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A B S T R A C T

The fleet for surface transit in urban areas - number of buses and vehicle size - is usually de-
termined by the characteristics of demand during the peak period, adjusting frequencies for other
periods where those characteristics are quite different. Here the problem is formulated analyti-
cally considering a representative single line where hourly passengers flow and average trip
lengths differ between peak and off-peak periods. Analytical and numerical results show that
minimizing social costs (operators and users) for the whole day yields a larger fleet of smaller
buses than if only the peak period is considered. Contrary to previous results on this issue, op-
timal frequencies across periods differ by a large amount, as optimal peak and off-peak fre-
quencies are larger and smaller respectively than what would be obtained modeling each period
by itself. The optimal bus size lies in-between the capacities obtained when each period is in-
dependently optimized. Several other interesting counterintuitive results are shown.

1. Introduction

What is the adequate fleet of transit vehicles to satisfy users demand in a given city? A good design of public transport services in
urban areas is very much dependent on the pattern of demand in space-time. Within the limits of a city this pattern, however, is far
from homogeneous along a day, particularly when comparing the so-called peak and off-peak periods. The most notable structural
differences are the hourly demand and both the distribution and average length of the trips; besides these, the traffic conditions under
which buses circulate also varies importantly due to congestion. In principle, therefore, there is no reason to believe that a design that
is optimal for one period is also optimal for the other regarding lines structure (buses network), fleet sizes and bus capacities. This
poses an important challenge, as period-specific designs do not seem feasible in terms of some of its components such as the lines
structure or bus size, but it does when it comes to determine frequencies; the main issue, then, is how to design the system making the
best usage of a total fleet considering various periods. Even considering that routes must be fixed along the day out of convenience for
the average user, there remains the question of optimal fleet size and vehicles capacity. In this paper, we deal with this problem by
jointly optimizing a simplified system over two periods. We find novel results that contradict existing beliefs regarding the optimal
levels of fleet size, frequencies and bus capacities.

In the remainder of this section, we summarize the treatment of the multiperiod design problem in the literature, showing that
important simplifying assumptions are imposed to get results. In the next section we present a synthesis of the single line-one period
model to determine optimal (social cost minimizing) fleet size, frequency and vehicles capacity. Then we expand the model to
account for the two periods simultaneously in the third section, raising most of the simplifying assumptions and obtaining some
analytical results regarding optimal fleet, vehicle size and period-specific frequencies and their relation with the most important
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exogenous parameters, notably the effect of demand flows in one period over design and operations in all periods. In the fourth
section numerical results are shown for the cases representing peak and off-peak periods independently, which are then compared
against the optimal design considering both periods; besides verifying some of the analytical findings, further results are obtained. In
the final section, the main conclusions are presented.

The two-periods problem was formulated by Jansson (1980, 1984), highlighting that the incremental cost of running an already
acquired bus during the off-peak is only operational. Jansson does not solve the problem for the general case with different optimal
frequencies in peak and off-peak, but applies two approaches instead. In his first model operators’ cost are assumed to be independent
of bus size. Arguing that a single frequency is likely to be optimal in most cases, he obtains an extended “modified square root”
expression for the optimal value of frequency. Peak and off-peak demands matter in the argument of the square root through two
additive terms: one proportional to the average hourly demand and the other proportional to the product between this average and
the peak-hour demand. In his second model - where bus cost does depend on size - he again solves the problem analytically assuming
equality between frequencies, but pointing out that in this case where bus size is a variable of the problem, equal frequencies are less
likely to be optimal. The common optimal frequency equation obtained follows the same general form, with a new term inside the
square root associated to the cost of the marginal size of the bus and proportional to the square of the peak demand. The optimal bus
size is obtained as the ratio between peak flow and the optimal frequency.

Chang and Schonfeld (1991) solved a multiperiod problem that optimizes the number of parallel routes in an area and, for each
period, the frequency of the routes. Thanks to some simplifying assumptions (constant cycle and travel times, and bus cost not
depending on size) they obtain analytical expressions for both optimization variables. These generalize an interesting rule obtained
for the single-period case by Kocur and Hendrickson (1982): both the optimal number of routes and the optimal frequency depend on
the cubic root of the demand. In the multiperiod case setting of Chang and Schonfeld (1991), the frequency of each period also
depends on the demand of the other periods.

Design considering multiperiod problems have also been addressed in other transport contexts. Just to show some examples, Yang
et al. (2005) and Gan et al. (2013) have studied how these different periods affect the taxi market, considering that both demand and
congestion change during the day. Medina et al. (2013) face the problem of deciding where to locate bus stops, in a context of
changing demand according to the period of the day. Ibarra-Rojas et al. (2015) tackle the timetabling problem also for a multiperiod
context. Guo et al. (2017) analyze synchronization between metro lines, with an emphasis in the transition between peak and off-
periods. Paulley et al. (2006) study the effect of different factors on public transport, and these effects are shown to change between
peak and off-peak conditions.

2. The one period model

The stylized representation of the one period design problem follows the developments by Mohring (1972), who introduced the
“square root formula” in a simple model that optimized the frequency of a line considering that operators’ cost increases with
frequency, whereas waiting time decreases with it; the resulting optimal frequency is proportional to the square root of the demand.
Many refinements have been made over this basic model. Probably the most important one was the inclusion of the impact of
passengers boarding and alighting on both bus cycle and passengers’ in-vehicle times in such a way that a closed analytical solution is
obtained (Jansson, 1980, 1984). The relation between optimal frequency and demand becomes linear for large patronage volumes
(modified square root formula). Jara-Díaz and Gschwender (2009) analyzed the impact of a financial constraint on the optimal
frequency and vehicle size, expanding Jansson’s model by making bus cost dependent on its size. Let us recall this general formulation
for the one-period model over a single line, defining at the same time some notation that will be useful in the rest of the paper. Let us
start with the Value of the Resources Consumed, VRC:

= + + +VRC B C C K
p Y

f
p lt Y

L
( )

2B K
w v c

(1)

The first term corresponds to the operators’ costs, while the second and third are those corresponding to the users (their time).
Operators’ costs is given by the fleet size B times the cost of acquiring and using each bus, which has been shown to have a linear
dependency on bus capacity K (Jansson, 1980, 1984); CB and CK are the corresponding exogenous unit costs. Users’ cost depends on
total waiting and in-vehicle times, which are expressed as a function of the (parametrically known) number of users that enters the
system per hour Y , the frequency of the line f , the cycle time tc, and the ratio between average trip length l and the total route length
L (which converts Y into the passengers’ flow at every point of the cycle). pw and pv are waiting time and in-vehicle time values,
respectively. Both users and buses are assumed to arrive at the bus stops at regular intervals, which makes average waiting time equal
to

f
1
2
.1 Note that behind CB and CK there are two types of operators’ expenses, operating and capital costs, representing usage and

acquisition respectively. As this distinction will become relevant in the analysis of the two-periods case, it is convenient to recall that
each of these can be expressed as linear in capacity functions as well (Jansson, 1980, 1984), i.e. capital cost is given by +c c KBC KC
and operating costs correspond to +c c KBO KO .

Eq. (1) may be solved by expressing all the design terms as a function of the frequency f . Following Jansson (1980, 1984), vehicle
cycle time is given by the addition of time in motion T and time at stops, i.e. = +t T tY f/c , where t is boarding-alighting time per
passenger. As frequency is total fleet size divided by cycle time, we obtain that = +B fT tY . Regarding vehicles capacity, costs

1 Regularity and the absence of randomness in demand simplifies the analysis and dismisses some possible effects such as overcrowding and denied boarding.
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minimization induces a value of K not larger than the minimum necessary to carry all passengers, i.e. =K lY
Lf , such that buses are used

at capacity, and there is neither overcrowding nor denied boarding. Replacing B and K in (1) yields expression (2) where only f is a
variable
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The optimal values for f and K are
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According to this result, both optimal frequency and bus size increase with patronage at a decreasing rate but, as shown by Jara-
Díaz and Gschwender (2003, 2009), frequency grows faster than capacity. For large patronage, capacity is asymptotic to a maximum
value while frequency increases linearly.

This procedure can be applied to obtain optimal frequencies and capacities for both the peak period and the off-peak period
separately. As evident, optimal single period capacities will be different, requiring two fleets with potentially different vehicle sizes to
serve the whole day. This is the kernel of the problem we want to solve: to find a single total fleet of some capacity that can offer
period-specific frequencies.

Before moving into the two periods formulation, note that defining =A TCB and = + +G C p( )Y lt
L K v

p Y
2
w2

, the VRC can be re-

written as = + +VRC Af WG
f , where W collects all terms that are independent of f and play no role in the optimization problem.

With this notation, the result of the optimizations process yields =∗f G
A
, an expression that will prove useful in the analysis that

follows.

3. Two periods’ model

3.1. Formulation and first order conditions

Here we extend the previous model to the case of optimizing simultaneously peak and off-peak periods. While keeping the essence
of Jara-Díaz and Gschwender (2009), we improve over the two periods’ formulations by Jansson (1984, first model) and Chang and
Schonfeld (1991) in four aspects: bus costs depend on vehicle size, frequencies can be different across periods, and neither cycle nor
travel time are assumed constant. To be precise, the general scheme is preserved, with a single fleet composed by buses of the same
size K , but offering frequencies fP and fN in the peak and off-peak periods, respectively.2 The passengers per hour, the length of the
trips, and the time needed to tour the whole circuit (related to the velocity of the buses) are also dependant on the period, so the
following parameters are needed: Y Y l l T, , , ,P N P N P and TN . The durations of each period are denoted by EP and EN .

Operators’ cost must be divided into two types: capital costs (buying the buses and terminals) that are the same for all buses, and
operational costs (like maintenance or fuel) that depend on how many hours the bus is used. Each of these components is well
described by a function that is linear in vehicle size, as in Eq. (1) (Jansson, 1980, 1984). The capital cost will be caused by the largest
number of buses Bi needed considering both periods (usually the peak period); in the other period not necessarily all buses will be
used. Operating costs will depend on the number of buses used during each period of length Ei. Therefore, the Value of the Resources
Consumed in a day is now described by:
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Optimality imposes that buses are fully loaded during one of the periods; we will assume that this happens during the peak, as is
commonly observed, making =K Y l

f L
P p

P
, something that should be verified numerically (as in the following section). Also, the fleet size

is given by the maximum number of buses, which is associated with the largest demand flow that defines the peak period, making
=max B B B( , )P N P. Replacing these and the values of Bi and tci ( =i P N, ) with the equations for B and tc described in Section 2, we

obtain Eq. (5) that depends only on peak and off-peak frequencies. After frequencies are found, the fleet size and vehicles capacity are
obtained as explained above.
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Expanding the terms introduced in the single period case we define Ai and Gi ( =i P N, ) and δ as

2 Note that extensions to a network of transit lines admit the possibility of different bus sizes, as in Fielbaum et al. (2016).
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Using Eqs. (6)–(10) the value of the resources consumed can now be written as
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The derivatives with respect to frequencies in compact form are
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The minimum VRC is obtained by making these expressions equal to zero, which yields a system of equations where frequencies
are to the power of 5, such that no analytical solution can be found as established by the Abel-Ruffini theorem (see, for example,
Alekseev, 2004). Nevertheless, in what follows we show that some interesting properties can be deduced by inspection of the first
order conditions. Optimal frequencies will be found and analyzed numerically in Section 4.

3.2. Comparing optimal and single period frequencies

Let us begin analyzing the differences between the optimal frequencies when jointly optimizing both periods and the sub-optimal
solutions considering each period by itself. We will start with an inspection of frequency in the peak period. Making Eq. (13) equal 0
the optimal frequency ∗fP fulfills:

=
+∗

∗

f
G δf

AP
P N

P (14)

This expression can be compared with the solution for the one-period problem

=f G
AP

1
(15)

Looking at the denominators, A and AP are equal, as the latter is just the sum of the different components within the former.
Regarding the numerators, >G GP due to the presence of the term that multiplies YN (involving cKO); moreover, there is an additional
positive term in (14) that also involves cKO. This yields

>∗f fP P
1 (16)

i.e., the optimal frequency in the peak period is higher if the buses are also going to be considered for the off-peak period.
The interpretation of inequality (16) is quite interesting. Looking at Eqs. (14) and (15), the differences between the numerators in

the squared roots are related with the optimal value of bus capacity (through cKO), that has to be chosen taking into account that buses
in this process are also going to run during the off-peak period. Note that the effect through GP is related with the off-peak time at
stops while passengers board and alight, while the effect through δ is due to the time in-motion. For short, bus size becomes more
relevant as increasing K is now more costly than in a single peak-period analysis, making the optimal vehicle capacity smaller than
what a single peak-period analysis would yield, with higher peak frequencies. This fits the intuition that bus sizes should be
somewhere in between peak and off-peak optimal sizes when considered in isolation. This result was overlooked by Jansson (1980,
1984) because in his first two-periods model bus size is costless and argues that =f fP N would be optimal in most cases; in his second
model (where bus cost depends on size) he solves the problem analytically assuming equality between frequencies, which is
something examined below.

The analysis for ∗fN is similar but the comparison with the single period case is inconclusive. To see this, note that making Eq. (12)
equal 0 we get

=
+

∗
∗f G

A δ f/N
N

N P (17)
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AN does not include cBC because fleet size (given by BP) depends on peak frequency, implying that the daily fixed capital cost for a
bus is not affected by off-peak operations. Therefore, AN is smaller than A. However, there is a positive term involving cKO that adds
on AN , provoked by the cost associated to bus sizes that are higher than the size calculated when optimizing this period by itself.
Therefore, the denominator may be larger or smaller than A depending on the relative values of cBC and cKO. Regarding the nu-
merator, <G GN because all the terms involving bus size related costs disappear. Hence, the relation between ∗fN and fN

1 is unclear
because there are elements that operate in opposing directions: on the one hand, an extra bus means no extra capital cost because
total fleet is decided with respect to the peak-period (as in Jansson, 1980, 1984); this pushes ∗fN upwards. On the other hand,
increasing ∗fN does not induce a reduction in bus size (given by the peak) and, therefore, there are no operators’ savings because of
this; in addition, the larger buses increase operating costs, which pushes ∗fN downwards. Which of these phenomena is going to
dominate depends on whether daily fixed costs prevail over operating costs or vice versa. The answer is non-trivial, as some of the
main components (namely drivers’ wages) may be considered differently depending, for example, if it is possible to hire drivers just
for some hours of the day. If daily fixed costs prevail, off-peak frequencies are going to be higher in the two-period scheme.

3.3. Crossed effects between optimal frequencies and period specific flows

We now study how ∗fN and ∗fP react to changes in the patronage of the other period. Let us first explain it intuitively. If YP
increases, then both ∗fP and K will increase. From the point of view of off-peak operations, this means that each bus on the street is

more expensive than before, so optimal frequency will diminish, that is, <∂
∂

∗
0f

Y
N
p

. If the off-peak patronage increases, off-peak fre-
quency will also increase. This means that the size of the buses become now more relevant, because more buses will be running the

whole day. So capacities must go down, meaning the peak frequencies will increase, that is >∂
∂

∗
0f

Y
P
N

.
To see the first phenomenon analytically, recall that when deriving VRC2 with respect to fN , we obtain Eq. (17), where the only

element that depends on YP is the ratio Y f/P P (implicit in δ f/ P).
∗fP increases with YP at a decreasing rate (Jara-Díaz and Gschwender,

2003) because the system responds not only through frequency but also increasing bus size; therefore the ratio Y f/P P increases when
YP increases, and so does K . So ∗fN will indeed decrease as YP increases.

In the case of ∗fP given by Eq. (14), both GP and ∗fN increase with YN such that the optimal peak frequency increases. This happens
because when off-peak flow increases, both off-peak frequency and cycle time increase and, therefore, the number of buses required
(and operating costs) in off-peak increase; as vehicle size weighs more, this effect can be softened by reducing vehicle size. This,
however, requires peak frequency to increase.

3.4. Comparison with previous approaches

Finally, the two-periods model presented and analyzed here can be used to investigate the conditions imposed by Jansson (1980,
1984), summarized in the first section. In his first model, Jansson assumes that each bus has the same cost, independently of its size.
In our scheme, this is equivalent to put = =c c 0KC KO . From Eqs. (6)–(10) it is direct to observe that, under these conditions: =δ 0;
A G,P P and GN become equal to the value they would have in the single period case; and AN only considers operating costs. From the
analysis in Section 3.2, the only element that still matters is that buses are already acquired when deciding off-peak frequencies; all
the other effects depend on the role of bus size, which does not affect costs under Jansson’s assumption. The result is quite direct, both
analytically (from Eqs. (14) and (17)) and conceptually: for the peak period, all the conditions are exactly equal to the single period
problem, such that optimal frequencies coincide; for the off-peak, as <A AN , optimal frequencies are going to be higher than those
obtained by solving this period in isolation. Therefore, even if size had no effect on buses costs, optimal frequencies are going to differ
across periods, although off-peak frequency would be larger than in the single period analysis, getting closer to the peak period
frequency (which seems to be what lies behind Jansson’s intuition).

It is interesting to analyze the expressions that represent ∗fP and ∗fN under Jansson’s strong assumption, i.e. when = =c c 0KC KO .
These expressions are
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There are four period-specific elements that are worth looking at in this comparison: flow, trip length, time in motion and
duration of the peak period. By definition, the peak flow is larger than the off-peak flow and trip length is usually longer during the
peak as well. Both elements contribute to make the peak frequency larger than the off-peak one. However, time in motion could be
larger in the peak due to congestion, which contributes to reduce the difference. A short peak period also works in that direction. This
means that Jansson’s claim that frequencies are equal under his strong assumption on costs, might hold under very specific cir-
cumstances, although observed relative values of these parameters make us expect a systematic positive difference between ∗fP and ∗fN
even if this assumption holds, something that can be explored numerically as well.

3.5. Synthesis of the theoretical findings

In order to provide a concise view of the main elements discovered from an analytical perspective, we summarize the findings and
intuitive explanations in Table 1.
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4. Numerical analysis

As explained in Section 3, closed analytical solutions for the frequencies are impossible to obtain. In this section, we show the optimal values
for frequencies, fleet and buses size obtained numerically using the parameters presented in Table 2, inspired on the case of Santiago, Chile.
Patronage is treated parametrically, recalling that the model is a single-line representation and, therefore, devoid of spatial interrelations.

In Fig. 1 we show the behavior of total fleet (right axe, brown) and the size of buses (seats per bus, left axe, blue) as patronage
(pax/hour) increases, keeping constant the ratio between peak and off-peak flows (10/3). Just as in the single period case, and as
expected, both fleet and bus size increase with patronage. Let us analyze now period-specific frequencies and usage.

Table 1
Theoretical findings from the two periods model.

Fact Considerations Effects

Peak bus sizes affect off-peak period 1. Bus size has to be chosen considering off-peak operating
cost, which increases with K
( + >G δf G)P N
2. Off-peak bus size must be sufficient to carry peak flows
(Presence of δ f/ P in the denominator of fN )

1. Optimal K is lower than in the single peak-period
case and peak frequency is larger
2. Optimal K is larger than single off-peak period
case; off-peak frequency is pushed downwards (buses
might not be full)

Fleet is determined by the peak period, so
enough buses for off-peak are
available

There is no capital cost associated to off-peak ( <A A)N Off-peak frequency is pushed upwards

The size of the buses is the same in both
periods

Increasing off-peak frequency cannot be fully compensated
by a reduction in vehicle size in order to reduce operators’
costs <G G( )N

Off-peak frequency is pushed downwards. Excess
capacity appears

Increasing off-peak passengers increases
off-peak frequency

Bus operating costs become more important; smaller buses
are better Peak frequency increases. >

∂ ∗

∂
0

fP
YN

Increasing peak passengers increases the
size of the buses

Each bus running during the off-peak period becomes
more costly. Off-peak frequency decreases. <

∂ ∗

∂
0

fN
YP

Table 2
Exogenous parameters for numerical simulation.
Source: SECTRA (2012), DTPM (2017), Espinoza (2017) and Fielbaum et al. (2016).

Parameter EP EN TP TN t lP lN L cBC

Value (units) 5 h 13 h 2 h 1.5 h 2.5 s 10 km 5 km 40 km 4.14 US$

Parameter cKC cBO cKO pv pw YP (base) YN (base)

Value (units) 0.45 US$/seat 1.32 US$/h 0.10 US$/h-seat 1.48 US$/h 4.44 US$/h 100,000 pax/h 30,000 pax/h

Fig. 1. Optimal fleet size and bus capacity as total patronage grows proportionally.
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As explained, relations between peak and off-peak frequencies are strongly determined by the relationship between the different compo-
nents of the operators’ costs. So we studied the resulting frequencies when varying the ratio between total capital costs and total operating costs
(Fig. 2), and the ratio between size-independent and size-dependent bus costs (Fig. 3), keeping flows at the base level shown in Table 2. In both
cases the operators’ cost of a standard bus (100 seats running 18 h on the streets) was kept constant. This is done in order to alter minimally the
ratio between operators’ and users’ costs. In both figures, the scale varies from one half to double the original value of these ratios.

In these figures, we show the optimal frequencies (buses/hour) considering two periods (solid lines) and those that would be obtained
considering each period in isolation (dotted lines). Peak-period frequencies are drawn in red and off-peak in green. As expected, peak-period
frequencies are larger than off-peak ones considered in isolation, but the optimal peak frequency considering two periods are even larger (as
summarized earlier in Table 1) because of the convenience of smaller buses due to the effect of the off-peak operating costs on vehicle size. The
numerical novelty is that frequencies during the off-peak period are smaller than those obtained for a single period analysis. As a result, the
difference between optimal frequencies considering two periods is larger than the difference between frequencies when periods are considered in
isolation. As a consequence, the (single) optimal vehicle size is smaller than the single peak period case and larger than the single off-peak case.

Comparing our results with Jansson’s (1980, 1984), he assumed that frequencies are equal, while we show that differences are
even larger than when solving peak and off-peak separately, as predicted theoretically in the previous section. Following Fig. 2, the
difference between the optimal frequencies (2 periods) diminishes as capital costs become more important, which fits intuition: once
a bus is bought, it is better to use it.

Fig. 2. Optimal frequencies for varying capital costs over operating costs ratio.

Fig. 3. Optimal and single period frequencies for varying size-independent over size-dependent bus costs ratio.
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Fig. 3 confirms the same general conclusions. Besides, peak frequency drops significantly which means that bus size increases as
costs related to size turn less relevant; this pushes optimal (two-periods) frequencies towards those from a single period analysis.
Extending Fig. 3 to the right (where size dependent costs vanish, as in Jansson’s model) the difference between peak and off-peak
frequencies diminishes but remains significantly positive, as advanced at the end of Section 3.

Next, in Figs. 4 and 5 we analyze the impact of YP and YN on frequencies (right y-axis) and capacity of buses (left y-axis). The
optimal capacity (number of seats of each bus) is presented in blue; the load of each bus in the off-peak period is also shown
(diamonds line), in order to verify that it is always lower than the optimal (assumed to be commanded by the peak load).

Fig. 4 shows responses to changes in peak-period passengers flow. As expected, both peak-frequency and bus size increase when
YP does, because buses run full in this period. As predicted analytically, off-peak frequency decreases (although very slowly) due to
the rise in bus size. Accordingly, off-peak bus load increases but capacity is always enough.

Fig. 5 shows responses to changes in the off-peak period passengers flow. As predicted analytically, buses become smaller as YN
increases, because each large bus becomes more costly as fN grows in response to new passengers. These smaller sizes make peak
frequencies increase as well. Note that off-peak load approaches capacity as patronage increases, so there will be a point where size
begins to be determined by off-peak conditions, which we will not analyze here.

Fig. 4. Optimal frequencies and bus size for varying peak passengers flow.

Fig. 5. Optimal frequencies and bus size for varying off-peak passengers flow.
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5. Synthesis, conclusions and further research

In this paper, we have analyzed the problem of finding the optimal fleet for a single line to serve a pattern of transit users that
changes during peak and off-peak periods. The main differences between periods are hourly patronage (which defines the peak),
duration, average trip length and speed of the vehicles (due to traffic conditions). Previous analysis in the literature assume equality
between frequencies across periods or impose very simplifying assumptions regarding vehicles cost and cycle times. Here we have
shown analytically and numerically that optimal frequencies during peak and off-peak conditions are quite different in general, but
capacity of the vehicles lies in between those that would prevail if each period were optimized independently. Interestingly, several
counterintuitive results were obtained and could be explained from the model.

In a previous paper (Jara-Díaz and Gschwender, 2009) we have shown that imposing a self-financing policy on surface transit
yields smaller frequencies and larger buses than optimal; this was shown using a single period model. This is indeed an issue in public
transport design. One of the main results obtained here is that when peak and off-peak periods are considered, the optimal frequency
in the peak is larger and bus size smaller than what is obtained when the peak is optimized in isolation. This is explained by a key
element in the multiperiod model developed here: the same fleet is used longer, during both periods but under different conditions; as
operating a vehicle has a cost that increases with its size, introducing the off-peak conditions induces a size reduction that increases
the peak frequency.

Regarding off-peak frequency, we have shown analytically that it is affected by different factors that push it upwards and
downwards with respect to the optimal frequency calculated when solving this period by itself. The fact that buses are already
acquired pushes off-peak frequency upwards but, precisely because of this, increasing frequency cannot induce smaller buses, which
pushes this frequency downwards. Also, buses are larger than what would be obtained in an isolated analysis; these higher operating
costs pushes frequency downwards as well. The numerical analysis showed that these last factors prevail, and that off-peak optimal
frequency is indeed lower than optimal frequency for the isolated period.

Crossed effects were analytically deduced and numerically verified. Off-peak frequency was shown to decrease when peak pas-
sengers increase, because buses are larger, hence more expensive to operate in that case. Peak frequency was shown to increase when
off-peak passengers increase, because more buses operate in the off-peak period in that case, so it is better to decrease their size.

Although fleet is always calculated according to peak conditions (that present larger flows by definition), bus size could be
determined by off-peak conditions if its flow is sufficiently large; this would require a re-examination of the solutions making size
equal to the off-peak requirement.

The stylized model presented here to analyze the multiperiod design problem can be applied to explore other important issues.
One emerges directly from our analysis: examination of the conditions under which bus capacity is determined by off-peak - instead
of peak - characteristics. Also, a cost analysis could be helpful to examine the loss due to a design based upon a single period analysis
(either peak or off-peak) with adjustments to operate the other period. Furthermore, as the cost function approach taken here deals
with a parametrically given demand level, endogeneity could be analyzed by introducing sensitivity to quality of service of the public
transport system (in this case frequency). Another aspect worth exploring is some randomness in the arrival of both vehicles and
passengers to the bus stops, which would introduce new dimensions as overcrowding and denied boarding. In addition, when dealing
with two periods there is a likely relation between peak and off-peak demand due to a joint modal decision that is taken on a daily
basis by individuals; for example, a reduction in off-peak frequency could lead to a reduction in demand in both periods.

Finally, the complex decision of optimal lines structures (routes) should be studied as well; this requires moving into a spatial
scenario, which we are studying using the parametric city previously developed and studied in Fielbaum et al. (2016, 2017). Usually
the line structure is defined to serve the peak demand pattern, and the operation during the rest of the day considers a subset of the
peak lines. An opposite approach has been proposed (Walker, 2012), i.e. to design the lines structure considering the off-peak pattern
(as this period is much longer than the peak) and complement it in the peak with additional peak-specific lines, potentially con-
sidering the use of buses of a different capacity. What would the optimal lines structure look like, if it was built considering both
demand patterns, in a similar way as the two-periods single line model proposed in this paper?
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