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Abstract Let S be a point set in the plane such that each of its elements is colored
either red or blue. A matching of S with rectangles is any set of pairwise-disjoint
axis-aligned closed rectangles such that each rectangle contains exactly two points of
S. Such a matching is monochromatic if every rectangle contains points of the same
color, and is bichromatic if every rectangle contains points of different colors. We
study the following two problems: (1) Find a maximum monochromatic matching of
S with rectangles. (2) Find amaximum bichromatic matching of S with rectangles. For
each problem we provide a polynomial-time approximation algorithm that constructs
a matching with at least 1/4 of the number of rectangles of an optimal matching.
We show that the first problem is NP-hard even if either the matching rectangles are
restricted to axis-aligned segments or S is in general position, that is, no two points
of S share the same x or y coordinate. We further show that the second problem is
also NP-hard, even if S is in general position. These NP-hardness results follow by
showing that deciding the existence of amatching that covers all points isNP-complete
in each case. Additionally, we prove that it is NP-complete to decide the existence of
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a matching with rectangles that cover all points in the case where all the points have
the same color, solving an open problem of Bereg et al. (Comput Geom 42(2):93–108,
2009).

Keywords Computational geometry · Matching colored points · Maximum
independent set · Rectangles · Approximations

1 Introduction

Matching points in the plane with geometric objects consists in, given an input point
set S and a class C of geometric objects, to find a collection M ⊆ C such that each
element of M contains exactly two points of S and every point of S lies in at most
one element of M . A geometric matching is called strong if the geometric objects are
disjoint, and perfect if every point of S belongs to some element of M . This class of
geometric matching problems was considered by Ábrego et al. (2009). They studied
the existence and properties of matchings for point sets in the plane when C is the class
of axis-aligned squares, or the class of disks.

A generalization iswhen S = R∪B is a set of n colored points in the plane, each one
being either red or blue, where R and B are the sets of red and blue points, respectively.
In this setting, a matching of S is called monochromatic if all matching objects cover
points of the same color, and bichromatic if all matching objects cover points of
different colors. We study both monochromatic and bichromatic strong matchings of
S with axis-aligned closed rectangles. Every rectangle in this paper will be considered
axis-aligned and closed.

For the monochromatic case, one can build examples in which no matching rec-
tangle exists, and examples in which a perfect strong matching with rectangles exists.
For the bichromatic case, there always exists at least one matching rectangle (e.g.
match the red point and the blue point such that their minimum enclosing rectangle
has minimum area among all combinations of a red point and a blue point). Similar
to the monochromatic case, one can build examples in which exactly one matching
rectangle exists, and examples in which a perfect strong matching exists. Therefore,
we focus on the following two optimization problems:
Maximum Monochromatic Rectangle Matching (MonoMRM) problem:
Given S = R ∪ B, find a monochromatic strong matching of S with the maximum
number of rectangles.
Maximum Bichromatic Rectangle Matching (BicMRM) problem: Given S =
R∪B, find a bichromatic strongmatching of S with themaximumnumber of rectangles.

Unless otherwise specified, we will consider that the elements of S are not neces-
sarily in general position. We say that S is in general position if no two elements of S
share the same x or y coordinate.

This work is also motivated by an open question posed by Bereg et al. (2009). They
studied the case of the MonoMRM problem where all elements of S have the same
color, and showed that every point set of n points in the plane admits a strongmatching
that matches at least 2�n/3� of the points. They proved that, if the point set is not in
general position and thematching rectangles are restricted to squares, then it isNP-hard
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to decide whether a perfect strong matching exists. They left open the computational
complexity of finding a maximum strong matching with general rectangles. We show
that it is NP-hard to find such a maximum strong matching. Problems similar to the
MonoMRM andBicMRM problems have been studied before. Dumitrescu and Steiger
(2000) considered strong monochromatic matchings of two-colored point sets in the
plane with straight segments. The best results known are due to Dumitrescu and Kaye
(2001): Every two-colored point set S = R ∪ B of n points admits a strong straight
segment matching that matches at least 67n−O(1) of the points, which can be found in
O(n2) time; furthermore, there exist n-point sets such that every strong matching with
straight segments matches at most 94

95n + O(1) points. The computational complexity
of deciding whether a given two-colored point set admits a perfect monochromatic
strong matching with straight segments is still an open problem (Dumitrescu and
Steiger 2000). Additionally, it is well known that every point set S = R ∪ B in the
plane such that |R| = |B|, and where no three points are collinear, admits a perfect
bichromatic strong matching with straight segments (Larson 1990).

Soto and Telha (2011) considered a special case of the BicMRM problem: the
matching rectangles are restricted to have a red point as bottom-left corner and a blue
point as top-right corner. They solved it in polynomial time (see Sect. 2 for more
details).

Ahn et al. (2011) studied the (p, k)-Rectangle Coveringproblem: givenn points
in the plane, find p pairwise-disjoint rectangles that, together, cover at least n−k of the
points, while minimizing the area of the largest rectangle. Among other results, they
showed that given n points and an input p, deciding whether the points can be covered
with p pairwise-disjoint rectangles, each of area at most one, is NP-complete. The
arguments used in their proof rely on the fact that rectangles can cover either two or
three points, being not straightforward to use them to prove the resultswedescribe here.
We show that theMonoMRM problem is NP-hard when the rectangles are restricted
to axis-aligned segments, proving that their decision problem is NP-complete.

TheMonoMRM andBicMRM problems are special cases of theMaximum Inde-

pendent Set of Rectangles (MISR) problem, a classical NP-hard problem in
computational geometry and combinatorics (Adamaszek and Wiese 2013; Agarwal
andMustafa 2006;Chalermsook 2011, 2009; Fowler et al. 1981; Imai andAsano 1983;
Rim and Nakajima 1995). TheMISR problem is to find a maximum pairwise-disjoint
subset of rectangles in a given set of rectangles. Anyα-approximation algorithm for the
MISR problem implies an α-approximation algorithm for each of theMonoMRM and
BicMRM problems. The generalMISR problemadmits a polynomial-time approxima-
tion algorithm, which with high probability produces an independent set of rectangles
with at least �( 1

log logm ) times the number of rectangles in an optimal solution, m
being the number of rectangles in the input (Chalermsook 2011, 2009). There also
exist deterministic polynomial-time�( 1

logm )-approximation algorithms for theMISR
problem (Agarwal et al. 1998; Khanna et al. 1998). However, finding a constant-
approximation algorithm, or a PTAS, is still an open question.

Results: For each of the MonoMRM and BicMRM problems, we provide a
polynomial-time 1/4-approximation algorithm. We complement the approximation
results by showing that theMonoMRM problem isNP-hard, even if either the match-
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ing rectangles are restricted to axis-aligned segments or the points are in general
position. We further show that the BicMRM problem is also NP-hard, even if the
points are in general position. Additionally, we are able to prove that if all elements of
S have the same color, then the MonoMRM problem keeps being NP-hard, solving
an open question of Bereg et al. (2009). TheseNP-hardness results follow by showing
that deciding the existence of a perfect matching is NP-complete in each case.

Outline:We introduce some notations and definitions in Sect. 2, and analyze in detail
the relation between theMonoMRM and BicMRM problems and theMISR problem.
We also discuss some previous work on the MISR problem relevant to the results
introduced here. In Sect. 3 we present the approximations algorithms mentioned, and
complement the approximation results with hardness results in Sect. 4. Finally, we
summarize the results in Sect. 5.

2 Preliminaries

For every point p of S, let x(p), y(p), and c(p) denote the x-coordinate, the y-
coordinate, and the color of p, respectively. Given two points a and b of the plane
with x(a) < x(b), or x(a) = x(b) and y(a) < y(b), let D(a, b) denote the rectangle
which has the segment connecting a and b as diagonal, which is in fact the minimum
enclosing axis-aligned rectangle of a and b. If a and b are horizontally or vertically
aligned, we say that D(a, b) is a segment, otherwise we say that D(a, b) is a box. We
say that D(a, b) is red if both a and b are colored red. If both a and b are colored blue,
we say that D(a, b) is blue. Given S, consider the following two sets of axis-aligned
rectangles:

R(S) = {
D(p, q) | p, q ∈ S; c(p) = c(q); and D(p, q) ∩ S = {p, q}}

R(S) = {
D(p, q) | p, q ∈ S; c(p) �= c(q); and D(p, q) ∩ S = {p, q}}

Observe that the MonoMRM problem is equivalent to finding a maximum subset of
R(S) of independent rectangles. Two rectangles are independent if and only if they are
disjoint. Similarly, the BicMRM problem is equivalent to finding a maximum subset
ofR(S) of independent rectangles. Thus, theMonoMRM and BicMRM problems are
special cases of theMISR problem.

There exist polynomial-time exact algorithms, constant-approximation algorithms,
and PTAS’s for special cases of the MISR problem, based on the intersection graph
of the rectangles. The intersection graph is the undirected graph with the rectangles
of the input as vertices, and two rectangles are adjacent if and only if they are not
independent. For any set H of rectangles, let G(H) denote the intersection graph of
H. Given two rectangles R1 and R2, we say that R1 pierces R2 if onto the x-axis the
orthogonal projection of R1 contains the orthogonal projection of R2, and onto the
y-axis the orthogonal projection of R2 contains the orthogonal projection of R1. We
say that two intersecting rectangles pierce if one of them pierces the other one (see
Fig. 1a) (Agarwal and Mustafa 2006; Lewin-Eytan et al. 2004; Soto and Telha 2011).
Independently, Agarwal and Mustafa (2006) and Lewin-Eytan et al. (2004) showed

123



J Comb Optim (2017) 33:403–421 407

(a)

(b) (c) (d)

Fig. 1 Up to symmetry, the four types of intersection: a piercing; b corner; c point; and d side

that if every pair of intersecting rectangles pierce, then the MISR problem can be
solved in polynomial time since, in this case, the intersection graph of the rectangles
is perfect. A graph is perfect if the chromatic number of every induced subgraph equals
the size of the largest clique of that subgraph. Using a classical result of Grötschel et al.
(1984), a maximum independent set of a perfect graph can be computed in polynomial
time. Agarwal and Mustafa (2006) generalized this fact, claiming that the spanning
subgraph (i.e. factor) of the intersection graph, with edge set the edges corresponding
to the piercing intersections, is also perfect. A graph G ′ = 〈V ′, E ′〉 is a spanning
subgraph of G = 〈V, E〉 if V ′ = V and E ′ ⊆ E . We will use these results on piercing
rectangles in the approximation algorithms described in Sect. 3. If q is the clique
number of the intersection graph, there exists a (1/4q)-approximation (Agarwal and
Mustafa 2006; Lewin-Eytan et al. 2004). For both problems we study here, we can
build examples in which the size of the optimal solution is either arbitrarily big or
small, and independently of that, the clique number q is either arbitrarily big or small.
Then, applying this result does not always guarantee a good approximation.

In the sets R(S) and R(S), two intersecting rectangles realize only one of the
following four types of intersection: (1) a piercing intersection in which the two rec-
tangles pierce (see Fig. 1a); (2) a corner intersection in which each rectangle contains
exactly one of the corners of the other one, and these corners are not elements of S (see
Fig. 1b); (3) a point intersection where the intersection of the rectangles is precisely
an element of S and it is not a piercing intersection (see Fig. 1c); and (4) a side inter-
section which is the complement of the above three intersection types (see Fig. 1d).
This is due to the fact that every rectangle in these sets is defined by two points of S
being opposed vertices, is closed, and does not contain any other point of S.

Let G = G(R(S)). Observe that if we consider the spanning subgraph G ′ of G
with edge set the edges corresponding to the piercing intersections, and compute in
polynomial time the maximum independent set for G ′ (Agarwal and Mustafa 2006;
Lewin-Eytan et al. 2004), thenwewill obtain a set H ⊆ R(S) of pairwise non-piercing
rectangles. In that case the set H (after a slight perturbation that maintains the same
intersection graph) is a set of pseudo-disks and the PTAS of Chan and Har-Peled
(2012), for approximating the maximum independent set in a set of pseudo-disks, can
be applied in H to obtain an independent set H ′ ⊆ H ⊆ R(S). Unfortunately, it is
not straightforward to compare |H ′| with the optimal value of theMISR problem for
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R(S). The same arguments apply for R(S). On the other hand, there exist PTAS’s
for theMISR problem when the rectangles have unit height (Chan 2004), or bounded
aspect ratio (Chan 2003; Erlebach et al. 2005).

Soto and Telha (2011) studied the following problem tomodel cross-freematchings
in two-directional orthogonal ray graphs (2-dorgs): Given finite point sets X and Y
in the plane, find a maximum set of independent rectangles of the set R(X,Y ) of
the rectangles having an element of X as bottom-left corner and an element of Y as
top-right corner. For X = R and Y = B, where S = R∪ B, this problem is equivalent
to the MISR problem over the rectangles R(S) that have a red point as bottom-
left corner and a blue point as top-right corner. The authors solved this problem in
polynomial time with the next observations: the rectangles of R(X,Y ) have only two
types of intersections, piercing and corner, and R(X,Y ) can be reduced to a small
one R0 ⊆ R(X,Y ) whose intersection graph is perfect since the elements of R0 are
pairwise piercing, and a maximum independent set in R0 is a maximum independent
set of R. We use these observations to obtain the approximation algorithms that we
present in the next section.

3 Approximation algorithms

Given a point set P in the plane, we say that H is a set of rectangles on P if every
element of H is of the form D(a, b), where a, b ∈ P and D(a, b) contains exactly
the points a and b of P . We say that the set H is complete if for every pair of elements
D(a, b) and D(a′, b′) ofH that have a corner intersection, the two rectangles D(a, b′)
and D(a′, b) realizing a piercing intersection also belong to H. Let Gp,c(H) denote
the spanning subgraph ofG(H)with edge set the edges that correspond to the piercing
and the corner intersections.

Lemma 1 Let P be a point set and H be any complete set of rectangles on P. A
maximum independent set of G p,c(H) can be found in polynomial time.

Proof Given finite point sets X and Y in the plane, Soto and Telha (2011) showed
how to find in polynomial time a maximum independent set and a minimum hitting
set of a complete set R(X,Y ) of rectangles on X ∪ Y , where each rectangle has an
element of X as bottom-left corner, and an element of Y as top-right corner. A hitting
set is a finite point set H such that each rectangle of R(X,Y ) contains at least one
of the points of H . They noted that the rectangles of R(X,Y ) have only two types
of intersections, piercing and corner. Their overall algorithm and arguments are the
following ones (refer to Sect. 4 of Soto and Telha 2011):

1. Sort the rectangles R(X,Y ) in right-top order: the rectangle D(a, b) is before the
rectangle D(a′, b′) if and only if x(a) < x(a′), or x(a) = x(a′) and y(b) < y(b′).

2. Construct a subset K ⊆ R(X,Y ) by processing the rectangles of R(X,Y ) in
right-top order and adding only those that keep K free of corner intersections.

3. Using that only piercing intersections are possible in K, compute in polynomial
time a maximum independent set R0 and a minimum hitting set H � for K, which
always satisfy |R0| = |H �| since G(K) is perfect.
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4. Prove that H � is also a (minimum) hitting set of R(X,Y ) (Soto and Telha 2011,
see Lemma 1), which implies that R0 is a maximum independent set of R(X,Y ).

We extend steps (1–3) to find a maximum independent set ofGp,c(H). It is as follows:
We partition H into the following three sets: H0, H1, and H2. The set H0 contains all
the segments; H1 contains the boxes D(a, b) such that y(a) < y(b); and H2 contains
the boxes D(a, b) such that y(a) > y(b). By definition, for every box D(a, b)we have
x(a) < x(b). Sort the boxes of H1 by using the right-top order of Step 1. Then, one
can construct the subset K1 ⊆ H1, having no corner intersection, by processing the
boxes of H1 in such an order, and adding to K1 only those that keep K1 free of corner
intersections. Similarly and using symmetry, one can construct the subset K2 ⊆ H2,
having no corner intersection, by processing the boxes ofH2 in the following order: the
box D(a, b) is before the box D(a′, b′) if and only if x(a) < x(a′), or x(a) = x(a′)
and y(b) > y(b′). By construction, and the fact that a box ofH1 and a box ofH2 cannot
realize a corner intersection, and a segment of H0 cannot realize corner intersections
with any other rectangle of H, the set K = H0 ∪ K1 ∪ K2 ⊆ H is free of corner
intersections. A maximum independent set of Gp,c(K) can be found in polynomial
time as done in Step 3 since K is free of corner intersections.

To show that a maximum independent set of Gp,c(K) is indeed a maximum inde-
pendent set of Gp,c(H), the arguments given in Step 4 cannot directly be applied.
A reason for this is the following: Pairs of rectangles in H having a point or a side
intersection can be hit by the same point, whereas they both can appear in K without
being adjacent in Gp,c(K) (see Fig. 2 for an example). Then, it cannot be guaranteed
that the cardinality of a maximum independent set of Gp,c(K) equals the cardinality
of a minimum hitting set ofK. However, we can adapt the arguments of Step 4 to work
directly on independent sets of rectangles, not using hitting sets.

We will prove that any box B ∈ I that is not in K1 ∪ K2 can be replaced by some
suitable rectangle R, obtaining other independent set of Gp,c(K) with cardinality |I |.
Suppose that B belongs to H1 (the case where B belongs to H2 is analogous). Box B
is replaced by a rectangle R that satisfies either of the following two conditions:

(i) R is in H0 ∪ K1.
(ii) R is not in H0 ∪ K1, but appears after B in the right-top order defined for H1.

Hence, if we iteratively apply this replacement procedure, each time for any box of I
that is not in K1 ∪ K2 obtaining a new set I , we will obtain at the end an independent
set of size |I | consisting only of elements from H0 ∪ K1 ∪ K2. The replacement can
be done as follows. Assume that a box B = D(a′, b′) ∈ H1\K1 belongs to I . Then,

c
a

b

d

Fig. 2 The setK = {D(a, b), D(b, c), D(d, b)} is a complete set of rectangles on {a, b, c, d}, and free of
corner intersections. The maximum independent set of Gp,c(K) is the set {D(a, b), D(b, c)}, whereas the
minimum hitting set has cardinality one
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Fig. 3 (a, b, c) Cases in the proof of Lemma 1

by construction of K1, there exists a box D(a, b) ∈ K1 with x(a) < x(a′) that has
a corner intersection with D(a′, b′), and let D(a, b) be the first box in the order of
H1 that satisfies this condition (see Fig. 3a). Since H is complete, and the choice of
D(a, b), the rectangle D(a, b′) belongs to H0 ∪ K1. The rectangle D(a′, b) either
belongs to H0 ∪ K1, or does not belong to H0 ∪ K1 (i.e. belongs to H1\K1 ) and
appears after D(a′, b′) in the order of H1. Now, we only need to prove that D(a′, b′)
can be replaced in I by either D(a, b′) or D(a′, b). In any case, one of conditions (i)
and (ii) is ensured. That is, we need to prove that

(I\{D(a′, b′)}) ∪ {D(a′, b)} or (I\{D(a′, b′)}) ∪ {D(a, b′)}

is also an independent set of Gp,c(H). Indeed, if (I\{D(a′, b′)}) ∪ {D(a′, b)} is an
independent set of Gp,c(H), then we are done. Otherwise, at least one of the next two
cases is satisfied: (1) there is a rectangle of I\{D(a′, b′)} that has a corner intersection
with both D(a, b) and D(a′, b) (see Fig. 3b); or (2) there is a rectangle (either a box
or a segment) of I\{D(a′, b′)} that has a piercing intersection with both D(a, b) and
D(a′, b) (see Fig. 3c). In both cases D(a, b′) is independent in Gp,c(H) from any
rectangle in I\{D(a′, b′)}. Hence, (I\{D(a′, b′)}) ∪ {D(a, b′)} is an independent set
of Gp,c(H). This completes the proof. �
Let S = R∪ B be a two-colored point set in the plane. Let R1 and R2 be the next two
subsets of rectangles of R(S) (see Fig. 4):

• R1 contains the blue rectangles D(a, b) ∈ R(S) such that y(a) ≤ y(b) (i.e. the
rectangles with bottom-left corner a blue point), and the red rectangles D(a′, b′) ∈
R(S) such that y(a′) ≥ y(b′) (i.e. the rectangles with bottom-right corner a red
point).
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R1

R2

Fig. 4 The types of rectangles in the subsets R1 and R2

• R2 contains the blue rectangles D(a, b) ∈ R(S) such that y(a) ≥ y(b) (i.e. the
rectangleswith bottom-right corner a bluepoint), and the red rectangles D(a′, b′) ∈
R(S) such that y(a′) ≤ y(b′) (i.e. the rectangles with bottom-left corner a red
point).

The following lemma will be used in the proof of Lemma 3.

Lemma 2 Let H1 and H2 be independent sets of G p,c(R1) and G p,c(R2), respec-
tively. The graphs G(H1) and G(H2) are acyclic.

Proof We prove the lemma for G(H1). The proof for G(H2) is analogous. Note that
in H1 every blue rectangle is independent from every red rectangle, and rectangles of
the same color can have point intersections only. For every k ≥ 1, every single path of
length k in G(H1) is a sequence 〈D(a0, a1), D(a1, a2), D(a2, a3), . . . , D(ak, ak+1)〉
of rectangles of H1, with point intersections between consecutive rectangles, such
that: x(a0) ≤ x(a1) ≤ · · · ≤ x(ak+1), and y(a0) ≤ y(a1) ≤ · · · ≤ y(ak+1) if the
rectangles D(a0, a1), . . . , D(ak, ak+1) are all blue or y(a0) ≥ y(a1) ≥ · · · ≥ y(ak+1)

if they are red. Under these monotone properties, the graph G(H1) cannot have any
cycle. �
Lemma 3 For R ∈ {R1,R2}, there exists a polynomial-time (1/2)-approximation
algorithm for the maximum independent set of G(R).

Proof Consider the set R1, the arguments for the set R2 are analogous. Let OPT1
denote the size of a maximum independent set in R1. Observe that a blue and a red
rectangle in R1 can have only a piercing intersection, that two rectangles of the same
color cannot have a side intersection, and that R1 is a complete set of rectangles on
S. Let H1 denote a maximum independent set of Gp,c(R1), which can be found in
polynomial time by Lemma 1. The graph G(H1) is acyclic (Lemma 2) and thus 2-
colorable. Such a 2-coloring of G(H1) can be found in polynomial time and gives an
independent set I1 of H1 with at least |H1|/2 rectangles, which is an independent set
in R1 as well. The set I1 is the approximation and satisfies OPT1 ≤ |H1| ≤ 2|I1|.
The result thus follows. �
Theorem 4 There exists a polynomial-time (1/4)-approximation algorithm for the
MonoMRM problem.
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Proof LetOPT denote the size of amaximum independent set inR(S), andOPT1 and
OPT2 denote the sizes of the maximum independent sets in R1 and R2, respectively.
Let I1 be a (1/2)-approximation for the maximum independent set in R1 and I2 be a
(1/2)-approximation for the maximum independent set inR2 (Lemma 3). The approx-
imation for the MonoMRM problem is to return the set with maximum cardinality
between I1 and I2. SinceOPT ≤ OPT1 +OPT2 ≤ 2|I1| + 2|I2| ≤ 4max{|I1|, |I2|},
the result follows. �

Consider now the BicMRM problem and the set R(S). Let R1, R2, R3, and R4 be
the next four subsets of rectangles of R(S):

• R1 contains the rectangles with a blue point in the bottom-left corner.
• R2 contains the rectangles with a red point in the bottom-left corner.
• R3 contains the rectangles with a blue point in the bottom-right corner.
• R4 contains the rectangles with a red point in the bottom-right corner.

Each of the above four subsets is a complete set of rectangles on S, where every
two rectangles have either a corner or a piercing intersection. Then, the maximum
independent set in each subset can be found in polynomial time (Lemma 1). These
observations imply the next result:

Theorem 5 There exists a polynomial-time (1/4)-approximation algorithm for the
BicMRM problem.

In the next section we complement the results of Theorems 4 and 5 by showing that
the corresponding problems are NP-hard.

4 Hardness

We prove that the MonoMRM and BicMRM problems are NP-hard, even if further
conditions are assumed. To this end, we consider the following decision problems:
Perfect Monochromatic Rectangle Matching (MonoPRM) problem: Is there
a perfect monochromatic strong matching of S with rectangles?
Perfect Bichromatic Rectangle Matching (BicPRM) problem: Is there a
perfect bichromatic strong matching of S with rectangles?
Proving that theMonoPRM andBicPRM problems areNP-complete, even on certain
additional conditions, implies that the MonoMRM and the BicMRM problems are
NP-hard under the same conditions.

In the proofs that follow,we use reductions from thePlanar 1- in- 3 SAT problem
which isNP-complete (Mulzer andRote 2008). The input of thePlanar 1- in- 3 SAT

problem is a Boolean formula in 3-CNF whose associated graph1 is planar, and the
formula is satisfiable if and only if there exists an assignment to its variables such that
in each clause exactly one literal is satisfied (Mulzer and Rote 2008). Given any planar
3-SAT formula, the main idea is to construct a point set S = S1 ∪ S2, such that: (1) the
elements of S2 force to match certain pairs of points in S1, and those pairs can only

1 The associated graph is the bipartite graph with vertices the variables and the clauses, and there exists
an edge between a variable and a clause if and only if the variable participates in the clause.
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be matched with (axis-aligned) segments; (2) there always exists a perfect matching
with segments for S2 independently of S1; and (3) there exists a perfect matching with
segments for S1 independently of S2 if and only the formula is satisfiable.

The above method can be applied in the construction that Kratochvíl and Nešetřil
(1990) used to prove that finding a maximum independent set in a set of axis-aligned
segments is NP-hard. Indeed, we can put the elements of S1 at the endpoints of the
segments T of their construction, by first modelling the parallel overlapping segments
by segments sharing an endpoint. Then, the elements of S2 are added in such away that
every two elements of S1 can be matched if and only if they are endpoints of the same
segment in T . This approach would give us a proof that the optimization problems we
consider are NP-hard, but not that the perfect matching decision problems are NP-
complete, which are stronger results. On the other hand, the hardness proofs here give
an alternative NP-hardness proof for the problem of finding a maximum independent
set in a set of axis-aligned segments (Kratochvíl and Nešetřil 1990).

Theorem 6 TheMonoPRM problem isNP-complete, even if we restrict the matching
rectangles to segments.

Proof Given a combinatorial matching of S, certifying that such a matching is mono-
chromatic, strong, and perfect can be done in polynomial time. Then, theMonoPRM
problem is in NP. We prove now that theMonoPRM problem is NP-hard. Let ϕ be a
planar 3-SAT formula. The (planar) graph associated with ϕ can be represented in the
plane as in Fig. 5, where all variables lie on an horizontal line, and all clauses are repre-
sented by non-intersecting three-legged combs (Knuth and Raghunathan 1992). Using
this embedding, which can be constructed in a grid of polynomial size (Knuth and
Raghunathan 1992), we construct a set S of red and blue integer-coordinate points in a
polynomial-size grid, such that there exists a perfect monochromatic strong matching
with (axis-aligned) segments in S if and only if ϕ is satisfiable.

For an overview of our construction of S, refer to Fig. 6. We use variable gadgets
(the dark-shaded rectangles called variable rectangles) and clause gadgets (the light-
shaded orthogonal polygon representing the three-legged comb).
Variable gadgets: For each variable v, its rectangle Qv has height 4 andwidth 6·d(v),
where d(v) is the number of clauses in which v appears. We assume that each variable
appears in every clause at most once. Along the boundary of Qv , starting from a vertex,
we put blue points so that every two successive points are at distance 2 from each other.
We number consecutively in clockwise order these 4 + 6 · d(v) points, starting from
the top-left vertex of Qv which is numbered 1.
Clause gadgets: Let C be a clause with variables u, v, and w, appearing in this order
from left to right in the embedding of ϕ. Assume w.l.o.g. that the gadget of C is above

v1 v2 v3 v4 v5 v6

Fig. 5 Planar representation of ϕ = (v1 ∨ v2 ∨ v3) ∧ (v3 ∨ v4 ∨ v5) ∧ (v1 ∨ v3 ∨ v5) ∧ (v1 ∨ v2 ∨ v4) ∧
(v2 ∨ v3 ∨ v4) ∧ (v4 ∨ v5 ∨ v6) ∧ (v1 ∨ v5 ∨ v6)
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C = (u ∨ v ∨ w)

u v w

Ru,C Rv,C

Rw,CLu,C

Lv,C

Lw,C

Fig. 6 The variable gadgets and the clause gadgets. In the figure, each variable u, v, w might participate
in other clauses

the horizontal line through the variables. Every leg of the gadget of C overlaps the
rectangles of its corresponding variable (denoted x) in a rectangle Qx,C of height 1 and
width 2, so that the midpoint of the top side of Qx,C is a blue point in the boundary of
Qx . The overlapping satisfies that such a midpoint is numbered with an even number
if and only if x appears positive in C . We further put three blue points equally spaced
at distance 1 in the bottom side of Qx,C , and other nine blue points in the boundary of
the gadget, as shown in Fig. 6. Among these nine points, for x ∈ {u, v, w}, let Rx,C

denote the blue point in the right side of the vertical leg corresponding to x in gadget
of C , and Lx,C the bottommost blue point in the left side (see Fig. 6).
Forcing convenient matchings of the blue points:We add red points (a polynomial
number of them) in such a way that for every pair a �= b of blue points it holds that if
D(a, b) is not a segment of a dotted line (see Fig. 6) then D(a, b) contains a colored
point in its interior.2 This implies that two blue points a and b can be matched if and
only if D(a, b) is a segment of any dotted line and does not contain any other colored
point. This can be done as follows: Since blue points have all integer coordinates, we
can scale the blue point set (multiplying by 2) so that every element has even x- and
y-coordinates. Then, a quadratic number of red points each of which with at least one
odd coordinate can be added so that to ensure the above condition. We finally scale
again the points, the blue and the red ones, and make a copy of the scaled red points
and move it one unit downwards.
Intuition:Consider the blue point at the top-left vertex of the rectangle Qv of variable
v. This point can be matched only with either the blue point immediately to its right or
the blue point immediately below. If we decide to match this point as in the first case
(see Fig. 7a), then we consider that v = 1. Otherwise, if we match as in the second
case, we consider that v = 0 (see Fig. 7b). Then, trying to find a maximum matching,
this decision propagates a matching of the other blue points in the boundary of Qv ,
as shown in Fig. 7a and b. Furthermore, if the value of v satisfies some clause C , it
induces to match the point Rv,C with the point in the bottom-right vertex of Qv,C .
Otherwise, the point Lv,C is induced to be matched with the point in the bottom-left
vertex of Qv,C . Let C be a clause with variables u, v, and w. It can be verified that all
the blue points in the gadget of C can be matched (throughout the matching that starts
with the decisions made at the top-left vertices of Qu , Qv , and Qw, which propagate

2 If D(a, b) is a box, then its interior is the interior of the box. Otherwise, if D(a, b) is a segment, then its
interior is the set D(a, b)\{a, b}.
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C1 C2

C3

v = 1

(a)

C1 C2

C3

v = 0

(b)

Fig. 7 The variable v appears positive in the clauses C1 and C3, and appears negative in the clause C2. a
If the blue point at the top-left vertex of Qv is matched to the right (i.e. v = 1), then each of Rv,C1 , Lv,C2 ,
and Rv,C3 is matched with a point in Qv , since v = 1 satisfies both C1 and C3, but not C2. (b) If the blue
point at the top-left vertex of Qv is matched downwards (i.e. v = 0), then each of Lv,C1 , Rv,C2 , and Lv,C3
is matched with a point in Qv , since v = 0 satisfies C2, but neither C1 nor C3. In both a and b, the arrows
are matching segments. Each arrow represents the fact that the blue point at the source vertex needs to be
matched with the blue point at the target one, due to the match inside the dashed circle which is the first
one that was made

to the other blue points) if and only if precisely one of u, v, and w satisfies C . This
statement is described in Fig. 8.
Reduction: Based on the intuition, observe that in each variable v, the blue points
along the boundary of Qv can be matched independently of the other points, and that
they have two perfect strong matchings: the 1-matching that matches the i th point
with the (i + 1)th point for all odd i ; and the 0-matching that matches the i th point
with the (i + 1)th one for all even i . In each clause C in which v appears, each of
these two matchings induces a maximum strong matching on the blue points in the
leg of the gadget of C that overlaps Qv , until reaching the points in the union of the
three legs. We consider that variable v = 1 if we use the 1-matching, and consider
v = 0 if the 0-matching is used. Let C be a clause with variables u, v, and w; and
draw perfect strong matchings on the blue points of the boundaries of Qu , Qv , and
Qw, respectively, giving values to u, v, and w. Notice that if exactly one among u, v,
and w makes C positive, then the strong matching induced in the blue points of the
gadget of C is perfect (see Fig. 9). Otherwise, if none or at least two among u, v, and
w make C positive, then the strong matching induced on the blue points of the gadget
of C is not perfect since two blue points are unmatched (see Figs. 10 and 11). Finally,
note that the red points admit a perfect strong matching with segments such that no
segment contains a blue point. Therefore, we can ensure that the 3-SAT formula ϕ

can be satisfied if and only if the point set S admits a perfect strong matching with
segments. �

Suppose now that the two-colored point set S is in general position. In what follows
we show that the MonoPRM problem remains NP-complete under this assumption.
To this end, we first perturb the two-colored point set of the construction of the proof
of Theorem 6 so that no two points share the same x- or y-coordinate, and second
show that two points of S can be matched in the perturbed point set if and only if they
can be matched in the original one.
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C

u v w

u v w

u v w
(a)

C

u v w

u v w

u v w
(b)

C

u v w
(c)

Fig. 8 a If exactly one of u, v, and w satisfies C , then all blue points in the gadget of C can be matched.
Note that C is satisfied only by u (resp. v, w) in the top (resp. middle, bottom) figure. b In each case (top,
middle, and bottom) at least two variables among u, v, and w satisfy C . Then, at least one of the blue points
inside the dotted circles cannot be matched. c If none of u, v, and w satisfies C , then one of the blue points
inside a dotted circle cannot be matched

C = (u ∨ v ∨ w)

u = 1 v = 1 w = 0

Fig. 9 If u = 1, v = 1, and w = 0, then only u satisfies C and there exists a perfect strong matching on
the blue points

C = (u ∨ v ∨ w)

u = 0 v = 1 w = 0

Fig. 10 If u = 0, v = 1, and w = 0, then no variable satisfies C and there does not exist any perfect strong
matching on the blue points
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C = (u ∨ v ∨ w)

u = 1 v = 0 w = 0

Fig. 11 If u = 1, v = 0, and w = 1, then two variables satisfies C and there does not exist any perfect
strong matching on the blue points

a

b

⇒

λ(a)

λ(b)

a

b

⇒

λ(a)

λ(b)

a b
⇒

λ(a)

λ(b)

Fig. 12 Perturbation of the point set to put S in general position

Alliez et al. (1997) proposed the transformation that replaces each point p = (x, y)
by the point λ(p) = ((1 + ε)x + ε2y, ε3x + y) for some small enough ε > 0, with
the aim of removing the degeneracies in a point set for computing the Delaunay
triangulation under the L∞ metric. Although this transformation can be used for our
purpose, by using the fact that the points in the proof of Theorem 6 belong to a
grid [0..N ]2, where N is polynomially-bounded, we use the simpler transformation
λ(p) = ((1 + ε)x + εy, εx + (1 + ε)y) for ε = 1/(2N + 1), which is linear in ε.
Both transformations change the relative positions of the initial points in the manner
shown in Fig. 12. Some useful properties of the transformation we use, stated in the
next lemma, were not stated by Alliez et al. (1997).

Lemma 7 Let N be a natural number and P ⊆ [0 . . . N ]2. The function λ : P → Q2

such that

λ(p) =
(
x(p) + x(p) + y(p)

2N + 1
, y(p) + x(p) + y(p)

2N + 1

)

satisfies the next properties:

(a) λ is injective and the point set λ(P) = {λ(p) : p ∈ P} is in general position.
(b) For every two distinct points a, b ∈ P such that x(a) = x(b) or y(a) = y(b), we

have that D(a, b)∩P = {a, b} if and only if D(λ(a), λ(b))∩λ(P) = {λ(a), λ(b)}.
(c) For every three distinct points a, b, c ∈ P such that x(a) �= x(b) and y(a) �= y(b),

we have that c belongs to the interior of D(a, b) if and only if λ(c) belongs to the
interior of D(λ(a), λ(b)).

Proof Properties (a–c) are a consequence of 0 ≤ x(p)+y(p)
2N+1 ≤ 2N

2N+1 < 1. �
Theorem 8 The MonoPRM problem remains NP-complete on point sets in general
position.
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Proof Let S be the colored point set generated in the reduction of the proof of Theo-
rem 6. Let N be a polynomially-bounded natural number such that S ⊂ [0 . . . N ]2, and
let S′ = λ(S), where λ is the function of Lemma 7. Consider the next observations:

(a) If a, b ∈ S are red points that can be matched in S because x(a) = x(b) and
y(b) = y(a) − 1, then λ(a) and λ(b) can also be matched in S′ (Property (b) of
Lemma 7).

(b) If a, b ∈ S are blue points that can be matched in S, then we have that either
x(a) = x(b) or y(a) = y(b), which implies that λ(a) and λ(b) can also be
matched in S′ by Property (b) of Lemma 7.

(c) If a, b ∈ S are blue points that cannot be matched in S because D(a, b) is a
segment containing a point c ∈ S in its interior, then neither λ(a) and λ(b) can be
matched in S′ (Property (b) of Lemma 7).

(d) If a, b ∈ S are blue points that cannot be matched in S because D(a, b) is a box
containing a point c ∈ S in the interior, then neither λ(a) and λ(b) can be matched
in S′ since the box D(λ(a), λ(b)) contains λ(c) (Property (c) of Lemma 7).

The above observations imply that there exists a perfect strong rectangle matching in
S if and only if it exists in S′. The result thus follows since S′ is in general position
by Property (a) of Lemma 7.

Combining the construction of Theorem 6 with the perturbation of Lemma 7, we can
prove that theMonoPRM problem is alsoNP-complete when all points have the same
color, and that the BicPRM problem is also NP-complete.

Lemma 9 Let M1 = {(0, 0), (5, 0), (5, 5), (0, 5)} and M2 = {(1, 3), (2, 2), (2, 3),
(2, 4), (3, 1), (3, 2), (3, 3), (4, 2)} be two point sets. The point set M1 ∪ M2 has a
perfect strong matching with rectangles, and for every proper subset M ′

1 ⊂ M1 the
point set M ′

1 ∪ M2 does not have any perfect strong matching with rectangles.

Proof The proof is straightforward (see Fig. 13a–c). �

Theorem 10 TheMonoPRM problem remainsNP-complete if all elements of S have
the same color.

Proof Let R0 and B0 be the sets of the red points and the blue points, respectively, in
the proof of Theorem 6. Let Q be a set of (artificial) green points to block the forbidden
matching rectangles in B0, that is, for every two points p, q ∈ B0 we have that D(p, q)

contains elements of B0 ∪ Q in its interior if and only if D(p, q) is not a matching
rectangle in R0 ∪ B0. In other words, p, q can be matched in R0 ∪ B0 if and only if
they can be matched in B0∪Q. The point set S1 = B0∪Q belongs to the grid [0..N ]2,
where N is polynomially-bounded in |R0| + |B0|, and is not in general position. Let
S2 = λ(S1), where λ is the function of the Lemma 7. We now replace each green
point g of Q by a translated and stretched copy Sg of the set M1 ∪ M2 of Lemma 9,
with all elements colored blue (see Fig. 13a). Let S = B0 ∪ (

⋃
g∈Q Sg). Putting the

elements of Sg close enough one another for every g, we can guarantee that if we
want to obtain a perfect strong matching in S then we must have by Lemma 9 a perfect
strongmatching in each Sg in particular (see Fig. 13b). Therefore, the set Sg acts as the
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a b

cd

(a)
a b

cd

(b)

cd

a

c

a

c

b

d

(c)

Fig. 13 a The point set M1 ∪ M2. b A perfect strong matching of M1 ∪ M2. c If exactly two points among
a, b, c, d are removed, then the remaining points do not have any perfect strong matching

green point g blocking the forbidden matching rectangles in B0. The construction of
S starts from the planar 3-SAT formula ϕ of the proof of Theorem 6, and using all the
above arguments, we can claim that there exists a perfect strong matching in S if and
only if the formula ϕ is satisfiable. Hence, theMonoPRM problem with input points
of the same color isNP-complete since there exists a polynomial-time reduction from
the Planar 1- in- 3 SAT problem. �

Theorem 11 The BicPRM problem is NP-complete, even if the point set S is in
general position.

Proof Let R0 and B0 be the sets of the red points and the blue points, respectively,
in the proof of Theorem 6. Change to color red elements of B0, to obtain the colored
point set S0, so that for every segment matching two blue points in R0∪B0 exactly one
of the matched points is changed to color red (see Fig. 14a). For every point p ∈ B0,
let p′ denote the corresponding point in S0, and vice versa. Let Q be a set of (artificial)
green points to block the forbidden matching rectangles in S0, that is, for every two
distinct points p′, q ′ ∈ S0 we have that D(p′, q ′) contains elements of S0 ∪ Q in its
interior if and only if D(p, q) is not a matching rectangle in R0 ∪ B0. The point set
S1 = S0 ∪ Q belongs to the grid [0 . . . N ]2, where N is polynomially-bounded, and
is not in general position. Let S2 = λ(S1), where λ is the function of the Lemma 7.
We now replace each green point g of Q by the set Sg of eight red and blue points
in general position (see Fig. 14b). Let S = S0 ∪ (

⋃
g∈Q Sg). Putting the elements of

Sg close enough one another for every g, we can guarantee that S is also in general
position and that for every g the points of Sg appear together in both the left-to-right
and the top-down order of S. This last condition ensures that if we want to obtain a
perfect strong matching in S then we must have a perfect strong matching for each
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C = (u ∨ v ∨ w)

u = 1 v = 1 w = 0

(a)

(b) (c) (d)

Fig. 14 Proof of Theorem 11. a Changing the colors of the blue points in the gadgets of the proof of
Theorem 6. b The eight points (close enough one another) that replace each green point. c One of the only
two ways to match the points corresponding to a green point in order to obtain a perfect matching. d The
other way

Sg in particular (see Fig. 14c and d) because for all g every red point of Sg cannot be
matched with any blue point not in Sg . Therefore, the set Sg acts as the green point
g blocking the forbidden matching rectangles in S0. The BicPRM problem is thus
NP-complete, even on points in general position. �

5 Summary

We have proved that finding a maximum strong matching of a two-colored point
set, with either rectangles containing points from the same color or rectangles
containing points of different colors, isNP-hard and provide a polynomial-time (1/4)-
approximation algorithm for each case. These approximation algorithms provide a
(1/4)-approximation algorithm for the problem of finding a maximum strong rectan-
gle matching of points of the same color, studied by Bereg et al. (2009). However,
the approximation ratio is smaller than 2/3, the one given by Bereg et al. We leave as
an open problem to find a better O(1)-approximation algorithm, or a PTAS, for the
MonoMRM andBicMRM problems.On the other hand, finding aO(1)-approximation
algorithm for the general Maximum Independent Set of Rectangles problem
is still an intriguing open question.
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