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1. Introduction

The study of differential equations with piecewise constant argument is motivated by several applications 
coming from different fields of science and by their own mathematical definition as hybrid dynamical systems 
[2,9,29]. For a longer discussion on applications consult the references [5,10,21,22,27,36,37]. Here the meaning 
of hybrid is given in the sense that they combine the behavior of differential and difference equations. In 
general, the typical form of this kind of equations is given by the following functional equation

x′(t) = F(t,x(t),x(γ(t))), (1)

where x : R → C
p is the unknown function, t ∈ R usually denotes the time, F is a given function from 

R × C
p × C

p to Cp, and γ is a given general step function in the sense that
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γ : R → R is defined by γ(t) = ζi for t ∈ Ii = [ti, ti+1), where {ti}i∈Z

and {ζi}i∈Z are two given (fix) sequences such that ti ≤ ζi ≤ ti+1

with ti < ti+1 for each i ∈ Z and ti → ±∞ when i → ±∞.

⎫⎪⎬
⎪⎭ (2)

The genesis of the study of this kind of functional equations goes back to the work of Myshkis [28], who 
proposed an equation of type (1)–(2) with the particular step functions γ(t) = [t] and γ(t) = 2 [(t + 1)/2]. 
Here [·] denotes the greatest integer function. By simplicity of the presentation, we use hereinafter the 
terms DEPCA and DEPCAG to refer the differential equations with piecewise constant argument when the 
step function is based on the greatest integer function and when the step function is of the general type 
given by (2), respectively. In particular, note that the equations studied by Myshkis are DEPCAs. Later, 
in the early 80’s, a systemic analysis of (1)–(2) was introduced by Wiener and collaborators, see [1,17,39,
40] and references therein. Afterwards, the contribution to the development of the theory was given by 
many authors see for instance [3–5,7,10,18,21–23,25,29,33,36,39–44]. Nowadays, there exist an intense and 
increasing interest to understand the qualitative behavior, to get novel applications and to solve numerically 
the equations, since a general theory for (1)–(2) is far to be closed, see [5,6,11–13,15,14,16,35,38].

An important point to observe is the notion of the solution or more generally the types of approach 
to analyze (1)–(2). Actually, generally speaking, the notion of solution for functional differential equations 
is one of the most important tasks. Now, we recall that the original notion of the integration (or solu-
tion) of a DEPCA was introduced in [1,17,40] and is based on the reduction to discrete equations. This 
approach presents some disadvantages when we require a generalization to analyze DEPCAGs. In partic-
ular, for instance to solve the Cauchy problem requires that the initial moments must be integers, see [40]
for details. Another approach to study a general quasilinear DEPCAG was introduced by Akhmet [3,4], 
and is based on the construction of an equivalent integral equation and remarking the clear influence of 
the discrete part. The methodology of Akhmet permits to overpass the difficulties of the methodology 
of Wiener and collaborators. Moreover, Akhmet adapts the notion of solution given by Wiener and used 
previously by Papaschinopoulos to study a particular type of DEPCA, see [29]. The notion of Akhmet 
solution is given in terms of continuity of the solution on each ti, the existence of the derivatives on each 
t with possible exception of some ti and the local satisfaction of the equation, see Definition 2.1 below. 
Then, in spite of its functional character a quasilinear DEPCAG has similar properties to ordinary dif-
ferential equations. For further details, consult for instance [8,20,21,23,24,35]. Here, in this paper, we use 
the approach of Akhmet. Thus, we do not need to impose any restrictions on the discrete equations and 
we assume more easily verifiable conditions on the coefficients, similar to those for ordinary differential 
equations.

In this paper, we are interested in the asymptotic equivalence of some DEPCAGs. Now, in order to 
precise the different type of systems which will be used in the paper, we introduce a particular notation 
of each case. Indeed, throughout the paper, we consider that x, z, u, y, w, v satisfy the following particular 
cases of (1)–(2):

x′(t) = A(t)x(t), (3)

z′(t) = A(t)z(t) + B(t)z(γ(t)), (4)

u′(t) = B(t)u(γ(t)), (5)

y′(t) = A(t)y(t) + B(t)y(γ(t)) + g(t), (6)

w′(t) = A(t)w(t) + B(t)w(γ(t)) + f(t, w(t), w(γ(t))), (7)

v′(t) = A(t)v(t) + B(t)v(γ(t)) + g(t) + f(t, v(t), v(γ(t))). (8)
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Note that (3)–(6) are linear and (7)–(8) are nonlinear. The specific hypotheses about the different functions 
given in (3)–(8) are summarized in subsection 2.1.

We have found some previous results on the literature and specifically focused on the analysis DEPCAs 
of DEPCAGs of types (4)–(7). Particularly, here we comment the works of Akhmet [3,4] and Pinto [34], 
since they are more close to our contributions. Indeed, Akhmet [3,4], by applying, his approach has obtained 

fundamental results about the variation of constants formula and the stability of the perturbed system (7). 
Now, Pinto in [34], by applying a combined methodology based on the Green matrix and Akhmet approaches, 
has proven some important results related to the analysis of the DEPCAGs (4)–(7). In particular, he defines 
an appropriate Green matrix associated to (4), then formulated the solution of (6) in terms of this Green 

matrix and subsequently characterize the solution of (7) by an integral equation of the first kind. Using the 

integral equation and a Gronwall type inequality for DEPCAGs, he deduces an existence and uniqueness of 
solutions for (6). Moreover, using this approach he guarantees that the zero solution of (4) is exponentially 

asymptotically stable. Finally, he gives some equivalence results on stability and compares his results with 

the corresponding ones of Akhmet [3,4]. Probably, the major advantages of the approach introduced in [34]
are two. Firstly, permits the introduction of more general hypotheses on the coefficients. Second, the Green 

matrix type taking account of the decomposition of any interval, Ii = [ti, ti+1) in the advanced intervals 
I+
i = [ti, ζi] and the delayed intervals I−i = [ζi, ti+1), hence permits to analyze the alternately advanced 

and delayed differential systems in a unified way.
The paper is organized as follows. In section 2, we introduce several preliminary concepts and results like 

the hypotheses, the Cauchy and Green matrices type, the notion of solution for DEPCAGs, the Gronwall 
type inequality for DEPCAGs and the notion of dichotomies and stability. Moreover, in section 2 we give a 

detailed example for (4) with A and B constants. In sections 3–5, we present the main results of the paper 
which are summarized as follows

(1) Stability of solutions for (7). In Theorem 3.1 we prove that the σ-exponentially stability of the zero 

solution for the linear DEPCAG (4) implies σ0-exponentially stability of the zero solution for (7), where 

σ0 is defined in terms of σ, A, f, {ti}i∈Z and {ζi}i∈Z.
(2) Bounded solutions for (6). In Proposition 4.1 we prove that σ-exponentially stability of (6) and a 

convergence of a series given in terms of the fundamental solutions for (3) and (4) implies that equation 

(6) has a unique bounded solution on R. Moreover, in Theorem 5.3 we prove that there exists a unique 

bounded solution of the non-homogeneous linear DEPCAG (6) by assuming the linear DEPCAG (4)
has a σ-exponential dichotomy and two series in terms of the fundamental solutions for (3) and (4)
and the associated projection to the dichotomy converges, see [6] for other results. In [6], periodic and 

almost periodic solutions are also studied.
(3) Asymptotic equivalence of (6) and (8). In Theorem 5.1, we prove that if the linear system (4) has an 

ordinary dichotomy and in (8) f is integrable, then there exists a homeomorphism between the bounded 

solutions of (6) and the bounded solutions of (8).
(4) Bounded solutions for (7). In Theorem 5.5 we prove that: if (4) has a σ-exponential dichotomy satisfying 

the requirements of Theorem 5.3, then for any ξ ∈ PC
p the nonlinear equation (7) has a unique bounded 

solution w on [t0, ∞), with Pw(t0) = ξ, the correspondence ξ → w is continuous and the bounded 

solution of equation (7) converges exponentially to zero as t → ∞.

Moreover, we prove introduce four corollaries with particular importance in Corollary 5.2 we deduce that 
here exists a homeomorphism between Cp and the bounded solutions of (5).
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2. Preliminaries

2.1. General and stability assumptions and notation

In this section we summarize several hypotheses used thorough of the paper. We organize these assump-
tions in two big groups (H1)–(H4) and (S1)–(S3). The distinction obeys fundamentally to the fact that 
(S1)–(S3) are frequently needed by the exponential stability results.

The first group is given as follows

(H1) Let us denote by Cn×m the vectorial space of complex matrices of size n ×m. We assume that the 
coefficients of (3)–(7) defined by the functions A, B : R → C

p×p and g : R → C
p are locally integrable 

in R.
(H2) For an arbitrary matrix valued function M ∈ L1

loc(R; Cp×p) and for each i ∈ Z consider the following 

notation ρi(M) = ρ+
i (M)ρ−i (M) with ρ±i (M) = exp

(∫
I±
i
|M(s)|ds

)
, where {I+

i , I−i } is a partition of 
Ii defined as follows

I+
i = [ti, γ(ti)] = [ti, ζi] and I−i = (γ(ti), ti+1) = (ζi, ti+1). (9)

The sets I+
i and I−i are so called the advanced and delayed intervals, respectively. We suppose that 

the functions A and B in equations (3)–(7) satisfy the following relations

ρ(A) = sup
i∈Z

ρi(A) < ∞, ν+
i (B) ≤ ν+ < 1, ν−i (B) ≤ ν− < 1, (10)

where ν±i = ρ±i (A) ln(ρ±i (B)).
(H3) We assume that the function f given as the third term on the right hand of the equation (7) satisfies 

the following three requirements: (i) f : R × C
p × C

p → C
p is a continuous function, i.e. f ∈ C(R ×

C
p × C

p, Cp); (ii) f(t, 0, 0) = 0 for each t ∈ R; and (iii) there exists η ∈ L1
loc(R; [0, ∞)) such for all 

t ∈ R and all xi, yi ∈ C
p, i = 1, 2, the inequality
∣∣∣f(t, x1, y1) − f(t, x2, y2)

∣∣∣ ≤ η(t)
(
|x1 − x2| + |y1 − y2|

)
(11)

holds.
(H4) Let X(t) a fundamental matrix of solutions for (3) and denote by Φ the also called fundamental matrix 

of (3) and defined by Φ(t, s) = X(t)X−1(s) for (t, s) ∈ R
2. Consider that J : R2 → C

p×p is defined as 
follows

J(t, τ) = Ip +
t∫

τ

Φ(τ, s)B(s)ds, (12)

where Ip is the p ×p identity matrix. For each i ∈ Z, we assume that the matrix J(t, τ) is non-singular 
for all t, τ ∈ [ti, ti+1).

Here we introduce three comments about (H1)–(H4): (a) note that when A and B are constant, the relation 
(10) is strongly simplified and naturally a simpler condition can be obtained; (b) the matrix Φ defined in 
(H4) satisfies the following properties:

Φ(τ, τ) = Ip, Φ(t, s)Φ(s, τ) = Φ(t, τ), Φ(t, s) = Φ−1(s, t), ∀(s, t, τ) ∈ R
3; (13)

and (c) (H2) implies (H4) (see Lemma 2.1).
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Now, we introduce the following second group of hypotheses

(S1) For a given t ∈ R denote by i(t) the unique integer such that t ∈ Ii(t). We assume that estimate

sup
i(t)∈Z

sup
t∈Ii(t)

|Z(t, ti(t))| < ∞

is satisfied by Z(t, s) the fundamental solution of (4) (see subsection 2.3).
(S2) inf

i∈Z

{ti+1 − ti} > 0.

(S3) The lengths of the I±i satisfies the following bound

t = sup
i∈Z

max
{
ζi − ti, ti+1 − ζi

}
< ∞. (14)

We note four facts: (a) (S1) is more general than (H2), since (H2) implies (S1) and condition (S2); (a) (S2) 
implies (S3); (c) for A and B constant matrices, the conditions (S2) and (S3) imply (S1); and (d) nowadays 
the most studied DEPCAGs satisfy (S3), see for instance [1,3,7,17,18,40].

2.2. Notion of solution for DEPCAGs

We state the notion of solutions for DEPCAG by following the given [1,15,17,18,40]. More precisely we 
have the following definition.

Definition 2.1. Consider a continuous function F : I × C
p × C

p → ×C
p where I ⊂ R and γ is a general 

step function in the sense of (2). Then a function v : I → C
p such that t �→ v(t) is called a solution of the 

following DEPCAG

v′(t) = F (t,v(t),v(γ(t))) (15)

on an interval I if:

(a) v is continuous on I;
(b) the derivative v′(t) exists at each point t ∈ I with the possible exception of the points ti ∈ I, i ∈ Z, 

where the one sided derivatives exist; and
(c) v satisfies pointwise the equation (15) on each interval (ti, ti+1) ⊂ I, i ∈ Z, and (15) holds for the right 

derivative of v at the points ti ∈ I, i ∈ Z.

Naturally, the Definition 2.1 can be applied to precise the notion of solution for the DEPCAG of types 
(4)–(7) by considering that F has a particular definition in each case.

2.3. The fundamental matrix of solutions of (4)

In several parts of the paper we need the fundamental matrix of solutions of (4). For instance, to define 
the Green matrices the fundamental matrix of solutions of DEPCAG (4) is a central concept. Now, we 
recall that, under the assumption (H4), there exists Z(t, s) ∈ C

p×p a fundamental matrix of solutions of 
DEPCAG (4), see for instance [4,36]. Indeed, to construct Z we proceed in two steps. Firstly, we define 
Z(t, τ) for t ≥ τ and then for t ≤ τ . Let us consider that (t, τ) ∈ [tj , tj+1) × [ti, ti+1) with t > τ and j ≥ i. 
By induction we can deduce that
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Z(t, τ) = E(t, γ(tj))E(tj , γ(tj))−1

×
i+2∏
k=j

(
E(tk, γ(tk−1))E(tk−1, γ(tk−1))−1

)
E(ti+1, γ(τ))E(τ, γ(τ))−1,

= E(t, ζj)E(tj , ζj)−1

×
i+2∏
k=j

(
E(tk, ζk−1)E(tk−1, ζk−1)−1

)
E(ti+1, ζi)E(τ, ζi)−1, t ≥ τ, (16)

where 
∏

denotes the backward product 
n∏

k=m

Ck = CnCn−1 · · ·Cm and E is the matrix defined as follows

E(t, τ) = Φ(t, τ)J(t, τ) with Φ and J defined in (H4). (17)

Note that the property of no-singularity of the matrix J(·, ζi) on the interval Ii is the minimal requirement 
for the well definition of Z given in (16). Now, to define Z(t, τ) for t < τ we note that Z(t, τ) defined by 
(16) satisfies similar properties to (13), since we can easily deduce that

Z(τ, τ) = Ip, for τ ∈ R, (18)

Z(t, s)Z(s, τ) = Z(t, τ), for τ ≥ s ≥ t, (19)

Z(t, τ) = [Z(τ, t)]−1, for t ≤ τ. (20)

In particular, the property (20) is important for our purpose since it allows to define Z(t, τ) for t < τ using 
(16). Hence Z(t, s) is completely defined on R2 by (16) and (20) and naturally

z(t) = Z(t, τ)z(τ) for t ≥ τ or z(t) = [Z(t, τ)]−1z(τ) for t < τ (21)

defines the solution of (4) with initial condition (τ, z(τ)).
From (16) and (20) and for notational convenience, we introduce the matrices Z± as follows

Z+(t, s) = Z(t, s) for t ≥ s and Z−(t, s) = [Z(s, t)]−1 for t < s, (22)

where Z is evaluated by (16).
The results of this subsection are formalized below in Lemma 2.1 and Corollary 2.3.

2.4. Green matrices type

In this subsection, we recall the concepts and notation of Green matrices Gk and G.

Definition 2.2 (Green matrix Gk(t, s) for (t, s) ∈ [tk, tk+1]2). Consider the notation defined in (2). For a 
given k ∈ Z, the Green matrix type Gk is defined from [tk, tk+1] × [tk, tk+1] to Cp×p by the following relation

Gk(t, s) =
{
G+

k (t, s), for (t, s) ∈ [tk, tk+1] × [tk, γ(s)],
G−

k (t, s), for (t, s) ∈ [tk, tk+1] × (γ(s), tk+1],
(23)

where

G+
k (t, s) = Z+(t, τ)Φ(τ, s), for τ ≤ s ≤ γ(s), tk ≤ τ ≤ t,

G−
k (t, s) = Z−(t, τ)Φ(τ, s), for γ(s) < s ≤ τ, t ≤ τ ≤ tk+1.

Here the notation Z± is defined in (22).
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In particular, the Green matrix (23), for the advanced situation tk ≤ s ≤ γ(s) = tk+1

G+
k (t, s) =

{
Z+(t, tk)Φ(tk, s), for tk ≤ s ≤ γ(tk), s < t,

Φ(t, s), for t ≤ s ≤ γ(tk),

and for the delayed situations tk = γ(s) < s

G−
k (t, s) =

{
Z−(t, tk+1)Φ(tk+1, s), for γ(s) < s ≤ tk+1, t > s,

Φ(t, s), for γ(s) < s ≤ t < tk+1.

Definition 2.3 (Green matrix G(t, s) for (t, s) ∈ R2). Consider the notation i(t) given in (S1). The Green 
matrix type G : R2 → C

p×p for s > t is defined as follows

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gi(t)(t, s), i(s) = i(t),
Gi(t)(ti(t)+1, s) + Gi(t)(t, ti(t)+1), i(s) = i(t) + 1,

Gi(t)(ti(t)+1, t) +
i(s)−1∑

k=i(t)+1

Gk(tk+1, tk)

+ Gi(s)(s, ti(s)−1), i(s) > i(t) + 1,

(24)

and for s < t by the following relation

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gi(s)(t, s), i(s) = i(t),
Gi(s)(ti(s)+1, s) + Gi(s)(t, ti(s)+1), i(s) = i(t) + 1,

Gi(s)(ti(s)+1, s) +
i(t)−1∑

k=i(s)+1

Gk(tk+1, tk)

+ Gi(t)(t, ti(t)−1), i(t) > i(s) + 1,

(25)

where Gk(·, ·) is the matrix introduced in Definition 2.2.

We note that

G(t, s) =
{
G+(t, s), for s ≤ γ(s),
G−(t, s), for γ(s) < s,

where G±(t, s) =
∑i(t)

k=i(s) G
±
k (t, s). This fact justifies the name of ‘Green matrix type’ for G. Moreover, 

Gk(tk+1, tk) = G+
k (tk+1, tk) = Z(tk+1, tk), which gives the recurrence relation:

x(ti+1) = Z(ti+1, ti)x(ti), i ∈ Z. (26)

Note that from (26), we have

X(tj+1) =
j∏

k=i

Zk(tk+1, tk)x(ti), i ≤ j, (27)

which gives another way to obtain formula (16). It allows also to solve the linear non-homogeneous 
DEPCAG (6).
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Here we recall an important result given in [34].

Lemma 2.1. ([34]) Assume that the condition (H2) is fulfilled, then the condition (H4) holds and the matrices 
Z(t, s) and Z(t, s)−1 are well defined for any (t, s) ∈ R

2 with t ≥ s. Moreover, there exists a positive constant 
number α such that

|Φ(t, s)| ≤ ρ(A), |Z(t, s)| ≤ α and |Gi(t, s)| ≤ αρ(A) (28)

for (t, s) ∈ [ti, ti+1]2 and for each i ∈ Z.

2.5. Variation of parameters formulas

A variation of parameters formula to (6) can be deduced by assuming that (H1) and (H4) hold. Indeed, 
in [34] was proven that the solution of the equation of (6) is given by

y(t) = Z(t, τ)y(τ) + Z(t, τ)
ζi∫
τ

Φ(τ, s)g(s)ds +
j∑

k=i+1

Z(t, tk)

×
ζk∫

tk

Φ(tk, s)g(s)ds +
j−1∑
k=i

Z(t, tk+1)
tk+1∫
ζk

Φ(tk+1, s)g(s)ds

+
t∫

ζj

Φ(t, s)g(s)ds, for (τ, t) ∈ Ii × Ij . (29)

In particular, we have that

y(t) = Z(t, τ)y(τ) +
ζi∫
τ

G+
i (t, s)g(s)ds

+
j∑

k=i+1

ζk∫
tk

G+
k (t, s)g(s)ds +

j−1∑
k=i

tk+1∫
ζk

G−
k (t, s)g(s)ds

+
t∫

ζj

G−
j (t, s)g(s)ds, for (τ, t) ∈ I+

i × I−j , (30)

where the notation I±i is defined in (9). Note that, using Definition 2.1, a similar formula can be obtained 
for (τ, t) ∈ I−i × I−j . To be more precise, the following theorem can be stated.

Theorem 2.2. ([34]) Assume that the hypotheses (H1) and (H4) (or (H1) and (H2)) are fulfilled. Then, for 
any (τ, ξ) ∈ R × C

p the solution of (6) such that y(τ) = ξ is defined on R and is given by

y(t) = Z(t, τ)ξ +
t∫

τ

G(t, s)g(s)ds. (31)

In particular the formula (31) is reduced to (29) or (30) depending if (τ, t) ∈ Ii × Ij or (τ, t) ∈ I+
i × I−j , 

respectively.
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By application of Theorem 2.2 to the DEPCAGs (4), (5), and (7) we can deduce some useful results 
which are formalized in the following three corollaries.

Corollary 2.3. ([34]) Assume that A(t) and B(t) satisfy the requirements of hypothesis (H1). Moreover, 
assume that (H4) or (H2) are fulfilled. Then, the following assertions are valid

(i) there exists Z : R2 → C
p×p the fundamental solution matrix of the linear system (4) and is given by 

(16) and (20),
(ii) for every (τ, ξ) ∈ R ×C

p, there exists on all of R a unique solution (4) such that z(τ) = ξ. This solution 
is given by (21).

Furthermore, conversely, the existence of a solution z(t) = z(t, τ, ξ) of (4) defined on all of R implies that 
the condition (H4) must be true.

Corollary 2.4. ([34]) Assume that B(t) satisfies the requirement of hypothesis (H1). Then, for every (τ, ξ) ∈
R × C

p the solution of DEPCAG (5) such that u(τ) = ξ is given by the formulae (29) and (31) with 
u(t) = z(t), g = 0, Φ(t, s) ≡ Ip, or equivalently u(t) = z(t), g = 0, E(t, s) = J(t, s) = Ip +

∫ t

s
B(r)dr,

Z(t, τ) = J(t, γ(tj))J(tj , γ(tj))−1

j∏
k=i+2

(
J(tk, γ(tk−1))J(tk−1, γ(tk−1))−1

)
J(ti+1, γ(τ))J(τ, γ(τ))−1,

for (t, τ) ∈ [tj , tj+1) × [ti, ti+1) with t ≥ τ .

Corollary 2.5. ([34]) Assume that the hypotheses (H1) and (H4) (or (H1) and (H2)) are fulfilled, then for 
any (τ, ξ) ∈ R × C

p, every w(t) = w(t, τ, ξ) solution of the quasilinear DEPCAG (7) such that w(τ) = ξ, 
satisfies the integral equation (31) with g(s) = f(s, z(s), z(γ(s))) or

w(t) = Z(t, τ)ξ +
t∫

τ

G(t, s)f(s, w(s), w(γ(s)))ds. (32)

Conversely, any solution of the integral equation (32), is a solution in the sense of Definition 2.1, of the 
quasilinear DEPCAG (7).

To close the subsection we remark that, using the classical method of Wiener [40] (pp. 8, 18, 52, 88), 
several authors have obtained variation of parameters formula for the particular cases of the steps functions 
γ(t) given by [t], [t + 1/2], [t + 1]. They have obtained the compact formula:

y(t) = Z(t, τ)y(τ) + Z(t, τ)
γ(ti)∫
τ

Φ(τ, s)g(s)ds

+
j−1∑
k=i

Z(t, tk+1)
γ(tk+1)∫
γ(tk)

Φ(tk+1, s)g(s)ds

+
t∫

Φ(t, s)g(s)ds, for (τ, t) ∈ [ti, ti+1) × [tj , tj+1), (33)

γ(tj)
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which follows from (31), (24)–(25) and (23) since G(t, s) = Z(t, tk+1)Φ(tk+1, s) for s ∈ [γ(tk), γ(tk+1)] =
[ζk, ζk+1]. Under other conditions, this formula was extended to any DEPCAG by Akhmet [4]. This formula 
takes account of the intervals [ζk, ζk+1] instead of the advanced intervals I+

k and the delayed intervals I−k . 
This representation allows not to see the Green matrix type.

2.6. Gronwall type inequalities for DEPCAGs

The Gronwall type inequality for DEPCAG introduced and proved in [33] is formulated in the following 
lemma.

Lemma 2.6. ([33]) Let u, η : R → [0, ∞) be two functions such that u is continuous and η is locally integrable 
satisfying

θ = sup
i∈Z

{
θi : θi := 2

∫
Ii

η(s)ds
}
< 1. (34)

Suppose that for τ ≤ t or t ≤ τ , we have the inequality

u(t) ≤ u(τ) +

∣∣∣∣∣∣
t∫

τ

η(s)[u(s) + u(γ(s))]ds

∣∣∣∣∣∣ .
Then

u(t) ≤ u(τ) exp

⎧⎨
⎩θ̃

t∫
τ

η(s)ds

⎫⎬
⎭ with θ̃ = 2 − θ

1 − θ
.

If we consider the forward and backward situation in a separated way, then in (34) instead of integration 
on the all Ii to define θi we need only an integration on I+

i or I−i respectively. More precisely, we have the 
following result.

Corollary 2.7. ([34]) The results in Lemma 2.6 are true

for t ≥ τ, if θ = sup
i∈Z

{
θ+
i : θ+

i := 2
∫
I+
i

η(s)ds
}
< 1,

for t ≤ τ, if θ = sup
i∈Z

{
θ−i : θ−i := 2

∫
I−
i

η(s)ds
}
< 1.

2.7. Existence and uniqueness of solution of the quasilinear system (7)

The existence, uniqueness, boundedness, stability and continuous dependences of the solutions w(t) =
w(t, τ, ξ) of DEPCAG (7) are precisely stated as follows.

Proposition 2.8. ([34]) Assume that conditions (H1), (H3) and (H4) (or (H1)–(H3))are fulfilled. More-
over, assume that the given function A in (H1) and the existing function η in (H3) satisfies the estimate 
αρ(A)θ < 1 with ρ(A), α and θ given in (10), (28) and (34), respectively. Then, for every (τ, ξ) ∈ R × C

p, 
there exists w(t) = w(t, τ, ξ) solution of (7) in the sense of Definition 2.1 and satisfying the following 
properties:



1444 A. Coronel et al. / J. Math. Anal. Appl. 450 (2017) 1434–1458
(i) w(τ) = ξ,
(ii) w is defined on all of R,
(iii) w is solution of the integral equation (32),
(iv) w is unique and depends continuously on τ and ξ.

Moreover, if there exists a constant c ≥ 1 such that

|Z(t, s)| ≤ c, for t ≥ s (35)

and if η ∈ L1(R), then w is bounded and is stable, namely

∃c1 ∈ R
+ : |w(t, τ, ξ1) − w(t, τ, ξ2)| ≤ c1|ξ1 − ξ2|, ∀t ≥ τ, ∀ξ1, ξ2 ∈ C

p. (36)

The estimate αρ(A)θ < 1 required as one of the hypotheses of Proposition 2.8 is more frequently written 
in an explicit way as follows

θi = 2αρ(A)
∫
Ii

η(s)ds ≤ θ = sup
i∈Z

θi < 1.

Moreover, we remark two facts. Firstly, if we are only interested in the forward (or backward) continuation, 
i.e. only for t ≥ τ (or t ≤ τ), then instead of the condition αρ(A)θ < 1 we need only an integration on I+

i

(or I−i ) i.e. the inequality

2αρ+
i (A)

∫
I+
i

η(s)ds ≤ θ+ < 1
(

or 2αρ−i (A)
∫
I+
i

η(s)ds ≤ θ+ < 1
)
,

is required. Second, we remark that the Proposition 2.8 generalizes the corresponding results obtained by 
Akhmet [3,4].

2.8. Exponential stability

The definitions of Lyapunov stability of the solutions of DEPCAG can be given in the same way as for 
ordinary differential equations. Let us formulate only one of them.

Definition 2.4. The zero solution of DEPCAG (7) is σ-exponentially stable if for an arbitrary positive ε, 
there exists a positive number δ = δ(τ, ε) such that |ξ| ≤ δ implies that |x(t, τ, ξ)| ≤ c|ξ|e−σ(t−τ) for all 
t ≥ τ ≥ 0.

Let Z(t, s) be the fundamental matrix of the linear DEPCAG (4) (see (16) and (22)). By the representa-
tions (21) and (16), the stability of linear system (4) can be analogously expressed as theorems for ordinary 
differential equations [8,19,20,24]. An example of this fact is (35) and the following theorem (see [4]).

Theorem 2.9. The zero solution of the linear DEPCAG (4) is σ-exponentially stable if and only if there exist 
two positive numbers c and σ such that

|Z(t, s)| ≤ ce−σ(t−s), for t ≥ s ≥ 0. (37)
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By Lemma 2.1

|G(t, s)| ≤ cρ(A)eσte−σ(t−s), for t ≥ s ≥ 0, (38)

where t is the notation introduced in (S3) (see (14)).
From the respective stability of the difference system (26):

z(ti+1) = Z(ti+1, ti)z(ti), i ∈ Z, (39)

whose solutions are given by

z(tj+1) =
j∏

k=i

Z(tk+1, tk)z(ti) = Z(tj+1, ti)z(ti), i < j, (40)

we can formulate several theorems which provide sufficient conditions for the stability of linear systems of 
DEPCAG (4). The stability of the solution z = 0 of the difference system (39) is deduced from boundedness 
or convergence of Z(tj+1, ti) as j → ∞. Taking into account formula (16), from the hypotheses (S1) and 
(S2), we have, e.g. the following theorem.

Theorem 2.10. Assume that conditions (H1), (H4), (S1) and (S3) are fulfilled and the zero solution of 
DEPCAG (4) is exponentially asymptotically stable if 0 < ρ < 1, we have

|E(tk+1, ζk)E(tk, ζk)−1| = |Z(tk+1, tk)| ≤ ρ, k ∈ N. (41)

We observe that the condition (41) is the natural ones. Moreover, we note that there exist other conditions 
which permit to get similar results. For instance, under other several additional assumptions, Akhmet [4]
consider |E(tk+1, ζk+1)E(tk+1, ζk)−1| ≤ ρ instead of (41). This condition is equivalent to (41) if A and B
are constants and scalars and (S3) holds. At present, the DEPCAG more studied satisfy (S3), see [1,3,7,17,
18,40] and also our example given below in subsection 2.9.

On the other hand, we note that some interesting results similar to Theorems 2.9 and 2.10 can be found 
in [4,17,39,40].

2.9. An example for (4) with A and B constants

Study the dichotomic character in the following linear DEPCAG:

x′(t) = Ax(t) + Bx(γ(t)) (42)

where A and B are fixed real constant matrices such that A−1 exists and the function γ(t) is defined by 
sequences ti and ζi satisfying:

ζi − ti = ν+, ti+1 − ζi = ν−, i ∈ Z,

where ν+, ν− > 0 are fixed numbers. Calling,

Λ(s) = esA + A−1(esA − Ip)B = esA[Ip + A−1(Ip − e−sA)B],

we obtain E(t, τ) = Λ(t − τ).
Then, to apply Theorem 2.10 we must study:
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Z(ti+1, ti) = E(ti+1, ζi)E(ti, ζi)−1 = Λ(ν−)Λ(−ν+)−1 = Λ1.

For A = 0, we have Λ(s) = Ip + sB and

Λ1 = (Ip + ν−B)(Ip − ν+B)−1.

For γ(t) = c[t + d/c], c > 0, c > d, we have ζi = c, ti = ci − d, ν+ = d, ν− = c − d, Λ1 = Λ(c − d)Λ(−d)−1. 
In particular, for the famous case of Cooke and Wiener [17], γ(t) = 2[t + 1/2], we have Λ1 = Λ(1)Λ(−1)−1. 
The zero solution is stable if ρ(Λ1) ≤ 1 and exponentially stable if ρ(Λ1) < 1. In these conditions, there 
exist c ≥ 1 and κ constants such that:

|Z(t, τ)| ≤ ceκ ln(t−τ), t ≥ τ. (43)

The situation for t < τ can be treated similarly.
In the case A = a �= 0 and B = b be scalars, i.e. the equation

x′(t) = ax(t) + bx(γ(t)), (44)

we can find explicit conditions on the coefficients and the sequences for providing exponential stability for 
of zero solution of (44), see [5,17,39,40]. On the basis of the previous analysis, we must have ρ = |Λ1| =
|Λ(ν−)Λ(−ν+)−1| < 1, either of the inequalities

−b > a > 0, [eaν
−

+ e−aν+
]
[
1 + b

a

]
> 2 b

a
, (45)

−b > a, a < 0, [eaν
−

+ e−aν+
]
[
1 + b

a

]
> 2 b

a
(46)

is sufficient for the zero solution to be exponentially stable. For the completely delayed case ν+ = 0 and, 
hence, ti+1 − ti = ν−, the conditions (45) and (46) are, respectively, transformed to

−b > a > 0, eaν
−
<

b− a

b + a
and − b > a, a < 0, eaν

−
<

b− a

b + a
·

The stability for the case a = 0 can be also studied.

3. Stability of solutions for (7)

Theorem 3.1. Assume that the hypotheses (H1)–(H3), (S1) and (S3) are fulfilled and the zero solution of 
linear DEPCAG (4) is σ-exponentially stable. Moreover, assume the function η in (H3), ρ(A) defined in 
(10) and σ satisfy the following requirements

θ := sup
i∈Z

{
2ceσtρ(A)

ζi∫
ti

η(s)ds
}
< 1, β := lim sup

t→∞

∫ t

τ
η(s)ds
t

< ∞. (47)

Then, there exists σ0 = σ − βμcρ(A)e2σt with μ = (2 − θ)(1 − θ)−1 such that the zero solution of (7) is 
σ0-exponentially stable. In particular, if η ∈ L1([0, ∞)), then the σ-exponential stability follows and the 
stability of the zero solution of (4) implies the stability of the solution zero of (7).
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Proof. If we consider that w(t) = w(t, τ, ξ) is a solution of (7) such that w(τ) = ξ and, without loss of 
generality, we assume that ti ≤ τ < ζi ≤ ti+1 < · · · < tj ≤ ζj < t. Then by Corollary 2.5 and Theorem 2.2
(see (32) and (29)), we have that

w(t) = Z(t, τ)w(τ) +
t∫

τ

G(t, s)f(s, w(s), w(γ(s))ds

= Z(t, τ)ξ + Z(t, τ)

ζi(τ)∫
τ

Φ(τ, s)f(s, w(s), w(γ(s))ds

+
j(t)∑

k=i(τ)+1

Z(t, tk)
ζk∫

tk

Φ(tk, s)f(s, w(s), w(γ(s))ds

+
j(t)−1∑
k=i(τ)

Z(t, tk+1)
tk+1∫
ζk

Φ(tk+1, s)f(s, w(s), w(γ(s))ds

+
t∫

ζj(t)

Φ(t, s)f(s, w(s), w(γ(s))ds.

By the hypothesis of the σ-exponential stability of the solution for (4), the assumption (H3), the application 
of Theorem 2.9 and Lemma 2.1, and by (S3), we deduce the following bound for w

|w(t)| ≤ ce−σ(t−τ) |ξ| + cρ(A)e−σ(t−τ)

ζi(τ)∫
τ

η(s)
(
|w(s)| + |w(γ(s))|

)
ds

+
j(t)∑

k=i(τ)+1

cρ(A)e−σ(t−tk)
ζk∫

tk

η(s)
(
|w(s)| + |w(γ(s))|

)
ds

+
j(t)−1∑
k=i(τ)

cρ(A)e−σ(t−tk+1)

tk+1∫
ζk

η(s)
(
|w(s)| + |w(γ(s))|

)
ds

+ ρ(A)
t∫

ζj(t)

e−σ(t−s)η(s)
(
|w(s)| + |w(γ(s))|

)
ds

≤ ce−σ(t−τ) |ξ|

+
t∫

τ

cρ(A)e−σ(t−s−t)η(s)
(
|w(s)| + e−σγ(s) |w(γ(s))| eσγ(s)

)
ds,

which can be rewritten as follows

u(t) ≤ cu(τ) +
t∫

τ

cρ(A)e2σtη(s) (u(s) + u(γ(s))) ds with u(t) = |w(t)|eσt.

Now, by virtue of the DEPCAG Gronwall inequality given in Lemma 2.6, we obtain that

|w(t)| ≤ c exp
(
−σ(t− τ) + cμρ(A)e2σt

t∫
η(s)ds

)
with μ = 2 − θ

1 − θ
·

τ
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Hence, the last inequality combined with (47) proves that the zero solution is σ0-exponentially stable. The 
other assertions follow similarly. The theorem is proved. �

If in (H3), the function η is constant we have an interesting result similar to the ones obtained previously 
by Akhmet in [4] under other conditions.

Corollary 3.2. Assume that conditions (H1)–(H3), (S1) and (S3) are fulfilled. Moreover, in (H3) consider 
that η is constant, i.e. η(t) ≡ η0. Suppose that the zero solution of the linear DEPCAG (4) is σ-exponentially 
stable and consider that

θ = 2ctη0ρ(A)e2σt < 1, σ − cρ(A)μη0e
2σt = σ0 > 0, μ = 2 − θ

1 − θ
·

Then, the solution zero of system (7) is σ0-exponentially stable.

4. Bounded solutions for (6)

The bounded solutions on all of R of the linear nonhomogeneous equation (6) can be studied by consid-
ering the convergence of the series

−1∑
k=−∞

|Z(0, tk+1)|
γ(tk+1)∫
γ(tk)

|Φ(tk+1, s)|ds < ∞, (48)

∞∑
k=0

|Z(0, tk+1)|
γ(tk+1)∫
γ(tk)

|Φ(tk+1, s)|ds < ∞. (49)

As |Z(0, tk+1)| < ce−σ|tk+1| estimations of the integrals in (48) and (49) allow give conditions for convergence 
of the above series. For example, for tk = k and in general with (H1) and (S2), the conditions (48) and (49)
hold, see Lopez-Fenner and Pinto [26].

Proposition 4.1. Let g : R → C
p be a bounded function. The following assertions with respect to the solution 

of the equation (6) are valid

(a) Assume that (48) holds and the solution of (4) is σ-exponentially stable on R, i.e.

|Z(t, s)| ≤ ce−σ(t−s) for t ≥ s.

Then equation (6) has a unique bounded solution y : R → C
p defined by

y(t) =
t∫

−∞

G(t, s)g(s)ds =
i(t)−1∑
k=−∞

tk+1∫
tk

Gk(t, s)g(s)ds +
t∫

ti(t)

Φ(t, s)g(s)ds

=
i(t)−1∑
k=−∞

Z(t, tk)
ζk∫

tk

Φ(tk, s)g(s)ds +
i(t)−1∑
k=−∞

Z(t, tk+1)

×
tk+1∫
ζk

Φ(tk+1, s)g(s)ds +
t∫

i(t)

Φ(t, s)g(s)ds. (50)
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(b) Assume that (49) holds and the following condition

|Z(t, s)| ≤ ce−σ(s−t), s ≥ t (51)

is satisfied. Then the unique bounded solution of equation (6) on R is given by

y(t) = −
∞∫
t

G(t, s)g(s)ds

= −
ti(t)+1∫
t

Φ(t, s)g(s)ds−
∞∑

k=i(t)+1

tk+1∫
tk

Gk(t, s)g(s)ds

= −
ti(t)+1∫
t

Φ(t, s)g(s)ds−
∞∑

k=i(t)+1

Z(t, tk)
ζk∫

tk

Φ(tk, s)g(s)ds

−
∞∑

k=i(t)+1

Z(t, tk+1)
tk+1∫
ζk

Φ(tk+1, s)g(s)ds. (52)

(c) The map g → yg is continuous and satisfies the estimate

|yg(t)| ≤ ĉ|g|∞ with |g|∞ = sup
t∈R

|g(t)| with ĉ = cρ(A)eσt, (53)

for a positive constant ĉ independent of g.

Proof. (a) In a standard way, it is not difficult to show that y given by (50) is a well defined bounded 
function and is a solution of (6). Moreover, for g fixed, the nonhomogeneous linear system (6) has a unique 
bounded solution on all of R, because for ω �= 0 any solution Z(t, τ)ω of the homogeneous linear system (3)
is unbounded as t → −∞. Now, we deduce that the unique bounded solution of (6) is necessarily given by 
(50). Indeed, from (31) we have that any solution y of (31) is given by

y(t) = Z(t, 0)ω +
t∫

0

G(t, s)g(s)ds, with ω = y(0). (54)

Note that 
∫ t

0 =
∫ ζi(0)
0 + 

∑i(t)−1
k=i(0)

∫ ζk+1
ζk

+ 
∫ t

ζi(t)
. Supposing, by simplicity, that ζi(0) = 0, and that the conver-

gence of the series

−∞∑
k=0

Z(0, tk+1)
ζk+1∫
ζk

Φ(tk+1, s)g(s)ds = v−∞, (55)

we get

t∫
0

G(t, s)g(s)ds

=
i(t)−1∑
k=0

ζk+1∫
Gk(t, s)g(s)ds +

t∫
Gi(t)(t, s)g(s)ds
ζk ζi(t)
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=
i(t)−1∑
k=0

ζk+1∫
ζk

Z(t, tk+1)Φ(tk+1, s)g(s)ds +
t∫

ζi(t)

Φ(t, s)g(s)ds

= Z(t, 0)
i(t)−1∑
k=0

Z(0, tk+1)
ζk+1∫
ζk

Φ(tk+1, s)g(s)ds +
t∫

ζi(t)

Φ(t, s)g(s)ds

= Z(t, 0)

⎛
⎝i(−∞)∑

k=0

−
i(−∞)∑
k=i(t)

⎞
⎠Z(0, tk+1)

ζk+1∫
ζk

Φ(tk+1, s)g(s)ds

+
t∫

ζi(t)

Φ(t, s)g(s)ds. (56)

Then, introducing (55) and (56) in (54), we have

y(t) = Z(t, 0)[ω + v−∞]

+
i(t)−1∑
k=−∞

Z(t, tk+1)
ζk+1∫
ζk

Φ(tk+1, s)g(s)ds +
t∫

ζi(t)

Φ(t, s)g(s)ds

=
t∫

−∞

G(t, s)g(s)ds,

by (33) and taking ω = −v−∞ we avoid the homogenous unbounded solution in the first term and (50) is 
deduced.

(b) The proof of (52) when (51) holds, follows similarly.
(c) To prove that y satisfies (53), we apply the properties of Gk and Z in (50) and (52). �
We remark that estimations of the type |Z(0, tk+1)| < ce−σ|tk+1| imply (48) and (49). Moreover, we note 

that these kind of estimates are valid for example for the particular case tk = k and in general when (H2) 
and (S2) hold, see [26] for details. Then we have the following corollary.

Corollary 4.2. Let g : R → C
p be a bounded function. The results of Proposition 4.1 are valid if the hypotheses 

(H2) and (S3) are fulfilled.

5. Asymptotic equivalence, ordinary and exponential dichotomies

In Proposition 2.8 we have studied a uniform stability given by (36). Its dichotomic extension carries us 
to the ordinary dichotomy which includes an unstability.

5.1. Ordinary dichotomy and Green matrix

Definition 5.1. The linear DEPCAG (4) has an ordinary dichotomy if there exists a projection P and a 
positive c such that |ZP (t, s)| ≤ c for all (t, s) ∈ R

2, where the Green function ZP : R2 → C
p×p is defined 

by
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ZP (t, s) =
{
Z(t, 0)PZ (0, s), t ≥ s,

−Z(t, 0)(I − P )Z(0, s), t < s,
(57)

for a given a projection matrix P ∈ C
p×p.

Definition 5.2. Consider that ZP denotes the function defined in (57). Then, the Green matrix type G̃ :
R

2 → C
p×p is defined as follows

G̃(t, s) := 〈ZP (t, ·),Φ(·, s)〉

:= ZP (t, τ) · Φ̃−(τ, s) +
i(t)∑

k=i(τ)+1

ZP (t, tk)Φ̃+(tk, s)

+
i(t)−1∑
k=i(τ)

ZP (t, tk+1)Φ̃−(tk+1, s) + Φ̃(t, s),

where Φ̃±(tk, s) = Φ(tk, s)1I±
k

(s) and Φ̃(t, s) = Φ(t, s)1[ξi(t),t]. Here 1A denotes the standard characteristic 
function of the set A ⊂ U , i.e. 1A(s) = 1 for s ∈ A and 1A(s) = 0 for s /∈ A.

By (10) we can deduce that

|G̃(t, s)| ≤ c̃ for all (t, s) ∈ R
2 with c̃ = cρ(A). (58)

Now, for an integrable function g : [τ, ∞) → C
n, we have that the solution of (6) is given by

y(t) =
∞∫
τ

G̃(t, s)g(s)ds =
t∫

τ

G̃(t, s)g(s)ds +
∞∫
t

G̃(t, s)g(s)ds

=: y+(t) + y−(t),

where

y+(t) =
t∫

τ

< ZP (t, ·); Φ(·, s) > g(s)ds

= ZP (t, τ)

ζi(τ)∫
τ

Φ(τ, s)g(s)ds +
i(t)∑

k=i(τ)+1

ZP (t, tk)
ζk∫

tk

Φ(tk, s)g(s)ds

+
i(t)−1∑
k=i(τ)

ZP (t, tk+1)
tk+1∫
ζk

Φ(tk+1, s)g(s)ds +
t∫

ζi(t)

Φ(t, s)g(s)ds,

y−(t) = −
∞∫
t

< ZP (t, ·); Φ(·, s) > g(s)ds

= −ZP (t, ti(t)+1)

ti(t)+1∫
t

Φ(ti(t)+1, s)g(s)ds−
∞∑

k=i(t)+1

ZP (t, tk)

×
ζk∫

Φ(tk, s)g(s)ds−
∞∑

k=i(t)+1

ZP (t, tk+1)
tk+1∫

Φ(tk+1, s)g(s)ds.

tk ζk
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In particular, if we have an ordinary stability with P = I, |Z(t, s)| ≤ c, c ≥ 1, for t ≥ s, the special bounded 
solution on R of (6) is given by y+

g (t) =
∫ t

−∞ G̃(t, s)g(s)ds and in the unstable situation P = 0, |Z(t, s)| ≤ c, 
c ≥ 1, for t ≤ s, the special bounded solution on R of (6) is given by y−g (t) =

∫∞
t

G̃(t, s)g(s)ds and the 
analogous of the bound (53) is stated as follows

‖y±g ‖∞ ≤ c̃‖g‖1

with c̃ given in (58).
Now, we prove the asymptotic equivalence between system (6) and (8) when the perturbation f is 

integrable, i.e. η, f(t, 0, 0) ∈ L1([t0, ∞)).

Theorem 5.1. Assume that the linear system (4) has an ordinary dichotomy with projection P on [t0, ∞)
and the hypotheses (H1)–(H4) are fulfilled. Moreover, assume that instead of (H3)–(ii) the condition 
f(t, 0, 0) ∈ L1([t0, ∞)) is satisfied and the function η in (H3)–(iii) is belonging L1([t0, ∞)). Then there 
exists a homeomorphism between the bounded solutions of the linear system (6) and the bounded solutions 
of the quasilinear system (8). Moreover, |y(t) − v(t)| → 0 as t → ∞ if Z(t, 0)P → 0 as t → ∞.

Proof. Consider that y is a bounded solution of (6) and introduce the notation BC([t0, ∞), Cp) for the 
space of bounded continuous functions with the topology defined by the norm ‖y‖ = sups≥t∗0

|y(s)| with 
t∗0 = min{t0, γ(t0)}. Now, we consider the operator A : BC ([t0, ∞), Cp) → BC ([t0, ∞), Cp) defined by

(Av)(t) = y(t) +
∞∫

t0

G̃(t, s)f(s, v(s), v(γ(s)))ds.

From (58), (H3)–(i) and (H3)–(iii), we can prove that A is a contraction for t0 sufficiently large, since

‖Av − y‖ ≤ c̃

∞∫
t0

(
η(s)

[
|v(s)| + |v(γ(s))|

]
+ |f(s, 0, 0)|

)
ds,

‖Av1 −Av2‖ ≤ c̃

∞∫
t0

η(s)
[
|v1(s) − v2(s)| + |v1(γ(s)) − v2(γ(s))|

]
ds

≤ β‖v1 − v2‖,

with β = 2c̃
∫∞
t0

η(s)ds < 1. Hence, the integral equation

v(t) = y(t) +
∞∫

t0

G̃(t, s)f
(
s, v(s), v(γ(s))

)
ds (59)

has a unique bounded solution and this solution is the unique bounded continuous solution of (8). Then, 
summarizing, we have that for any bounded continuous y of (6), the integral equation (59) has a unique 
bounded continuous solution v which is the solution of (8). Reciprocally, by the properties of f , G̃ and 
the integral equation is straightforward to deduce that if v is a bounded solution of (8) then y defined 
by (59) is a bounded solution of (6). Moreover, the correspondence y → v is bicontinuous, since the esti-
mates

‖v1 − v2‖ ≤ ‖y1 − y2‖ + β‖v1 − v2‖, ‖y1 − y2‖ ≤ ‖v1 − v2‖ + β‖v1 − v2‖,
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gives

(1 + β)−1‖y1 − y2‖ ≤ ‖v1 − v2‖ ≤ (1 − β)−1‖y1 − y2‖.

Finally, by (58) and the properties of f , we deduce that for any ε > 0 there exists T ≥ t0 such 
that ∣∣∣∣∣∣

∞∫
T

G̃(t, s)f(s, v(s), v(γ(s)))ds

∣∣∣∣∣∣ ≤ c̃

∞∫
T

(2‖v‖η(s) + |f(s, 0, 0)|) ds < ε

and

|Av(t) − y(t)| ≤ |Z(t, 0)P |
T∫

t0

∣∣G̃(0, s)f(s, v(s), v(γ(s)))
∣∣ ds + ε.

Hence, the condition |Z(t, 0)P | → 0 as t → ∞ implies that |y(t) − v(t)| → 0 as t → ∞. �
We note that under the conditions of the Theorem 5.1 the solutions of (6) and (8) are defined for all 

t ≥ t0. Moreover, the solutions of (6) and (8) are uniquely determined by their initial values and also depend 
continuously on these initial values over any bounded interval. Then, we have the continuity property on 
the original interval [t0, ∞) and not only for t0 sufficiently large. Moreover, we note that f is linear, the 
correspondence y → v is linear and homogeneous. Meanwhile, related with the hypothesis ‘the linear system 
(6) has an ordinary dichotomy’, we have that this condition is satisfied, for instance, if ‖B‖ is small enough 
and A(t) = A is a constant matrix whose characteristic roots with zero real parts of simple type or if A(t)
is periodic, where the characteristic exponent with zero real part of simple type.

On the other hand, we note that the equation x′(t) = 0 with P = 0 satisfies the hypothesis of Theorem 5.1, 
then we can deduce a result for equation (5).

Corollary 5.2. Consider the hypotheses of Theorem 5.1. Then, there exists a homeomorphism between Cp

and the bounded solutions of (7). Moreover, any solution u is convergent to some û ∈ C
p as t → ∞ and for 

every û ∈ C
p there exists a unique solution u of (5) such that u(t) → û as t → ∞.

5.2. Exponential dichotomy and Green matrix

For the conditional asymptotic stability we have

Definition 5.3. Consider that ZP denotes the function defined in (57). Then, the linear DEPCAG (4) has 
a σ-exponential dichotomy if there exists a projection matrix P and a positive constant c > 0 such that 
|ZP (t, s)| ≤ ce−σ|t−s|.

Now, the Green matrix in Definition 5.3 satisfies the estimate

|G̃p(t, s)| ≤ ĉe−σ|t−s|, t, s ∈ R, ĉ = cρ(A)eσt. (60)

Remark 5.1. G. Papaschinopoulos [29,30,32,31] proposes to define an exponential dichotomy for linear 
DEPCAG (4) when the difference equation (26) has an exponential dichotomy. Definition 5.3 is rather 
a natural notion of exponential dichotomy. However, if we take A(t) = 0, B(t) = diag(λ1(t), λ2(t)), λ1(t) =
− 2 + sin(2πt), λ2(t) = −λ1(t), tn = n for all n ∈ Z, 

∫ n+δ
λ1(ξ)dξ = − 1 (4δ − 1 + cos(2πδ)) for all 
π n 2π
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δ ∈ [0, 1] then the difference equation (26) has an exponential dichotomy with projection P = diag(1, 0)
but there is no P such that the estimation for ZP in Definition 5.3 is satisfied. Indeed, for t − [t] < 1/2, ∫ t

[t] λ1(s)ds ≥ 0 and is negative for t − [t] > 1/2, while 
∫ t

[t] λ2(s)ds satisfies the same with contrary sign. 
However, 

∫ t

[t] λ1(s)ds = 0 =
∫ t

[t] λ2(s)ds for t − [t] = 1/2.

Notice that a dichotomy condition on the ordinary differential equation (3) implies an exponential di-
chotomy for the difference equation (26) when |B(t)| is small enough [26, Proposition 2]. However, an 
exponential dichotomy for the difference equation in (26) is not a necessary condition for an exponen-
tial dichotomy for the ordinary differential system (3). In fact, let’s consider tn = n A(t) = 0 and 
B(t) = diag(−3

2 , 
1
2 ). Then the exponential dichotomy for difference system (26) is satisfied, with no ex-

ponential dichotomy for the ordinary differential system (3).
Assume the convergence of the series

0∑
k=−∞

∣∣∣∣∣∣∣PZ (0, tk+1)
γ(tk+1)∫
γ(tk)

Φ(tk+1, s)ds

∣∣∣∣∣∣∣ < ∞, (61)

∞∑
k=0

∣∣∣∣∣∣∣(I − P )Z(0, tk+1)
γ(tk+1)∫
γ(tk)

Φ(tk+1, s)ds

∣∣∣∣∣∣∣ < ∞. (62)

Note that |PZ (0, tk+1)|, |(I −P )Z(0, tk+1)| ≤ ce−σ|tk+1| and estimations of the integrals in the above series 
establish conditions for its convergence.

For example, tk = rk, 0 < r < 1 and in general (61) and (62) are true if (H2) and (S2) hold. See 
Lopez-Fenner–Pinto [26].

We have the fundamental result about bounded solution on R of the linear non-homogeneous DEPCAG.

Theorem 5.3. Let g : R → C
p be a bounded function. Assume that the linear DEPCAG (4) has a 

σ-exponential dichotomy such that (61) and (62) hold. Then there exists y : R → C
p a unique bounded 

solution of the non-homogeneous linear DEPCAG (6) are defined by

yg(t) =
∞∫

−∞

G̃(t, s)g(s)ds =
t∫

−∞

G̃(t, s)g(s)ds +
∞∫
t

G̃(t, s)g(s)ds.

Moreover the correspondence g → yg defines a Lipschitz continuous operator on B(R, Cp) and |yg|∞ ≤ ĉ|g|∞
with ĉ given by (60).

Proof. We proceed as in the proof of Proposition 4.1 by noticing that Z(t, 0) can be decomposed as follows 
Z(t, 0) = Z(t, 0)P + Z(t, 0)(I − P ). Moreover, in this case, we get that

ω =
0∑

k=−∞
PZ (0, tk+1)

γ(tk+1)∫
γ(tk)

Φ(tk+1, s)ds

+
∞∑
k=0

(I − P )Z(0, tk+1)
γ(tk+1)∫
γ(tk)

Φ(tk+1, s)ds,

instead of ω = −v−∞. �
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We note that estimations of the type |PZ(0, tk+1)|, |(I−P )Z(0, tk+1)| ≤ ce−σ|tk+1| imply the convergence 
of the series defined in (61) and (62). Furthermore, we observe that these kind of estimates are valid for 
example for the particular case tk = rk with r ∈ (0, 1) and in general when (H2) and (S2) hold, see [26] for 
details. Then we have the following corollary.

Corollary 5.4. Let g : R → C
p be a bounded function. The results of Theorem 5.3 are valid if the hypotheses 

(H2) and (S2) are fulfilled.

Now we study bounded perturbations which cannot be studied with ordinary dichotomy.

Theorem 5.5. Assume that the linear system (4) has a σ-exponential dichotomy such that series (61) and 
(62) hold and f satisfies the hypothesis (H3) with η such that |η(t)| ≤ η0 for all t ∈ [t0, ∞). Moreover, 
consider that (H2) and the inequality β = 2ĉη0(σ)−1 < 1, with ĉ defined in (60), are satisfied. Then, for 
any ξ ∈ PC

p the nonlinear equation (7) has a unique bounded solution w on [t0, ∞) with Pw(t0) = ξ. 
Furthermore, the correspondence ξ → w is continuous and any bounded solution w of the equation (7) for 
t ≥ 0, satisfies

|w(t)| ≤ (1 − β)−1c|ξ|e−σ0t, t ≥ 0, (63)

where

σ0 = σ − μ(1 − β)−1ĉη0e
σt > 0, μ = 2 − θ

1 − θ
, θ = 2ctη0ρ(A)e2σt < 1, (64)

with η0 sufficiently small.

Proof. The analysis of the bounded solutions for equation (7) is related with the nonlinear operator D :
BC ([t0, ∞), Cp) → BC ([t0, ∞), Cp) defined as follows

(Dw)(t) = Z(t, t0)ξ +
∞∫

t0

G̃(t, s)f(s, w(s), w(γ(s)))ds.

Now, by the hypothesis ξ ∈ PC
p we deduce that the operator D is equivalent to the operator A defined in 

the proof of Theorem 5.1, since (Dw)(t) = (Aw)(t) for all t ∈ [t0, ∞) by considering that y(t) = Z(t, t0)Pξ =
Z(t, t0)ξ and v(t) = w(t). Then, to prove the properties of D we proceed as in the proof of Theorem 5.1. 
Indeed, consider the integral equation (59) with y(t) = Z(t, t0)Pξ = Z(t, t0)ξ and v(t) = w(t). Again A (or 
equivalently D) is a contraction since

‖Aw1 −Aw2‖ ≤ β‖w1 − w2‖ with β = 2ĉη0

σ
< 1,

and then there exists a unique bounded continuous solution w of (7). The correspondence ξ → wξ is 
continuous since as in Theorem 5.1

‖yξ1 − yξ2‖ ≤ c|ξ1 − ξ2| + β‖yξ1 − yξ2‖ and

‖yξ1 − yξ2‖ ≤ c(1 − β)−1|ξ1 − ξ2|.

Now, to prove that any bounded solution of the equation (7) for t ≥ 0 converges exponentially to 0 as 
t → ∞, we denote by w a bounded solution of (7) and define the function
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z(t) = w(t) −Aw(t).

Note that z is well defined, continuous and bounded on [0, ∞). Moreover, z is the solution of the lin-
ear DEPCAG (4) satisfying Pz(0) = 0 and hence z(t) = Z(t, 0)(I − P )z(0) which is bounded only if 
(I − P )z(0) = 0. Then z(t) ≡ 0, which implies that

w(t) = Z(t, 0)ξ +
∞∫
0

G̃(t, s)f(s, w(s), w(γ(s)))ds (65)

and w(t) → 0 as t → ∞. Indeed, let θ ∈ (β, 1) and considering that limt→∞ |w(t)| = � > 0, then |w(t)| ≤ θ−1�

for t ≥ T and by (65) we deduce that

|w(t)| ≤ |Z(t, 0)||ξ| + |Z(t, 0)P |

∣∣∣∣∣∣
T∫

0

ZP (0, s)f(s, w(s), w(γ(s)))ds

∣∣∣∣∣∣ + βθ−1�

which letting t → ∞, gives � ≤ βθ−1� which is impossible; and hence � = 0.
Finally, from the integral equation (65) we get

|w(t)| ≤ ce−σt|ξ| + ĉη0

t∫
0

e−σ(t−s)(|w(s)| + |w(γ(s))|)ds

+ ĉη0

∞∫
t

e−σ(s−t)(|w(s)| + |w(γ(s))|)ds. (66)

Define

m(t) = sup
s≥t

|w(s)|.

Since w(t) → 0 as t → ∞, m(t) exists and is monotone nonincreasing. Moreover, for each t there exists t̃ ≥ t

such that

m(t) = m(t̃) and m(s) = m(t) = m(t̃) for s ∈ [t, t̃]. (67)

Thus (66) with t = t̃ yields

m(t̃) ≤ ce−σt̃|ξ| + ĉη0

t̃∫
0

e−σ(t̃−s)(|m(s)| + |m(γ(s))|)ds

+ m(t̃)ĉη0

∞∫
t̃

e−σ(s−t̃)ds

or by (67)

m(t) ≤ ce−σt|ξ|

+ ĉη0

t∫
e−σ(t−s)

(
|m(s)| + e−σγ(s)eσγ(s)|m(γ(s))|

)
ds + βm(t),
0
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since β = 2ĉη0(σ)−1 < 1, M(t) = eσtm(t) satisfies

M(t) ≤ (1 − β)−1c|ξ| + (1 − β)−1ĉη0e
σt

t∫
0

(
|M(s)| + |M(γ(s))|

)
ds,

which by DEPCAG Gronwall inequality Lemma 2.6 gives

M(t) ≤ (1 − β)−1c|ξ| exp
(
tμ(1 − β)−1ĉη0e

σt
)

or

m(t) ≤ (1 − β)−1c|ξ| exp
(
−
[
σ − μ(1 − β)−1ĉη0e

σt
]
t
)
,

where μ and θ are given by (64). Thus (63) is proved. �
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