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ABSTRACT: Recent years have seen a rise in research into the behaviour of precipitation variability on account of the
application of new statistical techniques with a longstanding tradition in other fields. Fractal is a word used to refer to regular
objects or processes that cannot be defined by the classical Euclidian mathematics. The fractal dimension of the temporal
distribution of precipitation (D) is an indicator of the property of self-similarity in rainfall distribution at different time intervals.
While its spatial meaning has previously been developed extensively and is well defined, the interpretation of the concept of
fractality applied to the temporal distribution is abstract. The overarching goal of this article is to give climatic significance to
this indicator. To this end, data logged at 10-min intervals from 44 weather stations in mainland Spain and the Balearic Islands
for the period from 1997 to 2010 has been employed. The D values obtained ranged between 1.4499 for the observatory in
Ibiza and 1.6039 for the observatory in Jaca. The fractal dimension presents a significant and good negative correlation (—0.55)
with the concentration index (CI), and a significant and good positive correlation (0.67) with entropy. The correlation of D
with other traditionally used indices, such as the coefficient of variation or the consecutive disparity index is very limited,
as this indicator is more focused on the distribution of precipitation intervals than on the total accumulated rainfall over a
given period. In an endeavour to develop multivariate models that explain the behaviour of D, only two-variable models can
be obtained, which account for most of the variability and that involve the CI or entropy. Self-similarity is therefore associated

with the regular recurrence of precipitation intervals, which is more evident in those observatories with higher D values.
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1. Introduction

The variability of the climate system in general, and
atmospheric variables in particular, is notable on any
time scale that is considered. This applies to all cli-
mate variables, regardless of whether or not there are
patterns in their chronological behaviour. On the Iberian
Peninsula, on account of its specific position between an
ocean and an almost inland sea, and in the border area
between areas dominated by subtropical anticyclones, in
the south, and westerly winds and polar front storms,
to the north (Martin-Vide and Olcina Cantos, 2001), the
variable whose records show greatest dispersion is pre-
cipitation, both in the amounts accumulated and in the
temporal distribution thereof. This renders it an interest-
ing subject, as confirmed by a large number of studies
that have been undertaken (Rodriguez-Puebla et al., 1998;
Saenz et al., 2001; Goodess and Jones, 2002; Martin-Vide
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and Lopez-Bustins, 2006; Gonzalez-Hidalgo et al., 2009;
de Luis et al., 2010; Rodriguez-Puebla and Nieto, 2010;
Casanueva et al., 2014).

The Mediterranean Sea, a crucial agent in atmospheric
dynamics affecting the Iberian Peninsula, plays a pri-
mordial role, introducing a large number of distinctive
features in the field of study. Amongst said features, it
should be noted that it occupies a large area measur-
ing approximately 2.5 million square kilometers between
Europe and Africa; and it is only connected to a lim-
ited extent to the Atlantic Ocean by way of the Strait of
Gibraltar. In turn, it is subdivided into two sub-basins,
the Eastern Mediterranean and the Western Mediterranean,
connected via the Strait of Sicily. On account of its rela-
tively small size and its geographic location that is almost
landlocked, the Mediterranean is highly sensitive and
responds rapidly to atmospheric forcing and/or anthro-
pogenic influences (Pionello, 2012). Moreover, it presents
its own unique atmospheric behaviour, given the protec-
tion and insulation provided by the relief surrounding its
basin (Pionello, 2012). Population growth, climate change
and overexploitation are placing tremendous pressure on
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the Mediterranean environment and on its ecosystems and
resources. Furthermore, it is a region where oceanic pro-
cesses also take place, but on a much smaller scale that
those that occur elsewhere, such as the formation of deep
waters, which help maintain the thermohaline circulation
cell in dimensions on a par with the sub-basins, as is
the case in the planetary belt at ocean level (Pionello,
2012). This reality bears a strong influence on lending the
Mediterranean region distinctive climatic features.

If the accumulated rainfall from year to year is taken into
account, there is very high variability, which is a character-
istic of the Mediterranean climate that affects an important
area of the studied region. Using Gibraltar’s observatory,
at the southern tip of the Iberian Peninsula, as a refer-
ence point, which has the oldest precipitation records on
the Iberian Peninsula, which date back to the late 18th
century, annual records in the region of 2000 mm in the
mid-19th century can be found, compared with just over
350 mm in the early 1980s. The huge interannual variabil-
ity of the total accumulated precipitation over the series
is evident, in which the wettest year accounted for more
than five times the precipitation of the driest year (Wheeler
and Martin-Vide, 1992, Martin-Vide, 2008). Many other
regions on the Iberian Peninsula show a similar variabil-
ity to that mentioned herein, particularly in the south and
southeast of the peninsula, whereas in the northernmost
points, variability does not present such marked values.
However, this dispersion is not only reflected in one spot
over the years, but is reflected spatially, and considering
the seasonal distribution of precipitation, a wide variety
of seasonal precipitation patterns in Spain can be obtained
(Martin-Vide and Estrada Mateu, 1998; Rodriguez-Puebla
et al., 2001; De Luis et al., 2010). During the last years,
wet periods have become longer over most of Europe, char-
acterized by more abundant precipitation (Zolina et al.,
2010; Zolina, 2014). Similar realities have been identified
also in the United States, where an increase in precipitation
coming from intense rain events have been demonstrated
(Groisman and Knight, 2008).

I1.1.

In palaeoclimatology, studying cores taken from ice caps
plays a key role in determining what the planet’s cli-
mate was like in the past (Pelletier, 1997; Valdez-Cepeda
et al., 2003). This experiment conducted in Antarctica (the
EPICA project), based on an ice core 3190-m thick, has
allowed climate connections to be established over the last
740,000 years, and, on the basis of the fractal analysis,
for information to be supplied regarding the evolution of
glacial cycles (King, 2005). Previous studies have associ-
ated the information obtained from ice cores in Antarctica
with historic climatic data obtained from marine deposits
at the bottom of the sea (Raidl, 1996; Sahay and Sreeni-
vasan, 1996). Fractal analysis of the data obtained provides
evidence regarding the connections between climate data
behaviour in several places, such as Hungary (Bodri, 1994)
or on the Kamchatka Peninsula based on volcanic erup-
tions of an explosive origin in the last 10,000 years (Gusev
et al., 2003), or, on a smaller time scale, on the basis of

Fractals as a basis of study
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records of sediments in floodplains in the Po Valley (Italy)
(Mazzarella and Rapetti, 2004).

Fractal analysis methodology has also been applied in
recent decades to climate-related studies, and some of
their variables (temperature, precipitation and atmospheric
pressure, among others) have fractal behaviour, related
to both space and time, to the point that they determine
the persistence through time of these variables and their
respective interdependence (Rehman, 2009; Tucek et al.,
2011; Nunes et al., 2013). On the basis of the datasets
of three major climate variables (temperature, precipita-
tion and atmospheric pressure) and the variability thereof
month by month and between seasons, regional climate
models are not capable of developing a good climate
forecast at local level, as they only work with averaged
amounts on the basis of time series. In the same vein,
other forecasting models that incorporate fractals are more
reliable as they take more climate dynamics into consider-
ation, improving the existing models on a regional scale
(Rangarajan and Sant, 1997, 2004).

In recent years, new contributions have emerged that
offer different methods with which to analysis of the tem-
poral behaviour of the data generated by climate mod-
els and real climatic series obtained from the records of
weather station networks. These approaches combine the
analysis of fractal data, the monitoring of real data flows
and model-generated data to detect deviations in the intrin-
sic correlation between the series of observed data and data
forecast by the model. Therefore, forecasts developed by
regional climate models and the corresponding data mea-
surements observed in a network of sensors reveal that this
approach allows differences in behaviour to be determined
between the data observed and the data derived using mod-
els. This shows that there is still room for improvement
in climate change models, regardless of whether they can
be improved due to other significant facts, such as more
accurate parameter setting of certain processes, or a better
consideration of the cloud cover and soil moisture, and that
the concepts based on fractal theory can contribute in that
respect (Nunes et al., 2011).

In short, many of the uses given to fractals in climatology
studies have focused on forecast methodologies as regards
meteorological and climate models, and the validation
thereof, as well as the fractal nature of the spatial precip-
itation fields. However, there are not many in which these
principles are applied to the purely dynamic behaviour of
the climate system, but they are by no means non-existent,
as discussed below. By the very definition of a fractal
object, it is easy to be inclined to think that the application
of Mandelbrot’s principles has focused on the spatial dis-
tribution of precipitation, following patterns that would fit
fractal objects. The question has even been directly raised
if it is actually possible to apply a fractal approach to it
(Sivakumar, 2001). The discovery of these new realities
has allowed advances to be made in precipitation mod-
els, which have significantly enhanced the existing ones
(Chou, 2003), simulating rain fields in line with the prop-
erty of multifractality, which confirms the scale invari-
ance of this phenomenon. The fractal properties of spatial
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distribution and accumulated precipitation amounts have
therefore been demonstrated. To delve deeper into this
knowledge, it must be ascertained whether the temporal
distribution of precipitation follows these same principles.

1.2.  The temporal fractality of precipitation

The concepts of fractal theory have a more intuitive appli-
cation of precipitation in terms of their spatial rather than
temporal distribution. When reference was made to spatial
and fractal distribution, it may be held, almost automati-
cally, that a precipitation field can have a fractal form. If
the details are examined, it can be verified that one part
represents the whole, maintaining self-similarity or scale
invariance; nevertheless, in the case of the temporal fractal-
ity of precipitation, the concept is more difficult to under-
stand. Firstly, the scaling application is to verify if rain
has been accumulated at different time intervals of a given
duration. It must be ascertained whether this behaviour
is repeated at time intervals of greater or lesser duration.
Rainfall shows high variability in a wide range of tem-
poral and spatial scales. The substantial fluctuations and
high temporal variability of precipitation renders its statis-
tical and mathematical processing more complex than in
the case of other variables.

A plethora of models has been developed in hydrology
based on the fractal properties of the temporal and spa-
tial distribution of precipitation (Zhou, 2004; Khan and
Siddiqui, 2012). These models of hydrological processes
in basins are considerably more useful when they can be
extrapolated across spatial and temporal scales. This prob-
lem of scale transfer, in other words, the description and
forecast of the characteristics and processes at a different
scale to that in which observations and measurements are
performed, has become the focus of much research today
in hydrology and other fields (Strahler, 1977). Indeed,
these types of dynamics have been identified in studies
in mainland Spain on the basis of long series (90 years)
of annual accumulated precipitation, and their analysis
reveals that the distribution of this variable is in line with
fractal distribution (Ofate Rubalcaba, 1997). The values
obtained, with an average fractal dimension of 1.32 for the
whole territory, are in the same order of magnitude as the
fractal dimensions obtained from other macrometeorolog-
ical and palaeoclimatic records.

Obtaining the fractal dimension of annual precipitation
implies the existence or non-existence of a pattern in this
variable, establishing the degree of persistence and the
significance and sign of the observed trends by means of
the Mann—Kendall non-parametric test, thereby identi-
fying changes in the temporal behaviour of precipitation.
Such is the case studied in the east of the province of La
Pampa (Argentina), where a local analysis was conducted
that could define the patterns of the forecasts made by the
IPCC-AR4 in greater detail (Pérez et al., 2009). A similar
study was undertaken in Venezuela (Amaro et al., 2004)
on the basis of data from ten weather stations with annual
precipitation values in line with a fractal distribution.
Thanks to these findings, climate changes at different time
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scales in Venezuela can be predicted, as demonstrated in
the aforementioned study.

In other regions of the world, such as the Shandong
Peninsula in China, where the problem of accessing
increasingly scarce water resources is on the rise and is
one of the areas of greatest and most rapid development
in the Asian giant, knowledge of precipitation patterns is
a crucial issue for future development, and the studies that
allow this integrate fractality elements in their analysis
(Rehman and Siddiqi, 2009; Gao and Hou, 2012). In the
same vein as multifractal models, applications have also
been undertaken in studies on the Iberian Peninsula, such
as the case of Coérdoba, in southern Spain (Dunkerley,
2008; Garcia-Marin et al., 2008). However, it has been
demonstrated that extreme precipitation is in line with
even more complex models than multifractal ones, as they
are affected by limited periods, such as very short dura-
tions or very long return periods (Veneziano and Furcolo,
2002; Veneziano et al., 2006; Langousis et al., 2009). The
temporal resolution applied plays a decisive role in this
type of study, because the analysis with hourly data, on the
one hand, and with daily data, on the other, already causes
changes in the values of the fractal dimensions, which
also hinges on the most characteristic precipitation of each
place (Olsson et al., 1992; Garcia Marin, 2007; Loépez
Lambraiio, 2012). Furthermore, the analysis of fractality
allows better analysis methods as regards precipitation
frequencies to be ascertained, coinciding with previously
mentioned studies (Gao and Hou, 2012), even allowing
different types of precipitation patterns in a specific region
to be defined based solely on this methodology (Dunkerley,
2010; Reiser and Kutiel, 2010; Kutiel and Trigo, 2014).

In most studies on scaling properties in the precipita-
tion process, multifractal behaviour has been researched
without taking the different rain-generation mechanisms
involved into account. Nevertheless, it is common knowl-
edge that rain processes are linked to certain scales deter-
mined by climatological features, as well as by regional
and local weather characteristics. One of the implications
drawn from these connections is the possibility that the
multifractal parameters of rainfall may depend on the over-
riding precipitation-generating mechanism; the synoptic
origins of precipitation bear an influence on the fractal
dimension values obtained. Fractal analysis techniques
have been applied to rainfall data recorded in the Barcelona
metropolitan area in the period 1994-2001, as well as to
a selection of rainfall episodes recorded in the same city
in the period 1927-1992. This influence is also revealed
in the analysis of the effects of seasonality in the multi-
fractal behaviour of rainfall in Barcelona (Rodriguez et al.,
2013) and fractal behaviour in Catalonia (Meseguer-Ruiz
and Martin-Vide, 2014).

In other areas of the Mediterranean region, studies have
been undertaken in which the value of the fractal dimen-
sion has been determined (Ghanmi ez al., 2013). In this
case, the fractal dimension for different time series at dif-
ferent resolutions (at 5-min intervals and daily) with var-
ious durations (2.5 years for the first, 137 years for the
second) was calculated. Three self-similar structures were
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Figure 1. Location of the observatories used.

identified: the microscale (from 5 min to 2 days), with a
fractal dimension of 1.44, the mesoscale (from 2 days to
1 week) and the synoptic scale (from 1 week to 8 months),
with a fractal dimension of 1.9. Kalauzi et al. (2009) pro-
pose a comparative study of the fractal dimension be con-
ducted, not only of precipitation but also of other climatic
variables, in a Mediterranean environment, Veneto (Italy),
and a completely different area, the province of Pastaza,
in the Ecuadorian Amazon. In this case, the pace at which
the principle of self-similarity is reproduced in each series
was determined, that means that a period has been identi-
fied in which the behaviour of precipitation and other cli-
matic variables are reproduced in time. It was much slower
in the province of Pastaza (4.4 years), modulated by El
Nifo-Southern Oscillation (ENSO), than in the Mediter-
ranean region of Veneto (10.3 years), where the influence
of the solar activity cycle can be felt, although it must be
confirmed. Another area where similar work has been car-
ried out is the region of Tamil Nadu, at the southeastern tip
of the Indian subcontinent (Selvi and Selvaraj, 2011). In
this study, the fractal dimension was determined using data
logged between 1902 and 2008 (unspecified time resolu-
tion) with the Hurst method, obtaining a D (fractal dimen-
sion) value of 1.7895.

2. Data and methodology

As in the case of fractal objects (Mandelbrot, 1976),
scale-invariant processes and systems do not possess a
scale that characterizes them. Bearing this in mind, a
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fractal process is one in which the basic process itself takes
place on different scales, in other words, on a scale in
which one part reproduces the whole. Therefore, fractal
geometry and the fractal dimension (such as an incom-
plete dimension) are known to be a valuable tool that
allows the form of the objects to be described. It has gained
widespread use and acceptance in many fields of natural
sciences including geography, ecology and the new tech-
nologies applied to geographic information (Goodchild,
1980; Goodchild and Mark, 1987; Peitgen et al., 1992;
Hastings and Sugihara, 1994; Tucek et al., 2011).

The databases of 48 observatories in the network of auto-
matic stations belonging to the Spanish Meteorological
Agency (AEMet) were used; 10-min-resolution precipita-
tion data were obtained from said databases. A total of
75 observatories were initially available, but the series
with a missing value exceeding 15% were omitted. The
series employed in this study comprise records verified by
AEMet. In the end, the subject area was covered satisfac-
torily, as presented in Figure 1.

Moreover, a common time period was selected for obser-
vatories in which the quality of the series was guaranteed,
settling on the period of analysis 1997-2010.

The fractal dimension was calculated according to the
box-counting method, in the following manner. On the
basis of 10-min resolution rainfall data records, the period
of 10 min was considered to be the baseline interval unit in
order to perform the analysis. The periods outlined below
were established, which contain 1, 2, 3, 6, 12, 18, 24, 36,
48,72, 144 and 288 unit intervals, i.e. periods of 10, 20 and

Int. J. Climatol. 37: 849-860 (2017)
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Table 1. Values obtained following box counting for Avila.

Length of the In () Number of intervals In (N)
interval (/) (h) with precipitation (N)

0.166 —-1.792 17478 9.769
0.333 —1.099 11443 9.345
0.5 —0.693 9052 9.110
1 0 6146 8.724
2 0.693 4328 8.373
3 1.099 3590 8.186
4 1.386 3123 8.046
6 1.792 2595 7.861
8 2.079 2263 7.724
12 2.485 1892 7.545
24 3.178 1370 7.223
48 3.871 993 6.901

10

In (N)

y=-0.5x +8.7756
7 R?=0.9971

-2 -1 0 1 2 3 4
In (I)

Figure 2. Regression line that provides the D value for Avila.

30 min, 1, 2, 3, 4, 6, 8, 12, 24 and 48 h respectively, and
the number of them that recorded a precipitation amount
was calculated. The D value of the temporal distribution
of precipitation was defined on the basis of the slope of
the regression line, resulting from representing the pairs
of values obtained from natural logarithms of 1, the extent
or length of the interval, and N, the number of intervals
with precipitation. In fact, the logarithms of these pairs
of values for each observatory are aligned with notable
approximation. D is determined by | + «, where « is the
absolute value of the slope of the regression line. The
observatory in Avila corresponds to what is shown in
Table 1 and in Figure 2.

Many indices that quantify the variability of a series of
numerical data do not consider the order of the series val-
ues. However, the chronological order of the values consti-
tutes an essential feature of the temporal behaviour of the
element taken into consideration. By way of example, any
rainfall series whose chronological sequence is considered
and the same values sorted in an ascending or descending
order have the same measurement and the same deviation
type, and therefore the same coefficient of variation, but
their climatic meaning is significantly different. For the
ordered series, it would be a question of lower tempo-
ral irregularity, although its variability, determined by the
classical statistical parameters (deviation type, variance,
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coefficient of variation, etc.), is the same as the first case. In
conclusion, indices should be available to assess the tem-
poral irregularity, bearing in mind the chronological order
of the values of the climatic series. These indices quantify
the jumps between the consecutive values, which in the
case of rainfall can be expressed as the difference between
the consecutive totals, in absolute value so that the differ-
ences equivalent to the opposite sign are not cancelled out.
The ratios between the consecutive totals can also be con-
sidered, in other words, a multiplicative scheme, which in
the case of precipitation is preferable to an additive scheme
(Pérez-Cueva et al., 2001). A multiplicative scheme of this
type is the one defined by the Consecutive Disparity Index
(S) (Martin-Vide et al., 2001), which is calculated on the
basis of the following formula:

6]

The concentration index (CI) is defined as an approxima-
tion of the Gini Index, a numerical representation of the
inequalities shown by the Lorenz curve, used to express
the degree of concentration of a specific magnitude in a
portion of a given population. In this case, the CI is used
to quantify the importance of wet days compared with the
total accumulated rainfall in a time series (Martin-Vide,
2004).

The coefficient of variation (CV) is used to refer to the
ratio between the magnitude of the mean and the variabil-
ity of the variable in question. Its formula expresses the
standard deviation as a percentage of the arithmetic mean,
showing a better understanding of the degree of variability
than standard deviation. To avoid mistakes in interpreta-
tion, this coefficient requires all values to be positive. As
is widely known, the higher the value of the coefficient
of variation, the greater the heterogeneity of the variable’s
values. Conversely, the lower the coefficient of variation,
the closer to the mean of the series values. The coefficient
of variation is generally used in annual-resolution precipi-
tation studies, because as it depends on the mean, it cannot
be zero nor, as far as possible, close to zero, as its meaning
would be distorted. It is for this reason that, in subtropi-
cal climates, it is not generally used at anything less than
annual temporal resolutions, because the averages of the
summer months can come close to O mm (Pérez-Cueva
etal.,2001).

The CI is calculated using daily data for the period
1951-1990 from many weather stations across the study
area, not all the same to the currently used to calculate
D. Changing from one kind of station to another (from
traditional to automatic) may cause inhomogeneities in the
series, so the authors preferred to maintain the reference
data from other periods, which are long enough and has
been already published and accepted. The same happened
with the annual records for CV and S for the period
1940-1994.

The concept of entropy (H) was introduced by Shanon
(1948) to refer to the degree of disorder implicit in a series,
or to ascertain the noise level in said series, apart from the

Int. J. Climatol. 37: 849-860 (2017)
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variability itself. The entropy of an isolated system never
decreases, because isolated systems gravitate towards ther-
modynamic equilibrium, a state with maximum entropy.
However, those systems that are not isolated can note a
decrease in their entropy. As entropy is a function of a
particular state, the change in a system’s entropy is the
same for any process that evolves from an initial state to a
final given state. Entropy thus defined constitutes a param-
eter characteristic of the variable’s distribution. Entropy
corresponding to a variable with unimodal Gaussian dis-
tribution will have a lower entropy than that of a bimodal
distribution. It is therefore an indicator of the amplitude
of the non-periodic components of a signal. Many stud-
ies show that the distribution of precipitation in recent
years has become more irregular due to climate change and
intensive human activity (Liu ef al., 2013). The estimate of
precipitation distribution holds extraordinary importance
in understanding the water cycle and is crucial for man-
aging water resources. Better knowledge of the irregular
behaviour of precipitation can be gained through examin-
ing the entropy of different precipitation series and their
evolution (Liu et al., 2013). Hao and Singh (2013) use an
entropy-based analysis to create a model of the distribu-
tion of the maximum rainfall accumulated over the year.
The entropy analysis can be addressed from a multi-scale
perspective to investigate the changes in the complexity of
the rainfall-runoff processes due to human activity, and to
facilitate the selection of rainfall-runoff models that take
self-similarity into account (Chou, 2012), which is closely
related to the fractal processes within the temporal distri-
bution of precipitation. In the same vein, it has been shown
that the internal complexity of the series increases as
the temporal series studied increases (Chou, 2011, 2014).
Nevertheless, for temporal precipitation series (and runoff)
on different scales, findings characterized by low complex-
ity and high predictability were obtained, which provides a
reference point to determine the appropriate time scale for
the analysis and the prediction of precipitation and runoff
values. The same method was used in the basin of the
Yellow River (China) to determine the patterns of the tem-
poral variability of precipitation (Liu et al., 2008) over the
period 1960—2006. The findings show that entropy holds a
good, positive correlation with longitude, increasing from
west to east, with the highest in the stations nearest the
sea, and where the amounts are higher. Similar findings
were obtained in another study carried out in a nearby area,
in Xinjiang (Zhao et al., 2011). However, in other regions
of the world, such as the Middle East, entropy is indeed
associated with latitude, and not longitude, as regards pre-
cipitation distribution (Mathbout et al., 2014, 2015). In a
closer region to the field of study, and also of a Mediter-
ranean nature, Montesarchio ef al. (2011) use entropy to
define thresholds based on which episodes of high hourly
rainfall intensity can occur. Therefore, higher values of H
link observatories where high precipitation vales in every
interval are recorded and, at the same time, longer dry
spells. In Barcelona’s observatory, high-entropy values in
certain periods is linked to the rise in observations far
from the mean (Rodriguez et al., 1999). In the northeast
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Table 2. D values for all the observatories used.

Observatory D Observatory D

A Corufia 1.5629 Mailaga Centro Meteo 1.5595
Albacete 1.4941 Malaga Puerto 1.5376
Alicante 1.4710 Menorca Aeropuerto  1.4680
Avila 1.5000 Monflorite 1.5223
Badajoz Aeropuerto  1.5183 Ourense 1.5704
Barcelona Aeropuerto 1.5071 Palma 1.4988
Bérdenas 1.4933 Pamplona Noain 1.5487
Bilbao Aeropuerto 1.5827 Porreres 1.4966
Ciceres 1.5464 Madrid-Retiro 1.5432
Calamocha 1.4805 Ronda Instituto 1.5832
Castell6 d’Empuries  1.5161 Salamanca 1.5075
Castellon 1.5075 San Vicente-Faro 1.5839
Cérdoba Aeropuerto  1.5605 Segovia 1.5105
Coria 1.5644 Soria 1.5190
Cuenca 1.5468 Tarrega 1.4732
Granada 1.5414 Teruel 1.4856
Ibiza Aeropuerto 1.4499 Toledo 1.5047
Jaca 1.5848 Tortosa 1.5167
Jaén 1.5573 Utiel 1.5058
Javea 1.5101 Valencia 1.5258
La Seu d’Urgell 1.5036 Valladolid 1.5261
Leén 1.5578 Vitoria Aeropuerto 1.5559
Logrofo-Agon 1.4961 Zamora 1.5020
Lugo Aeropuerto 1.6039 Zaragoza Botdnico 1.5154

of Catalonia, in the northeast of the Iberian Peninsula, a
study was carried out that concludes that entropy of a pre-
cipitation series in this region is associated with a higher
amount of values far from the mean of each series (Lana
et al., 2009).

The Persistence Index P, is defined as the probability
of a rainfall episode occurring (in this case, every 10 min)
after another rain episode (Martin-Vide and Gomez, 1999).
The persistence index (P,;) refers to the likelihood of
a rainfall interval followed by another rainfall interval
occurring.

3. Findings

D values were obtained for all the observatories (Table 2),
and have been correlated directly (using Pearson’s r) with
the values of CI, CV, S, H and P,.

The values of CI, CV and S were taken from the corre-
sponding reference papers, whereas the values of H and
P, were expressly calculated for each observatory in this
study (Table 3).

The CI is an index calculated from a series of
daily-resolution data and that measures the degree of
concentration of accumulated precipitation on certain
days; in particular, it assesses the weight of the rainiest
days compared with the total number of days with rain.
The value of Pearson’s r between D and CI is —0.55, with
a p-value of 0.012. There is therefore a significant and
good negative correlation between both variables. The
relationship between these two indices can be seen below
(Figure 3). The equation of the resulting regression line is:

y= —0.3657x + 1.7492 2)
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Table 3. Values of CI, CV, S, H and P, for the different observatories.

Observatory CI [0\ S H P11

A Corufa 0.56 0.172 0.18 10.02280 0.650
Albacete 0.59 0.275 0.35 8.63761 0.671
Alicante 0.68 0.324 0.38 8.33006 0.661
Avila 0.60 0.270 - 9.28513 0.690
Badajoz Aeropuerto - 0.260 0.25 9.12476 0.668
Barcelona Aeropuerto 0.65 0.254 0.29 8.56308 0.745
Bardenas - - - 9.00131 0.632
Bilbao Aeropuerto - - - 9.97164 0.697
Ciceres 0.57 0.262 0.29 9.26560 0.714
Calamocha - - - 8.59422 0.708
Castell6 d’Empuries - - - 8.45508 0.708
Castellén - - - 8.76485 0.713
Coérdoba 0.58 0.389 0.34 9.20925 0.722
Coria - - - 9.26907 0.677
Cuenca 0.56 0.281 0.30 9.10585 0.685
Granada 0.56 0.240 0.25 9.12952 0.672
Ibiza - - - - 0.705
Jaca - - - - 0.704
Jaén - 0.342 0.32 - 0.690
Javea — - - - 0.691
La Seu d’Urgell - - - 9.07186 0.642
Leén 0.57 0.230 0.25 9.04730 0.663
Logrofio-Agon 0.59 0.205 0.22 9.17594 0.718
Lugo Aeropuerto - - - 10.27887 0.703
Milaga Centro Meteo - - - 8.96813 0.713
Mailaga Puerto - 0.376 0.36 8.86448 0.783
Menorca Aeropuerto — - - 8.96585 0.708
Monflorite - - - 9.08762 0.769
Ourense 0.55 0.250 - 9.75776 0.664
Palma - 0.258 0.31 8.82552 0.682
Pamplona Noain 0.58 0.190 - 9.70724 0.675
Porreres - - - 8.96199 0.676
Madrid-Retiro 0.60 0.266 0.31 9.08248 0.675
Ronda Instituto - 0.250 - 9.26839 0.696
Salamanca 0.57 - 0.23 9.30993 0.655
San Vicente-Faro - - - 9.74783 0.677
Segovia - - - 9.43729 0.682
Soria 0.56 0.206 0.21 9.45052 0.663
Tarrega - - - 8.78301 0.684
Teruel - - - 8.96255 0.731
Toledo - 0.232 0.26 8.74777 0.702
Tortosa 0.69 0.319 0.41 8.72664 0.694
Utiel - - - 9.05445 0.642
Valencia 0.70 0.373 0.42 8.69059 0.687
Valladolid 0.58 0.256 0.26 9.36129 0.715
Vitoria Aeropuerto - - - 9.91099 0.665
Zamora - 0.314 0.30 9.17706 0.703
Zaragoza Botdnico 0.62 0.263 0.30 9.05581 0.680

The confidence limits of this regression line are
—0.3657+0.1317 and 1.7492 + 0.0790. Thus, the fractal
dimension can be expressed in terms of the CI in the
following manner:

D = —0.3657 x CI1 4 1.7492 3)

S allows the order of the series values to be considered,
which is not taken into account for other indices, such as
CV. The chronological order of the values constitutes a key
feature of the temporal behaviour of precipitation. This
index is calculated on the basis of annual values. D and
S have been linearly correlated, yielding a value of —0.21

© 2016 Royal Meteorological Society

for Pearson’s r, with a p-value of 0.336; the correlation
between both variables is therefore not statistically signif-
icant.

CV is used to refer to the relationship between the size
of the mean and the variability of the variable in question.
The data on the basis of which it is calculated are annual.
There is no linear correlation between these two indices,
given that the value of Pearson’s r —0.1, is not significant,
as the p-value is 0.626.

H is an index employed to gauge the degree of disorder
implicit in a series, or to gauge the level of noise in said
series, beyond its actual variability.

Int. J. Climatol. 37: 849-860 (2017)
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y=-0.3657x + 1.7492
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Figure 3. Linear relationship between CI and D for the 20 observatories
studied.
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Figure 4. Linear relationship between H and D for the 44 observatories
studied.

As mentioned previously, the internal complexity of the
series increases as the temporal series studied increases
(Chou, 2011, 2014). Nevertheless, for temporal precipita-
tion series (and runoff) on different scales, findings char-
acterized by low complexity and high predictability were
obtained, which provides a reference point to determine
the appropriate time scale for the analysis and the predic-
tion of precipitation and runoff values.

D is closely related to entropy behaviour, with a strong
mutual correlation between them (the value of Pearson’s r
15 0.67). The H and D values hold a good direct relationship
(Figure 4).

The regression line between both variables is as follows:

)

The confidence limits of the regression line are
0.05749 +0.0094 and 1.0246 +0.0857. D can therefore
be expressed as a variable that is dependent on H:

vy = 0.0549x + 1.0246

D =0.0549 x H + 1.0246 5)

Of all the indices with which the fractal dimension was
correlated, H is the one with which the strongest linear
relationship is held, coinciding with the index whose series
present higher temporal resolution.

The Py, is used to calculate the probability of a rainfall
interval followed by another rainfall interval occurring.
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Table 4. Relationship between the fractal dimension and other

indices.

Index r 95% Data Equation

Significant resolution
CI —0.55 Yes Daily y=-0.3657x+1.7492
N —0.21 No Annual N/A
Ccv.  -0.10 No Annual N/A
H +0.67 Yes 10-min ~ y=0.0549x+ 1.0246
Py -0.02 No 10-min N/A

Table 5. Mutual correlations between the different indices (ital-
icized values represent significant Pearson’s r values, with a
p-value lower than 0.05).

P, 0.24 0.44 —0.21 0.28
S 0.79 0.89 -0.78

H —0.74 —0.60

cv 0.58

There is no linear correlation between D and P, because
the value of Pearson’s r is —0.02, which is not significant,
with a p-value of 0.890.

In short, after correlating the fractal dimension with five
indices that explain the temporal behaviour of precipita-
tion, a statistically significant correlation is obtained with
some of them and not with others. These findings are sum-
marized in Table 4.

As some indices are mutually correlated (Table 5), they
will not be considered independent, and will therefore not
all be included in the same model of multiple correlation.

Based on these findings, models of more than two vari-
ables that explain the D value as a dependent variable due
to the existence of mutual correlations cannot be obtained;
the information added by them would therefore be redun-
dant. Hence, those models whose two variables are not
mutually correlated, yielding various regression planes,
were selected. Four models were selected that constitute
four regression planes in which D is a function of two of
the indices that are independent of one another (Table 6).

The models that present greater correlation with the
variability of D are model 1 and model 2, with r values
of 0.620 and 0.630, respectively. Model 2°s mean squared
error is also the lowest, i.e. 0.0256. It is therefore assumed
that the best regression plane that explains the variability of
D is model 2. Models 1, 2 and 3 present a confidence level
exceeding 95%, as they yield levels of probability of 0.020,
0.017 and 0.048, respectively. The statistical significance
of model 4 lies below the confidence level of 90%, and is
therefore omitted. The dispersion of the different models
obtained is shown in Figure 5, where it is quite evident
that there is no model which is clearly representative of the
fractal dimension including two independent variables.

4. Discussion and conclusions

The fractal dimension D and the CI (Martin-Vide, 2004)
show a good negative correlation (—0.55), and significant
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Table 6. Different regression planes that explain the fractal dimension.

Model Indep. variables Regression plane Correlation Mean squared error Degree of probability
1 Cl and CV D=1.787-0.485CI +0.134CV 0.620 0.0259 0.020
2 CVand H D=0.992+0.149CV + 0.055H 0.630 0.0256 0.017
3 Cland P, D=1.752 - 0.365CI - 0.004P, 0.548 0.0272 0.048
4 Sand Py, D=1.524-0.104S + 0.048P,, 0.216 0.0294 0.618
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Figure 5. Representation of the dispersion of the points of agreement in models 1 (a), 2 (b), 3 (c) and 4 (d).

at 99%. The CI represents the weight of the rainiest days
compared with the total number of days with rain in a
series. Therefore, it can be stated that D bears a negative
correlation with CI, which means that the higher the value
of CI, the lower the value of Dj; in other words, a high
daily concentration of rainfall produces a low D value,
low temporal self-similarity. This is clearly seen in the
fact that the highest CI values on the Iberian Peninsula
occur in the eastern region, where more than 200 mm of
rainfall can be accumulated in less than 24 h; it is also
where the D values are lowest. Hence, a good distribution

© 2016 Royal Meteorological Society

of the rainfall amount amongst the rainy days, in other
words, a low CI value, raises the D value. These results
are consistent insofar as rain of a convective nature is
shown to be dominant in the eastern areas of the field
of study compared with rain of frontal origin, which is
more frequent in the north and east (Martin-Vide, 2004;
Casanueva et al., 2014). However, the difference in the
resolution of the data used (daily and at 10-min intervals)
implies there is still a part of the fractal dimension of
precipitation that is not explained using CI, which is also
noted in the fact that the value of Pearson’s r is not equal to
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—1. Some of the existing difference corresponds to the fact
that the fractal dimension does not take the accumulated
amounts into account, but considers whether or not the
phenomenon occurs.

The annual consecutive disparity index, S, and D bear a
low negative (—0.21) and not significant correlation, so it
can be said that the relationship between the two indices
is non-existent. S considers the order of the values applied
here to annual rainfall series. D was calculated on the basis
of 10-min interval values, so, from the outset, it is difficult
to expect a satisfactory correlation between them given the
difference in time scales of the analysis and, above all,
the conceptual difference. In one case, the frequency and
temporal distribution of the phenomenon is analyzed and,
in the other, the variation of their consecutive amounts is
examined (Martin-Vide et al., 2001).

The annual coefficient of variation, CV, and the fractal
dimension, D, do not have a statistical relationship, as the
value of Pearson’s r between the two is —0.1. The coeffi-
cient of variation was calculated on the basis of accumu-
lated rainfall values on an annual basis. It could also be
calculated monthly, though the mean values close to 0 mm
in some observatories in the south of Spain in July and in
other summer months would have stripped it of statistical
significance. It can hence be affirmed that the annual CV
and D are not mutually correlated. The first refers to the
annual amounts and the second to the temporal distribution
of the 10-min and 10-min-plus intervals with precipitation,
regardless of the accumulated amount (Pérez-Cueva et al.,
2001).

Entropy, H, and the fractal dimension, D, have a good
positive correlation (the value of Pearson’s r is 0.67) and
significant at 99%; therefore, the higher the entropy, the
higher the fractal dimension. This would imply that the
fractal dimension would reflect some of the existing disor-
der (or noise) in a series, regardless of the actual variability.
D is calculated by counting those fine intervals in which
precipitation is recorded, regardless of the amount accu-
mulated, and it is somehow indicative of the ‘recurrence’
of precipitation over time; it would coincide with entropy
in this aspect. Higher H values occur in observatories in
the north of the peninsula, where precipitation is higher
and more continuous. A higher H value means that the
disorder of a series is higher, and this makes sense since,
as it concerns data taken at 10-min intervals, the number
of intervals with precipitation is much closer to the num-
ber of intervals without precipitation, making this disor-
der higher. In observatories in the Mediterranean region,
where precipitation is more scarce and more concentrated
over time, the value of H is lower, in other words, the disor-
der of the series is lower, as much more intervals without
rain that those with rain are recorded, and therefore the
degree of disorder (or noise) that the intervals with rain can
introduce will be limited. The highest H values are logged
in those observatories where D is, in turn, higher, situated
in regions of the field of study where higher amounts of
precipitation are accumulated over the year (north of the
Iberian Peninsula). This result partly overlaps with the one
presented by Liu ef al. (2008) and by Zhao et al. (2011),
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because the observatories located further to the east, on
the Mediterranean coast, present lower values. The effect
of the sea on entropy is therefore not well defined in this
case. The results are also somewhat consistent with the
findings obtained by Mathbout et al. (2014, 2015) in the
eastern Mediterranean, as the correlation obtained between
entropy and latitude is high, something that is not repli-
cated for the Iberian Peninsula. The findings agree with
those presented in the paper by Rodriguez et al. (1999),
as the highest values are obtained in those observatories
where precipitation shows a highly irregular nature, these
results being the same as those obtained for a larger field
of study (Lana et al., 2009).

D and the P,; of the rainy intervals are not related (Pear-
son’s r of 0.13), therefore it can be inferred that the prob-
ability of a rainfall interval occurring after another rainfall
interval does not influence the value of the fractal dimen-
sion because, in calculating this indicator, the persistence
of precipitation in brief time intervals does not bear an
influence.

Choosing a multivariate model of two variables rather
than one with more variables corresponds to the fact that
many of the indices that have been used in an endeavour to
determine which precipitation characteristics explain the
fractal dimension are connected to one another and there-
fore must not be included in the model at the same time, as
the information they would contribute would be redundant.
Four two-variable models were found, all of which were
possible. The model with CI and CV as independent vari-
ables and the model with H and CV as independent vari-
ables show good correlations, of 0.62 and 0.63, with levels
of probability of 0.020 and 0.017, respectively, with D, as
a dependent variable, thereby defining the best regression
planes. While the second presents a better correlation, so it
can be assumed that the fractal dimension would be most
effectively explained on the basis of entropy and the coef-
ficient of variation, the significance provided by the CI
should not be overlooked. Although the explanation pro-
vided by the coefficient of variation is low in terms of direct
correlation with the fractal dimension, in both cases it com-
plements the information regarding entropy and the CI.

The fractal dimension, D, therefore appears as an indica-
tion of the regular recurrence of precipitation, i.e. that the
rain episodes are repeated regularly over time on different
scales. This affirmation is consistent with the significant
correlations obtained, positive with entropy and negative
with the CIL. It is the so-called self-similarity that would be
reflected in higher D values.
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