
Pharo Git Thermite
A Visual Tool for Deciding to Weld a Pull Request

Ronie Salgado
Pleiad Lab, DCC, University of Chile

Alexandre Bergel
Pleiad Lab, DCC, University of Chile

Abstract
Collaborative software development platforms such as GitHub
simplify the process of contributing into open source projects
by the use of a pull request. The decision of accepting or
rejecting a pull request has to be made by an integrator. Be-
cause reviewing a pull request can be time consuming, social
factors are known to have an important effect on the accepta-
tion of a pull request. This effect can be especially important
for large and complicated pull request.

In this paper we present Git Thermite, a tool to assess the
internal structure of a pull request and simplifying the job
of the integrator. Git Thermite details the structural changes
made on the source code. In Git Thermite we use a pull
request business card visual metaphor for describing a pull
request. In this business card, we present the pull request
metadata and describe the modified files, and the structural
changes in the modified source code.
ACM Reference Format:
Ronie Salgado and Alexandre Bergel. 2017. Pharo Git Thermite: A
Visual Tool for Deciding to Weld a Pull Request. In Proceedings of
IWST ’17. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3139903.3139916

1 Introduction
Git Workflow Git is a distributed version control system.
The usual workflow for working with git consists on cloning
an upstream version of a repository into a local working copy
of the repository. Then the user performs some changes in
his local copy which are commited into the cloned repository.
After making some commits, the user can decide to push his
commits into the original upstream repository.

GitHub Platform A popular collaborative platform for
working on open source projects using git is GitHub. GitHub
augments the capabilities of git by adding software main-
tenance tools such as an issue tracker and a wiki for each
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IWST ’17, September 4–8, 2017, Maribor, Slovenia
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5554-4/17/09. . . $15.00
https://doi.org/10.1145/3139903.3139916

project. An important feature that expands the workflow of
working with git repositories, which is added by GitHub and
some other collaborative platforms, is the support for doing
a pull request.

Pull Request Description A pull request is a formal re-
quest to the maintainers of a project to integrate some com-
mits made by a contributor. Any developer registered in
GitHub can perform a pull request to any open source project
that is also present in GitHub. A pull request is made in
GitHub by forking the main branch of the project where
the contribution is going to be made. Once a developer has
forked the project, he can make and push all of the com-
mits that he wants into a branch of his forked version of
the project. When the contributors has the commits on his
personal branch in GitHub, he can generate a pull request to
the main version of the project, by just clicking a button.
Once a pull request is made, it can be discussed before

being accepted or rejected by an integrator. If more commits
are made to the git branch that was used for creating the
pull request before the pull request is closed, then these new
commits are added automatically to the pull request.

Pull Request Acceptance Factors The acceptance or re-
jection of a pull request can be influenced by several factors.
The factors of acceptance can be divided into two main cate-
gories: technical factors, and social factors [1, 2]. Technical
factors are related to the changes themselves, meanwhile
that social factors are related to the social relationships be-
tween the core developers of the project, the contributor and
the users of the project. The following are some important
pull request acceptance factors:

• Pull request size.
• Unit test inclusion.
• Number of files modified.
• Developer closeness with the core project developers.

Small pull requests that can be easily understood and
reviewed tend to be integrated more easily. As for a larger
pull request, the social factors can have an important impact
on the acceptance of a pull request [1] [2].

Pull Request Visualization To increase the acceptance
of pull requests, we propose using a visualization tool for
assessing a pull request. Our visualization contains the fol-
lowing elements:

• Metadata gathered from GitHub pull request.
• Metrics from the files modified in the pull request.

https://doi.org/10.1145/3139903.3139916
https://doi.org/10.1145/3139903.3139916
https://doi.org/10.1145/3139903.3139916

IWST ’17, September 4–8, 2017, Maribor, Slovenia Ronie Salgado and Alexandre Bergel

• Static source code analysis of the changes.
For the static analysis of source code, we are basing our

work on Torch [3][4]. Torch is a dashboard for software
evolution analysis. The visualizations displayed by Torch
compare arbitrary versions of Smalltalk packages that are
stored in Monticello. From Torch we are taking some of its
visualizations and concepts like having a contextual diff.

Unlike Torch, our tool can be used with arbitrary GitHub
pull requests for repositories whose projects are in any lan-
guage. At that current stage, we are able to comfortably
analyze source code written in Pharo (e.g., Figure 3, Figure 4)
and Python (e.g., Figure 1). As a consequence, our tool dis-
play source code structural changes for projects written in
any of these two languages. For files that do not contain
source code written on any of these two languages, we limit
ourselves to standard text based diffs and metrics.

2 Description
Our interactive visualization (e.g., Figure 1) for pull requests
is designed around a business card metaphor. The idea of
this metaphor is having a summary of a pull request in a
compact visualization that displays the big picture of the
changes present in the pull request. This business card shows
the relevant entities that are changed in a pull request with
additional information and metrics that can help an inte-
grator. An integrator may be interested in metrics such as
the size of the pull request, and whether the pull request
contains unit tests or not [1].

Business Card Elements Our business card card is com-
posed of a title bar (Figure 1, part A) followed by sections
arranged in a vertical layout: below the pull-request title, the
list of modified files is given (Figure 1, part B), and below
the list of structural source code changes are given (Figure 1,
part C). By highlighting an element with the mouse pointer,
it is possible to obtain a tooltip that describes the highlighted
element. Visual elements may be dragged with the mouse
to rearrange them, and the elements can be clicked to get
additional details.

Title Bar The title bar of the business card (Figure 1, part A)
contains the title of the pull request, followed by the type of
the pull request, and a colored square that indicates whether
the pull request can be merged automatically or not. We try
to detect the type of a pull request by looking at the presence
of particular keywords in the title and in the comments of
the pull request. If a pull request type cannot be inferred, no
type is displayed. Because our simple heuristic is far from
perfect, and we try to choose only one type, our heuristic
can give a false positive or erroneous answers about the
pull request type. The pull request types inferred with this
heuristic are the followings:

• Bug fix (Bug keyword).
• New feature (Feature keyword).

Figure 1. The business card of pull request number 8939
made to numpy, a Python project. In the first section (Mod-
ified Files), unlike Pharo, in Python we represent files that
can have unit tests with a dark green color. This contains five
files, three of them could have unit test because they have
the test keyword on their name. In the second section (Struc-
tural Changes), the internal structure of the same files is
represented. In this last section, the files contains classes and
functions. The classes contains methods. Added elements are
in green, removed elements are in red and modified elements
are in yellow.

• Enhancement (Enhance keyword).
• Feature deprecation (Deprecate keyword). This can be
seen in Figure 1.

The color of the square in the title bar indicates the diffi-
culty to integrate the pull-request:

• Green – It is possible to merge automatically the pull
request by clicking a button in GitHub. GitHub deter-
mines this by creating a temporary merge commit. We
get this data via the GitHub API.

• Orange – It is not possible to merge automatically the
pull request. Conflicts have to be solved manually.

• Gray – Automatic merge status is not reported by the
GitHub API. This can be seen in Figure 1. The pull
cannot be merged automatically. One of the poten-
tial reason for having gray status is looking at a pull
request that is closed, which could be already merged.

Pharo Git Thermite IWST ’17, September 4–8, 2017, Maribor, Slovenia

Title Bar Interaction By highlighting with the mouse the
square that indicates the possibility of doing an automatic
merge it is possible to get a tooltip explaining the meaning
of its color. By clicking on the title bar it is possible to see
the commit tree of the commits involved in the pull request.

Commit Tree In the commit tree visualization (See Fig-
ure 2), we represent metrics about the commits that compose
the pull request. In this visualization, the older commits are
located at the top, the newer commits are below. The edges
are joining a commit to its parent commit. A git merge com-
mit can have more than one parent commit. Each element
representing a commit contains in its interior a bar chart
representing the number of lines added in green, and the
number of lines removed in red. It is possible to interact with
the commit meta-model by clicking on a commit. We obtain
this visualization by retrieving the list of the commits that
are composing a pull request by using the GitHub API.

Figure 2. Commit Tree for pull request number 297 in Ice-
berg, a git front-end for Pharo. Each gray rectangles repre-
sents one commit that is part of the pull request. The chart
in the interior of a commit represents the lines added (red),
and the lines removed (green). Commits that are above are
older than commits that are below. Edges are joining newer
commits with their older parent commits.

Modified Files Panel The file panel of the business card
(Figure 1, part B) contains the files that are changed in the
pull request. The chart in the interior of the files represents
the number of unchanged lines in gray, the number of added
lines in green, and the number of removed lines in red. If
the path of a file contains the word test, then its color is
green to indicate the possibility of a file containing unit

tests. In the case of Pharo source code, we filter the files that
belongs to Smalltalk source code that is stored in a filetree
package.We do this filtering because the filetree format stores
each Smalltalk method in a different file, which introduces
redundant information and lot of cluttering. We only present
the changes to the Pharo source code in the pane with the
structural changes, which provides an isomorphism between
the files present in the filetree package.

Figure 3. Structural changes for pull request number 363 in
Iceberg, with only the modified classes. In this pull request a
single method (yellow outline) was modified. By clicking on
this method, we can see the textual diff of the method

Structural Changes Panel The structural changes panel
(Figure 1, part C) displays a blueprint with the structural
changes. We have the option of displaying in this view only
the modified classes in the modified packages (See Figure 3),
or displaying all the classes in the modified package (See
Figure 4). A developer may be interested on watching all
the classes to see how the modified classes are related to
the unmodified classes in terms of inheritance. We can also
filter the methods to display only the modified methods.
The filtering of classes and methods is optional, and can be
selected by the user before building the visualization.

Structure Changes Visual Encoding Elements that are
completely added or removed are represented with a solid
color, green for added elements, and red for removed el-
ements. The size of these elements is proportional to the
number of lines that were added or removed. The elements
that are changed have a yellow outline, with a chart in its
interior representing the number of changes made to the
element. The bars in these charts represents the number
of unchanged lines with a gray color, the number of added
lines with green, and the removed lines in red. Inheritance
relationships are represented using edges between classes
whose color indicates whether an inheritance relationship
was removed (red), added (green) or unchanged (blue).

IWST ’17, September 4–8, 2017, Maribor, Slovenia Ronie Salgado and Alexandre Bergel

Figure 4. Structural changes for the same pull request presented in Figure 3, but with all the classes in the modified package.

Structure Interactions The elements of this blueprint can
be dragged or moved. This interaction is useful when having
a class hierarchy and the layout that is used by the visual-
ization lay out elements in an overlapping position, or in a
position where the subclass hierarchy gets hidden. By click-
ing on one of the elements on this panel, it is possible to see
the textual diff of the node (See Figure 5)

Figure 5. Tooltip with metrics and diff

3 Usage Example
ChangesVisibles on theVisualization Gomez et al. [3][4]
describes a list of change scenarios that are identified and
characterized by using Torch. On Figure 6 we can see pull
request number 297 in Iceberg, a git front-end for Pharo. This
is a large pull request where it is possible to characterize
some of the same change scenario. These change scenarios
are the following:

• Adding features. We see that many classes, full pack-
ages and class hierarchies are being added in the pull
request.

• Removing features. We see that two classes are re-
moved, which means that some features could have
been removed. We do not see another class with a sim-
ilar shape being added into a different package, so we

discard the possibility that these classes were simply
moved.

• Refactoring methods into a new and common superclass.
In one part, we see that a superclass relationship is
removed, and replaced by a new class. This new class
is in the middle between the old subclass and its old
superclass. We also see that some of its methods are
removed, which means that they could be moved into
the common super class.

• Modifying methods. We see many yellow elements,
which means that an important number of methods
have been modified.

4 Limitations
Unlike Torch, currently we are not able to detect and dis-
play whether an element is moved instead of simply being
removed and added into a different place (e.g., A class moved
into a different package). This limitation prevents us from
displaying some of the change scenarios that are displayed
in Torch.
Another limitation is related to the very same nature of

pull requests. Because pull requests are composed of multiple
commits, for computing our structural diff we have to choose
two commits in the pull request: the last commit in the pull
request, and a base commit to compare with.We are choosing
the parent commit of the first commit present in the pull
request as a base commit. The problem with this is that
along the lifetime of a pull request the main branch changes,
and from time to time the code in the main branch can be
merged back into the pull request. This can introduce lot of
false positives, which probably can be seen in Figure 6. The
apparent solution of comparing with the current version of
the main branch can introduce other false positive related to
the changes made in the main branch. We need to explore a
way for reducing these false positives in our visualization.

Pharo Git Thermite IWST ’17, September 4–8, 2017, Maribor, Slovenia

Figure 6. Structural diff for pull request number 297 in Iceberg. The non-Pharo file .travis.yml for continuous integration
settings was modified in this pull request. We see that many elements were added (green), removed (red) and modified (yellow).
In the low right part of the business card we see that a full package is added. We can see that some class hierarchies are added,
and that two classes were removed. There is one part where a class is splitted in two classes, by adding a common intermediate
class.

Torch does also have this problem related to history noise,
because it can visualize the changes of multiples commits at
once, which can have unrelated changes [4].

5 Related Work
Torch [3] [4] is a Dashboard for visually supporting code
changes. Torch can visualize multiple arbitraries commits
made in Pharo source code usingMonticello. The Torch dash-
board contains the following elements: a visualization for
changes, metrics, a change lists, a symbolic cloud for visual-
izing a change in source code vocabulary, and omni-present
contextual diff. For this work we are taking inspiration on
Torch. Unlike Torch, this work is designed to work with Git
and GitHub pull requests. From Torch we are reusing Ring
[5] for doing the static analysis of Smalltalk code.
Motive [6] is a tool for visualizing software change sets

for Java. The visualizations generated by Motive are based
around Entity-Relationship diagrams and UML diagrams, for
classes. The main difference between Motive and Thermite
is that Motive is about visualizing high-level architectural
changes, and Thermite is about visualizing source code AST
structural changes.

6 Conclusions and Future Work
Wewant to visualize pull requests with code written in differ-
ent languages. Currently the user has to select the language
used in a pull request before building the visualization. Git

repositories can have source code for more than one lan-
guage. A typical use case is having scripts for continuous
integration and deployment in addition to pure Pharo code.
Currently we are only focusing on visualizing the code

present in pull request. A GitHub pull request can also have
comments, and they can have some additional information
that is valuable to the integrators. We need to add the pull
request comments into our visualization, or add a way to
interact with the pull request comments.

We need to perform a controlled experiment with a base-
line tool to validate whether our visualization does actually
assist the job of the integrator, and whether it can help on
reducing the effect of the social factors on the integration of
a pull request.
In this paper we presented Git Thermite, a visualization

for GitHub pull request based on Torch. With Git Thermite
we are now able to visualize pull requests made in a git based
workflow. In this on going work, we still need to validate
whether this visualization is actually useful and can help the
integrators on their daily job.

References
[1] J. Tsay, L. Dabbish, J. Herbsleb, Influence of social and technical factors

for evaluating contribution in github, in: Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, ACM, New
York, NY, USA, 2014, pp. 356–366. doi:10.1145/2568225.2568315.
URL http://doi.acm.org/10.1145/2568225.2568315

http://doi.acm.org/10.1145/2568225.2568315
http://doi.acm.org/10.1145/2568225.2568315
http://dx.doi.org/10.1145/2568225.2568315
http://doi.acm.org/10.1145/2568225.2568315

IWST ’17, September 4–8, 2017, Maribor, Slovenia Ronie Salgado and Alexandre Bergel

[2] D. M. Soares, M. L. de Lima Júnior, L. Murta, A. Plastino, Acceptance
factors of pull requests in open-source projects, in: Proceedings of
the 30th Annual ACM Symposium on Applied Computing, SAC ’15,
ACM, New York, NY, USA, 2015, pp. 1541–1546. doi:10.1145/2695664.
2695856.
URL http://doi.acm.org/10.1145/2695664.2695856

[3] V. U. Gomez, S. Ducasse, T. D’hondt, Visually supporting source code
changes integration: the torch dashboard, in: Reverse Engineering
(WCRE), 2010 17th Working Conference on, IEEE, 2010, pp. 55–64.

[4] V. U. Gómez, S. Ducasse, T. DâĂŹHondt, Visually characterizing source
code changes, Science of Computer Programming 98 (2015) 376–393.

[5] V. U. Gómez, S. Ducasse, T. D’Hondt, Ring: a unifying meta-model
and infrastructure for smalltalk source code analysis tools, Computer
Languages, Systems & Structures 38 (1) (2012) 44–60.

[6] A. McNair, D. M. German, J. Weber-Jahnke, Visualizing software ar-
chitecture evolution using change-sets, in: Reverse Engineering, 2007.
WCRE 2007. 14th Working Conference on, IEEE, 2007, pp. 130–139.

http://doi.acm.org/10.1145/2695664.2695856
http://doi.acm.org/10.1145/2695664.2695856
http://dx.doi.org/10.1145/2695664.2695856
http://dx.doi.org/10.1145/2695664.2695856
http://doi.acm.org/10.1145/2695664.2695856

	Abstract
	1 Introduction
	2 Description
	3 Usage Example
	4 Limitations
	5 Related Work
	6 Conclusions and Future Work
	References

