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Mean-Variance Portfolio Selection With the Ordered
Weighted Average
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Abstract—Portfolio selection is the theory that studies the pro-
cess of selecting the optimal proportion of different assets. The first
approach was introduced by Harry Markowitz and was based on
a mean-variance framework. This paper introduces the ordered
weighted average (OWA) in the mean-variance model. The main
idea is to replace the classical mean and variance by the OWA op-
erator. By doing so, the new model is able to study different degrees
of optimism and pessimism in the analysis being able to develop an
approach that considers the decision makers attitude in the selec-
tion process. This paper also suggests a new framework for dealing
with the attitudinal character of the decision maker based on the
numerical values of the available arguments. The main advantage
of this method is the ability to adapt to many situations offering a
more complete representation of the available data from the most
pessimistic situation to the most optimistic one. An illustrative with
fictitious data and a real example are studied.

Index Terms—Mean, ordered weighted average (OWA),
portfolio selection, variance.

I. INTRODUCTION

PORTFOLIO theory is a field of financial economics that
aims to maximize the expected return of a portfolio tak-

ing into account a degree of portfolio risk or minimize the
expected risk considering a specific amount of expected return.
The purpose is to find a set of investment assets that collectively
have a lower risk than any individual asset. The first approach
was suggested by Markowitz and was based on a mean-variance
portfolio selection framework [1]. This approach provided good
results finding the optimal portfolio but needed too many calcu-
lations according to the technology available in the 1950s and
1960s. Thus, it was not easy to find optimal results with this
model. This weakness was solved by Sharpe [2] with the de-
velopment of a new approach that simplified Markowitzs model
significantly. He saw that the majority of the investment assets
were affected by similar conditions. Thus, he suggested a di-
agonal model based on regression methods that could obtain a
solution with a significantly lower number of calculations than
Markowitz’s model needed to do.

Over the last years, Markowitz’s framework has received
increasing attention by the scientific community due to the de-
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velopment of computers that now can easily make a lot of cal-
culations in a short period of time. A key example showing the
growing importance of this approach is the publication of a
special issue in the European Journal of Operational Research
celebrating the 60th anniversary of Markowitzs theory [3]. This
issue published a wide range of reviews and contributions re-
garding the newest developments in the field [4], [5]. Addition-
ally, note that during the last years, many new extensions and
generalizations are being suggested in the literature in a wide
range of journals and conferences [6]–[8].

A key problem in Markowitz’s mean-variance approach is
the aggregation process of the mean and the variance with the
arithmetic mean or the weighted average. These two averag-
ing aggregation operators are the most common ones, but it is
possible to use other ones for doing so [9]–[12]. A very well-
known is the ordered weighted average (OWA) that aggregates
the data taking into account the degree of optimism and pes-
simism of the decision maker [13], [14]. Many authors have
improved the OWA operator under a wide range of perspec-
tives [15]. Yager and Filev [16] developed the induced OWA
operator which is a more general framework that uses order in-
ducing variables in the reordering process of the information.
Fodor et al. [17] suggested the quasi-arithmetic OWA opera-
tor by using quasi-arithmetic means in the aggregation process.
Merigó and Gil-Lafuente subsequently [18] presented the in-
duced generalized OWA operator as a unification of the induced
and quasi-arithmetic frameworks. Other studies have analyzed
the unification between the probability and the OWA operator
[19], [20] and the integration between the weighted average
and the OWA operator [21]–[23]. More recently, the unification
between the OWA operator, the probability and the weighted
average in the same formulation [24] has been developed.

The use of the OWA operator in portfolio selection has been
considered in a heuristic model that combines the OWA op-
erator with a data envelopment analysis (DEA) approach [25]
and the cross-efficiency evaluation which is also based on DEA
methodology [26]. The objective of this study is to develop a
mean-variance portfolio approach by using the OWA operator
in the aggregation of the expected returns and risks. The main
idea is to replace the mean and the variance used in Markowitzs
model by the OWA operator and the variance-OWA (Var-OWA)
[27]. Observe that the OWA and the Var-OWA are generaliza-
tions of the traditional mean and variance that take into account
the degree of optimism or pessimism of the decision maker and
any situation from the most pessimistic to the most optimistic
one. The reason for generalizing the simple or weighted average
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by the OWA operator is because in many situations, the impor-
tance of the data is not known. Thus, a different approach is
needed to aggregate the information such as the OWA operator
that uses the attitudinal character of the decision maker. The
OWA aggregates the information by under or overestimating
the information according to the specific attitude of the decision
maker. Additionally, it also considers any result that can occur
from the minimum to the maximum providing a complete rep-
resentation of the problem that does not loose information in the
analysis.

The classical model of Markowitz is revised by introducing
OWA operators in the mean and the variance. The paper analyzes
several important properties of the conceptual implications of
this framework including the measures for the characterization
of the OWA operator [13] and related extensions suggested in
this paper. Many families of OWA operators are studied in order
to consider particular positions that the decision maker may
adopt. Illustrative examples regarding the new approach are also
presented in order to numerically understand the use of the OWA
operator in Markowitzs framework. These exercises reveal that
attitudinal characteristics affect the efficient frontier, leading
investors to polarize their portfolio choices in favor of either one
asset (optimism) or the minimum-risk portfolio (pessimism).
Simulations also suggest that a minimum-risk portfolio is the
same in both Markowitz and OWA frontiers, a result that is
robust to different classes of investor’s attitudinal characteristics.

The remainder of the paper is structured as follows. Section II
reviews the preliminaries regarding the OWA operator and
Markowitz’s portfolio model. Section III studies how to
implement the OWA in the mean-variance portfolio approach.
Section IV presents an illustrative example and a real example
of the new methodology, and Section V discusses the key
findings and results of the paper.

II. PRELIMINARIES

A. OWA Operator

The OWA is an aggregation operator that provides a param-
eterized family of aggregation operators between the minimum
and the maximum [13]. In decision making under uncertainty,
it is very useful for taking decisions with a certain degree of
optimism or pessimism. It generalizes the classical methods
into a single formulation including the optimistic, pessimistic,
Laplace, and Hurwicz criterion. It can be defined as follows.

Definition 1: An OWA operator of dimension n is a mapping
OWA: Rn → R that has an associated weighting vector W of
dimension n with

∑n
j=1 wj = 1 and wj ∈ [0, 1], such that

OWA(a1 , a2 , . . . , an ) =
n∑

j=1

wjbj (1)

where bj is the jth largest of the ai .
An important issue to consider when dealing with the OWA

operator is the reordering process. In definition 1, the reorder-
ing has been presented in a descending way although it is also
possible to consider an ascending order by using wj = w∗

n−j+1 ,
where wj is the jth weight of the descending OWA and w∗

n−j+1

the jth weight of the ascending OWA operator.1 Moreover, it
is also possible to adapt the ordering of the arguments to the
weights and vice versa [28], [29]. Note that the OWA is com-
mutative, monotonic, bounded, and idempotent.

In order to characterize the weighting vector of an OWA
aggregation, Yager [13] suggested the degree of orness and
the entropy of dispersion. The degree of orness measures the
tendency of the weights to the minimum or to the maximum. It
is formulated as follows:

α(W ) =
n∑

j=1

wj

(
n − j

n − 1

)

. (2)

As we can see, if α(W ) = 1, the weighting vector uses the
maximum and if α(W ) = 0, the minimum. The more weights
are located at the top, the higher it is α and vice versa.

The entropy of dispersion is an extension of the Shannon
entropy when dealing with OWA operators. It is expressed as

H(W ) = −
⎛

⎝
n∑

j=1

wj ln wj

⎞

⎠ . (3)

It can be observed that the highest entropy is found with the
arithmetic mean (H(W ) = lnn) and the lowest one when se-
lecting only one result such as the minimum or the maximum
because in this case the entropy is 0.

B. Portfolio Selection With the Markowitz Approach

Consider a portfolio formed by m individual assets so that
rk
i represents asset k’s return at state of nature i for all k =

1, 2, . . . ,m and i = 1, 2, . . . , n. States of nature are distributed
according to the probability vector Π = (π1 , π2 , . . . , πn ) so that
πi ∈ [0, 1] for all i = 1, 2, . . . , n and

∑n
i=1 πi = 1.

Let x = (x1 , x2 , . . . , xm ) be the vector of wealth propor-
tions invested in each individual asset of the portfolio so that
xk ∈ [0, 1] for all k = 1, 2, . . . ,m and

∑m
k=1 xk = 1.2 The

mean return of asset k is then computed as

E(rk ) =
n∑

i=1

πir
k
i

and the mean return portfolio is hence given by

E(rp ;x) =
m∑

k=1

xkE(rk ) (4)

as the expectation operator E is linear.
Moreover, the covariance between assets j and k is given by

COV(rj , rk ) =
n∑

i=1

E(rj
i − E(rj ))E(rk

i − E(rk ))

=
n∑

i=1

πi(r
j
i − E(rj ))(rk

i − E(rk ))

1The possibility of presenting OWA in both an ascending or descending order
is relevant for portfolio choice applications, as discussed in Section III.

2Short sale is thus not allowed.
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TABLE I
QUADRATIC AND PARAMETRIC PROGRAMMING IN MARKOWITZ PORTFOLIO

SELECTION APPROACH

Program 1 Program 2

Objective function maxx E (rp ; x) minx V (rp ; x)
Parametric constraints V (rp ; x) = V E (rp ; x) = E

Budget constraints
∑ m

k = 1 xk = 1
∑ m

k = 1 xk = 1
Non negativity For all xk ∈ [0, 1] For all xk ∈ [0, 1]

V and E represent a given level of portfolio variance and portfolio
mean return, respectively.

and the variance of the portfolio can then be computed as fol-
lows:

V (rp ;x) =
m∑

j=1

m∑

k=1

xjxk COV(rj , rk ) (5)

given the linearity of the operator E.
A key aspect in the Markowitz methodology is to character-

ize the efficient frontier, which collects all the pairs that yield
the maximum mean return portfolio for a given level of risk
(the portfolio variance or standard deviation), or alternatively,
all the pairs representing the minimum portfolio risk for a given
level of mean return portfolio. From this duality, two practi-
cal methodologies emerge to construct the efficient frontier: a
quadratic or a parametric programming model. Both of them are
summarized in Table I.

An important result coming from portfolio choice analysis
is the investor’s wealth allocation that allows him to bear the
minimum level of risk, i.e., the so-called minimum-variance
portfolio. This is a relevant result, especially for a too risk-averse
investor who wants to minimize the variability of his position
irrespective of whether this portfolio yields quite a low expected
return. In formal terms, let us define x, the minimum-variance
portfolio, as follows:

x = arg min
x

V (rp ;x) (6)

where x = (x1 , x2 , . . . , xm ) is so that
m∑

k=1

xk = 1 for all xk ∈ [0, 1] .

III. OWA OPERATOR IN PORTFOLIO SELECTION

Markowitz’s approach is based on the use of the mean and
the variance. These techniques are usually studied with an arith-
metic mean or a weighted average (or probability). However,
the degree of uncertainty is usually more complex and it is nec-
essary to represent the information in a deeper way. In this case,
more general aggregation operators are needed in order to assess
the information properly. A practical technique for doing so is
the OWA operator because it provides a parameterized group of
aggregation operators between the minimum and the maximum.
Moreover, it is able to represent the attitudinal character of the
decision maker in the specific problem considered. Therefore,
the main advantage of this approach is that it represents the
problem in a more complete way because it can consider any

scenario, varying from the most pessimistic to the most opti-
mistic one and select the situation that is in closest accordance
with the investor’s attitudes.

In order to revise Markowitz’s approach with the OWA op-
erator, it is necessary to change the formulas used to com-
pute the portfolio’s mean return and risk, that is, (4) and (5) of
Section II. Note that this is suggested for situations with high
levels of uncertainty where probabilistic information is not avail-
able [8]. In particular, when

1) The return of any asset is uncertain and cannot be assessed
with probabilities. Therefore, the expected value cannot
be used. In these uncertain environments, the Mean-OWA
operator may become an alternative method for aggregat-
ing the information of the assets.

2) The risk of any asset cannot be measured with the usual
variance because probabilities are unknown. However, it
is possible to represent it with the Var-OWA [20], [30],
[31].

A. Asset Return and Risk Using OWA

One of the key ideas of this approach is to introduce a
model that can adapt better to uncertain environments because
Markowitz’s approach is usually focused on risky environments.
Note that with the expected value it is possible to consider sub-
jective and objective probabilities but it is not possible to assess
situations without any type of probabilities. An alternative for
dealing with these situations is the OWA operator that aggre-
gates the information according to the attitudinal character of
the investor.

Definition 2: Let ri be an asset’s return at state of nature i
for i = 1, 2, . . . , n. The Mean-OWA operator can then be rep-
resented as follows:

EOWA ≡ OWA(r1 , r2 , . . . , rn )

=
n∑

j=1

wjqj (7)

where qj is the jth largest of the ri .
Next, let us look into the other main perspective when dealing

with portfolio selection. The analysis of risk in Markowitz’s
approach is based on the use of the variance measure. In this
paper, we have suggested using the Var-OWA as a measure of
risk. The main advantage is that this formulation is more general
than the classical variance because it provides a parameterized
family of variances between the minimum and the maximum
one. Thus, it gives a better representation of the problem and
selects the specific result that is in closest accordance with the
attitude of the decision maker. Following Yager [27], and [20],
[32], an asset variance when using the OWA operator can be
formulated as follows.

Definition 3: Given an asset with expected returns
(r1 , r2 , . . . , rn ), let us define si as

si = (ri − EOWA)2
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for i = 1, 2, . . . , n, where EOWA is defined according to (7).
The Var-OWA can then be defined as follows:

VOWA ≡ OWA(s1 , s2 , . . . , sn )

=
n∑

j=1

wj tj (8)

where tj is the jth smallest of the si .
It can be seen that, here, we use an ascending order because

it is usually assumed that a lower risk represents a better result
and, thus, it should appear first in the aggregation. Similarly to
the case of expected returns, with the OWA approach we can
consider any risk from the minimum to the maximum one by
using w1 = 1 and wj = 0 for all j �= 1 (minimum variance) and
wn = 1 and wj = 0 for all j �= n (maximum variance).

B. Portfolio Mean Return and Risk Using OWA

Now consider a portfolio in which m individual assets can
be combined so that rk

i represents asset k’s return at state of
nature i for all k = 1, 2, . . . , m and i = 1, 2, . . . , n. Let x =
(x1 , x2 , . . . , xm ) be the vector of wealth proportions invested
in each individual asset of the portfolio so that xk ∈ [0, 1] for
all k = 1, 2, . . . ,m and

∑m
k=1 xk = 1.3 Moreover, let us define

rp
i , the portfolio’s return at state of nature i, as

rp
i =

m∑

k=1

xkrk
i

for all i = 1, 2, . . . , n. The portfolio mean-OWA is then given
by

EOWA(rp ;x) = EOWA(rp
1 , rp

2 , . . . , rp
n ) (9)

or equivalently, using definition given by (7), it becomes

EOWA(rp ;x) = OWA(rp
1 , rp

2 , . . . , rp
n )

=
n∑

j=1

wjq
p
j (10)

where qp
j is the jth largest of the rp

i .4

In addition, by applying (9) or (10), we can define sp
i as

sp
i = (rp

i − EOWA(rp ;x))2

for i = 1, 2, . . . , n. The portfolio Var-OWA can then be formu-
lated as follows:

VOWA(rp ;x) = VOWA(rp
1 , rp

2 , . . . , rp
n )

3Short sale is thus not allowed.
4Contrary to the expected value, the OWA is not a linear operator (see a

counter-example in the Appendix). Thus, we cannot proceed as (4) in the
Markowitz approach, as in general it is verified that

EOWA (rp ; x) �=
m∑

k=1

xk EOWA (rk ).

TABLE II
QUADRATIC AND PARAMETRIC PROGRAMMING IN PORTFOLIO SELECTION

USING OWA

Program 1 Program 2

Objective function maxx EO WA (rp ; x) minx VO WA (rp ; x)
Parametric constraints VO WA (rp ; x) = V EO WA (rp ; x) = E

Budget constraints
∑ m

k = 1 xk = 1
∑ m

k = 1 xk = 1
Non negativity For all xk ∈ [0, 1] For all xk ∈ [0, 1]

V and E represent a given level of portfolio Var-OWA and portfolio mean-
OWA return, respectively.

and it can be calculated as

VOWA(rp ;x) = OWA(sp
1 , s

p
2 , . . . , s

p
n )

=
n∑

j=1

wj t
p
j

where tpj is the jth smallest of the sp
i .5

Once this initial information is calculated, the rest of the
approach follows the Markowitz methodology where a quadratic
or parametric programming model is used (see Table II).

As in the Markowitz approach, we define xOWA , the
minimum-Var-OWA portfolio, as follows:

xOWA = arg min
x

VOWA(rp ;x) (11)

where xOWA = (x1 , x2 , . . . , xm ) is so that
m∑

k=1

xk = 1 for all xk ∈ [0, 1] .

C. Investor’s Criteria for Mean-OWA

Note that with the OWA operator, the expected returns are
studied considering any scenario from the minimum to the max-
imum one. Thus, the decision maker does not lose any informa-
tion in this initial stage. Once he selects a specific attitude, he
opts for a specific result and decision although he still knows
any extreme situation that can occur in the problem. This can be
proved analyzing some key particular cases of the OWA aggre-
gation including the minimum, the maximum, and the arithmetic
mean:

1) If w1 = 1 and wj = 0 for all j �= 1, the OWA becomes
the maximum (or optimistic criterion).

2) If wn = 1 and wj = 0 for all j �= n, the minimum is
formed (or pessimistic criterion).

3) If wj = 1/n for all j, it becomes the arithmetic mean
(Laplace criterion).

5The nonlinearity of the OWA operator also means that we cannot proceed
as (5) in the Markowitz approach, as in general it is verified that

VOWA (rp ; x) �=
m∑

j=1

m∑

k=1

xj xk COVOWA (rj , rk )

where COVOWA is given by the CoVar-OWA [32]. This implies that neither
one can apply a variant OWA of the correlation coefficient [32], which is a key
concept in the Markowitz methodology.
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By looking at the maximum and the minimum, it is proved
that the OWA operator accomplishes the boundary condition

min {ai} ≤ OWA(a1 , a2 , . . . , an ) ≤ max {ai} . (12)

Some other interesting particular cases of the OWA operator are
the following:

1) Hurwicz criterion: If w1 = β, wn = 1 − β (with β ∈
[0, 1]), and wj = 0, for all j �= 1, n.

2) Step-OWA: wk = 1 and wj = 0 for all j �= k. Note that if
k = 1, we get the maximum and if k = n, the minimum.

3) Median-OWA: If n is odd we assign w(n+1)/2 = 1 and
wj = 0 for all others. If n is even we assign for example,
wn/2 = w(n/2)+1 = 0.5 and wj = 0 for all others.

4) Olympic-OWA: When w1 = wn = 0 and for all others
wj = 1/(n − 2). Note that if n = 3, Olympic-OWA be-
comes the Step-OWA and the Median-OWA operator.

For further reading on other particular types of OWA opera-
tors see [33] and [29].

Another important issue to consider is the attitudinal character
used by the decision maker in the selection process. For doing so
in the OWA operator, Yager [13] suggested the degree of orness
presented in (2) that in decision making problems can be seen
as a measure for representing the degree of optimism or pes-
simism of the decision maker. This technique is useful in many
situations. However, sometimes it is necessary to use another
approach that can adapt to the specific values of the arguments.
This occurs because the arguments are frequently distributed
in a heterogeneous way and this must be considered in order
to calculate the attitudinal character of the decision maker. In
order to do this, let us suggest the following formulation:

α∗(W ) =
n∑

j=1

wj

(
bj − bn

b1 − bn

)

(13)

where bj is the jth largest of the ai and b1 and bn are the largest
and smallest arguments, respectively. The main advantage of
this formula is the possibility of representing the specific char-
acteristics of the results considered in the problem. It may be
observed that the value of (b1 − bj )/(b1 − bn ) for b1 is always 1
and for bn , 0. The difference between this formula and Yager’s
approach is for the central values. For example, if we have a
weighting vector so that W = (1/3, 1/3, 1/3), the initial posi-
tion of the decision maker must be neutral. However, it is not
the same to use this weighting vector in a homogenous distribu-
tion of arguments than a heterogeneous one. In a homogenous
one, it would be reasonable to conclude that the decision maker
is using a neutral attitude. However, a heterogeneous one that
would not be the case. Let us look into a numerical example. Let
us compare the following set of arguments: A = (100, 0, 200)
and B = (0, 900, 1000). The OWA aggregation would produce
the following results:

OWA(A) = 200 × 1
3

+ 100 × 1
3

+ 0 × 1
3

= 100.0

OWA(B) = 1000 × 1
3

+ 900 × 1
3

+ 0 × 1
3

= 633.3.

As we can see, the aggregated result of A reaches a central
value which is consistent with the neutral position shown in
the weighting vector. Therefore, in this case the neutral attitude
is confirmed. However, for the aggregation of B, this is not
proved because the result is placed closer to the top rather than
in a central position.

Yager’s measure would indicate that both aggregations are
using a neutral attitude of 0.5 because α is calculated as follows:

α(W ) =
3 − 1
3 − 1

× 1
3

+
3 − 2
3 − 1

× 1
3

+
3 − 3
3 − 1

× 1
3

= 0.5.

However, with the new measure suggested in this paper, the
result would be

For A:

α∗(W ) =
200 − 0
200 − 0

× 1
3

+
100 − 0
200 − 0

× 1
3

+
0 − 0

200 − 0
× 1

3
= 0.5.

For B:

α∗(W ) =
1000 − 0
1000 − 0

× 1
3

+
900 − 0
1000 − 0

× 1
3

+
0 − 0

1000 − 0
× 1

3
= 0.633.

The first set of arguments still provides a neutral result because
the arguments are distributed in a homogeneous way. The dif-
ferences appear in the second set of arguments because now two
of the three arguments are closer to the top so the aggregation
tends to produce a result that is closer to the top. In this partic-
ular example, it is seen that the result is located at a degree of
63.3% which is clearly above the neutral result of 50%. This is
important because when aggregating the information, the attitu-
dinal character of the decision maker is showing the pessimistic
or optimistic beliefs regarding the expected results. Thus, a neu-
tral position should provide a result that is close to the central
results. In other words, the main advantage of the measure sug-
gested here is that it considers the value of the arguments being
able to represent the attitudinal character of the decision maker
according to these values.

Note that this measure represents the degree of optimism. Al-
ternatively, it is also possible to consider the degree of pessimism
by using the dual. That is, degree of optimism = 1− degree of
pessimism. Therefore, in the previous example, A would have
a degree of optimism and pessimism of 0.5. However, B would
have a degree of optimism of 0.633 and pessimism of 0.367.

Next, let us study the results produced by some key partic-
ular cases of the OWA operator with this measure. With the
optimistic criterion we always obtain 1 because

α∗(W ) =
b1 − bn

b1 − bn
× 1 = 1 × 1 = 1.

And with the pessimistic criterion 0 because

α∗(W ) =
bn − bn

b1 − bn
× 1 = 0 × 1 = 0.
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The result found with Hurwicz criterion is

α∗(W ) =
b1 − bn

b1 − bn
× β +

bn − bn

b1 − bn
× (1 − β)

= 1 × β + 0 × (1 − β) = β.

Thus, it is proved that the degree of optimism of Hurwicz co-
incides with the degree of optimism given with this measure.
The difference is that Hurwicz criterion only considers the min-
imum and the maximum while this approach can consider any
argument of the aggregation.

The Laplace criterion gives a different result with this method

α∗(W ) =
1
n

n∑

j=1

(
bj − b1

b1 − bn

)

. (14)

This result clearly shows the differences between Yager’s ap-
proach and the measure suggested in this paper. When the argu-
ments are distributed in a homogeneous way, the results will be
the same (0.5). However, when the arguments are not distributed
in the same way, the results will be different. Basically, Yager’s
measure indicates the attitudinal character of the decision maker
without considering (or quantifying) the results that may occur
while in this approach the attitudinal character of the decision
maker considers the expected results.

The attitudinal character found with the step-OWA operator
is

α∗(W ) =
bk − bn

b1 − bn
× 1 =

bk − bn

b1 − bn
(15)

so that α∗(W ) ∈ [0, 1]. Note that if k = 1 we get the maximum
and α∗(W ) = 1. If k = n we get the minimum and α∗(W ) = 0.

For the median-OWA operator, we have to distinguish be-
tween two situations. If n is odd (w(n+1)/2 = 1), we get

α∗(W ) =
b(n+1)/2 − bn

b1 − bn
× 1 =

b(n+1)/2 − bn

b1 − bn
. (16)

And if n is even, we have to aggregate the two central values, for
example, with an arithmetic mean (wn/2 = w(n/2)+1 = 0.5)

α∗(W ) =
bn/2 − bn

b1 − bn
× 0.5 +

b(n/2)+1 − bn

b1 − bn
× 0.5.

In the olympic-OWA operator, this measure would have the
following expression:

α∗(W ) =
1

n − 2

n−1∑

j=2

(
bj − bn

b1 − bn

)

. (17)

Finally, it is also worth noting that there are other measures
for characterizing the weighting vector such as the entropy of
dispersion shown in (3), the balance operator [27] and the di-
vergence of W [34]. The balance operator could be extended to
the framework of the new measure suggested in this paper as
follows:

Balance(W ) =
n∑

j=1

wj

(
2bj − b1 − bn

b1 − bn

)

. (18)

Equivalently to Yager’s approach, the balance measure of the
maximum aggregation would be 1 and the minimum −1.

Note that it is possible to develop a dual of the balance fo-
cused on ascending aggregations by using: Dual Balance(W ) =
−Balance(W ).

For the divergence of W , the suggested new formulation
would be

Div(W ) =
n∑

j=1

wj

(
bj − bn

b1 − bn
− α(W )

)2

. (19)

D. Investor’s Criteria for Var-OWA

The measures for characterizing the weighting vector can also
be used here, although we should consider ascending orders.
Therefore, in the context of portfolio selection, Yager’s degree
of orness would be

α(Wasc) =
n∑

j=1

wj

(
n − j

n − 1

)

.

Observably, for the minimum variance α(W ) = 1 and for the
maximum variance α(W ) = 0. For the new measure suggested
in this paper, and based on Definition (3), the degree of optimism
could be expressed as

α∗(Wasc) =
n∑

j=1

wj

(
tj − tn
t1 − tn

)

. (20)

Note that for the minimum variance we get 1, as it represents
the situation with the highest degree of optimism and vice versa
for the maximum variance. The reason for this is because in
portfolio choice the variance has to be connected with the re-
turns, assuming that an optimistic investor looks for scenarios
with high returns and low degree of risk.

Following a similar methodology as for the returns, we could
study equivalent particular cases but focused on the variance.
The balance and the divergence could be also studied in this
framework taking into account that now the focus is on ascend-
ing orders.

IV. NUMERICAL EXAMPLE

In this section, we present the results of numerical simulations
in order to illustrate the following phenomena:

1) The ordering effect of OWA over the portfolio efficient
frontier. combined ordering and weighting effect of OWA
over this frontier,

2) A comparison between the traditional Markowitz and the
OWA portfolio efficient frontiers.

3) How the OWA frontier changes with different attitudinal
profiles.

To illustrate all these results, we perform two classes of ex-
ercises: 1) a numerical exercise with fictitious data, and 2) a
numerical exercise with real data.

A. Numerical Example With Fictitious Data

To perform the first class of numerical exercise, we assume
that the investor has available two risky assets in which to assign
his wealth, A and B, with the return profile presented in Table III.
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TABLE III
ASSET RETURN PROFILES

S1 S2 S3

rA 0.05 0.10 0.15
rB 0.30 0.20 0.10

Si denotes state of nature i.

Fig. 1. Ordering effect. Frontiers represent all the portfolio mean-portfolio
variance pairs generated by wealth allocations (x, 1 − x) over assets A and
B , respectively, such that x ∈ [0, 1]. Markowitzian frontier (black line) uses
E(·) and V (·), based on probabilistic vector Π, as mean and variance; OWA
frontier (red line) uses EOWA (·) and VOWA (·), based on weighting vector W ,
as mean and variance. Efficient frontiers are made up by all the portfolio mean-
portfolio variance pairs that represent the highest mean for a given variance. To
study ordering effect of OWA, we assume Π = W , and in particular, that Π =
W = (0.6, 0.3, 0.1). Numerical results point out that both efficient frontiers
are identical.

Furthermore, to isolate the effect coming exclusively from the
ordering of outcomes carried out by OWA operator, we must first
assume that the probabilistic vector Π and the weighting vector
W are identical. Notice that this assumption implies that

EOWA(rB ) = E(rB )

as in the case of asset B the order of states of nature coincides
with the descending order of results induced by the OWA oper-
ator. In particular, suppose that Π = W = (0.6, 0.3, 0.1) so that
it is verified that

EOWA(rA ) = 0.125 > 0.075 = E(rA )

and,

EOWA(rB ) = 0.25 = E(rB ).

As can be seen in Fig. 1, both frontiers are identical along
the efficient interval. In our example, this interval is described
for all wealth combinations x = (xA , xB ) ≡ (x, 1 − x) so that
x ≤ x � 0.67. Indeed, the overlapping of both frontiers occurs
as in this interval the return profile of asset B (with no dis-
tinguishable ordering OWA effect) has sufficient weight in the
portfolio to neutralize the ordering effect of OWA on asset A’s
return profile. Above this cutoff x, asset A has now sufficient

Fig. 2. Optimistic investor. Markowitz efficient frontier for Π =
(0.6, 0.3, 0.1) and OWA frontier for W = (0.9, 0.05, 0.05) (OWA 1), W =
(0.99, 0.005, 0.005) (OWA 2), and W = (1, 0, 0) (OWA 3). The slope of the
efficient frontier increases as vector W varies from a less optimistic (OWA 1)
to a fully optimistic attitude (OWA 3), increasing thus the polarization degree
of the investor’s portfolio decision toward asset B .

weight in the portfolio, and thus, the greater degree of opti-
mism introduced by OWA over EOWA(rA ) also increases the
EOWA of the entire portfolio (the red line is above the black
line), without increasing the risk measure. As discussed below,
notice however that x characterizes the wealth allocation al-
lowing the investor to attain the minimum-variance portfolio
in both Markowitz and OWA frontiers, as it corresponds to the
adaptation of definitions given by expressions (6) and (11) when
m = 2. We have thus to disregard the region in which x > x, and
therefore, both efficient frontiers proceed to being identical.6

1) Optimistic Investor: To explore the role played by opti-
mism, we consider weighting vectors with two characteristics:
1) they assign the highest weight over the best return, and 2)
this weight is close to 1. Specifically, we examine three cases
for W : (0.9, 0.05, 0.05), (0.99, 0.005, 0.005), and (1, 0, 0). Re-
garding the probabilistic vector, we assume in all the cases that
Π = (0.6, 0.3, 0.1). Our numerical exercises show that in the
three cases analyzed the following properties emerge:

a) Dominance of OWA Frontier: Results of simulations
drawn in Fig. 2 show that

EOWA(rp) > E(rp)

VOWA(rp) < V (rp)

for all x ∈ [0, 1]. This suggests that an optimistic investor
encounters a better return-risk profile for all investment
strategies. In turn, this dominance of OWA frontier im-
plies that an optimistic investor with reward-risk prefer-
ences will expect, for a given level of either return or risk,
a higher utility than a Markowitzian investor.7 In addition,
this dominance gets exacerbated as the optimism degree

6Although it could appear from Fig. 1 that this minimum variance is zero, it
is indeed not the case: it is very low but positive.

7With the exception of a too risk averse investor that selects a minimum risk
portfolio, who would get the same utility level irrespective if he is an OWA or
Markowitzian investor (see the analysis presented below).
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Fig. 3. Pessimistic investor. Markowitz efficient frontier for Π =
(0.6, 0.3, 0.1) and OWA frontier for W = (0.05, 0.05, 0.9) (OWA 1), W =
(0.005, 0.005, 0.99) (OWA 2), and W = (0, 0, 1) (OWA 3). In all OWA cases,
the efficient frontier has a negative slope, making optimal for the investor to
always choose the minimum-risk portfolio.

increases, leading to an increasing polarization in the in-
vestment decision in favor of asset B. For instance, in the
extreme optimism case W = (1, 0, 0), the OWA efficient
frontier always involves a minimum-risk portfolio (in fact
zero variance), and leads a reward-risk utility maximizing
investor to choose x∗ = 0 irrespective of his risk-aversion
degree.

b) Minimum-Risk Portfolio: As in our example there are
just two assets, we adapt expression (6) to define x, the
minimum-variance portfolio, as follows:

x = arg min
x∈[0,1]

V (rp ;x)

and expression (11) to define xOWA , the minimum-Var-
OWA as follows:

xOWA = arg min
x∈[0,1]

VOWA(rp ;x).

Simulations for the three cases examined point out that8

xOWA = x (21)

which implies that a more optimistic attitude on the part
of the investor plays no role in portfolio choice when he
is too risk averse and looks for a minimum-risk portfolio.

2) Pessimistic Investor (Wald Criterion): To study the ef-
fects of pessimism, we consider weighting vectors with two
characteristics: 1) they assign the highest weight over the worst
return, and 2) this weight is close to 1. In particular, we examine
three cases for W : (0.05, 0.05, 0.9), (0.005, 0.005, 0.99), and
(0, 0, 1). As in the optimistic case, the probabilistic vector is
assumed to be Π = (0.6, 0.3, 0.1).

a) Dominance of Markowitz Frontier: Results of numerical
simulations shown in Fig. 3 point out that

EOWA(rp) < E(rp)

VOWA(rp) > V (rp)

8This property is also satisfied by the special case of full optimism W =
(1, 0, 0), in which xOWA is given by any x ∈ [0, 1].

Fig. 4. Moderate investor. Markowitz efficient frontier for Π =
(0.6, 0.3, 0.1) and OWA frontier for W = (0.005, 0.99, 0.005) (OWA 1) and
W = (0, 1, 0) (OWA 2). The slope of the efficient frontier decreases as vector
W moves from a less moderate (OWA 1) to a fully moderate attitude (OWA 2),
increasing the bias of the investor’s portfolio decision toward the minimum-risk
portfolio.

for all x ∈ [0, 1]. This fact suggests that a pessimistic
investor could have a worse return-risk profile for all
portfolio strategies. In turn, this implies that a pes-
simistic investor with reward-risk preferences will al-
ways expect a lower utility level than a Markowitzian
investor.9 Furthermore, it can be seen that the efficient
OWA frontier exhibits a negative slope. This implies
that a pessimistic and reward-risk utility investor will al-
ways take an optimal portfolio decision consistent with
the minimum OWA risk portfolio (which also attains
the maximum OWA-mean return), irrespective of his
risk-aversion degree.

b) Minimum-risk portfolio simulations for the three cases
examined indicate that the minimum-risk portfolio coin-
cides for both frontiers so that (21) is also satisfied.

3) Moderate Investor (Olympic Criterion): In order to ex-
amine the effects of moderation or aversion to extreme results,
we consider weighting vectors with two characteristics: 1) they
assign the highest weight to the intermediate return, and 2) this
weight is close to 1. We examine two cases for W in particular:
(0.005, 0.99, 0.005) and (0, 1, 0). As before, the probabilistic
vector is assumed to be Π = (0.6, 0.3, 0.1).

a) Dominance of Markowitz efficient frontier: Numerical
simulations drawn in Fig. 4 point out that

EOWA(rp) < E(rp)

VOWA(rp) > V (rp),

for all x ∈ [0, x). This result suggests that a moderate
investor faces a worse return-risk profile along the effi-
cient portfolio frontier than an investor that uses probabil-
ities Π = (0.6, 0.3, 0.1). Thus, a moderate investor with
reward-risk preferences will always obtain a lower util-
ity level than his Markowitzian peer for any risk-aversion

9Again, with the exception of a too risk averse investor looking for a
minimum-risk portfolio.
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Fig. 5. Laplace-type investor. Markowitz efficient frontier for Π =
(0.6, 0.3, 0.1) and OWA frontier for W = (1/3, 1/3, 1/3). The slope of the
Laplace-type efficient frontier is smaller than the Markowitz efficient frontier,
biasing the investor’s portfolio decision toward the minimum-risk portfolio.

degree.10 Of course, these results may change if we con-
sider a vector Π assigning high probabilities to states of
nature that imply low returns.

b) Minimum-Risk Portfolio: Simulations for the two cases
studied suggest that both minimum-variance portfolios
coincide.

4) Laplace-Type Investor: To explore the effects of an in-
vestor with a tendency to a perfectly equitable attitude to results,
we consider weighting vectors that distribute weights in a highly
balanced way among returns. Specifically, we examine the case
W = (1

3 , 1
3 , 1

3 ). As before, the probabilistic vector is assumed
to be Π = (0.6, 0.3, 0.1).

a) Dominance of Markowitz Efficient Frontier: The numeri-
cal simulation summarized in Fig. 5 reveals that

EOWA(rp) < E(rp)

VOWA(rp) > V (rp)

for all x ∈ [0, x). Thus, a Laplace-type investor exhibits an
efficient portfolio frontier worse than an investor assign-
ing probabilities Π = (0.6, 0.3, 0.1). As with the olympic
criterion, this dominance of Markowitz frontier may no
longer hold if we consider a vector Π with high probabil-
ities for states of nature involving low returns.

b) Minimum-Risk Portfolio: The performed simulation sug-
gests that the minimum-risk portfolio is the same for both
frontiers.

5) Extremist Investor (Hurwicz Criterion): Finally, we study
the effects of an investor with an extremist profile, who may be
called an extrema-believer investor. To this end, let us consider
weighting vectors with two characteristics: 1) they assign the
highest weights to extreme returns (the best and the worst), and
2) the sum of these weights is close to 1. Two cases in particular
for W are examined: (0.5, 0, 0.5) and (0.9, 0, 0.1). As before,
the probabilistic vector is assumed to be Π = (0.6, 0.3, 0.1).

10With the exception of a too risk-averse investor.

Fig. 6. Extremist investor. Markowitz efficient frontier for Π = (0.6, 0.3, 0.1)
and OWA frontier for W = (0.5, 0.0, 0.5) (OWA 1) and W = (0.9, 0.0, 0.1)
(OWA 2). The efficient curve changes along from a balanced extreme-believer
(OWA 1) to an optimistic extreme-believer (OWA 2) investor. As compared
with the Markowitz frontier, whereas in the first case the investor’s portfolio
decision is biased toward the minimum-risk portfolio, in the second case this
decision is biased toward asset B .

TABLE IV
MINIMUM-RISK PORTFOLIO

Type of Investor Π or W x V (rp ; x) E (rp ; x)

Markowitzian Π = (0.6, 0.3, 0.1) 0.6735 4.69e − 07 0.1321
OWA-probabilistic W = (0.6, 0.3, 0.1) 0.6735 4.69e − 07 0.1332
Optimistic W = (1, 0, 0) [0, 1] 0.00000 [0.1337, 0.3]
Pessimistic W = (0, 0, 1) 0.6735 4.16e − 06 0.1316
Moderate W = (0, 1, 0) 0.6735 1.04e − 06 0.1327
Laplace-type W = ( 1

3 , 1
3 , 1

3 ) 0.6735 6.94e − 07 0.1327
Extremist (balanced) W = (0.5, 0, 0.5) 0.6735 5.21e − 07 0.1327
Extremist (optimistic) W = (0.9, 0, 0.1) 0.6735 3.75e − 07 0.1335

a) Ambiguous Comparison Between Efficient Frontiers: Nu-
merical exercises illustrated in Fig. 6 suggest that there
is no a clear cut supremacy of one of both frontiers, as
this depends on the chosen weights to compute the OWA
operator. While more weight is put on higher returns—a
more optimistic extrema-believer investor—the OWA ef-
ficient frontier provides a better reward-risk tradeoff than
the Markowitz approach is provided by the OWA efficient
frontier. The opposite ensues notwithstanding when we
consider a more balanced extrema-believer investor; for
instance, with W = (0.5, 0, 0.5).

b) Minimum-Risk Portfolio: Simulations suggest that in the
two numerical examples studied the minimum-variance
portfolio coincides for both classes of frontiers.

We end this analysis by referring to Table IV, which summa-
rizes our numerical results regarding the minimum-risk portfolio
along different frontiers and types of investors.

From a general perspective, numerical exercises suggest that
when uncertainty is high, OWA-based methods may explain
why certain portfolio decisions, apparently puzzling under the
Markowitzian lens, are indeed consistent with a utility maximiz-
ing investor that uses ordering and weighting properties of the
OWA instead of the classical mean. In the case of an optimistic
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TABLE V
MAIN DESCRIPTIVE STATISTICS FOR REAL-DATA ASSETS

FRI S&P

Mean 1.00e − 3 1.88e − 3
Variance 0.72e − 6 615.64e − 6
Median 0.95e − 3 4.48e − 3
Minimum −1.45e − 3 −93.60e − 3
Maximum 3.82e − 3 119.24e − 3

Fig. 7. Boxplot of returns. FRI represents a FRI of the Chilean capital market,
and S&P is the S&P index.

investor, the OWA-based method may explain wealth allocations
which are more polarized toward only one asset (that whose best
state of nature yields the highest return of both assets). On the
other hand, in the case of a pessimistic investor, the OWA-based
method may explain more conservative wealth allocations, and
in particular, more biased toward the minimum-risk portfolio.

B. Numerical Example With Real Data

To perform the second class of numerical exercise, we con-
sider two portfolios available for investors operating in the
Chilean capital market. These portfolios are: 1) a fixed-rent
index (FRI), and 2) the Standard & Poor’s index (S&P). Our
sample is a historical series of weekly returns for each port-
folio during the period between 10.15.2003 and 09.25.2013
(n = 519). The main descriptive statistics of both assets are
presented in Table V, and a boxplot of the returns is displayed
in Fig. 7.

As we will see now, our numerical exercises show that the
same properties found with fictitious data also emerge with
real data. To exemplify this fact, we only present the results of
the exercises conducted with the optimistic and the pessimistic
criteria, but simulations with the other criteria are available upon
the author’s request.

1) Ordering Effect: To isolate the effect coming from the
ordering of outcomes carried out by OWA operator, we first
assume that weighting vector W is identical to the proba-
bilistic vector Π, which in this case assigns equal probability

Fig. 8. Ordering effect with real data. Frontiers represent all the portfolio
mean-portfolio variance pairs generated by wealth allocations (x, 1 − x) over
assets FRI and S&P, respectively, such that x ∈ [0, 1]. Markowitzian frontier
(black line) uses E(·) and V (·), based on probabilistic vector Π, as mean
and variance; OWA frontier (red line) uses EOWA (·) and VOWA (·), based on
weighting vector W , as mean and variance. Efficient frontiers are made up by
all the portfolio mean-portfolio variance pairs that represent the highest mean
for a given variance. To study ordering effect of OWA, we assume Π = W , in
particular, the Laplace criterion so that an equal probability is assigned to all
the returns of the sample. Numerical results indicate that both efficient frontiers
are identical.

(1/n) = (1/519) to all the sample results.11 Thus, this exercise
is similar to assuming a vector W consistent with the Laplace
criterion. Notice that this assumption implies that

EOWA(rA ) = E(rA )

EOWA(rB ) = E(rB )

as under the Laplace criterion the order of states of nature is
irrelevant.

As can be seen in Fig. 8, both frontiers are identical along the
efficient interval. In our sample, this interval is described for
all wealth combinations x = (xA , xB ) ≡ (x, 1 − x) because
x = 1. As we will see later, notice that x also characterizes
the wealth allocation allowing to attain the minimum-variance
portfolio in both Markowitz and OWA frontiers.12 Therefore,
with real data we obtain, in qualitatively terms, the same con-
clusions on the ordering effect found with fictitious data.

2) Optimistic Investor: To explore the effects of optimism,
we consider a weighting vector W that assigns a weight of 0.8
to the best 20% returns and a weight of 0.2 to the remaining
80% of returns (a 80/20 rule). This rule is so that 0.8 is equally
distributed among the first quintile of returns and 0.2 is equally
distributed among the remaining four quintiles of the sample
of returns. Regarding the probabilistic vector Π, we assume
the Laplace criterion so that it assigns a probability (1/n) =
(1/519) to each return of the sample.

a) Dominance of OWA Frontier: Results contained in Fig. 9
show that

EOWA(rp) > E(rp)

VOWA(rp) < V (rp)

11This vector is consistent with the computation of the arithmetic mean.
12The minimum variance in Fig. 8 is not zero; it is very low but positive.
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Fig. 9. Optimistic investor with real data. Markowitz efficient frontier for Π
consistent with Laplace criterion and OWA frontier for W consistent with a
80/20 rule.

for all x ∈ [0, 1]. This confirms that an optimistic investor
faces a better return-risk profile for all investment strate-
gies. In turn, this dominance of OWA frontier implies that
an optimistic investor with reward-risk preferences will
expect, for a given level of either return or risk, a higher
utility than a Markowitzian investor.13 Although we do
not present these results here, this dominance gets exac-
erbated as the optimism degree increases, leading to an
increasing polarization in the investment decision in favor
of portfolio S&P.14

b) Minimum-Risk Portfolio: Simulations indicate that the
minimum-risk portfolio is the same for both frontiers so
that (21) is also satisfied. Thus, a more optimistic attitude
on the part of the investor plays no role in portfolio choice
when he is too risk averse and looks for a minimum-risk
portfolio.

3) Pessimistic Investor (Wald criterion): To study the role
played by pessimism, we take a weighting vector W that assigns
a weight of 0.8 to the worst 20% returns and a weight of 0.2 to
the best 80% of returns (a 20/80 rule). This rule is so that
0.8 is equally distributed among the last quintile of returns
and 0.2 is equally distributed among the first four quintiles
of the return sample. Regarding the probabilistic vector Π, we
assume the Laplace criterion, and thus, an equal probability
(1/n) = (1/519) is assigned to each return of the sample.

a) Dominance of Markowitz Frontier: Results of our simu-
lations with real data shown in Fig. 10 indicate that

EOWA(rp) < E(rp)

VOWA(rp) > V (rp)

13The exception is a too risk averse investor that selects the same minimum
risk portfolio, irrespective whether he is either an OWA or Markowitzian investor
(see the analysis presented below).

14In fact, in the extreme optimism case in which the vector W assigns 1 to
the best return and zero to all the remaining returns, the OWA efficient frontier
involves always a minimum-risk portfolio (zero variance) so that it is optimal
for a reward-risk utility maximizing investor to choose x∗ = 0, irrespective of
his level of risk-aversion.

Fig. 10. Pessimistic investor with real data. Markowitz efficient frontier for
Π consistent with Laplace criterion and OWA frontier for W consistent with a
20/80 rule. The OWA efficient frontier has a negative slope, making optimal
for de investor to choose de minimum-risk portfolio.

for all x ∈ [0, 1]. This fact suggests that a pessimistic
investor faces a worse return-risk profile than a Markow-
itzian investor for all portfolio strategies.15 Like with ex-
ercises with fictitious data, notice that the efficient OWA
frontier also exhibits a negative slope, which implies that
it will always be optimal for a pessimistic and reward-risk
utility investor to choose the minimum OWA risk portfo-
lio (which also attains the maximum OWA-mean return),
irrespective of his risk-aversion degree.

b) Minimum-Risk Portfolio: Our exercise with real data sug-
gests that

xOWA = x = 1

which implies that a more pessimistic attitude on the part
of the investor plays no role in portfolio choice when he is
too risk averse and looks for a minimum-risk portfolio. In
such a case, the investor under both frontiers will choose
to invest all his wealth in the FRI (portfolio FRI).
In sum, our numerical exercises suggest that, in qualita-
tively terms, the properties characterized with fictitious
data are confirmed with real data.

V. CONCLUSION

The OWA operator can improve the current portfolio selection
approaches based on Markowitz mean-variance framework. The
key advantage of the OWA operator is the ability to represent
complex scenarios by using the degree of optimism and pes-
simism of the decision maker. Therefore, the OWA aggregates
the data considering the attitudinal character that an individual
has in the specific analysis considered. This methodology im-
plicitly assumes that the probabilistic information is unknown
mainly because there is a high degree of uncertainty. The paper
has implemented the use of the OWA operator in the mean return
and the risk of any asset instead of using the classical approaches
based on weighted averages. By using the OWA operator, the

15With the exception of a very risk-averse investor interested in a minimum-
risk portfolio.
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investor obtains a more general perspective of the situation be-
cause he can analyze any scenario from the minimum to the
maximum and select the specific case closest to his interests.
The study considers many families of OWA aggregations in or-
der to see the different results produced by using a wide range of
particular cases. The classical methods for decision making un-
der uncertainty have also been studied as particular cases of the
OWA operator, including the pessimistic, optimistic, Laplace,
and Hurwicz criterion.

The paper has suggested a new way for analyzing the degree
of optimism and pessimism that considers the specific values of
the arguments. Thus, rather than only considering the weights,
it considers the position of the numerical values of the argu-
ments which also conditions the optimism or pessimism of the
aggregation. Several numerical examples are studied in order to
numerically understand the new approach. These examples are
developed considering different types of OWA operators that
can be used in the aggregation process including the optimistic,
pessimistic, Olympic, Laplace, and Hurwicz criterion. Various
results emerge from this numerical exercise. First, the isolated
ordering effect of OWA indicates that this operator gives more
optimism only on the inefficient portfolio region, and thus, both
efficient frontiers (Markowitz and OWA) are identical. Second,
the combined ordering and weighting effect of OWA suggests
that the minimum-risk portfolio is the same in both types of
frontiers. This result is robust to different attitudinal characters
of investors. Third, an optimistic investor faces better return-risk
profile, so he expects, for a given level of either return nor risk,
a higher utility than a Markowitzian investor. This dominance
becomes exacerbated as the optimism degree increases, leading
to an increasing polarization of portfolio choice in favor of the
individual asset with the best return profile. Fourth, a pessimistic
investor faces a worse return-risk tradeoff, so he expects a lower
utility than a Markowitzian investor. As a consequence, he al-
ways selects the minimum risk portfolio irrespective of his risk-
aversion degree. Fifth, in the case of moderate, Laplace-type,
and extremist investor, the results in general are more ambigu-
ous as they depend on the specific probabilistic and weighting
vectors under consideration.

Future research will consider other extensions and generaliza-
tions of the OWA operator in Markowitz mean-variance portfo-
lio approach including induced aggregation operators [16], [33],
the probabilistic OWA operator [20], geometric operators [35],
interval [36] and fuzzy information [37], [38], and multiperson
techniques [11]. Additionally, many other portfolio selection
models can be studied with the OWA including the Sharpe ap-
proach, the CAPM and the APT. Finally, note that the suggested
approach may become a starting point to provide alternative ex-
planations to several controversial results in financial economics
such as the two-fund separation puzzle.

APPENDIX A
A COUNTER-EXAMPLE OF OWA LINEARITY

It is easy to prove that the OWA operator is nonlinear. Let us
suppose an example of an OWA operator defined on R2 , i.e.,
OWA(u) .= 〈w, T (u)〉, where w is the vector of ponderation,

T the operator which permutes the elements of u in decreasing
order, and 〈·, ·〉 the usual scalar product. Without loss of gener-
ality we take the fully optimistic case, i.e., w

.= (1, 0). Now we
take two elements u, v ∈ R2 and prove that, in this particular
case, OWA(u + v) �= OWA(u) + OWA(v).

For this, it is enough to suppose that u is given by
(u1 , 0) with u1 > 0 and v is given by (0, v2) with v2 > 0.
Then OWA(u + v) = 〈w, T (u + v)〉 = 〈(1, 0), T ((u1 , v2))〉,
which is either u1 if u1 ≥ v2 , or v2 if v2 ≥ u1 . On
the other hand, OWA(u) + OWA(v) = 〈(1, 0), T ((u1 , 0)〉 +
〈(1, 0), T ((0, v2))〉 = u1 + v2 , which is strictly higher than
OWA(u + v).

ACKNOWLEDGMENT

The authors would like to thank the associate editor, the guest
editors, and the reviewers, for their valuable comments that have
improved the quality of the paper.

REFERENCES

[1] H. M. Markowitz, “Portfolio selection,” J. Finance, vol. 7, pp. 77–91,
1952.

[2] W. F. Sharpe, “A simplified model for portfolio analysis,” Manage. Sci.,
vol. 9, pp. 277–293, 1963.

[3] C. Zopounidis, M. Doumpos, and F. J. Fabozzi, “Preface to the special
issue: 60 years following Harry Markowitzs contributions in portfolio
theory and operations research,” Eur. J. Oper. Res., vol. 234, pp. 343–345,
2014.
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[12] J. Vanı́ček, I. Vrana, and S. Aly, “Fuzzy aggregation and averaging for
group decision making: A generalization and survey,” Knowl.-Based Syst.,
vol. 22, pp. 79–84, 2009.

[13] R. R. Yager, “On ordered weighted averaging aggregation operators
in multi-criteria decision making,” IEEE Trans. Syst. Man Cybern.,
vol. SMC-18, no. 1, pp. 183–190, Jan./Feb. 1988.

[14] R. R. Yager, J. Kacprzyk, and G. Beliakov, Recent Developments in the
Ordered Weighted Averaging Operators: Theory and Practice. Berlin,
Germany: Springer, 2011.

[15] A. Emrouznejad and M. Marra, “Ordered weighted averaging operators
1988–2014: A citation-based literature survey,” Int. J. Intell. Syst., vol. 29,
pp. 994–1014, 2014.

[16] R. R. Yager and D. P. Filev, “Induced ordered weighted averaging opera-
tors,” IEEE Trans. Syst. Man Cybern., Part B, vol. 29, no. 2, pp. 141–150,
Apr. 1999.

[17] J. Fodor, J. L. Marichal, and M. Roubens, “Characterization of the ordered
weighted averaging operators,” IEEE Trans. Fuzzy Syst., vol. 3, no. 2,
pp. 236–240, May 1995.



362 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 25, NO. 2, APRIL 2017
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[21] J. M. Merigó, Y. J. Xu, and S. Z. Zeng, “Group decision making with dis-
tance measures and probabilistic information,” Knowl.-Based Syst, vol. 40,
pp. 81–87, 2013.

[22] V. Torra, “The weighted OWA operator,” Int. J. Intell. Syst., vol. 12,
pp. 153–166, 1997.

[23] Z. S. Xu and Q. L. Da, “An overview of operators for aggregating infor-
mation,” Int. J. Intell. Syst., vol. 18, pp. 953–969, 2003.
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