
about IML have been summarized in [27, 9, 16, 17, 31, 4]. Some developments have been
applied for learning classi�er systems [35, 108, 5, 77], but in this thesis the focus is in methods
of IML for learning decision making systems with continuous actions (regression).

There have been proposed several methods of IML regarding the type of skills to learn,
the type of users' feedback, the type of Human-Machine Interfaces (HMI) used, etc. There
are two main schemes for using human feedback in order to modify the policy of a learning
agent: human feedback in the actions domain and human feedback in the evaluative domain.

2.2.1 Human feedback in actions domains

Learning from Demonstration (LfD) is a learning paradigm in which a teacher provides
demonstrations of the desired policy, and the agent reproduces the demonstrated behavior
(Figure 2.3). The actions that the learner associates to the states could be classi�ed in low-
level actions for motion control, basic high-level actions (often called action primitives) and
complex behavioral actions for high-level control [9]. There are some works which explores
di�erent applications of LfD in robotic domains as soccer [3, 36], driving applications [28],
humanoids motion [109, 19], navigation [88, 111], grasping and manipulation [96, 65], and
many other problems. Imitation Learning is a type of LfD in which the demonstrations
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Figure 2.3: Learning from Demonstration scheme

are executed in a platform that is di�erent to the one of the learning agent (e.g., a robot).
Since some of the most frequent providers of demonstrations are humans, the challenges in
this case consist of solving the problems of what and how to imitate [20]. For example,
in [78] it is proposed a method that learns high level representations of the tasks from the
demonstrations.

There exists other paradigms which use LfD at important stages, for example Active
Learning queries for demonstrations for unknown instances [24]. Human-Agent Transfer
(HAT) is a learning methodology that combines LfD, transfer Learning, and RL. It �rst
learns from human teleoperation, and then uses transfer learning to use the knowledge in
a RL process that improves the policy derived from demonstrations. The proposal was
validated with the keepaway problem used for proof of concept [98]. Other case is a bridge
between LfD and RL called Apprenticeship Learning [1], at its �rst stage a human begins
controlling the agent; then in a second stage, using Inverse Reinforcement Learning (IRL)
[76, 112] and the collected data, it is derived a reward function which represent the target
of the task, according to the demonstrations given by the trainer; �nally the agent continues
improving the policy at a RL framework, using the reward function deduced with IRL in the
preceding stage.

There are algorithms of LfD which are focused in learning from corrective demonstrations,
instead of deriving a policy out of the demonstrations, keeping hand-coded algorithms as the
primary source of the action policy, and using the demonstration data only to make exceptions
as needed [29, 71, 72, 69].

In continuous actions domains, Advice operators have been proposed for correcting a
current policy, the trainer chooses a set of observation and action pairs after its execution
with an advice operator associated, it could be increasing (decreasing) the magnitude of the
respective action, the data modi�ed is attached to the demonstrations dataset for a policy
re-derivation [6, 8, 7].
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Figure 2.4: IML with evaluative feedback scheme

In most of the described approaches it is required accurate demonstrations and expert
users as trainers. Methods based on the Advice Operator paradigm do not need an expert
trainer, but have the drawback that always deducing the policy from a dataset in a batch
learning scheme. The dataset is increased with the set of state-action pairs selected for the
correction in every advising phase, increasing the computational burden of the policy re-
derivation. Another drawback is that the policy re-derivation, is done o�-line, producing
that the e�ect of the advice correction only can be seen after the new policy is obtained. For
instance, in [70] Corrective demonstrations and Advice operators were sequentially applied
for improving the walk stability of a Nao humanoid robot.

2.2.2 Human feedback in evaluative domains

Under this paradigm, non-expert users can evolve decision making systems, even on-line, by
delivering their feedback interactively as an evaluative (approval or disapproval) signal in a
RL framework. In this paradigm the reward is partially or completely given by the human
[73, 99, 63, 93, 81, 110]. In [102] the Interactive Reinforcement Learning enables a human
user to provide positive and negative rewards in real time in response to robot actions, and
to advise anticipatory guidance input that constrains action selection choice and guides the
learner towards the desired behavior.

Since a human reward may have a di�erent meaning with respect to an encoded MDP
(Markov Decision Process) reward function, which is the basic reinforcement used in the
conventional RL approaches, a series of works have analyzed how to model the human rein-
forcement [104, 103]. An important consideration taken into account for learning agents with
human rewards in contrast to MDP rewards is that "MDP reward is informationally poor
yet �awless and human reinforcement is rich yet �awed" [49]. The shaping approach allows
interactively training an agent through signals of positive and negative reinforcement [48].
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Figure 2.5: The TAMER framework (taken from [54])

One of the seminal works based on shaping is the TAMER framework (Training an Agent
Manually via Evaluative Reinforcement) [47, 56], which addresses how to use delayed human
rewards in RL problems with discrete action domains. There are also, some works which
present the combination of human rewards and MDP reward functions applying transfer
learning strategies; both rewards were combined �rst sequentially [49], and then in a simul-
taneous scheme [51].

The authors of TAMER studied the use of the discount factor used with the rewards in RL
[50, 46, 52]. They �rstly concluded that high discount (low discount factor) performs better
for human reward functions used as MDP reward. However they presented a successful case of
learning with discount from human reward [53]. In [55] it is presented the �rst implementation
of TAMER algorithm on a real robot.

One important module of TAMER is the �Credit Assigner� intended for problems of �high�
frequency regarding the human response capabilities. The credit assignment is �the problem
of assigning credit or blame for overall outcomes to each of the internal decisions made by
a learning machine and which contributed to those outcomes� [37]. In this case the module
is for solving a temporal credit assignment problem, because a human trainer is not able to
assess the e�ect of each action at each time step, this produce a delay between the action
execution and the human response. The Credit Assigner proposed in TAMER, approaches
this problem by associating the feedback not only to the last state-action pair, but to a past
window of pairs. Each pair is weighted with the corresponding probability that characterizes
the human delay [48]. In Figure 2.5 is a conceptual diagram for the TAMER framewok.

The probability density function of the human response could be extracted from the analy-
sis presented in [38] with quantitative methods applied in psychological studies. Nevertheless,
in [89] the parameters of the PDF were calculated and resulted similar to the ones presented
with TAMER.

Later on, other authors proposed ACTAMER, an Actor-Critic approach based on TAMER,
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which addresses RL problems with continuous action domains and using the same kind of
feedback [106, 107].

COACH, the here-proposed framework is based on TAMER, but it applies the same kind
of human feedback used in the Advice Operators paradigm. One of the main features of
COACH is a mechanism for adaptively adjusting the amount of human feedback that a given
action receives, taking into consideration past feedback.

2.3 The Correspondence Problem

This is one of the most important di�culties in LfD. In general this problem is about trying
to imitate an observed behavior with a candidate behavior [75]. When there is a problem of
correspondence, the objective is not to reproduce the same actions of the observed behavior,
because this problem arises from the question of what to imitate: actions, states, events, goals,
sequences of sub-goals [74], or because in some cases a direct mapping does not exist between
the teacher and learner due to di�erences in sensing ability, body structure or mechanics [27].

The solution of this problem is in the de�nition of the mapping between the teacher's and
the learner's state-action spaces, for allowing the knowledge transference from one to the
other [9]. One action of the demonstrator could be a sequence of actions for the imitator or
vice versa. An example of LfD with the correspondence issue is the case reported in [70],
wherein a biped walking engine is improved; the position of e�ector is obtained using forward
kinematics and the joint's positions, the correction is given in the 3D e�ector space, then
"the resulting feet positions are converted back into a vector of joint command angles using
inverse kinematics".

Due to the proposal of this thesis will be based on feedback on the actions domain; it
is possible to have correspondence issues in problems that could be approached with the
proposal. Therefore the framework to be developed needs to include a module for solving
this problem when it would be required.
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Chapter 3

An Interactive Framework for Learning

Continuous Actions Policies based on

Corrective Feedback

The main goal of this chapter is to present COACH (COrrective Advice Communicated by
Humans), a new learning framework that allows non-expert humans to advise an agent while
it interacts with the environment in continuous action problems. The human feedback is
given in the action domain as binary corrective signals (increase/decrease the current action
magnitude), and COACH is able to adjust the amount of correction that a given action
receives adaptively, taking state-dependent past feedback into consideration. COACH also
manages the credit assignment problem that normally arises when actions in continuous
time receive delayed corrections. The proposed framework is characterized and validated
extensively using four well-known learning problems. The experimental analysis includes
comparisons with other interactive learning frameworks, with classical reinforcement learning
approaches, and with human teleoperators trying to solve the same learning problems by
themselves. In all the reported experiments COACH outperforms the other methods in
terms of learning speed and �nal performance. It is of interest to add that COACH has been
applied successfully for addressing a complex real-world learning problem: the dribbling of
the ball by humanoid soccer players.

3.1 Introduction

One of the main limitations of the use of Autonomous Learning approaches in real-world
problems is the large number of learning trials or roll-outs required to learn complex be-
haviors. This can make the use of many learning approaches non-viable in problems such
as autonomous driving, x-copter �ight control, or soccer robotics, in which the execution of
learning trials with real robots, in the real-world may have a high cost due to physical limi-
tations. Machine Learning strategies can approach this drawback by leveraging the training
processes with the use of human feedback while the agent is learning, i.e., the learning process
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is assisted by a human teacher in the loop who supervises the agent-environment interaction.

The main goal of this chapter is to present the general scheme and some variations of
COACH (COrrective Advice Communicated by Humans), a learning framework for continu-
ous action problems, that uses human corrective feedback. The COACH's structure is based
on the shaping approach [48], which allows training an agent incrementally and interactively
through positive and negative reinforcement signals. Nevertheless, in COACH the human
feedback is provided in the actions domain, as it is in the Advice Operators paradigm [7],
indicating to the agent how the magnitude of the action has to be modi�ed (increased or
decreased). But the problem of using an o�-line and batch supervised learning process is
solved by managing the human feedback and the interactive update of the policy (the states
to actions mapping) in a similar way as it is done with TAMER [48], a well-known shaping
approach.

The proposed interactive learning framework is characterized and validated extensively
using four well-known learning problems: (i) Mountain Car [95], (ii) Cart-Pole [95], (iii) Ball
Dribbling with Humanoid Robots [64] in the context of robot soccer, and (iv) Learning to Bal-
ance on a Bicycle [84]. For the �rst three problems the performances of agents trained using
COACH are compared with the performances achieved by agents trained using TAMER [48],
ACTAMER [107], and SARSA(λ). In the case of theMountain Car problem, the performance
of COACH is compared with the one of standard and interactive learning frameworks using a
keyboard interface and a Gesture Recognition interface, in order to analyze how the learning
process depends on the interface used. In the Cart-Pole problem, the dependence on the
dynamics of the environment of the interactive learning frameworks is analyzed. In order to
achieve this, the e�ect of using two di�erent speeds of the simulated environment is analyzed.
The ball-dribbling problem is used, �rst, to compare the di�erent learning frameworks, and
second, to show how complex behaviors learned using COACH can be applied successfully in
the real-world by real robots. Through the reported experiments, the learning processes of
autonomous and interactive agents are analyzed and compared with respect to the progress
of pure human teleoperators trying to control the same systems. This comparison is carried
out using the Mountain Car, Cart-Pole, and Learning to Balance on a Bicycle problems.

3.2 COACH: COrrective Advice Communicated by Hu-

mans

3.2.1 General Aspects

COACH lets the trainer shape the policy of an agent through occasional feedback. The
method updates incrementally a policy model based on a supervised learning strategy sup-
ported by four main modules: Policy Supervised Learner, which updates the policy model
taking the human feedback, the executed action, and the associated state into account; Hu-
man Feedback Modeling, which characterizes the sequence of human advice and determines
how much feedback must be added to the executed action; Human Feedback Supervised
Learner which updates the parameters of the human feedback model; and Credit Assigner,
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which handles the time delay of human feedback. In this chapter the policies are modeled
with linear models of basis functions, and with Takagi Sugeno Fuzzy Systems. However, the
principles of COACH are extensible to other approximation functions.

Policy Supervised Learner

In this Framework, when the Policy module observes the state vector s, it executes a contin-
uous action P (s) according to the policy model P : S → R. (This is a di�erence in regard to
the TAMER modeling, which bases the policy on a human trainer's reinforcement function
from the state-action space HTAMER : S × A → R.) Then, the human trainer observes the
e�ect of the action in the environment, and gives advice h, if he/she considers it is necessary
to correct it with a relative change of the action magnitude.

The signal h is the binary feedback (1 or -1), which states how the current executed
action has to be modi�ed for that state s (increase or decrease its magnitude, respectively).
The state s, the executed action P (s), and the human feedback h are taken by the Policy
Supervised Learner module for updating the parameters of P (weight vectors or data instances
if the model is actually non-parametric). Then, in the next time step, P has a new set of
parameters. When the trainer does not provide any feedback signal, h is taken as zero. The
rule for updating the policy parameters has to be based on an incremental scheme depending
on the type of approximation used. In this work, Stochastic Gradient Descent (SGD) is used
for adapting the models' parameters.

The trainer is allowed to give only a binary correction, because COACH works under the
assumption that: a person cannot estimate the exact magnitude of an appropriate correction;
the human teacher provides only a trend of the modi�cation (e.g. more/less force, velocity,
energy, etc.). Supervised learning schemes need a prediction error of the P model (the
di�erence between the desired action and the executed action), but the exact magnitude
of the desired action is not available due to the stated assumption. In order to solve this
problem, the prediction error has magnitude e that is set as a constant for the whole learning
process, and sign given by the human feedback signal h, thus, error = e · h. The learning
rate is taken as an external parameter that can be constant or adapted by another module
as shown in coming subsections.

Basic Learning Framework based only in the Policy Supervised Learner: In cases where it
is not required a �ne-tuning for the policy or where the human response delay is very low
regarding the operation period, e.g. cases where the frequency is lower than 1 Hz approxi-
mately, a basic framework (see Figure 3.1), which does not use the Human Feedback Modeling
and Credit Assigner modules, is de�ned. This basic framework is described �rst, in order to
facilitate the description of the more general one.

Algorithm 3.1 states how the simplest version of COACH works. First, the error's mag-
nitude e and the learning rate α are constants de�ned for all the learning process (lines 1-2).
The loop between lines 3-13 occurs once per time step. The agent observes the new state
s (line 4), and it computes the action a given by the current policy model P (s) (line 5).
Afterwards, P (s) is executed (line 6). After action execution, the feedback signal h of the
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Figure 3.1: Basic structure of COACH

human trainer is read (line 8). If the teacher does not advise any correction, h is set to zero,
otherwise it takes the binary value. The prediction error of P , whose magnitude and sign
are given by e and h, respectively, is computed (line 10). Then, the model P (s) is updated
(line 11), where updatePolicyModel(α, error, s) is a function that reads the meta-parameters
of the learning model, the input vector s, and the prediction error associated to the input
vector, and updates the model using SGD.

Human Feedback Modelling and Human Feedback Supervised Learner

The trainer intentions, observed in the binary feedback signal, can be considered a source
of information that provides not only the sign (direction) of the corrections, but also their
magnitude. Hence, in the COACH framework a model of the human feedback H : S →
R is built, which characterizes the human feedback signal over each region of the state
space. The same type of approximator of the policy model P (s) is used for representing the
human feedback model H(s). Therefore, two Supervised Learner modules are required in the
framework, one for P and one for H (see the block diagram shown in Figure 3.3) at Section
3.2.2). The teacher's intentions captured by the human model are used for computing an
adaptive learning rate for the Policy Supervised Learner.

In the proposed modeling, sequences of feedback signals with a constant sign over a speci�c
state sa would mean that the trainer is suggesting a large change in the magnitude of the
associated action P (sa). On the other hand, alternating the sign in the human feedback would
mean that the trainer is trying to provide a �ner change around a set point. Thus, using
the information of H for computing an adaptive learning rate is appropriate for avoiding
the dilemma of setting either a too large or too small magnitude of the learning rate for
the policy model. As in general learning systems, the size of a learning rate brings di�erent
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advantages. In the COACH framework a large value of the learning rate allows the trainers
to carry out large corrections, while a small value lets them perform �ne adjustments.

Both P and H models map the same state space, and are based on the same kind of
function approximator. Also, their respective supervised learners use the human feedback
signal for updating the parameters. However, in the H model, assuming the constant error
stated for the policy updating is not needed, because in this case the prediction error is
known; it is the di�erence between the desired value h and the prediction H(s).

The adaptive learning rate of P (s) is computed as:

α(s) = |H(s)|+ bias (3.1)

where bias is the default value of the learning rate.

The magnitude of |H(s)| is close to 1 when most of the last human feedback signals for a
speci�c state sa have the same value (either only 1, or only -1). Contrarily, alternating values
of the feedback signal decrease the magnitude of |H(s)|. Hence, α(s) is set to a large value
when feedback signals of constant value are received, and α(s) is set to a small value when
feedback signals of alternating value are received.

For demonstrative purposes, Figure 3.2 shows an example that compares the e�ect of
giving human corrections over time, for a speci�c state sa, with constant, or adaptive, learning
rates. The �gure shows the value of the action when the agent visits only sa and the human-
feedback modi�es the associated action. It can be observed that by using an adaptive learning
rate, the trainer increased the magnitude of the action faster than when using a constant
value; it takes 4 time steps to reach a magnitude of 6, instead of the 7 time steps required
when using a constant learning rate. Afterwards, the trainer decided to modify the action
amplitude to a negative action very close to zero. The adaptive learning rate allows doing it
faster and �ner than in the case of using the constant learning rate, using 3 time steps less
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Figure 3.2: Human Feedback Progress at a Speci�c State sa, and its impact over the respective
action, using: a constant learning rate (a), and an adaptive learning rate (b)

than the case of a constant learning rate.

Credit Assigner

The corrective advice has to be given after the agent executes each action. But in decision-
making problems of high frequency, a human trainer is not able to assess the e�ect of each
action and to give advice at each time step; there is a delay between the action execution and
the human response that can be tackled as a temporal credit assignment problem. The Credit
Assigner proposed in TAMER approaches this problem by associating the feedback not only
with the last state-action pair, but with past state-action pairs. Each pair is weighted with
the corresponding probability that characterizes the human delay, which is called the credit
ct.

The credit assignment proposed in TAMER is speci�ed for linear models of basis functions.
In those cases, the computation is simple; however, the idea is general and works for any
approximation function.

The credit assigner uses a model of the human response that represents the probability
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ct that a human reaction is associated to an event which has taken place t time steps ago.
COACH takes the correction advised at the current time step and associates it with the subset
of n past state vectors, which are on the window time frame that supports the probability
density function of the delay of the human's response model pdfdelay. The credit ct is computed
in (3.2) as the integral of pdfdelay from ti−1 to ti ; ct represents the probability that the human
signal given is intended to advise the state-action pair that had taken place t time steps ago.
Since older states that have near zero probability are discarded, the sum of all the weights
ct is not exactly 1, but close to it, as is expressed in (3.3).

ct =

∫ ti

ti−1

pdfdelay(x)dx (3.2)

n∑
i=1

ct ≈ 1 (3.3)

Thus, each time the human teacher advises a correction, the policy has to be updated n
times; for each of the n past state-action vector pairs [st P (st)] the corresponding errort
used for the t− th update is the error weighted with its associated credit ct:

errort = h · e · ct (3.4)

The state-action [sn P (sn)] is the oldest state in the credit assigner's bu�er which might
be updated with the trainer's advice; cn is usually very low. The probability density functions
used by the credit assigner in this work are the same as those reported in the TAMER
descriptions.

3.2.2 General Framework for Problems of high frequency and com-

plexity

For more complex scenarios wherein the frequency of the environment is high considering the
time response of humans, and also, wherein the dilemma of setting small/large learning rate
for �ne/wide corrections is present, the COACH framework requires the Human Modeling
and Credit Assigner modules. The complete structure of COACH with all the modules is
depicted in Figure 3.3. The H model is used for supporting the Policy Supervised Learner
module, which updates the P model. The Credit Assigner module takes the states vector
and computes credit assignments based on the history of past states.

Since the assumptions and principles of COACH can be applied to several kinds of approx-
imation models, taking into account special considerations according to each speci�c case,
the complete framework is presented here based on policies approximated with linear models
of Radial Basis Functions (RBF), for one-dimensional action problems. The main reasons
for this selection are: (i) this kind of function approximation is one of the most widely used
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Figure 3.3: General structure of COACH, using an Adaptive Learning Rate for the Policy
Update and the Credit Assigner
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in RL [95, 22, 57], and (ii) COACH is mainly inspired by TAMER, which was originally
proposed based on RBF linear models [48, 47].

Thus, when using RBF functions, the expression for P (s) is the inner product between
the weight vector w and the features vector f generated with Gaussian Kernels that map
from the state space described by the state vector s onto the features space:

P (s) = w> · f (3.5)

The w vector is updated using a gradient descent approach for minimizing the squared
error as:

∆wl = α(s) · error · ∂P (s)

∂wl
= α(s) · error · fl (3.6)

with error the product between h and e, and l the weight's/feature's index. The model
of the human feedback H is built using the same features vector f of P , and a weight vector
v as:

H(s) = v> · f (3.7)

Both P and H models map the same state space, and are based on the same kind of
function approximator. Also, their respective supervised learners use the human feedback
signal for updating the parameters. However, the H model is updated using the prediction
error based on the di�erence between h and H(s). Therefore, using a gradient descent
approach, the weights associated with the H model are updated as:

∆vl = β · (h−H(s)) · ∂H(s)

∂vl
= β · (h− v> · f) · fl (3.8)

with β the learning rate and l, the index of the weights and features. Linear models of
basis functions allow to have a simple update of the model when COACH is using the credit
assigner module, instead of updating the model n times for each ct, the linearity of the
model allows accumulating the sums of the weighed feature vectors of the n past state-action
pairs into the vector fcred; then the update step is computed just once using that fcred vector.
The credit assigner module presented for COACH is implemented exactly as it is for the
TAMER's one. Hence this module computes the new features vector fcred for replacing the
original vector f in the H and P update process (equations (3.5)-(3.8)). fcred is the sum of
the n past feature vectors ft that are weighted with the credit ct:

fcred =
n∑
t=1

ct · ft (3.9)
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Algorithm 3.2 presents the COACH variant for training policies modeled with linear mod-
els of basis functions. First, the error magnitude e used for the policy model, and the learning
rate β used for updating the human model are de�ned (lines 1-2). Then, the credit ct weights
are computed by the function assignCredit(t). This yields the pdfdelay selected for modeling
the human time response and computes (3.2).

The loop between lines 6-23 occurs once per time step. The agent observes the new state
s (line 7), it maps the states into the features space of the basis functions (line 8), and it
computes the policy model P (s) (line 9). Afterwards, P (s) is executed (line 10).

After the action execution, the feedback signal h of the human trainer is read (line 12).
If the teacher does not advise any correction, no further updating computation is carried
out. Otherwise, the models are updated with the received correction (lines 13-22). First, the
credit assigner computes the vector f cred taking the n past feature vectors ft (lines 14-16).
The human feedback model H is updated in lines 17-18, the prediction of the human advice
H(s) is executed (line 17), then it is used for updating the model (line 18). Afterwards, the
policy's adaptive learning rate is calculated (line 19), and the previously mentioned constant
error assumption is computed (line 20). Finally, the policy model is updated in a similar way
as that used for updating the human model (line 21).

3.2.3 COACH with Takagi Sugeno Fuzzy Systems

In this section COACH is extended to learn the parameters of a TS-FS (Takagi-Sugeno Fuzzy
System) approximation [97, 12]. A TS-FS has a similar structure to that of a linear model
of RBF features, but in this case the feature vector is composed of the normalized activation
of each rule (rj, 1 ≤ j ≤ J ; J = numberofrules) of the fuzzy rule base:

fj =
rj∑J
i=1 ri

(3.10)

In this case, each feature or rule is associated with a function uj(s) instead of a simple
weight as in the RBF linear model. The function uj(s) represents a direct mapping from the
input space S to the output (in this case the action), and it is usually a linear combination
of the input variables:

uj(s) =
K∑
k=1

ajksk = a>j · s (3.11)

Then, the complete TS-FS output is given by:
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P (s) =
∑
J

uj(s)fj = u(s)> · f

=
∑
J

(
∑
K

ajksk)fj

(3.12)

For updating the weights matrix a of a TS-FS, COACH uses the same stochastic gradient
descent strategy which is applied when it learns the parameters of RBF linear models as:

P (s) =
∑
K

(sk
∑
J

ajkfj)

=
∑
K

(skgk(s))

(3.13)

P (s) can be seen as a linear combination of the input variables (states), whereas weights gk
are input-dependent parameters. Then the gradient of the action with respect to a particular
weight ajk is as:

∂P (s)

∂ajk
=
∂P (s)

∂gk(s)

∂gk(s)

∂ajk
= sk · fj (3.14)

Then, COACH updates the weights as:

∆ajk = α(s) · error · ∂P (s)

∂ajk
= α(s) · error · sk · fj (3.15)

Thus, the COACH algorithm using the TS-FS model is similar to the one using RBF
functions. The basic di�erence is in the way of computing and updating the models according
to equations (3.10)-(3.15). The most important changes introduced are:

• The statement of the constant αmax at the beginning, which is the bound of the adaptive
learning rate of P (s). This is because the appropriate range of the learning rate would
be di�erent from [0, 1] depending on the problem. This term multiplies the term of
line 19 in Algorithm 3.2.

• The function getF eatures(s) maps the state space to the feature space using (3.10)
(line 8), but the rule activation rj is not necessarily obtained from Gaussian kernels in
the same way as in the RBF linear model case; rather, it could be computed by any
kind of fuzzy model.

• The use of Equations and terms in Equations (3.11)-(3.13) that have to be replaced in
line 9, due the TS-FS structure.
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The policy weights update given by Equation (3.14) in line 21. In this case the weights
are in a matrix instead of a vector, and the updating term includes the factor sk according
to (3.14) and (3.15).

3.2.4 COACH Extension to Multi-Dimensional Action Problems

The generalization of COACH to multi-dimensional action domain problems, i.e. problems in
which the teacher could advise corrections over di�erent action spaces, is simple; principally
the approximation model needs to be set to multiple outputs. From the point of view of the
human teachers, the only modi�cation is that now, in addition to giving binary feedback,
they need either to select the action's dimension in which this feedback is given, or to provide
a vector of binary signals, in order to communicate the action dimensions simultaneously.

The exact way in which the teacher provides the feedback to the agent depends on the
type of Human Computer Interface (HCI) being used. In some cases, the feedback is given in
only one dimension at a time, but in some other cases the binary feedback on some di�erent
dimensions can be given simultaneously, for instance by pressing di�erent keys of a keyboard
at the same time with both hands, or using a joystick, or a Wii Remote interface, etc. For
the error assumption, the magnitude e would be a vector with the same dimensionality of
the action vector, using di�erent scales for the magnitude of the error in each of the action
domains.

3.3 Experimental Validation and Analysis

COACH is characterized and validated in four learning problems: Mountain Car, Cart-
Pole, Ball Dribbling with Humanoid Robots in the context of robot soccer, and Learning to
Balance on a Bicycle. This validation includes a comparison in terms of performance with
two other interactive frameworks, TAMER, and ACTAMER, with autonomous RL, discrete
and continuous SARSA(λ), and with human teleoperators.

Between 10 and 20 people participated in the validation experiments with interactive
agents, performing as teachers. The participants of the experiment were people from 20 to
39 years old, half of them students of electrical engineering, the rest had various occupations.
At the beginning they watched a video with agents performing the tasks correctly and the
learning procedure for each agent; and received the instructions of what to do, i.e. what kind
of feedback they had to provide regarding each framework. For each problem to be solved,
the users interacted with each learning framework in two stages: practice and teaching. In
the practice stage, they interacted with each learning framework in two training runs per
problem. The learning results were not recorded. In the teaching stage, they trained the
agent twice per problem, and the results were recorded.

The reward functions applied by the RL agents were the cost functions used to compare
the performances of all the agents. For all the experiments and types of learning methods,
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Table 3.1: Learning Parameters for the experiments.
Algorithm Parameters

Mountain-Car
SARSA λ = 0.9, αs = 0.15, ε = 0.01 γ = 0.98
COACH e = 0.5, β = 0.35

Cart-Pole
SARSA λ = 0.95, αs = 0.1, ε = 0.02 γ = 0.99
COACH e = 0.5, β = 0.35

Ball Dribbling 1-D
SARSA λ = 0.85, αs = 0.2, ε = 0.05 γ = 0.997
COACH e = 30, β = 0.35

Ball Dribbling 3-D
COACH ex = 30, ey = 20, eθ = 20, β = 0.35

Bike Balance
SARSA λ = 0.95, αs = 0.5, ε = 0.01 γ = 0.99
COACH eT = 0.5, ed = 0.8, β = 0.35

the policies were initialized with actions a = 0 for the whole state space, making the agent
to learn from scratch.

The hyper-parameters of the learning algorithms were obtained using hill-climbing during
preliminary experiments for all the problems, except for bike balancing. In that case the
parameters were taken from the original work and code reference [84, 83]. For SARSA(λ) the
parameters are: the decay factor of the eligibility traces (λ), the learning rate (αs), the explo-
ration probability (ε), and the discount factor (γ); for COACH are: the error magnitude (e),
and the learning rate of the Human Model (β). In table 3.1 are listed the hyper-parameters
for all the experiments. The same learning rates of SARSA(λ) were used for TAMER and
ACTAMER, since using di�erent magnitudes obtain di�erent human reinforcement functions,
but they still map to the same actions. The error magnitude (e) can be tuned in the same
order of magnitude of the action range.

The RL learning curves were taken as the baseline for comparison. The learning results of
the RL agents are similar and even better than those reported by some of the related works.

After the validations with human users, �nally, an ablation study is presented in order to
evaluate the contribution of the Human Feedback Modeling module.

3.3.1 Mountain Car Problem

In this classical toy problem, a simulated car must get to the top of a hill [95]. The car starts
between two steep hills and must go back and forth to gain enough momentum to reach the
goal. In order to increase the complexity of the learning task, the continuous 2-dimensional
state space was divided uniformly using 100 Gaussian features, a number that is higher than
the ones used commonly in the studies reported in the literature. The reward function used
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Figure 3.4: Average Cumulative Reward for the Mountain Car Problem. Results using (a)
the Keyboard Interface, (b) the Hand Gesture Recognition Interface

was the one reported in [95], which punishes all time steps until the car reaches its goal,
arriving at the top of the mountain. All the learning frameworks were tested under the same
conditions, and the experiments with the interactive agents were executed using a keyboard
interface, and then using a Hand-Gesture Recognition (HGR) interface presented in [26].

The learning curves obtained -average cumulative reward- are shown in Figure 3.4. In
the displayed results it is possible to see that, in both kind of experiments, COACH agents
outperform all the other agents in terms of convergence speed and performance. In the �rst
case, when using the keyboard interface, all the agents trained with interactive frameworks
clearly outperformed the autonomous learner -SARSA- in convergence time and in �nal
performance. The di�erences between the interactive agents are relatively small. COACH
has the fastest learning in the �rst episodes, and by the third, it outperforms the other agents;
then in the next episodes, its improvement is small. At the beginning it is possible to see that
the human teleoperation had the best performance. This �good� initial performance could
be related to the intuition and previous knowledge of the operators about �what to do for
trying to get the car out of the valley�. However, the improvement rate of the users' learning
is the lowest.

As previously stated, the interactive frameworks have higher performances with the key-
board interface than with the HGR interface. The main reason for this is that although the
hand-gesture interface is a more natural way of communicating for human-machine inter-
action, the keyboard interface was easier for most of the users because it allowed them to
alternate the signals given to the agent at a higher speed. This is a problem of low complexity,
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however the frequencies required for changing the actions magnitudes are high for the human
teachers, so the kind of interface used to communicate to the agent the teachers' intentions
play an important role, that is observed in the interfaces comparison. Additionally, the small
rate of classi�cation error of the gesture recognition system incorporates error in the learning
process, whereas the keyboard is free of noise and only would communicate wrong feedback
due to human mistakes.

3.3.2 Cart Pole Problem

This well-known problem in RL literature is an episodic task with the goal of keeping a pole
balanced on top of a cart. The actions are the forces applied on the cart; the state space has
four dimensions de�ned by the position and velocity of the cart, and the angle and angular
velocity of the pole [95]. An episode is �nished (a failure occurs) when the pole falls to a
given angle regarding the vertical axis, or if the cart exceeds the bounds of the scene. In our
modeling, the continuous, 4-dimensional state space is approximated and divided uniformly
using 256 Gaussian RBF features as in [107].

All the learning frameworks were tested under the same conditions and with a similar
experimental process to that of the mountain-car problem, except that, in this case, three
experiment variants were carried out: �rst, using the keyboard interface as before; second,
using the keyboard interface but with a simulation speed �ve times faster (more complex dy-
namics for users); and third, using the HGR interface with no acceleration in the simulation.

The learning curves obtained in this problem, trained with both the keyboard and the
hand-gesture interfaces, are shown in Figure 3.5. The experiments with interactive agents
were �nished at episode 150 with a maximum of 5,000 allowed time steps, considered here
as the optimum performance. As it is shown in the learning curves, COACH outperform the
other autonomous and interactive agents since the beginning with wide di�erence, regardless
the used interface. In the experiments with the keyboard interface and regular frequency of
the environment, TAMER and ACTAMER achieved the lowest performances, although these
algorithms achieved faster learning than SARSA in the early episodes (by episode 20). The
autonomous SARSA agent converged with higher �nal performance than the ones achieved
by TAMER and ACTAMER by episode 500, and in the �rst 150 episodes, it still had the
second best learning. COACH outperformed the other algorithms from the �rst episode,
and it achieved a performance four times higher than that of SARSA; in addition, COACH
achieved the fastest convergence among all the agents, since the users only needed about 25
episodes for teaching the policies. The users' learning curve had the third best performance;
at the beginning it had the best performance until episode 8, while COACH achieved better
operation. Finally, the human teleoperation was outperformed by SARSA in episode 35.

When the frequency was �ve times faster with the keyboard interface, the learning curves
of all the interactive agents were lower with respect to the �rst experiment, but the biggest
di�erence was in the case of teleoperation, in which the users did not increase their per-
formance through the episodes, i.e. they did not learn to operate the agent. However, in
the same scenario, with the same inappropriate conditions for the teleoperation (using the
same interface and environment characteristics), the same participants were able to teach the
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Figure 3.5: Average Cumulative Reward for the Cart-Pole Problem. Results using (a) the
Keyboard Interface, (b) the Keyboard Interface with environment 5 times faster, (c) the
Hand Gesture Recognition Interface
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agent to execute the task using COACH. COACH obtained the best performance from the
beginning, and it converged by episode 30.

In the experiments based on the use of the HGR interface, all the interactive agents'
results presented similar trends but lower performances than the results obtained with the
keyboard interface and regular frequency. In this case, the performance of the users was the
best at the beginning, but by episode 6, COACH outperformed all the agents and converged
by episode 28. During the whole learning process, SARSA had a slow and constant rate
of improvement, and by approximately episode 26, SARSA outperformed the TAMER-type
and the teleoperation learning curves, obtaining the second best performance. At the end,
the third, fourth, and �fth best performances were respectively for ACTAMER, the users'
teleoperation, and TAMER, however they were all very similar.

These results are similar to those obtained with mountain-car; COACH shows the best
learning curves for all the experiments and presents more robustness to the occasional �awed
feedback. In this balancing task, the corrective advice used by teachers with COACH
obtained a wider relative di�erence of performance with the other agents, regarding the
mountain-car problem. This could be because in the previous problem a �ne tuning is less
necessary since big magnitude of the actions make the car to move faster. However in this
problem it is required more both wide changes of the actions, and also slight tuning when
the pole is close to the equilibrium point.

3.3.3 Ball-Dribbling with Humanoid Robots

In the context of the RoboCup competition, ball-dribbling is a task in which a robot has to
walk toward a target as fast as possible while keeping the ball in its possession. Keeping the
ball in possession means that the robot keeps the ball close to its own walking feet. In this
task the robot observes the environment (the positions of both the ball and the target) and
decides the translational and rotational speeds, vx, vy and vθ, respectively. This problem has
been tackled using hybrid control strategies; in [64] a hybrid scheme is proposed, in which
most of the time vx, vy and vθ are controlled using a TS-FS controller trained o�-line for
aligning the robot to the ball and the target. But when the robot is already aligned, it
switches the computation of vx to a controller trained with autonomous RL for pushing the
ball.

In this section, two experimental procedures for validating COACH with this task are
presented. First, the simple hybrid scheme of [64] that learns vx is trained with di�erent
learning agents. Second, a complete TS-FS controller is trained from scratch using COACH,
and compared with the results of the �rst approach. The �rst experiment is a simple episodic
learning task that is also intended to compare the interactive agents' evolution as in the
previous problems; the second experiment is intended to evaluate two methodologies for
training the dribbling engine based on COACH and to compare their results in real game
scenarios.
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Figure 3.6: Average Cumulative Reward for the 1-D Ball Dribbling Problem

1-D Ball-Dribbling

The hybrid approach proposed in [64] splits the dribbling task into two simpler tasks: align-
ment to the ball and target, and ball-pushing. The ball-pushing is trained as an episodic
task with RL. For the RL of the ball-pushing task, an episode is completed when the robot
goes across the complete soccer �eld with the ball. For dribbling the ball in a straight line
the robot estimates the distance to the ball ρ, and decides its forward (axis x) speed vx. This
problem, therefore, has a very small state space but a high level of uncertainty, due to the
fact that the motion of the feet is not observed by the decision-making system of the robot.

A modi�cation of the original reward function proposed in [64] is introduced here; it
incorporates a parameter that de�nes a security robot-ball distance ρmax that must not be
exceeded:

r =

{
100 + vx ρ ≤ ρmax,

−100− (ρ− ρmax) ρ > ρmax
(3.16)

This reward function rede�nes the ball-dribbling task: the goal is to walk as fast as
possible, but without exceeding the robot-ball distance ρmax. The robot speed vx is set
between 0 and 100 mm/s. For the algorithms with discretization of the action space (SARSA
and TAMER), ten di�erent magnitudes of speed were de�ned; the state space was divided
uniformly into thirty features between 0 and 3 meters, and the ρmax parameter was set to
300 mm.

SARSA(λ) agents along with TAMER, ACTAMER, and COACH agents are trained for
being compared as in previous problems using similar setups. The objective function used
for evaluating this problem and comparing the agents is the average reward function. In this
�rst experiment COACH is based on RBF model approximation, since that model was used
in previous work for this approach to 1D Ball-Dribbling.

The results obtained are shown in Figure 3.6. It can be observed that the three interac-
tive learning algorithms converged faster than the non-interactive one (SARSA), and that
COACH achieved the fastest convergence (in three episodes) and the highest average per-
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formance. The second best convergence was obtained by TAMER, which reached the �nal
performance in 12 episodes. The COACH's learning curve is the most stable through the evo-
lution of the policy, and presents the smallest changes in the performance from one episode
to the next.

3-D Ball-Dribbling

In this case, a simpler approach, that uses only a TS-FS controller for aligning and pushing
the ball, is presented. The TS-FS structure is the same as the one proposed in [64] for
the subtask of alignment to the ball and target, but in this case its training is done fully
online using COACH. In this approach, the teachers advise the three independent action
dimensions: the forward speed vx, the sidewards speed vy, and the rotation speed vθ.

The results of the previous three studied problems have shown that COACH is more
convenient for these continuous action tasks than the other interactive and autonomous
agents, then, this new experiment is only intended to validate the COACH implementation
for TS-FS with multi-dimensional actions. Here the training is not set as an episodic task
as it was in the previous case. Instead, it is modeled as a continuous task, in which the
dribbling target is the opponent's goal. For this problem the teacher advises corrections to
the executed actions, but also has the capability of moving the ball inside the �eld, in order to
obtain states that the teacher needs for evaluating and/or training. In this training scheme,
teachers interact with the agent and the environment (moving the ball) until they think that
the �nal desired performance was achieved.

When trying to compare this dribbling approach to the 1D approach presented in the
previous section, the learning curves cannot be compared directly since (i) there is no direct
comparison between learning curves of episodic and continuous tasks, and (ii) the 1D solution
requires an exhaustive tuning stage based on an evolutionary algorithm before the ball-
pushing task learning.

Only the �nal performances of both approaches (1D and 3D ball-dribbling) are compared
in three scenarios where the initial position of the ball on the �eld is varied (see Figure 3.7).
The performance indices used in the dribbling evaluation are:

• The dribbling time td, measured from the initial position until the robot is at the target.

• The percentage of cumulated time of faults %tfaults, which is the time when the robot
is not keeping possession of the ball (in this case the ball-robot distance is greater than
500mm) in relation to the td.

• The percentage of increased walking distance %di. This index measures how e�cient
the path the robot walks is while it is dribbling the ball:

%di = (
dr

drb + dbt
− 1)× 100% (3.17)

where dr is the complete distance walked by the robot until it reaches the target, drb is
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Figure 3.7: Soccer Field with the Robot's Initial Position (Pbi), and the Initial Positions of
the Ball for the Evaluation Scenarios: Scenario 1 (blue), Scenario 2 (red), Scenario 3 (green)

the initial distance between the robot and the ball, and dbt is the initial distance between the
ball and the target.

In this problem the interface is a game controller1 system used for sharing the state of the
game with the robots in real competitions, e.g. the game is either in state �set�, or �play�, or
��nished�, etc. This interface can be controlled with the mouse or keyboard. Before giving
advice, the teacher has to select the action dimension to be corrected (vx, vy or vθ), this is a
limitation of the interface, however it does not have much impact because the dynamics of
the problem are slow. Three keys are intended for selecting the action dimension, and two
to advise the increase or decrease signals.

In Figure 3.8 it is possible to see that in all three scenarios, the variant of COACH
algorithm with multi-dimensional action domains and TS-FS models obtains the best per-
formance. Figure 3.8(a) shows a slight time reduction for the 3D model; nevertheless, that
index does not lead to inferring hard conclusions by itself (e.g. if the robot always walks very
fast, it would �nish the scenario faster, but with low ball-possession).

On the other hand, Figure 3.8(b) and Figure 3.8(c) show a greater reduction (around 50%)
of the percentage of accumulated time of faults, and the percentage of increased walking
distance when the 3D model is used, for the three evaluated scenarios. This indicates that
the policies trained allowed dribbling the ball in a more controlled way when the 3D modeling
was used, with more ball possession and fewer oscillations over the path between the initial
ball position and the target. The reduction of the three indices permits concluding that this
simpler approach for training the dribbling engine, based on COACH and TS-FS, obtains
policies that dribble with more accuracy, greater speed, and with higher ball possession than
the hybrid approach.

The average training time of the new approach was 24.73 minutes, which is much faster
than the training period of the old strategy which takes more than two days and is done only
in o�ine training of the TS-FS model using genetic algorithms.

1http://spl.robocup.org/downloads/

34



Figure 3.8: Statistics for each Scenario: (a) ball-dribbling time, (b) percentage of cumulated
time of faults, (c) percentage of increased walking distance
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Figure 3.9: Sequence of Ball-Dribbling with humanoid robots in a game at RoboCup

The resulting ball-dribbling controller obtained by the extended COACH algorithm was
used by our UChileRT soccer robotics team (http://uchilert.amtc.cl/) in the RoboCup 2015
and 2016 world competitions, allowing the team to achieve fourth place in the SPL (Standard
Platform League), where humanoid robots are used . It is worth clarifying that when playing
soccer, the dribbling engine has a variant target, computed at a high-level behavior level, in
order to avoid obstacle collisions. In Figure 3.9 there are some illustrations of sequences of
the ball dribbling in the RoboCup soccer competitions mentioned above.

This complete problem with real robots allows us to validate the COACH variant for
TS-FS as policy models in applications with more than one action dimension. The quantita-
tive indices obtained in laboratory along with the competition performances show that the
proposed framework can be used to learn complex problems which are tested in competitive
instances.

3.3.4 Learning to balance on a bike

This task, proposed in [84], is about learning to balance a simulated bike while it is ridden
with constant speed. The agent observes the angle of the handle bar θ, its angular speed θ̇,
the angle ω the bicycle is tilted from the vertical, its speed ω̇, and its acceleration ω̈ (see the
variables in Figure 3.10). The actions decided by the agent are: the torque applied to the
handle bar T , and the displacement of the center of mass d, perpendicular to the plane of the
bicycle. The action T is bounded in the range [-2N, 2N], whereas the action d is in the range
[-2cm, 2cm]. Action d has an added uniform random noise between [-2cm, 2cm]. This is an
episodic task with initial state vector [θ, θ̇, ω, ω̇, ω̈] = [0, 0, 0, 0, 0]. It is considered a terminal
state when the bicycle falls, de�ned by a threshold on angle ω.

For this problem, the experiments are carried out with the keyboard interface. Since in the
�rst three problems presented in this chapter, the comparisons demonstrated that COACH
outperforms the TAMER type agents with a large di�erence, in this problem, the experiments
are focused on comparing the learning curve of the users teleoperatiing vs the COACH
based learning agents. The SARSA agents are kept as the reference point of comparison,
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Figure 3.10: 3-D Simulated Bicycle Environment and the Angles Observed by the Agent

since this problem has already been approached and reported in the literature with that
agent. Thus, the �rst controller corresponds to an autonomous RL agent implemented using
tabular SARSA(λ) as proposed in [83]; the second one corresponds to an autonomous RL
agent implemented using continuous SARSA(λ); the third controller corresponds to an agent
trained interactively using COACH; and the last controller corresponds to the case of a
human user teleoperating the bike. In this problem COACH learns a model of linear RBF
features.

Following [83], the autonomous RL agents use the following parameters: T ∈ [-2N,0N,2N]
and d ∈ [-2cm,0cm,2cm], which result in 9 possible action pairs. For all the agents the
state space is mapped to a features space of 8,575 dimensions (states θ, ω, and ω̇ are divided
into seven features for each dimension; and θ̇, and ω̈ are divided into �ve features for each
dimension). Thus, COACH learns a model of the same number of parameters (a weight per
feature), whereas the autonomous RL agents use 77,175 parameters because there are 8,575
parameters for each of the nine actions.

In order to compile statistically signi�cant results, 50 runs of 200 episodes were executed
by the autonomous RL agents. In the COACH case, 12 subjects participated as teachers.
These subjects performed two runs each with a variable number of training episodes, since
each subject stopped providing feedback when he/she considered the best performance had
been achieved. Afterwards, the agent continued performing the task without human feedback,
then the policy parameters remained constant until episode number 200 was reached.

In this experimental procedure, we de�ne an episode as successful and �nished at time step
number 1,000. The objective in the learning process is to maximize the time the bicycle is
balanced. The same subjects that acted as teachers of the COACH agents also performed the
direct teleoperation of the bike; six of them teleoperated the bike before teaching the COACH
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Figure 3.11: Average Learning Curves of the �Learning to Balance on a Bicycle� Problem

agents, and the other six interacted with COACH �rst. For teleoperating the bike, they �rst
used several consecutive episodes for learning how to do this task. They decided how many
episodes were enough. After this training phase, they were evaluated. A keyboard was used
for the teleoperation and the COACH learning process. In this last case, the subjects were
allowed to advise corrections simultaneously to each action dimension using di�erent keys.

Figure 3.11 shows the learning curve of the three agents, and, additionally, the learning
curve of the users who teleoperated the bicycle directly. It can be observed that COACH
achieved the highest performance and the fastest convergence through the learning process;
it converged to the successful performance at episode number 21. All the COACH agents
were able to balance the bike for more than 1,000 time steps. On the other hand, the tabular
SARSA(λ) agents had the worst performance; at the end of the learning process they were
able to balance the bicycle with an average of 220 time steps. The continuous SARSA(λ)
agents performed better than their tabular counterparts, with a convergence, on average, of
941 time steps at episode 140. The continuous SARSA(λ) agents did not attain the successful
average performance of 1,000 time steps, as COACH did. However, 94% of the runs achieved
the required performance. It can also be observed that COACH not only learns faster than
the autonomous agents, but also obtains better policies than those learned by its teachers
when they were operating the bicycle directly. This allows us to say that COACH o�ers
a more e�cient process of learning than independent approaches of either pure machine
learning or pure human learning.

COACH as an interactive machine learning approach that was demonstrated to be more
e�cient than a conventional LfD scheme, which would require the bicycle teleoperation learn-
ing curve of the human teachers as a �rst step, then, a second step derives a policy from the
best demonstrations given by humans, but as Figure 3.11 shows, the derived policy would be
sub-optimal with very low performance because of the teachers' low outcomes. As observed
with the Cart-pole problem, a learning agent of this balancing problem can bene�t of the
tuning with the corrective advice, which modi�es the policy based only on the vague intuition
of the teacher about the trend of the correction.

Some examples of COACH performances can be watched in:

https://youtu.be/T3NMRA0JPX8
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3.3.5 Ablation Study

In section 3.2 it is stated that COACH may work with or without the Human Feedback
Modeling module, nevertheless, in previous subsections all the tests were carried out with
the complete framework. In this section, experiments intended to quantify the contribution
of the model H are presented, but using a simulated human teacher based on a trained policy
PT in the environment of the Cart-pole problem. The simulated teacher is used in order to
reduce the uncertainty introduced by human users due to external factors. This is considered
since it is expected small di�erences in the performance when changing the Human Feedback
Modeling module.

The simulated teacher uses PT to provide corrective feedback to the agent in order to
teach and replicate the trained policy PT . The interaction between the simulated teacher
and the learning agent di�ers from regular supervised learning because in this case, the error
assumption proposed in COACH is used. Then, the advice of binary corrections is computed
as:

h = sign(PT (s)− P (s)) (3.18)

The feedback signal h is given randomly during the 50% of the time steps at the beginning.
This frequency is diminished through the time.

The convergence of COACH is evaluated with (i) the complete framework, (ii) the frame-
work without the H model, and (iii) the framework using average of the signals h for com-
puting the prediction H. The third case is a simpli�cation of the original Human Feedback
Modeling module, in which the predictionH is not state dependent as in the proposed original
module.

The learning curves in Figure 3.12 show that COACH without the prediction H takes
20% longer to reach the 95% of the �nal performance, whereas the COACH averaging the
corrections takes twice to achieve it. Figure 3.13 shows the di�erence of reward obtained
in each episode, relative to the original framework. That di�erence is normalized with the
maximum possible reward that can be obtained in the task (5,000). In general the di�erence
is negative, especially with the COACH averaging h.

The COACH agent without adaptive learning rate is faster than the original during the
�rst three episodes in which large changes of the actions are carried out. But, when �ne-
tuning is required for achieving the stability of the pole, the original COACH speeds up the
convergence. The COACH that uses an average of h for predicting the correction is the
slowest because it has an adaptive learning rate that is not state dependent. Taking into
account the previous corrections without the states where they have been advised may lead
to small learning rates in states considered to have a large action modi�cation, or to compute
a large learning rate when a �ne adjustment is considered.
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Figure 3.12: Ablation study. Convergence curves of COACH showing the in�uence of the
Human Feedback Modeling module for learning the Cart Pole problem.

Figure 3.13: Ablation study. Percentage of increased reward regarding the original COACH
for learning the Cart Pole problem
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3.4 Discussion

The use of Interactive Machine Learning strategies is well known in applications where the
users are experts on the task, who then have insights into how the decision-making system
has to behave. There are several schemes that are appropriate for learning di�erent levels
of tasks and actions, but most of them operate on the assumption that demonstrations or
feedback provided by teachers are of good quality. Some studies that deal with the fact
that information coming from humans could be �awed, improve the derived policies using a
complementary learning strategy such as RL.

The COACH framework is proposed to be used for learning tasks in which the users are not
necessarily experts, but who can infer where the actions of the agents have to be modi�ed
in order to improve the executed policy by observing the agent-environment interaction.
These inferred trends are applied as advice for corrections over the policy by COACH, and,
depending on the problem, their e�ects over the updated policy can be observed immediately.
However, COACH is limited for tasks wherein the actions' e�ects are not intuitive to the
teacher, because they would not be able to suggest corrections.

In this chapter and during the complete thesis, it is proposed that COACH work with
binary feedback, however, the algorithm can also work with continuous values of correction
without any problem. In this work we keep on working only with binary corrections, since
it reduces the variables and analysis for the experiments. The use of continuous corrections
would give more freedom to the human teachers, although with the disadvantage of requiring
interfaces more complex than a keyboard (e.g. joysticks, or motion capture), and probably
demanding some time for the user to get used to the sensitivity of the interface.

The experiments performed in this chapter led to some interesting observations and conclu-
sions about the properties of interactive learning of policies for continuous tasks, speci�cally
when the human feedback is vague, as is the case with TAMER algorithms and COACH.
TAMER is an algorithm that has a wider range of applications because it can be used to solve
tasks of either discrete or continuous actions (discretizing the actions). However, the results
of the experiments which involved the mountain-car, the cart-pole, and the one-dimensional
ball-dribbling problems showed that it is simpler for the users to train an agent by providing
corrections over the actions domain than it is in the evaluative domain. COACH allows users
to shape the policies towards their beliefs of better decisions in a more controlled way than
TAMER, but still using a vague signal of correction. This is the reason behind the higher
improvement rate with COACH at the beginning of the learning processes with regard to the
evaluative feedback based agents.

The human feedback model is a powerful element that obtains more implicit information
from the pieces of advice sequences; this extracted information is applied to set a wide
or subtle updating depending on the previous history. This module empowers the quick
progression of the policies at the beginning of the learning process, but also the smooth
tuning at the end, which is more stable than the behavior obtained by agents trained with
other frameworks that present more oscillation during the whole evolution. The performed
ablation study showed that this module contributes to speed up the convergence around 20%
in the evaluated case. Also, that study demonstrated that is necessary the state-dependent
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computation of the prediction H, in order to use correctly the information of the history of
the corrections advised by the teacher.

Some speci�c conclusions can be drawn from the comparison of interactive learning agents,
autonomous agents, and human teleoperation of the same processes. It is clear that for
most of the cases the interactive agents learned better than the autonomous ones, at least
during the �rst episodes, which is important for applications that use physical platforms that
are constrained to a few learning episodes. Moreover, in most of the cases the interactive
agents outperformed the pure human learning; only some cases in the cart-pole problem were
exceptions. This conclusion becomes even stronger if the users' learning is compared only
with COACH. In this case, it is possible to say that users learn more slowly and worse than
the agents they train, with large di�erences in learning time and quality of the �nal policies.
The analysis of the learning curves show that COACH agents learn better policies in less
time than with approaches of pure autonomous or human learning. It means that in cases
of non-expert teachers, COACH would be better and more e�cient than classic LfD schemes
that require the slower and poorer human learning processes, followed by the demonstration
gathering, and the policy derivation stages. This interesting relation between learner and
teacher is also seen in sports, wherein the coach or trainer gives advice to sports players who
are actually better than their advisors.

The experiments carried out with the mountain-car and the cart-pole problems showed
that COACH is a strategy of interactive learning that is more robust to mistaken feedback
due to noisy and occasional �awed corrections, which are always present in humans. When
the interfaces and environments were modi�ed in order to increase the possibility of �awed
feedback, the learning curves of COACH were the most stable and had the smallest decrease
with respect to the original experiment.

In the experiments with the ball dribbling by humanoid robots problem, COACH also
outperforms the learning capacities of the autonomous and the TAMER agents. Secondly,
COACH showed good results for learning a task with more than one action dimension, and
COACH principles can be successfully applied to di�erent model approximations, like those
in this case, using a Takagi-Sugeno Fuzzy System. The third remark is a comparison of two
strategies for developing this decision-making system: using a hybrid solution with interactive
and evolutionary learning, and using a simple scheme that uses only COACH. The hybrid
case has a smaller state space for the part solved based on COACH, and it is easier for
the users to train the interactive stage when compared to the second case that used only
COACH, and that includes all the state variables in the search space, and represents a more
complex scenario for the interaction. However, results show that despite the fact that the
second strategy was more complex for users during training, at the end, its use was more
e�cient and simple in terms of time, computational burden, and the human e�ort involved
in the complete process.

Moreover, based on the results obtained, COACH was used for training the dribbling
engine used by the UChileRT team in the soccer competitions during RoboCup 2015 and
2016. In 2015, COACH was used to train an agent from scratch. Since then, this strategy
has been used just for tuning the dribbling engine anytime that is required, i.e. when changes
of the environment dynamics occur, for example, a change in the carpet of the playing �eld,
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or a change of the ball (e.g. a new ball with di�erent dynamics was used in RoboCup 2016).
Moreover, a tuning is required anytime our game strategy is adjusted, for instance, when we
decide to modify the security robot-ball distance de�nition, according to external criteria.

With the presented method and the obtained results of this chapter, the �rst and second
objectives of this thesis were attained. The proposed learning framework based on corrective
advice for one-dimensional action problems demonstrated to be faster and to obtain better
policies than other interactive methods and RL methods. Additionally, the ablation study
in the last part, demonstrated that the use of past information captured with the Human
Feedback Modeling module has a positive impact in the learning process. The third objective
which is about applying the learning framework to multi-dimensional action problems, was
just partially approached in this chapter, since the problems with more than one action (Ball
dribbling and bike balancing) do not have problems of correspondence. That objective is
fully covered in Chapter 5.

To continue this work, we are interested in exploring and evaluating how interactive learn-
ing is bene�cial when more sources of feedback are used in the learning process. For instance,
reinforcement signals coming from humans, or encoded MDP reward functions are sources of
information that would leverage the learning progression; the more challenging case would
be to use all those sources of feedback simultaneously in the same learning framework. In
the following chapters, the use of encoded rewards is explored combining Policy Search and
COACH.
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Chapter 4

Learning in MDPs with Human

Corrective Feedback and Reinforcement

Learning

Reinforcement Learning agents can be supported by users' feedback in approaches that in-
clude human teachers in the learning loop, in order to guide the learning process. In this
chapter we propose two hybrid strategies of Policy Search Reinforcement Learning and In-
teractive Machine Learning that bene�t from both sources of information, the cost function
and the human corrective feedback, for accelerating the convergence and improving the �nal
performance of the learning process. Experiments with simulated and real systems of bal-
ancing tasks and a 3 DoF robot arm validate the advantages of learning using the proposed
learning strategies: (i) they speed up the convergence of the learning process between 3 and
30 times, saving considerable time during the agent adaptation, and (ii) they allow including
non-expert feedback because they have low sensibility to erroneous human pieces of advice.

4.1 Introduction

An important issue of RL methods is the relative long training time of systems/controllers
to be used in complex/dynamic environments, which can be a limitation for their application
in robots interacting in the real-world. This shortcoming can be addressed with the support
of human users who participate/collaborate in the learning process. Thus, LfD and RL can
be sequentially combined for learning skills autonomously from an initial policy that could
be obtained by human teachers' demonstrations [11, 60].

There are some works that combine RL with human reinforcements [104, 99, 51]. This
combination takes advantage of the user's knowledge for speeding up the learning process
while keeping the convergence properties of RL algorithms.

Thus, combining RL with interactive machine learning strategies might be a synergic
relationship, in which the learning processes are sped up because RL bene�ts from the human
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knowledge of the task, but also provides more stability and robustness to the interactive
framework that is susceptible to the inherent occasional erroneous feedback associated to
human teachers (human are nor perfect and prone to fail in repetitive tasks).

In this context, we postulate that the use of RL with human feedback will allow address-
ing important requirements of robotics applications. Since Policy Search RL seems to be
more appropriate for facing the challenges of robot RL than value based RL [32], this thesis
proposes the use of learning methods based on Policy Search techniques that additionally
make use of available human knowledge for reducing the learning time, which is one of the
main constraints of classical robot learning applications. Corrective feedback advised by
human teachers is used in the introduced approach instead of human reinforcements like in
the aforementioned hybrid learning systems. In the proposed approach, human knowledge is
provided to the PS learning agents with corrective advice using COACH.

4.2 Episode based Exploration and Evaluation Policy Search

Background

PS is a branch of RL where parametrized policies are learnt directly in the parameter space,
based on the cost given by the reward function. Thus, PS methods do not learn a value
function as most of RL algorithms do. For this reason, PS has advantages respect to value
function based RL in robotic applications, because computing the value function requires
data from the complete state-action space. Additionally, the use of parametrized policies
reduces the search space, which is important in cases of physical limitation as usually is the
case of learning with robots [32].

Moreover, in robotic applications PS is a better choice regarding value-based methods
due to the properties of scalability and stability of the convergence [57], because a small
change of the policy may lead to a big change of the value function, that can again produce
a big modi�cation of the policy. The previous instability can be convenient for �nding global
optima after long time of learning in simulated environments, but with real robots it is desired
a smooth and fast convergence.

The general structure of a PS method is presented in Algorithm 4.1, which includes three
main steps: exploration, evaluation, and updating. The exploration step creates samples of
the current policy for executing each roll-out or episode. This process can be step-based or
episode-based, depending on whether the exploration elements are changing through the time
steps or are constant during each episode, respectively. In the evaluation step, the quality
of the executed roll-outs is examined, and the strategies can also be step-based or episode-
based, depending on whether the assessment is over every single action or over the parameter
vector. The update step uses the evaluation of the roll-outs to compute the new parameters
of the policy. This update can be based on policy gradients, expectation-maximization,
information theoretic, or stochastic optimization approaches. During the last years, several
PS algorithms have been proposed and evaluated using di�erent strategies in each of the three
steps. Nevertheless, the most suitable method to be used depends on the speci�c application
being addressed. In this work we use episode-based methods with stochastic optimization
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update strategies that can be considered black-box optimizers, due to the good combination
of simplicity and good learning convergence [91, 92, 39]. Its simplicity makes easier the
combination of PS with other learning approaches. In Algorithm 4.2, the episode-based
model free PS scheme used in this work is presented. In the exploration step, a set of noisy
samples of the current policy parameter vector is generated. In the evaluation step, a global
cost R of each m-th roll-out corresponding to the m-th sample of the policy parameter vector
is measured. In the third step, the policy is updated using the exploration samples and their
respective evaluations. In the next paragraphs three episode-based black-box methods used
for policy improvement are described:

4.2.1 Cross-Entropy Method

The Cross-Entropy Method (CEM) for policy search was proposed in [68], and more recently
has been used by [23, 90] for learning problems of discrete and continuous actions. Using
this approach, the method creates M samples of the current policy for the exploration step,
according to a normal distribution as:

θ[m] ∼ N (θk,Σk),m = 1...M (4.1)

where θk is the policy vector at the k-th iteration and Σk the covariance matrix. The cost
function should be minimized, and to return a scalar that represents the performance index.
The update step is executed �rst by sorting the samples in ascending order with respect to
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the cost function R[m]. Then, the normal distribution is updated as:

θk+1 =
Me∑
m=1

1

Me

θ[m] (4.2)

Σk+1 =
Me∑
m=1

1

Me

(θ[m] − θk+1)(θ
[m] − θk+1)

T (4.3)

taking into account only the �rst Me �elite� samples with the highest performances, i.e.
Me < M .

4.2.2 Episode-Based PI2

The Path Integral Policy Improvement (PI2) is a PS method formulated from the principles
of stochastic optimal control, and is based on probability weighted average for updating the
policy parameters, specially for learning in trajectory control problems [101]. In [90] PI2 with
covariance matrix adaptation (PI2-CMA) is presented, which combines the standard PI2 with
a computation borrowed from the CEM to automatically adapt the exploration term. An
episode-based version of PI2 that can be classi�ed as Black-Box optimization called PIBB is
presented in [91], obtaining interesting results with respect to the original version and other
variants.

This method executes the exploration step like the CEM in (4.1), however, the covariance
Σ is not updated by the method itself, but rather the size of this exploration term has to
be externally controlled. The evaluation for obtaining R[m] has the same restrictions as for
CEM, but before the update, the evaluation set is normalized between 0 (the best roll-out)
and 1 (the worst). Then, the normalized costs are mapped to a probability distribution P [m]

as:

P [m] =
e−

1
λ
R[m]∑M

n=1 e−
1
λ
R[n]

(4.4)

With λ the temperature parameter. Finally, the update step is carried out with the probability-
weighted average using the parameter vector of every roll-out and its respective probability
P [m]:

θk+1 =
M∑
m=1

P [m]θ[m]. (4.5)

4.2.3 Episode-Based PI2 with Covariance Matrix Adaptation

In the present work, we propose to extend the PI2-CMA presented in [90] to the PIBB. This
extension is intended to incorporate an automatic adaptation of the exploration term in
PIBB, with a similar strategy as the one used in (4.3) for CEM. This alternative strategy can
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Table 4.1: PS comparison

Algorithm
Covariance
Adaptation

Exploration Evaluation
Probability
for weighted
averaging

CEM X episode
trajectory

cost
uniform with

the elite samples

PI2-CMA X time-step cost to go
normalized

exponentiation

PIBB 7 episode
trajectory

cost
normalized

exponentiation

PIBB-CMA X episode
trajectory

cost
normalized

exponentiation

PI2 7 time-step cost to go
normalized

exponentiation

COACH+PS X
time-step/
episode

trajectory
cost

normalized
exponentiation

be also seen as a combination of PIBB and CEM. This extension uses the same algorithm
employed by PIBB, but, it updates Σ according to

Σk+1 =
M∑
m=1

P [m](θ[m] − θk+1)(θ
[m] − θk+1)

T (4.6)

instead of (4.3), based on the probability computed using (4.4). We refer to this approach
as PIBB-CMA.

The three presented PS algorithms along with the original PI2 and the PI2-CMA have
slight di�erences that are summarized in Table 4.1. The "Covariance Adaptation� �eld
indicates whether the algorithms have covariance adaptation for the exploration distribution
or not; the �eld �Exploration� shows the strategy for disturbing the parameters vector for
exploration which can be episode based, or time-step based; the column of �Evaluation�
shows the kind of evaluation that the algorithm has, for episode based evaluations it is used
a �trajectory cost� which is a scalar cost index, whereas for time step based evaluations the
�cost to go� is computed for every time step; all the listed algorithms update the policy
with probability weighted averaging, so the corresponding �eld indicates the technique the
algorithm uses to compute the probability for updating the policy, for instance, CEM takes
the best Me roll-outs with associated uniform probability 1/Me used in (4.2) and (4.3), the
rest algorithms use normalized exponentiation of the cost computed with (4.4).

Additionally, the proposed methods of this work are included in this table, but the details
are presented in the next section.
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Figure 4.1: Learning Sequentially with COACH+PS.

4.3 Policy Search Guided with Human Corrective Feed-

back

Policy Search RL algorithms, as any autonomous RL algorithm, take only the feedback
given by the cost or reward function and along with the exploration strategy, the search of
the solution is performed. In this work it is proposed to combine episode-based PS with
human guidance, where the human teacher is able to correct the policy every time step,
whereas the PS only updates the policy model after each iteration of M trials, based on the
global performance measurement of every roll-out. This combination of feedback sources is
presented in two di�erent approaches, where the learning agent is updated by the users with
the COACH framework and the PS algorithm in either a sequential or a simultaneous fashion
as explained below.

4.3.1 Learning Sequentially with COACH and Policy Search

In this scheme called SeqCOACH+PS, we propose to have two independent learning phases,
as depicted in Figure 4.1. At the beginning, the human teacher interacts with COACH
providing corrective feedback to the agent during the task execution. The learning could
be done from scratch or the initial policy parameters can be set from a policy that needs
to be re�ned. The interactive learning process is executed during several episodes until the
user considers that he/she cannot improve the quality of the policy further. Thereafter, the
resulting policy is taken as the initial set of parameters for the normal PS process. It has the
objective of performing a re�nement of the learned parameters in order to achieve an optimal
point while locally exploiting the parameters space. The learning process �nishes with the
same criteria of convergence used when learning only with PS.
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Figure 4.2: Learning Simultaneously with COACH+PS.

4.3.2 Learning Simultaneously with COACH and Policy Search

This second approach named SimuCOACH+PS uses simultaneously both sources of infor-
mation, human feedback and parameter update of PS, for training an agent as shown in
Figure 4.2. Since the learning progress with COACH is completely based on the human
teacher criteria, the convergence is prone to be unstable when the users provide mistaken
feedback. SeqCOACH+PS also su�ers this sensitivity to human errors in its �rst stage of
human advice.

We propose to have the PS algorithm at a supervisory level of COACH, in which the cost
function determines whether the policy trained by the human teacher is evolving properly
or not. Previously we stated that this work is based on episode-based PS, however the
proposed simultaneous PS and COACH learning strategy can be seen as a PS algorithm in
which the evaluation is episodic, but the exploration is step-based and completely given by
the corrections of the human teacher, wherein the changes that COACH obtains over the
policy vector are taken as exploration noise by the PS algorithm.

For this hybrid learning scheme, during each roll-out, a regular COACH process of inter-
active training is carried out. From the PS point of view, the evaluation and update stages
are kept exactly the same as de�ned by episode-based PS in Algorithm 4.2 at lines 3 and 4
with equations (4.2)-(4.5), depending on the used algorithm.

The exploration stage is signi�cantly di�erent from the strategy given by (4.1), because
the samples are only created from the distribution N (θ,Σ) when it is detected that the user
is not providing corrective advice anymore. However, during roll-outs advised via COACH,
the users advise incrementally the agent, so little by little the policy is improved with the
knowledge the users have about the previous policy. Then, creating independent samples
from the current policy distribution for every roll-out can make that some samples obtain
behaviors completely contrary to what has been obtained by the human teacher during the
immediately previous executed roll-out. This situation tends to confuse the users, they can
interpret this situation as �the agent is not interacting properly or is rejecting the results of
the advice after each episode�. This situation diminishes the user interaction with the agent.
Therefore, the system would not bene�t from the human knowledge.
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To avoid this problem, in this hybrid learning strategy, the resulting policy of a roll-out is
set as the initial policy for the next one. There are two di�erent parameter vectors for each
roll-out, the vector θ[m] which is the initial parameter set at the m− th roll-out advised with
COACH, and the vector θ′[m] that is the parameters set returned at the end of the roll-out.
The di�erence of these two vectors is associated to the corrections advised by the teacher.

This sequential exploration allows the teachers to have insights of the operation of the
policy, and notions of how to keep improving it through the next roll-out executions. After
M trials, the PS updates the policy. In cases where the teacher is continuously improving
the task execution, the parameters computed for θk+1 have to be similar to the ones of the
most recent task executions. According to the cost function, when the human feedback is
harming the policy, the update stage should result in a set of parameters similar to the ones
that controlled the agent, before the erroneous human feedback.

Algorithm 4.3 shows that for every k− th iteration, the �rst roll-out is executed with the
actual parameters vector of the current policy (line 2). The execution of every roll-out is
given by RunRollOutCOACH(θ[m]) that has the policy vector as input argument, and returns
the corrected policy (line 4). When the initial vector is the same returned at the end of the
trial, it means that the teacher did not provide advice, consequently, the exploration can be
carried out by the PS algorithm with the regular strategy (line 8). Regardless whether the
roll-out is advised or not, the policy vector θ′[m] returned after each execution is set in the
group of samples (line 10) for the update stage.
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4.4 Experiments and Results

The proposed hybrid learning approaches are tested using simulated and real problems. The
proposed sequential and simultaneous approaches are validated and compared to standard
Policy Search methods. First, we present an experiment where a previously trained policy
is used to simulate a human teacher that interacts with the learning methods in order to
train an agent to perform a task. This experiment with simulated teachers is carried out for
evaluating the convergence of the learning systems in a setup with controlled human factors,
i.e. the experiment only evaluates the capacity of the algorithms to track the intention of
the teacher for approximating the policy.

Second, validation experiments with actual human teachers are carried out for learning
balancing tasks in simulated and real environments. Finally, we compare the performance
of users tele-operating the systems with the controllers learned interactively. This third
comparative analysis is intended to show the performances that non-expert users can reach
when they are teachers.

For all the experiments of this section the meta-parameters for the PS operation along
with the corresponding with COACH are �xed. The amount of roll-outs for each PS iteration
was set to M = 10; in the case of CEM the amount of elite samples is Me = 5. For COACH,
the learning rate for the Human Feedback modeling was set β = 0.3, whereas the error
magnitude e was �ne tuned for every problem with an initial magnitude that is half of the
action range, any change of this magnitude has proportional impact on the action updating,
i.e. it is intuitive to tune for the user.

4.4.1 Learning with a Simulated Human Teacher

A �rst evaluation of the proposed methods is presented in this section, wherein a pre-trained
policy is used for emulating a human teacher that advises the learning agent. The need to
implement non-real human teachers is motivated by two reasons: (i) to evaluate robustness of
the learning methods to mistaken human corrections, unfortunately it is not easy to quantify
percentage of mistakes with real human teachers; (ii) to evaluate the learning strategies
for correcting the policies itself in a transparent setup without in�uence of human factors,
because humans not only perform mistakes, but also their attention and e�ort vary according
to their motivation, mood and other factors (e.g., an unmotivated user who never advises
corrections, never does mistakes, but also does not transfer any knowledge).

This experiment is carried out using the well known �cart-pole� RL problem [95], and our
implementation is based in this environment1. The objective of the task is to learn the forces
applied to a cart in order to keep the attached pole balanced. The observed states are the
position and velocity of the cart along with the angle of the pole and its velocity respectively
s = [p, ṗ, ϑ, ϑ̇]. Usually the goal is to keep the pole balanced, but in this case the complexity
of the task is slightly increased by the cost function to minimize C(T ) =

∑T
t=0 |pt|−1, which

requires the pole to be balanced with the cart in the center of the scenario in p = 0. The

1https://github.com/david78k/pendulum/tree/master/matlab/SARSACartPole
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Figure 4.3: Learning curves of PS agents with the cart-pole task.

episodes start with the cart in the center of the scenario and the pole is in upright position;
the episode �nishes if the pole falls over, the cart reaches the boundaries of the scenario, or
after 5,000 time steps. The policy is parameterized by splitting each state variable using 4
radial basis functions (RBF), for a total of 256 RBF features in the vector f(s). For these
experiments, 50 runs of each algorithm with constant parameters were carried out.

Policy Search Comparison

First, we compare the PS algorithms for learning to solve the cart-pole problem. The task
is approached with agents performing the CEM, PIBB, and PIBB-CMA strategies. Each
algorithm was run 50 times, and the statistical results are presented in Figure 4.3. The
learning curves show that PIBB-CMA agents obtain better �nal performances than the other
two PS approaches. Both PIBB-like agents have slightly faster convergence than CEM, and
reach considerable lower cost functions. Additionally, the covariance adaptation component
of PIBB-CMA improved 10% of the cost obtained with the original PIBB. Therefore, this
faster algorithm is used in the experiments of the hybrid approaches proposed in this work.

Hybrid Agents with Simulated Teacher Comparison

The emulated human teacher is a block added to the learning loop, that contains the pre-
trained policy Ppt(s) from Section 4.4.1. The objective of this block is to advise corrections
like humans do to the learning policy P (s), in order to converge to a similar performance
of Ppt(s). The corrections h are the same kind of vague binary signals that users provide to
a COACH agent, e.g., increase or decrease the executed action. Since the human teachers
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Figure 4.4: Learning curves of hybrid agents with simulated human teachers without mis-
takes.

do not correct in every time step of the executing policy, in this block the frequency of the
advice is controlled with a probability ε. Therefore, the correction is computed every time
step as:

h =

{
sign(Ppt(s)− P (s)) with probability ε

0 with probability 1− ε
(4.7)

where h would be the �human corrective advice� of line 12 in Algorithm 3.2. The probability
ε is diminished after every roll-out with a decay factor of 0.95.

In these experiments, we also consider the fact that in general mistakes are always inherent
to human feedback or demonstrations. Therefore, for the simulated teacher, wrong corrective
advice is provided to the agent with a probability η as

h =

{
−h with probability η

h with probability 1− η
(4.8)

The probability η was varied for running learning processes with 0%, 20%, and 40% of
mistakes. In the case of the SeqCOACH+PS, the human feedback is given to the COACH
agent only during the �rst 50 roll-outs, this is indicated with a dotted line in the plots. Then,
the PS exploration continues the learning process. Additionally, the hybrid approaches are
compared to the performance of the pure COACH agent, the PIBB-CMA approach previously
presented in Figure 4.3, and the performance of the pre-trained agent used for simulating the
human teacher using (4.7).

The experiments show that for this task, approaches that use the �human feedback� learn
faster than the pure Policy Search agent. COACH-only agents have the fastest learning
in the very �rst episodes, however they converge to lower performances than the hybrid
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Figure 4.5: Learning curves of hybrid agents with simulated human teachers with 20% of
mistaken advice.

Figure 4.6: Learning curves of hybrid agents with simulated human teachers with 40% of
mistaken advice.
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agents. Moreover, COACH performance is the most sensible to mistaken feedback, since
its convergence decreases more than the other agents when the probability of mistakes η is
higher. The previous observation is expected because the human advice is the unique source
of information for COACH. Hence, the policy performance only depends on the quality of
the feedback. This is one of the motivations for combining COACH with RL.

SeqCOACH+PS shows the most stable convergence, since from the 50th episode on, there
is no human advice that might harm the already good policies obtained with COACH. The
results of the experiments with 0% and 20% of mistakes (Figure 4.4 and Figure 4.5), show
that when the stage of learning with COACH stops and the PS phase starts, the learning
curve turns into the least steep but the most monotonic. This happens as PS can be seen
as a �ne tuning of the policy obtained by the COACH stage, which quickly learns good
policies. In the case of 40% of mistakes in Figure 4.6, the PS stage drastically improves the
performance, the learning curve looks like the pure PS convergence, but displaced to the left
by 300 trials.

The SimuCOACH+PS approach obtains the best �nal performances of the policies com-
pared to the other agents, it even outperforms the pre-trained policy used for simulating the
teacher when there is 0 and 20% of erroneous feedback. The simultaneous combination of
interactive learning and PS makes the learning slower in the very �rst episodes compared to
COACH. However, it outperforms the COACH's performances after 30, 40, and 90 episodes
approximately in the cases of �human feedback� with 0%, 20%, and 40% of incorrect advice
respectively. This improvement with respect to SeqCOACH+PS is also obtained because in
this simultaneous case, the covariance matrix is computed since the very beginning of the
training, then it can be seen as a dimensionality reduction, because when the learning is left
only to the RL agent, the exploration could be very small in some of the parameters.

These experiments show that hybrid approaches are more robust to noisy corrections, and
faster than pure autonomous or pure interactive learning approaches.

4.4.2 Learning with Real Human Feedback

A more detailed validation of the proposed methods is carried out with experiments in-
volving real human teachers interacting with simulated and real problems, in which the
corrective feedback is provided to the agent with a keyboard. Again, the cart-pole problem
is approached along with a real inverted pendulum swing-up [2]. In these experiments �ve
participants interacted with the agents as teachers. They advised SimuCOACH+PS agents
during the episodes they considered appropriate. The users also interacted with the COACH
agent during 30 episodes, and the obtained policies were used for the initial policy in the sec-
ond stage of the SeqCOACH+PS. The learning curves are also compared to those obtained
by pure PS agents. The video2 shows the interactive learning and execution of the agents.

2https://youtu.be/VIJiK7Rhe4o
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Figure 4.7: Learning curves of the experiments for the cart-pole problem with real human
teachers.

Cart-Pole

In this validation, the same environment used in the previous experiments is used for learning
to execute the task with support of real humans. Results in Figure 4.7 show that all the agents
that use human advice obtain �ve times faster convergence than pure PS, and that the hybrid
agents obtain better policies than pure COACH or pure PS. The SimuCOACH+PS obtains
the best performances, but in the very �rst episodes is slower than COACH, and consequently
slower than the sequential scheme. For this problem it is possible to see that the convergence
is more monotonic than the experiments with simulated human teachers, although lower
�nal performances are obtained. This can be due to the capacity of real human teachers
that are adapting to advise the current policy, leading to di�erent �nal policies with similar
performance, whereas, the simulated teachers only try to teach to imitate the pre-trained
policy.

Swing-Up Pendulum

The second experiment is carried out using an under-actuated inverted pendulum swing up,
which is a weight attached to a DC motor depicted in Figure4.8. The observed states are the
angle and its velocity s = [ϑ, ϑ̇], while the action is the voltage u applied to the motor, which
is in the range [-2, 2]V. As the motor does not have enough force to rotate the pendulum
up directly, the �rst problem to solve is to learn to swing the weight back and forth for
reaching the upper position (ϑ = π). Then, the second problem is to learn to keep the
pendulum balanced in the unstable equilibrium. In this case, each state variable is split
into 20 RBF basis functions (20x20) for a total of 400 features that compound the vector
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Figure 4.8: Inverted Pendulum Swing-Up setup (taken from [2]).

f . The episodes are �nished after 500 time steps (10 s), and the cost function is given by
C(T ) =

∑T
t=0−(ϑt/π)4.

For this problem COACH uses an Inverse Kinematics (IK) model to map the advice
from the e�ector space to the actuator space. The user provides corrections like �move the
pendulum more towards right, left, up, or down� with the arrows of a keyboard, and this
module based on the current state, uses the IK for mapping the advice into �apply more or
less voltage to the motor�.

The results obtained with the real system are very similar to the simulations (both in
Figure 4.9). In this new set of experiments we again observe that all interactive approaches
are faster than the pure PS. However, the performances obtained with only COACH are
outperformed by PS after several episodes. The PS agent takes seven times more episodes
to reach the performance reached by the users after 20 trials advised with COACH. The
hybrid schemes have the best cost indices; the sequential approach successfully employs PS
to �ne-tune the initial policy obtained via COACH. The simultaneous scheme also has slower
convergence than pure COACH in the �rst episodes, but keeps improving until reaching the
highest performances.

SimuCOACH+PS is slower than SeqCOACH+PS at the beginning, because in the simul-
taneous scheme, the probability weighted average computed by the PS can be compared to a
lowpass �lter, that avoids drastic changes in the parameters that might obtain considerable
positive or negative impact on the performance. Nevertheless, during the episodes previ-
ous to the convergence, the occasional human feedback (not present in SeqCOACH+PS at
that moment) seems to be more e�cient than the random exploration given by the normal
distribution of (4.1).

3DoF Arm Inverse Kinematics

This third evaluated problem is about learning the inverse kinematics model for a real 3
DoF robot arm (Figure 4.10). The model has to map the input request of a 3D coordinate
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Figure 4.9: Learning curves of the experiments for the inverted pendulum swing-up problem
with the simulated system (normal lines) and the real system (dashed).

position into the space of the angles of the three servos that compose the robot arm, which
is the output. The cost function used in this problem is the Euclidean distance between the
points requested to the model and the actual arm's end e�ector position, which is given in
centimeters.

In this application, when the human teachers interact with the learning robot, they ob-
serve the position of the end e�ector with respect to the target point, then they provide
corrective advice in the joints space for decreasing the distance. This robot does not have an
operation mode for kinesthetic teaching, so this corrective advice is the only way to obtain
human feedback in the action domain. For the experiments of learning with COACH and Se-
qCOACH+PS, the human teachers only interact with the robot during the �rst �ve episodes,
whereas with SimuCOACH+PS the users continue advising when considered necessary.

The results obtained from the learning processes in Figure 4.11 show similar trends than
the previous experiments. In this case, the PS algorithm, which is a local search methods,
converges to local minima. With the interactive agents, the obtained costs are considerable
lower than the reached with only PS. Again SimuCOACH+PS showed to be slowest at the
�rst episodes, however it outperforms the performance of pure COACH after 40 roll-outs.
For this problem the sequential hybrid algorithm converge to a slightly lower cost than the
simultaneous counterpart, however both reduce 40% of the error obtained with only COACH,
thus the average error of the hybrid agents is 7mm, while in the best run the policy model
converged to an error of 3mm.

In this experiment, the human knowledge leveraged the convergence of the policy, the
visual perception of the human teacher can help in the very �rst part of the learning process,
nevertheless, that can bring on inaccuracies, especially for sensing depth. However, the
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Figure 4.10: Robot Arm used for learning the IK model.
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Figure 4.11: Learning curves of the experiments for the inverse kinematics for a 3 DoF robot
arm. Average Cost in cm.

Table 4.2: Comparison of users tele-operating and teaching

Task
Performances

Tele-operation Interactive Learning
Cart-pole -249.13 -4576.43
Simulated Pendulum swing-up -81.79 -360.52
Real Pendulum swing-up -68.44 -390.55
Simulated Inverted Wedge 0.2276 0.07024
Real Inverted Wedge 0.2718 0.0838

RL component of the algorithms, that evaluates based on the cost function supports the
re�nement of the model for attaining a better accuracy.

4.4.3 Comparison between tele-operation and learning

In this set of experiments, the abilities of the users for teaching the agents to perform the
tasks are compared to the capacities of the users for actually executing the tasks with tele-
operation. The participants interacted with the system several trials for learning to execute
the tasks. Their best execution is compared to the performance obtained using COACH.
Additionally, an inverted wedge is approached as fourth case study; for this balancing task
the cost function is the average angle per episode, where the equilibrium point is with zero
degrees. Execution of this task is shown in the video.
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Table 4.2 shows the results comparing the users' tele-operation and teaching; since the
cost functions have to be minimized, the lower the index the better the performance. For
all the cases explored in this chapter, the users did not learn to tele-operate the systems
successfully, as re�ected in Table 4.2. They kept the equilibrium only for a few seconds
for all the problems except for the pendulum swing up, in which the pendulum was never
balanced. It is interesting to observe that the users can obtain agents which can perform
tasks that the human teachers cannot demonstrate, i.e., the interactive learning approaches
based on advise of corrections let non-expert users in the task domain teach policies of good
quality from vague binary pieces of advice. The numeric results in Table I show the big
di�erence between the two options of interaction of users with the systems (operating and
teaching). This highlights the advantages of sharing the work with intelligent systems that
can learn from the users who are not able to provide good demonstrations. These outstanding
features of the hybrid approaches are desirable in environments where users frequently need
to adapt the agent to new conditions or tasks.

4.5 Discussion

This chapter has presented and validated approaches for policy search supported with human
feedback. Two schemes of combining PS with COACH were presented: a sequential scheme
and a scheme that learns simultaneously from human and autonomous feedback.

The experiments with balancing tasks and the Inverse kinematics model showed that the
hybrid algorithms can bene�t from the advantages of both kinds of learning strategies, where
the corrections provided by human teachers result in fast learning to a high but suboptimal
performance, whereas PS can optimize policies based on cost functions that are not very
explicit or intuitive to the users' understanding, or simply when the human perception be-
comes limited to support the learning process. Therefore, the addition of human support
to PS speeds up the convergence between 3 to 30 times according to the results obtained.
From the point of view of interactive machine learning, these hybrid strategies provide more
robustness to the convergence, since the sensitivity to noisy or mistaken corrections is dimin-
ished. Moreover the quality of the policies is improved with the cost based corrections of PS
which perform �ne tuning of the policies taught by the users.

The proposed hybrid schemes showed to be better choices than pure COACH or PS
frameworks in applications that need fast learning. The SeqCOACH+PS is a simple scheme
easy to implement and completely agnostic of the type of PS used; it facilitates the learning
especially in the �rst trials. The SimuCOACH+PS scheme showed to be slower than the
sequential one at the very beginning. However, it bene�ts from the occasional corrections
given by the teachers, which guide the exploration to the highest achieved performances.

The comparison of all the learning approaches, and even the performance of the users tele-
operating the agents, shows that the proposed strategies can have high impact with the cyber
physical systems of the coming industry developments, that require to reduce the workload
of factory operators and also to ease the adaptability of the products for the �nal users who
can interact for modifying the operation of technological products.
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This Chapter satis�es the proposed fourth objective. The validations of COACH in three
real systems allowed us to demonstrate that the learning method satisfactorily works also
in physical systems. In the next Chapter more applications with simulated and real robot
arms are presented. That chapter presents also hybrid learning schemes of COACH and RL,
but with the focus on learning trajectories. Additionally, the COACH method is generalized
for problems of multiple action dimensions with problems of mismatch between the human
teacher feedback space and the actions domain, that is related to the third objective of this
thesis.
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Chapter 5

Policy Search with Human Corrective

Feedback for Motor Primitives Learning

In this chapter, we propose the use of human corrective advice in the actions domain for learn-
ing motor trajectories. Additionally, we combine this human feedback with reward functions
in a Policy Search learning scheme. The use of both sources of information speeds up the
learning process, since the intuitive knowledge of the human teacher can be easily transferred
to the agent, while the Policy Search with the cost/reward function take over for supervising
the process and reducing the in�uence of occasional wrong human corrections. This interac-
tive approach has been validated for learning movement primitives with simulated arms with
several DoFs in reaching via-points movements, and also using real robots in tasks like �writ-
ing characters� and the game ball in a cup. Compared to a standard Reinforcement Learning
without human advice, the results show that the proposed method not only convergences to
higher rewards when learning movement primitives, but also the learning is sped up by a
factors of 4 to 40 times depending on the task.

5.1 Introduction

Robot motor skill learning has been subject of research for several years. Machine Learning
has been used for obtaining trajectory representations, since several applications face the
necessity of encoding sequences of points into a policy model that can be used to execute
a motor skill. Some Motor Primitives models have been used to represent the movements
required for tasks like 'drumming'[82]; `T-ball batting' [80]; `ball in a cup' [59]; 'pancake
�ipping' [62]; `ball throwing', `dart throwing', `robot table tennis' [60]; and `golf swing' [67]
among others.

The mentioned tasks have been solved using policies based on models that present some
generalization capabilities such as the Dynamic Movement Primitives (DMP) [41], primitives
based on Gaussian Mixture Models [44], or Probabilistic Movement Primitives (ProMP)
[79]. These models have interesting properties that can be convenient in many applications.
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Figure 5.1: Ball-in-a-cup task execution of a policy learned using the Interactive Policy Search
method proposed.

Movement primitives can be learned through demonstrations, and/or by self-improvement
using Reinforcement Learning.

In robotics, RL [57] has been used to learn and improve movement primitives, often ini-
tially acquired from demonstrations. RL-PS methods have shown particularly suitable for
learning with real robots [32], attaining higher rewards with respect to the initial (demon-
strated) policy. However, the optimization process requires a large number of trials, which
is usually impractical or expensive when using real systems. As it was said in the previous
chapter, PS strongly relies on good demonstrations, since it is a local search method [32], but
for certain tasks the human may not be able to provide useful demonstrations, particularly
when the dynamics of the task or limitations of the robot are unknown. For example, how
many swings are required to achieve a ball-in-a-cup task given a heavy ball and a robot
with limited accelerations that cannot toss the ball high enough in one shot. This lack
of intuition suggests some form of interactive learning process where human knowledge is
added/transferred as the robot optimizes the policy.

In this chapter, we propose a method for learning motor skills with real robots, which
makes feasible the convergence in few episodes. This extends the ideas of the methods
presented in the previous chapter, but to be applied in trajectory learning for movement
primitives, combining PS algorithms with human corrections, in order to leverage the explo-
ration provided by policy search with the knowledge of a human teacher. The method here
proposed guides the exploration of a PS algorithm with the human teacher's current knowl-
edge of the task. We assume this process is dynamic in the sense that the teacher knowledge
also improves as he/she observes the e�ects of his/her corrections through the interaction of
the robot with the environment and its respective outcomes.
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The experiments presented in this chapter show that the proposed method can be used by
users to shape detailed trajectories with vague action corrections. Signi�cant reductions of
the number of trials required to learn reaching movements with simulated arms are presented.
Actually the introduced method is tens of times faster than conventional PS when the arm
has 50 DoF. The method is also tested in the real world problem ball-in-a-cup task (Figure
5.1). In this case, successful policies can be obtained 4 times faster respecting the traditional
PS approach.

5.2 Related Work

Interactive corrections can be applied in the context of movement primitives. In this case,
corrections are used to update the parameters that shape the characteristics of the robot
movement. In [25] a feeding assistance robot is pre-programmed with a ProMP [79] for
feeding disabled people. Then, a framework is proposed to allow caregivers to personalize the
original trajectory to the preferences of the disabled person. In this framework the caregiver
physically adapts the ProMP execution through kinesthetic feedback. The new executed path
is recorded to create a new ProMP. In [10] a system is proposed that allows the modi�cation
of a primitive during execution with tactile feedback. If the user provides a correction with
an e�ector displacement with respect to the original trajectory, the displacement is applied
from there on to the rest of the path, then all the data-points are recorded for re-deriving
the policy after the execution.

Kinesthetic teaching is used for incremental re�nement of trajectories of context-dependent
policies [34] represented with ProMPs, wherein the user may modify the trajectory execution
for performing a correction. Then the data-points of the recorded trajectory are applied to
update the probability distribution of the ProMP. That method was tested in reaching tasks
with a robot arm.

However, there are a number of cases where none of the previous approaches can actually
be applied. Here we describe a few scenarios: (a) There is no expert available to provide
high-quality demonstrations that lead to a policy with acceptable performance (e.g. a person
with disability without a caregiver, who needs to �x a policy for a new task or environment);
(b) the �nal user does not have an available interface to provide new demonstrations such as
intuitive tele-operation interfaces, wearable sensors, or motion capture systems; (c) the robot
is not back-driveable or its dimensions are not suited for direct human physical interaction
required by kinesthetic teaching; and (d) the task involves fast robot movements, making
kinesthetic corrections impractical and/or unsafe for the teacher.

In these cases, wherein detailed feedback cannot be provided to the learner, approaches
like A-OPI or COACH that are based on simpler signals of correction are better suited. Since
there is no possibility of detailed corrections, these algorithms are suitable because in this
case the human-agent interface does not need tactile or force sensors, and can be limited to
simple, sparse, occasional and vague commands given with keyboards, voice commands or
gestures.
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The closest work to our approach is [87], where the problem caused by the absence of
expert demonstrations was partially overcome by combining a PS algorithm with the inter-
active de�nitions of via-points for adapting DMPs. In that work, the teacher could stop
the trajectory execution and move (physically or remotely) a robot to a desired position at
that speci�c time step. This via-point correction was then used to update the distribution
used for the PS exploration. The method was validated in simulations of writing letters and
object insertion with robot arm. The approach in [87], however, only addressed the kine-
matics of the tasks, focusing on the shape of the trajectories. This interactive PS strategy
is not suitable for tasks where the dynamics are dominant (e.g. throwing and catching an
object) since stopping the task to adapt a speci�c via-point is physically impractical and the
instant of correction is not evident. Also, modifying a via-point to satisfy certain kinematic
con�gurations invariably a�ects the acceleration and thus the outcomes of a dynamical task.

In this thesis, we leverage on COACH [26] as the mechanism for interactive corrections
as it allows human feedback to be introduced during robot execution. However, COACH
was originally designed for interactive optimization of policies in a Markov Decision Process
(MDP) setting. Therefore, we provide a new formulation of COACH for time-dependent
parametrized policies that makes it compatible with the improvement of movement primi-
tives.

5.3 Corrective Advice for shaping movement primitives

This section proposes modi�cations of the COACH algorithm for training parameterized
movement primitives. The original COACH algorithm was proposed on a MDP setting [26]
where human feedback is used to improve a policy that evolves under Markovian assumptions
in a state-space s. Here, the foundations for using COACH in the context of movement
primitives is to allow for human feedback on a policy whose evolution is (indirectly) governed
by time. We focus on movement primitives such as DMPs and ProMPs whose evolutions are
de�ned by a phase variable zt, but other representations are also possible [44]. Essentially,
the representation changes from the state variable s to the phase variable zt. In DMPs,
the policy is represented by a dynamical system comprised of a linear spring-damper (5.1)
attached to a goal attractor g.

ft = α(β(g − xt)− ẋt). (5.1)

This system is modi�ed by an arbitrary non-linear term g(zt)
>w for shaping complex tra-

jectories such that its acceleration is:

1

τ
ẍt = ft + g(zt)

>w, (5.2)

where w is the parameters vector (or the weight vector), and g(zt) is the basis function
vector.

In the case of ProMPs, the policy model is a probability distribution in the parameter
space, represented with a mean and a co-variance matrix which are obtained from a set of
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demonstrations. During execution, this model is conditioned on an observation for computing
a trajectory associated to that speci�c context. Using Bayesian inference, a set of parameters
w of a linear model of basis functions is obtained and the trajectory is computed with (5.3)

xt = g(zt)
>w. (5.3)

COACH can be used to optimize the policy by updating the parameter vector w via
human advice. The update uses stochastic gradient descent with the error assumption in
Section 3.2.1, and the derivative

∂xt
∂wl

= [gt]l, (5.4)

where the right-hand side of the equation represents the l -th basis function at time step
t. Since this work is focused on correcting single trajectories, in the cases of ProMPs, the
corrected vector w can be used for updating the global mean and co-variance matrices as in
[34].

The user advises local corrections during the motor skill execution. This advice propagates
over the next time steps as changes of the weights are smoothed ahead by the shape of
the basis functions (usually radial-basis functions), so the e�ect of the correction can be
appreciated immediately.

While COACH can be used to advise corrections in both task or joint space of the robot,
advising corrections at the joint level is not intuitive for robots with multiple degrees-of-
freedom. Thus, hereinafter, derivations will address the case where corrections are made on
the task space of the robot. In other words, we will assume that the human intention is
to correct the robot's end-e�ector movement as opposed to its joint movements. Under this
assumption, since policies can be represented either at the task or joint levels two realizations
of the algorithm must be addressed. If the policy is represented at the task level in the
Cartesian space, an Inverse Kinematics (IK) function must be used as a last step to map the
learned policy in the joint space of the robot. Conversely, if the policy is represented in the
joint space, the IK function must be used on the human feedback to translate the human
correction into the corresponding space. Both cases will be described in detail.

5.3.1 Case of policies de�ned in the Cartesian space

For policies that represent the end-e�ector trajectory, the learning scheme is simpler because
according to our assumption human corrections are used to modify the policy directly. How-
ever, this mode of operation is constrained to the robot at hand, because an operation mode
that request commands in the end e�ector space and maps it to the actions in the joints level
is required, e.g. the IK with the position request in order to obtain the respective vector of
joint angles. In Figure 5.2 it is depicted the scheme for this case of policies. In the left hand
side the stage in which the demonstrations are gathered and the initial policy is obtained; in
the right hand side is the stage of learning with COACH wherein the human teacher advises
the executed action. The Update block computes the COACH assumptions and modi�es the
parameters vector of the policy; the blocks surrounded by the red dashed line work during
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Figure 5.2: Learning Scheme for Movement Primitives in the Cartesian space.

and after the learning process for executing the current policy. Between the policy computa-
tion and the action execution there is a block for mapping the action computed by the policy
onto the actuators space.

In Algorithm 5.1 is de�ned a version of COACH for trajectories represented with a linear
combination of basis functions. It is possible to see that at the beginning some variables
are stated, �rst the initial positions of the joints qt to be used by the Inverse Kinematic
model (line 1). Then the magnitude for the error assumption e in Section 3.2.1 and the
learning rate β are de�ned (lines 2-3). First, the weights ct that represent the probability
function of the credit assigner are computed (lines 4-6). The loop between lines 7 and 24 is
executed once per time step. The function getBasisFunctions(zt) maps the phase variable
to the features vector gt (line 8); X t, the point of the trajectory at time step t in the e�ector
domain is computed by the linear model (line 9); the Inverse Kinematic (IK) is computed to
obtain the joint requests qt (line 10). The action is executed by the robot (line 11) and if a
human advice h is received before the next time step (line 13), the condition in lines 15-22
is executed. If the human teacher provides a correction, the features vector that includes
the weighted sum of the past features vectors Φcred is computed (lines 15-17); afterwards,
the Human Feedback prediction H(zt) is computed (line 18), and its parameters v updated
with the SGD rule (line 19); the adaptive learning rate α(zt) is obtained (line 20). The error
assumption from Section 3.2.1 is computed (line 21), named errorX where the subscript X
means that this error is de�ned in the Cartesian space. Then the policy model is updated in
a similar way as the Human model but using the errorX assumption (line 22).

The function IK(X t, qt) takes the end e�ector pose X t and the current joints vector qt in
order to �nd a solution qt that is close to the current input. For instance, if the IK solver is
iterative, the current qt is used as the initial value for the iterations, otherwise, with a closed
IK representation the current qt used as input is taken for choosing among several solutions,
based on a similarity criterion.

A simpli�ed version of the Algorithm 5.1 can be implemented for simple and slow problems.
This version disconnects the Credit Assigner module and the Human Feedback modelling
module. In this regard, the implementation ignores lines 4-6, and lines 15-20. Then α(zt) is
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Figure 5.3: Learning Scheme for Movement Primitives in the joint space.

set constant, and the vector Φcred is replaced by gt in line 22.

5.3.2 Case of policies de�ned in the joint space

Policies that map directly the actions in the joint space are simpler to execute as they are
already given as actuator commands. However, during learning, more steps are required
for solving the correspondence problem between the human advice and the actuators space.
Figure 5.3 shows the scheme for learning this kind of policies, in which the user advises
the correction in the task space, an inverse kinematics block propagates this correction to
the joints space, and the updating block modi�es the weights w based on the modules of
COACH. During execution of the policy (area surrounded by the red dashed line), the inverse
model is not needed because is used only during the time steps advised by the teacher in the
learning process.

The COACH version for this learning scheme is in Algorithm 5.2, where the kinematic
models are only used when human advice is given (policy updating in lines 13-25). The policy
computes directly the action in the joints space qt (line 8). In contrast to the case in Section
5.3.1, here the human model H (which is always in the task domain) and the policy model
are in di�erent spaces. Therefore, the rule for computing the error in the policy update of
Section 3.2.1 is rede�ned. The adaptive learning rate of the policy from the original COACH
is now included in the error as below

errorX = h · e · α(zt). (5.5)

When a correction is suggested by the teacher, the errorX assumption in the Cartesian
space is computed (line 20). The current e�ector position is computed with forward kine-
matics and added to the errorX in order to obtain the "desired" e�ector position (line 21),
which is used to obtain the "desired" joint vector (line 22). The di�erence between the "de-
sired" joint vector and the one computed by the current policy is considered the propagation

71



of the error assumption from the task space to the actuator space, called errorq (line 23).
Finally the SGD is computed for updating the weights w (line 24).

Notice that in the update (lines 12-25), the vector qt is not computed with the current
basis functions vector gt, but with the basis functions given by the credit assigner, i.e. the
expected action according to the used human delay probability distribution.

For disconnecting the Credit Assigner and Human Feedback Modelling modules, the im-
plementation should eliminate lines 3-5, 13-16, and 18-19. Additionally, in line 17 the vector
Φcred is replaced by gt, the term α(zt) should be eliminated from line 20, and set a constant
α to multiply the ∆w in line 24.

5.4 Corrective Advice and Policy Search for shaping move-

ment primitives

The learning methods presented in the previous section are fully based on human corrections.
This can be useful in some simple problems, but, in some others, the inherent drawbacks
of interactive learning related to the human mistakes and capabilities may in�uence more
negatively the convergence. Similarly, to the previous chapter, this section presents a core
contribution of this chapter�a synergistic combination of Policy Search (PS) with human
corrections for learning movement primitives�in the sense that PS is used to reduce the
impact of erroneous human feedback, while correct human feedback is used to speed up the
learning process of a PS algorithm.

The here proposed method is an extension of the simultaneous PS and COACH presented
in the previous chapter. So, according to the cost function, the PS algorithm decreases or
��lters out� the in�uence of improper corrections of the trajectories given by the teacher.
In essence, our proposed method enables human guidance based on COACH to in�uence
and bias the exploration of a PS algorithm in the form of exploration noise. Figure 4.2
depicts the proposed scheme. An initial parameter vector winit is disturbed either with the
original exploration strategy de�ned by the PS algorithm or with human guidance through
the roll-outs execution. The parameter update is carried out according to the particular
PS implementation. These iterations continues until convergence, resulting in a �nal policy
wf inal. As a result, this combination enables for joint skill learning, where the robot can start
with a blank policy, and human exploration is added whenever the human judges his/her
knowledge on the task can bene�t the robot learning.

Thus, during the roll-outs selected to be advised by the user, any type of COACH like
Algorithms 5.1 or 5.2 is run, but taking into account that the vector w is loaded into a wt

vector every time step in order to have all the changes in memory, since the evaluation stage
(Algorithm 4.1, line 3) can be step-based depending on the PS algorithm used as baseline
[32].

Algorithm 5.3 is a high level description of the proposed strategy for complementing the
PS with human advice during the exploration stage. Similar to Algorithm 4.1, the Explore,
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Evaluate, and Update stages are run every k-th iteration, but with an important di�erence in
the exploration process. There are 2 exploration modes: the original exploration strategy of
the PS method, and the exploration based on COACH. The user chooses one of them through
the �ag HumanGuidance (line 4). S/he would choose the COACH based exploration when
considers that is necessary and possible to advise the agent, then the roll-out using COACH
is run (line 5), otherwise, the teacher allows the random exploration of the original PS (lines
8-9).

The �ag HumanGuidance can be switched di�erently depending on the algorithm imple-
mentation. For instance, the human-machine interface can query it before every roll-out
execution. Particularly, for the implementations of this work, this �ag is set False by default
and switched on when the user advises a correction; if during a roll-out the user does not
give corrective feedback, the �ag is set False for the following roll-out.

During each iteration of the PS algorithm, M roll-outs of T time steps are carried out;
the vector w[1] is the same w[init] in Figure 4.2. In [wm]t is contained the parameters vector
w at time step t of the m-th roll-out. For the roll-outs in which the user is giving corrective
feedback (HumanGuidance==True), the initial parameters vector used for the m+1-th roll-
out (line 6) is the last one resulting from the immediate previous roll-out, i.e. [wm]T . This
is in order to keep the same policy that is being incrementally advised by the teacher. The
rest of the algorithm follows the regular PS scheme.
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5.5 Experiments and Results

The use of human corrective feedback is validated �rst for shaping trajectories without the
use of PS. Thereafter, more complex experiments are presented to compare the proposed
Interactive PS with respect to conventional PS.

5.5.1 Learning movement primitives with corrective advice

Experiments were carried out exclusively for evaluating the use of COACH for training move-
ment primitives. As a proof-of-concept, we proposed the problem of teaching a robot how
to write letters, in simulation and using a real robot. The objective in this experiment is to
evaluate improvements that can be made on the shape of a trajectory (encoded as a move-
ment primitive) via corrective advice. This improvement is quanti�ed against the original
set of points that compose a letter, used as ground truth. Two di�erent approaches were
evaluated: policy re�nement, and policy reuse. In the �rst case, the goal is to improve the
shape of a given letter. The latter case addresses an application of transfer learning, where
the goal is to reuse one of the existing policies, and reshape it via corrective advice to �t a
new desired symbol.

The procedure consisted of an initial stage, where a user interface was used to visually
indicate on a screen a reference letter to be drawn. The user then provided a set of demon-
strations of trajectories for each indicated letter. A RGB camera captured the user's pen
movement and recorded the whole path into a dataset, which was used to train an initial
Cartesian policy, parametrized as Equation (5.3). Figure 5.4 shows the screen of the interface
for recording demonstrations. The top �gure shows one instance of human demonstration.
The bottom �gure shows the reference symbol (in blue) overlapped with one of the provided
demonstrations (in red). In the attached video1 is shown the interface while is recording
demonstrations.

In a second stage, the user attempted to re�ne the policy resulting from the �rst stage.
Two di�erent interactive approaches were used for correcting the policy: (i) corrections with
more demonstrations and (ii) corrections with COACH. To quantify the performance of both
strategies, the learned symbols are compared with the ground truth symbols using euclidean
distance after alignment with Dynamic Time Warping.

The experiments were carried out both in simulation, with a 3-DoF robot arm, and with
a real UR5 robot with 6-DoFs. Figure 5.5 shows the simulated case where the robotic
arm draws the learned symbol (in red), while the teacher provides corrective feedback to
correct the trajectory towards the ground truth reference (in blue). In each experiment, �ve
participants demonstrated and corrected the robot primitive. Each user took a �rst session of
practice to become habituated to the interaction with the recording and corrective interfaces.

1https://www.dropbox.com/s/rrv1muavrqgtgbb/demos.mpeg?dl=0
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Figure 5.4: Demonstrations recording.

Figure 5.5: Policy execution and correction with the simulated 3-DoF arm. Human feedback
was used to make the robot draw as close as possible to the reference letter (in blue). The
initial demonstration is shown in red.
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Experiments of Policy Re�nement

In this experiment, a set of six symbols was learned (letters: a,c,I,m,p,s). The objective was
to improve and re�ne the trajectories learned from demonstrations. For each symbol, three
policies derived out from the �rst set of demonstration are compared.

-Primitives resulting from the original demonstrations: For each letter, a policy
was learned using �ve demonstrated trajectories.

-Primitives resulting from corrections with COACH: During �ve sequential exe-
cutions, the users observed the policy execution resulting from the �ve demonstrations and
simultaneously interacted to provide corrections using COACH. The corrections were relative
to the original policy in the Cartesian space. The users used a keyboard with two keys for
correcting along the x axis, and two keys for correcting along the y axis. The users advised
corrections to make the end-e�ector to pass closer to the reference symbol. Since the policy
is learned in the Cartesian space, the COACH version applied to this problem is the one
presented in Algorithm 5.1.

-Primitives resulting from corrections with more demonstrations: The users
observed the initial policy from the 5 demonstrations, and provided �ve additional demon-
strations for improvement.

Results of Learning with a Simulated Arm

The average learning curves for all the symbols are plotted on Figure 5.6. In the cases of
learning only with demonstrations, the �gure plots the �nal error of the resulting policies
from the datasets. Since the symbols used as reference are sets of points without physical
dimensions, the demonstrations recorded in the pixels space are normalized, so the error
measurements do not have units.

It is possible to see that correcting the trajectory with COACH, shows that providing
corrective feedback during 5 repetitions of the trajectory, the error is decreased by 79.83%.
On the other hand, the strategy of correcting with more demonstrations only obtained around
40% error reduction with respect to the achieved by the primitives learned with the �rst
demonstrations dataset. The aforementioned reductions mean that with the same amount of
trials (�ve new demonstrations vs. �ve episodes of correction with COACH), with corrective
feedback, a human teacher can achieve almost twice the error reduction with respect to the
strategy of recording more demonstrations.

Moreover, from the learning curves it is possible to highlight, that with only one episode
of corrective advice with COACH, the human teacher can attain better improvement than
the reached with the new set of �ve demonstrations. After the �rst episode of advising
corrections, the average error of the trajectories is decreased 73%. In the �rst episode is
wherein most of the improvement is achieved. This observation is not only taken from the
learning curves, but also from the appearance of the learned letters. For instance, in Figure
5.7 is printed the progress of improving a trajectory with corrective advice, where most of
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Figure 5.6: Average error during learning of the symbols.

the change obtained from the corrections is done in the �rst episode.

Table 5.1 shows speci�cally for each of the six explored letters, the �nal errors obtained
after correcting the policies with COACH and with more demonstrations. Basically, the
trends of the average results are kept, only an anomaly is highlighted: In the case of the
letter "p", after the process of correction by recording more demonstrations, the error was
increased 2.41%. A correcting session with the simulated arm is shown in the video2.

2https://www.dropbox.com/s/f60xv60d0kmgvch/corrections.mpeg?dl=0

Table 5.1: Average error for each symbol trained. The error is multiplied by 10−2

Symbol

Demos
Corrections

(COACH)

Corrections

(more Demos)

Error Error
%

Decreased
error

Error
%

Decreased
error

a 1.322 0.115 91.27 0.638 51.75
c 0.709 0.085 88.05 0.338 52.29
I 0.125 0.033 73.50 0.041 66.93
m 0.878 0.088 89.93 0.458 47.85
p 0.182 0.089 51.05 0.187 -2.41
s 0.432 0.064 85.17 0.300 30.48
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Figure 5.7: Trajectory correction progress: Learned Primitive (red), symbol of reference
(blue). a) Policy without corrections, b) after 1 episode of corrections, c) after 5 episodes, d)
after 8 episodes.

Results of Learning with a Real Arm

The previous experiments were replicated using a real UR5 arm. The same symbols and com-
parisons are used in this case. However di�erent participants from the previous experiment
played the teacher role. The points composing the drawn trajectories are obtained from the
robot's odometry, and compared to the reference symbol for the error calculation.

Examples of corrected symbols are shown in Figure 5.8, where the initial policy obtained
from demonstrations is drawn with white color, while in red color is the �nal trajectory after 5
episodes of correction. In Figure 5.9 are shown the average curves of learning and correcting
with demonstrations in contrast with the learning curve of correcting with COACH. The
error reduction obtained using more demonstrations is in average 30.7% and around 84.4%
when using COACH. In this case, the error reduction with the �rst episode of correction is
53.8%, which again is higher than the one achieved with �ve new demonstrations.

The �nal results per symbol are listed in Table 5.2. These average errors have similar
trends regarding the results with the simulated arm. The lowest error reduction is with the
symbol "p", that is still higher than the average of the error reductions resulting from the
strategy of correcting with more demonstrations. In general, these results are consistent with
the previous ones. This lets to conclude that the use of corrective advice to shape trajectories
is a good strategy for learning agents from human teachers, especially in situations wherein
the combination of user expertise and quality of the user interface does not obtain the best
conditions for recording high performance demonstrations. The results show that detailed
trajectories can be shaped easily only using vague binary corrective feedback. A correcting
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Figure 5.8: Examples of learning the letters "p" and "m" with the real robot. Policy derived
from demonstrations (white), and policy trained with corrective advice (red).

Table 5.2: Average error for each symbol trained using the real robot. The error is multiplied
by 10−2

Symbol

Demos
Corrections

(COACH)

Corrections

(more Demos)

Error Error
%

Decreased
error

Error
%

Decreased
error

a 1.483 0.158 89.35 1.151 22.45

c 0.842 0.115 86.34 0.401 52.38

I 0.284 0.096 66.20 0.182 36.62

m 1.287 0.127 90.13 0.967 24.86

p 0.174 0.109 37.36 0.159 8.62

s 1.206 0.216 82.09 0.796 34.00

session with the real UR5 arm is shown in the video3.

Experiments of Transfer Learning for Policy Reuse with a Simulated Arm

In policy reuse, the user can provide corrections to a primitive whenever a task is changed,
or when the task has to be performed in a new environment. There can be cases in which
recording demonstrations can be complicated due to di�erent reasons, e.g. 1) the absence of
an expert user in the task, who is able to provide high-quality demonstrations that lead to a
policy with acceptable performance; 2) when the �nal user does not have an available interface
to provide new demonstrations like wearable sensors or complex vision systems, 3) when
Kinesthetic teaching is not possible, since it is constrained to robots with physical dimensions

3https://www.dropbox.com/s/nwnzrkdoic5eurn/ur5shorttitle.mp4?dl=0
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Figure 5.9: Average error during learning to write with a real arm.

that a human teacher can handle. For some of those cases the knowledge already represented
by the primitive can be reused, then the user only needs to execute local modi�cations for the
points of the trajectory that need to be �xed for the new conditions. This previous discussion
motivates the evaluation approach of policy reuse that is presented after the results of policy
re�nement with a simulated robotic arm.

Here, users had to correct and improve a trajectory to reduce the error between the path
printed by the simulated arm and the reference symbol taken as ground truth. In contrast
to the previous experiments of policy re�nement, in this case, the initial policy corresponds
to a symbol that is di�erent from the desired one, resulting in larger initial errors.

Two symbols were explored for evaluating COACH for policy reuse. First a primitive for
the letter "z" was used as initial policy for the task of drawing a "2". The second was a "V"
used for drawing an "U".

In Figure 5.10, it is possible to see in the left hand side, the reference letter (blue) used for
recording the demonstrations for the initial policy derivation, and subsequently the corrective
process with COACH that obtained the �nal policy (red). In the right hand side is shown
the same �nal policy for the symbol "z" (red), which is used as the initial policy for learning
the symbol "2", and its baseline (blue).

In this experiment the user has to provide the corrective feedback during 10 episodes of
the path execution. In Figure 5.11 it is possible to see the evolution of the error through the
episodes of correction during policy execution. Before the correction of the trajectories, the
average error was 0.1717. Unlike the policy re�nement experiments, in this case at the �rst
episode, the users advised large changes of the policy that decreased about 90% of the initial
error. By the fourth episode, the corrections obtained 99% of error reduction.
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Figure 5.10: Initial trajectory for the transfer learning process: from "z" to "2".

Figure 5.11: Policy reuse, average error for learning symbols.
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Figure 5.12: Trajectory correction progress for policy reuse: Learned Primitive (red), symbol
of reference (blue). a) Policy without corrections, b) after 1 episode of corrections, c) after 5
episodes, d) after 10 episodes.

Moreover, it is possible to observe that by the third episode of corrections, the error was
reduced to a level lower than the obtained by a policy derived out from datasets of �ve
demonstrations; by the �fth episode, the percentage of error reduction was around 68%, also
with respect to the policy obtained from demonstrations, which is a similar error obtained
in the experiments of policy re�nement. In Figure 5.12 is depicted the progress of the shape
drawn for the symbol "U", where the initial policy is a "V".

5.5.2 Learning with Simultaneous Corrective Advice and Policy Search

So far, trajectories were optimized purely on human feedback with COACH. In this section,
we validate the combination of PS with the human-guidance-based exploration using COACH
in well-known problems in simulation and with a real robot.

In simulation, experiments were carried out using an arm with varying degrees-of-freedom
in a reaching via-point task. In a second set of experiments, the �ball in the cup" task was
learned using a real robot. In both tasks, we compared the proposed interactive PS strategy
with a standard PS algorithm in terms of the convergence rate and �nal performance of
the policies. Although the proposed hybrid method can be implemented with di�erent PS
algorithms, in this experimental procedure both the standard and the hybrid PS are based
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on PI2 [101].

Learning Multi-DoF Via-Point Movement Tasks

The �rst set of experiments for the validation of the hybrid approach is carried out by
replicating the experiments intended to compare PS algorithms in [101], and that has been
repeated in [90, 92]. The experiment consisted of learning robot arm reaching movements
(similar to human reaching movements) with a total duration of 0.5 seconds. The task has
the condition of reaching a speci�c via-point at t = 0.3s, which is an approximation to hitting
movements, because they require time-space synchronization.

The learning task is evaluated in four di�erent cases: �rst, with a one-dimensional moving
point (1 DoF); the next three cases are with planar arms of 2, 10, and 50 degrees-of-freedom
(DoF). The policies are represented with DMPs, that compute the actions in the joint space
for the multi-DoF tasks. The experiments were executed �rst with the original PS algorithm
PI2, and followed by our hybrid approach combining PS and the COACH variation for policies
de�ned in the joint space (Algorithm 5.2). For every explored case, 20 runs of 500 roll-outs
were executed for each of the algorithms. The obtained results are averaged and presented
with their standard deviation.

1 DoF Via-Point Task: In this task the initial position of the movement is yt0 = 0, and
the DMP has the goal atractor g = 1 in order to �nish the movement with yt500ms ≈ 1. The
cost function is rt = 0 for all time steps except in t = 300ms, as shown in Equation (5.6),
where G is the via-point set to G = 0.25.

r300ms = 108(G− yt300ms)2 (5.6)

When the user participates in the learning process, s/he observes the movement execu-
tion and advises the binary correction with a keyboard, similarly to the interaction in the
experiments of learning to write letters, but only using 2 keys.

In Figure 5.13 the evolution of the cost function through the roll-outs execution is shown.
The human feedback supporting the PS improvement makes a signi�cant di�erence regarding
the original PS algorithm. The convergence time is reduced one order of magnitude, the
interactive PS method is about 83% faster than the conventional PS. Moreover, it is possible
to see that the variance of the cost function is decreased with the human guidance.

Multi-DoF Via-Point Tasks: In these cases of simulated planar arms, the initial po-
sition is a = 0 for all the joint angles, it sets a robot pose that is a straight line parallel to
the horizontal axis. The goal attractor xgoal makes the movement to �nish in a semicircle
con�guration, as shown in Figure 5.14, where the end e�ector of a 10 DoF arm touches the
y axis. The end e�ector is moving in the 2-D space, and has to pass through the via-point
G = (0.5, 0.5).

Figure 5.14 a) shows the trajectory of the arm with the initial policy of the learning
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Figure 5.13: Learning Curve of the 1 DoF via-point movement task.

process. In part b) the end e�ector is already passing through the via point.

The objective of the cost function is to reduce the distance between the end e�ector and
the via-point at t = 300ms. Additionally, it also tries to reduce joints accelerations, giving
more priority to the joints that are closer to the �shoulder" of the arm, with D the number
of DoF of the robotic arm, as shown in Equation (5.7).

rt = 108δ(t− 300ms) · ((xt − 0.5)2 + (yt − 0.5)2)

+

∑D
d=1(D + 1− d)(äd,t)

2∑D
d=1(D + 1− d)

(5.7)

During the interactive learning process, the user advises the corrections with binary cor-
rections in both axes, as it was done for correcting the letters in the previous subsection.
In previous works these experiments have been carried out for learning policies in the joint
space domain, nevertheless, in this thesis we approach the problem both in the Cartesian
and the joint domain.

The learning curves in Figure 5.15-5.17 show the improvement achieved when PS considers
the human corrective feedback. The general trend shown in the curves is that the hybrid
agents converge faster than standard PS. In the cases of 10 and 50 DoF, the standard PS
learns faster in the Cartesian domain than in the joint space due to the smaller search space.
In contrast, the interactive PS learns faster when learning policies in the joint level with
respect to policies represented in the end e�ector domain.

Since the original problem is only explored with policies in the joint space, and also because
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Figure 5.14: "Stroboscopic" visualization of the 10 DoF planar robot arm movement, a)
simply towards the goal, b) through the via-point (green/red dot).
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Figure 5.15: Learning Curve of the 2 DoF via-point movement task. Average and ± 1
standard deviation of 20 runs.

the best obtained policies are in that domain, below, the rest of the analysis is only focused in
the comparison between standard and interactive PS for learning policies in the joint space.

For the task with the 2 DoF arm the interactive PS decreases 95% of the initial cost
within the �rst 50 roll-outs, and keeps a slight rate of improvement, reaching 97.9% by the
500 trials. In contrast, the conventional PS attains the 95% of cost reduction approximately
after 210 trials, i.e., it is 4 times slower than the interactive PS. However, the conventional
PS keeps the error reduction, and outperforms the performance of the interactive PS after
280 episodes, reaching a total reduction of 99.2% with 500 episodes.

In the experiments with the 10 DoF arm, results are similar, but with a bigger di�erence
between the cost of both algorithms. The 95% of reduction is obtained after 30 trials with the
interactive PS, whereas the conventional PS is 11 times slower for achieving that performance
and by the 500 roll-outs reaches the curve of the interactive PS.

For the last case with 50 DoF, again the di�erence is increased a lot, as 500 roll-outs are
not enough for the PS agent to converge in this problem. Then, at the end of the learning
process, the PS agent only decreased 86.9% of the initial cost. On the other hand, the
interactive PS achieved the 95% of reduction by approximately 25 episodes and converged
completely after the 60-th.

In the previously presented results, the convergence of PS is a�ected when the number of
DoF is incremented, due to the curse of dimensionality. But the convergences of the proposed
interactive PS show a counterintuitive trend after the increment of the DoF. Indeed, the
fastest convergence obtained with the human feedback is in the case of the arm with 50
DoF. The reason behind this e�ect has to do with the correspondence problem between the
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Figure 5.16: Learning Curve of the 10 DoF via-point movement task. Average and ± 1
standard deviation of 20 runs.

Figure 5.17: Learning Curve of the 50 DoF via-point movement task. Average and ± 1
standard deviation of 20 runs.
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corrective advice in the e�ector domain, that is mapped to the joints space, where the policy
is de�ned. When the human teacher advises a correction to the 2 DoF arm, in several cases
the solution found by the IK could be a joint con�guration very di�erent from the previous
one, or simply it cannot �nd a proper solution that matches with the end e�ector position
correction.

These problems cause policy updates that do not match with the user intention, therefore
the teacher's correction may harm the policy from time to time. Nevertheless, when the
task has more DoF this problem diminishes. The more redundant is the arm is, the easier
it is to shape the end e�ector trajectory with corrective advice. Although for the case of
the 2 DoF arm the corrective advice does not work perfectly, still the PS bene�ts strongly
from the human guidance and reduces the convergence time by 76% when compared to the
conventional PS. .

Ball in a Cup

The ball in a cup is a challenging children's game that requires accurate skills in a relatively
fast movement. The game uses a toy composed of a ball attached to a cup with a string.
The cup is held with the hand of the player, or attached to the end e�ector of the robot in
this case. Initially, the ball is hanging steady below the cup, and the arm has to move the
cup fast enough to launch the ball high in the air to catch it during the landing.

A reward function that represents the task objective would be one that punishes a failed
trial, and rewards when the ball falls into the cup. However, such function is not informative
for e�cient (or even feasible) learning in a reinforcement learning setting. This problem was
approached in [59] with a more complex function of the form

rt =

{
exp(−α(xc − xb)2 − α(yc − yb)2) if t = tc,

0 otherwise,
(5.8)

using the PS algorithm PoWER on a real robotic arm Barrett WAMTM.

In the reward function above, the ball and cup positions are [xb, yb, zb] and [xc, yc, zc],
respectively. The time t = tc is the moment when the ball passes the rim of the cup with
downward direction, for all the other time steps t 6= tc the function is rt = 0. This reward
function was used by the PS method to improve an initial policy obtained from a human
demonstration.

In this work, we validate the proposed interactive PS method with this problem using a
7 DoF KUKA lightweight arm, and an OptiTrack system which tracks the position of the
ball and the cup, for computing the reward function. Nevertheless, there are two important
di�erences with respect to the work of Kober et al. [59]. First, here the policy computes the
trajectory of the end-e�ector instead of computing actions in the joint space; secondly, we
consider not only to improve policies learned from human demonstrations, but also to learn
the policies from scratch, therefore the reward function of Equation (5.8) is complemented
in order to make it more informative.
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When the arm tosses the ball with a height lower than the cup, Equation (5.8) is completely
uninformative as it always results in a zero. In order to lead the policy to a behavior wherein
(5.8) is applicable, we propose to complement this function with a term that rewards the
height obtained in those cases.

Then, when the ball does not reach the height of the cup, the term (5.9) is applied:

rth =
zb − zc
ls + lc

(5.9)

With lc and ls denoting the length of the cup and the string respectively, and t = th
is the moment when the ball reaches the maximum height. The sum of lc and ls is the
distance between the ball and the rim of the cup when the ball is hanging motionless, like in
Figure 5.18.

With this extension, the task �ball in a cup" can be considered a composition of the sub-
task �swinging the ball" with the objective of tossing the ball higher than the cup, followed
by the sub-task �catching the ball" that aims to move the arm for intercepting the ball with
the cup. For the computations of the learning algorithms, the reward function is transformed
into a cost function multiplying it by -1.

Di�erent from previous works that use DMPs for this problem, we opted to represent
the policy with the ProMP form of (5.3), like in the experiments of Section 5.5.1, since the
convergence to goal attractors is not a necessary property for this task. Again PI2 is the base
PS algorithm for these experiments.

In the experimental procedure, for the learning processes, cups of two di�erent sizes are
used in order to change the di�culty of the task. In Figure 5.18 the robot arm is attached
with a stick to the big cup (approximately twice the diameter of the ball), which is also
containing the small cup (diameter approximately 1.3 times the ball's diameter). During
the learning processes, the human teacher is sitting in front of the robot with a perspective
similar to Figure 5.18.

Most of the validation experiments are carried out with the big cup. Standard PS is com-
pared to learning with human feedback in the interactive PS approach, along with the pure
COACH method, executing ten runs for each approach. Since the learned policy computes
actions in the end e�ector domain, the two interactive methods are based on the complete
COACH for training motor primitives in the Cartesian space (Algorithm 5.1). A keyboard
is used for advising the corrections by the user.

The �rst set of experiments starts with a policy derived from a kinesthetic demonstration
and using the big cup. The learning curves presented in Figure 5.19 show the big di�erence
between learning with PS and the interactive methods. PS achieves policies that catch
the ball with the cup around the 60th trial, and keep improving until convergence after 90
trials. In contrast, with COACH and the interactive PS the task is achieved after 10 and
15 episodes respectively. With COACH the improvement stops very soon, because when the
human teacher observes a successful policy, s/he reduces the e�ort for enhancing it, due to
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Figure 5.18: Robot set-up for learning the "ball in a cup" task.
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Figure 5.19: Convergence curves for learning "ball in a cup" with an initial demonstration.

the fact that it is not very evident and/or necessary. For human teachers is hard to infer
corrections when sub-optimal policies are close to the optimal.

On the other hand, at the beginning, the interactive PS is slightly slower than pure
COACH due to the in�uence of some of the �rst roll-outs in the update process. However,
with the hybrid method, the improvement continues until the 70th episode reaching the best
average performance. This improvement results from both sources of feedback, especially
from the reward function.

The learning curve of the PS reaches and outperforms the cost obtained with COACH
within 75-80 trials, i.e., it needs 4 times more trials. However, with 100 trials, the PS does
not attain the performance obtained by the interactive PS.

For a second set of experiments, a more challenging scenario is used for testing the learning
algorithms, wherein a previous demonstration is not given by the human teacher (learning
from scratch). Therefore, a policy that does not request any movement is set at the beginning
of the learning process.

Since the arm is not able to toss the ball to the necessary height in one shot, the robot
needs to learn the �swinging the ball" sub-task, so that it oscillates like a pendulum and
obtains enough momentum. In that �rst part of the learning process, the term (5.9) of
the reward function plays an important role. When the policy evolves maximizing (5.9), it
continues learning to catch the ball with the cup using (5.8).

The results of this experiments are shown in Figure 5.20. It depicts that these interactive
methods based on vague corrective advice are more robust to the initial policy than the
standard PS. Both learning curves of the corrective advice based methods are basically the
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Figure 5.20: Convergence curves for learning "ball in a cup" from scratch.

same of the experiments of learning with an initial demonstration, but delayed approximately
5 trials due to the episodes intended to learn to swing the ball.

The convergence of the PS is very sensitive to the initial policy. In this scenario PS takes
about 170 episodes to attain successful policies. The very beginning of the learning process
is very slow because the random movements tend to diminish the e�ect of the previous
ones, even considering that the algorithm implementations of this work use state dependent
exploration as in [59, 101] for avoiding high-frequency actions.

Finally, the interactive PS keeps optimizing the policy when the improvement is not
evident for the human teachers, outperforming the outcomes obtained with only COACH
after 30 trials.

The set-up with the small cup is used to compare the interactive algorithms while learning
from scratch. In Figure 5.21 the means of the learning curves based on human feedback
presented in Figure 5.20 are taken as a reference to be compared with the experiments of
learning using the small cup.

Since the cost function is the same, which basically takes into account the distance of the
ball to the center of the cup, the size of the cup would not a�ect the cost evolution with an
algorithm that is only based on the computed reward for updating the policy, like the PS.
But in the cases of the methods with human feedback, it is possible to see that the cost is
decreased faster in the set-up with the small cup.

The previous counter-intuitive observation is due to problems with the human perception,
because for a teacher is hard to know whether the ball is falling into the cup exactly through
its center or not. The users may not be able to estimate depth accurately, so when teachers
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Figure 5.21: Comparison of Learning curves for the "ball in a cup" task, in the scenario of
learning from scratch using the big and small cups.

are in front of the robot, it is harder to make the ball to pass through the x and y center of
the big cup. With the smaller cup, the rim of the cup itself is a visual aid. Then, when the
ball hits the rim, the user infers the correction based on that visual information. Therefore,
when the policy makes the ball to fall into the cup without touching the rim, it is already
crossing its center or very close to it.

With the small cup, the users could track more the progress of the policy, so in Figure 5.21
it is shown that users were engaged with the learning process during more trials, e.g., when
learning with only COACH and the big cup, the policy improvement stopped at rollout 25,
whereas with the small cup they kept correcting during 5 more rollouts.

In the previous experiments, the last part of the improvement with the interactive PS
is mostly based on the reward function. However, this last experiment with the small cup
shows that in cases wherein the human perception is enough to obtain insights about how
good is a policy when is close to the optimum (rarely), with only COACH is possible to
achieve performances like the obtained with the interactive PS. In the link4 a video shows
the learning process of the task with the proposed learning method.

5.6 Discussion

In this chapter, we have proposed the use of human corrective feedback within the frame of PS
methods for learning movement primitives. First, the application of pure corrective advice for

4https://www.dropbox.com/s/tdu6f73zkuoq4a4/ball_in_a_cup.mp4?dl=0
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adapting parametrized trajectories during time execution was presented as a simple extension
of the framework COACH. Secondly, this extension was integrated in the exploration stage of
standard PS algorithms in order to have together both sources of improvement: 1) Random
exploration, and 2) Human corrections.

Schemes based on pure human corrective advice showed that this kind of relative cor-
rections with vague binary signals provide human teachers with the capability to modify
trajectories while a robot executes it. The exercise of writing symbols showed that users can
obtain very good shapes for the symbols with corrective feedback. The users obtained better
policies using corrective advice than the ones obtained solely from demonstrations, which
means that the application of corrective advice renders it less necessary to have users with
high level of expertise in the task and using human-robot interfaces.

The validation of the proposed interactive PS showed outstanding results in two well
known benchmark problems with simulated and real robots. The learning curves showed
that the proposed method speeds up the convergence of PS from 4 to more than 40 times.
The human feedback is extremely powerful to accelerate the learning process at the begin-
ning, whereas the cost function has an important in�uence for performing a �ne tuning when
suboptimal policies have a good performance, but the users' perception is not good to de-
termine how can be obtained more improvement through corrections, e.g., when the policy
already accomplishes the task but still the energy used can be reduced.

The validation of the proposed hybrid learning scheme showed that it is possible to learn
complex skills such as the ones required to solve the �ball in a cup� task, without previous
demonstrations. This method allows to start learning processes from (scratch) initial static
policies, that incrementally receive the user's corrective advice. Little by little, the human
teachers guide the robot to policies that satisfy their understanding about the ful�llment
of the task. Also, the results show it is possible to learn this skill based only on human
corrections.

Moreover, the proposed strategy to cope with the correspondence problem � matching
between the human feedback given in the task domain, and the policy in the joint space �
has shown that the method scales to high dimensionality problems, actually, in the problems
of multi-DoF planar arms, the best results obtained are with the arm of highest amount of
DoF.

The use of the inverse kinematic models solves the problem of matching the di�erence
between the human teachers with the domain of the actions of the agent. In this Chapter,
two schemes for learning policies with corresponding issues were proposed and validated,
ful�lling the third objective of this thesis. Additionally, this generalization of COACH was
tested with real robots, that continues achieving the fourth speci�c objective.
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Chapter 6

Conclusions and Future Work

In this thesis a learning method for training agents during policy execution based on human
corrections has been presented. Additionally, the learning approach was combined with Policy
Search Reinforcement Learning methods in order to obtain more robust learning agents that
bene�t from both human knowledge and feedback of the environment.

The carried out experiments let to obtain interesting results which show how the learning
approaches based on vague, binary (binary in each action dimension), coarse corrections are
convenient for running faster learning convergences. These relative corrections of the executed
action to be modi�ed allow to transfer easily the insights of the users to the learning agents.
COACH showed to be useful with problems in which the users are not able to demonstrate
the task execution, this makes wider the spectrum of applications wherein non-expert users
can assist the design of controllers or decision making systems, with respect to other LfD
methods.

The use of the original COACH showed to be more robust than Interactive Reinforcement
Learning methods (TAMER-like algorithms) to the occasional mistaken feedback, which
is inherent to humans. The corrective feedback in the actions domain allows to clearly
understand what is the e�ect of the advice on the policy, then, mistakes during teaching can
be revised by the user with more ease.

Additionally, the hybrid learning method that combines COACH and Policy Search de-
creases the workload of the user, especially at the end of the learning process when the reward
function may have more in�uence. The shared duties between the human corrections and
the reward function makes more �exible the learning method in terms of human teacher's
capabilities. Since wrong corrections are evaluated by the reward/cost function and weighted
with low importance, the RL part of the method "discard" the wrong human feedback and
keeps the progress only with the "good" corrections.

The applicability of COACH, and in general the corrective feedback was evaluated under
di�erent conditions, with simulated and real agents, using di�erent human-machine inter-
faces, tested by several users, and for several kinds of tasks like navigation, balancing, and
motor skills with robot arms performing fast movements of 1-2 seconds duration. The results
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led to conclude that COACH have a strong impact in the learning convergence, especially
during the �rst episodes, which is very appropriate for applications with real robots. The
acceleration of the convergence with respect to other learning agents was between 3 to more
than 30 times in some of the explored tasks.

During the development of this research, the approached problems with COACH, and in
most of the cases with other di�erent learning methods for comparison purposes were:

• Mountain-Car

• Cart-Pole

• Learning to Balance on a bike

• Ball Dribbling with Biped robots 1D

• Ball Dribbling with Biped robots 3D: Nao Robot (validated with real robots in adver-
sarial environments during RoboCup competitions)

• Simulated Pendulum swing-up

• Real Pendulum Swing-up

• Cart-Pole extended (to place the cart in the center of the scene while balancing the
pole)

• Inverse Kinematics model with a real 3 DoF robotic arm

• Inverted wedge (real system)

• Writing Symbols with a simulated 3 DoF arm

• Writing Symbols with a real 6 DoF arm: UR5

• Reaching movements through via-points with simulated arms of 1, 2, 10, 50 DoF

• Ball in a cup with a real 7 DoF arm: Kuka lightweight arm

Moreover, the use of COACH was validated with good results in two additional problems
that are not reported in this thesis.

First, in the context of robot soccer, corrective feedback was used for training a decision
making system that computes the desired direction of the ball for the robot to dribble.
This system works in a higher level than the dribbling engine presented in chapter 3, so
the direction computed is used as input of the dribbling engine in order to compute the
walking velocities requests. This system observes the positions of the ball, the opponents,
the opponents' goal, and the �eld dimensions, in order to make a decision that avoid the
opponents while pushing the ball closer to the goal, but decreasing the risk of pushing the
ball put of the �eld. This problem along with the dribbling system presented before, was
approached with COACH in order to solve the problem and use the �nal system in the
competition, rather than using it for COACH evaluation and comparison purposes.

The second problem was learning to throw a ball to di�erent distances with a 6 DoF
Katana arm of Neuronics. In this application, COACH worked easily to obtain a policy that
throws a ball to a small cup with accuracy of a couple of centimetres.

In the future work, it is considered the use of human corrective feedback for training
policies without prede�ned state representations, so the human corrections not only would
shape the magnitude of actions, but indirectly, this feedback also de�nes and improves the
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way states are represented. In this regard, the recent developments on learning with deep
neural networks can obtain good advantages. An extension of COACH for training policies
represented with deep neural networks would shrink the distance between end-users and
systems' designers, the features engineering necessary before all the learning processes would
be eliminated. Research in this direction may reduce the prior knowledge or assumptions
that are necessary in the methods proposed in this thesis, e.g., the design of basis functions.

Also, it is considered to develop algorithms based on COACH, which actively learn policies
while requesting corrections in state space regions with high uncertainty of the actions to
execute. In this regard, models that measure the uncertainty associated to the decision
would be necessary for the policy model, like Gaussian processes, or Gaussian Mixtures
Models. Also, the uncertainty can be used for adapting the exploration in the case of hybrid
learning agents that learn from reward functions.

Another extension of COACH would be for integrating of interactive learning with shared
control. A human operator that shares the control of an automated system may give com-
mands (as normal shared control), but the system can learn from those commands and after
some executions the load on the user would be reduced, the system would predict the human
contribution in the actions controller.
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