
lable at ScienceDirect

Journal of Environmental Management 218 (2018) 154e164
Contents lists avai
Journal of Environmental Management

journal homepage: www.elsevier .com/locate/ jenvman
Review
Advanced strategies to improve nitrification process in sequencing
batch reactors - A review

Francisco Jaramillo a, Marcos Orchard a, Carlos Mu~noz b, Mauricio Zamorano c,
Christian Antileo c, *

a Department of Electrical Engineering, University of Chile, Av. Tupper 2007, Santiago, Chile
b Department of Electrical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile
c Department of Chemical Engineering, University of La Frontera, Cas. 54-D, Temuco, Chile
a r t i c l e i n f o

Article history:
Received 29 December 2017
Received in revised form
2 April 2018
Accepted 4 April 2018
Available online 19 April 2018

Keywords:
Partial nitrification
SBR
ASM
Bending-points
Data-driven models
* Corresponding author.
E-mail addresses: francisco.jaramillo@ing.uchile.c

ufrontera.cl (M. Zamorano), christian.antileo@ufronte

https://doi.org/10.1016/j.jenvman.2018.04.019
0301-4797/© 2018 Elsevier Ltd. All rights reserved.
a b s t r a c t

The optimization of biological nitrogen removal (BNR) in sequencing batch reactors has become the aim
of researchers worldwide in order to increase efficiency and reduce energy and operating costs. This
research has focused on the nitrification phase as the limiting reaction rate of BNR. This paper analyzes
different strategies and discusses different tools such as: factors for achieving partial nitrification, real-
time control and monitoring for detecting characteristic patterns of nitrification/denitrification as end-
points, use of modeling based on activated sludge models, and the use of data-driven modeling for
estimating variables that cannot be easily measured experimentally or online. The discussion of this
paper highlight the properties and scope of each of these strategies, as well as their advantages and
disadvantages, which can be integrated into future works using these strategies according to legal and
economic restrictions for a more stable and efficient BNR process in the long-term.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Several industries discharge wastewater with high nitrogen
concentrations, such as the petrochemical, fertilizer and food
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industries (Carrera et al., 2003). Nitrogen is mainly presented as
ammonia, nitrite and nitrate, which causes dissolved oxygen (DO)
depletion (Van Hulle et al., 2010), produces toxicity in aquatic fauna
(Pauer and Auer, 2009) and enhances the eutrophication processes
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List of abbreviations

ANN Artificial neural network
AOB Ammonia-oxidizing bacteria
ARE Ammonia removal efficiency
ASM Activated sludge model
BNR Biological nitrogen removal
COD Chemical oxygen demand
DO Dissolved oxygen
EFuNN Evolving fuzzy neural network
FA Free ammonia
FNA Free nitrous acid
FNN Fuzzy neural network
GP Gaussian process
IDP Iterative dynamic programming

IWA International water association
MPCA Multiway principal component analysis
MSC Moving slope change
NLR Nitrogen loading rate
NOB Nitrite-oxidizing bacteria
ORP Oxidation reduction potential
OUR Oxygen uptake rate
PID Proportional-integral-derivative
SBR Sequencing batch reactor
SOM Self-organizing map
SQP Successive quadratic programming
SRT Sludge retention time
SVM Support vector machine
WWTP Wastewater treatment plant
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(Wiesmann et al., 2007). Moreover, the ingestion of water with high
nitrite/nitrate concentrations might cause methemoglobinemia in
infants (Wiesmann et al., 2007) and increase the formation of
carcinogenic nitrosamines (Rodríguez et al., 2011b).

A commonly used and economically viable alternative for the
treatment of industrial and municipal wastewater is the biological
nitrogen removal (BNR) process (Zanetti et al., 2012), which in-
volves two sub-processes: nitrification (aerobic respiration) and
denitrification (anoxic respiration). The BNR process can achieve
high efficiency, low consumption of external organic matter and
low surplus sludge (Boaventura et al., 2001). The operating costs
involve energy costs for aeration, reagents like alkaline solution and
exogenous chemical oxygen demand (COD) (Yan and Hu, 2009) and
costs associated with sludge management (Singh and Srivastava,
2011).

Among the conventional BNR systems used, various reactor
configurations are differentiated by the availability of biomass in
their interior (Von Sperling, 2007): suspended biomass in the bulk
liquid (activated sludge reactors, membrane bioreactors,
sequencing batch reactors (SBRs)) or immobilized biomass over an
inert support (e.g., polyethylene biodiscs, polyurethane foam
(Singh and Srivastava, 2011)) or a granule (trickling filter, sub-
merged aerated biofilter, rotating biological contactor) as well as by
their modes of operation: continuous or batch.

The SBR stands out for its flexibility and low installation cost
(Marsili-Libelli et al., 2008), in addition to having the advantage of
BNR occurring in only one reactor through the sequential devel-
opment of aerobic (nitrification), anoxic (denitrification) and
settling phases (Poo et al., 2006). In a SBR the efficiency and energy
consumption in terms of the nitrification and denitrification re-
actions will depend on environmental conditions (e.g., pH, tem-
perature, DO, oxidation reduction potential (ORP)) and operational
ones (e.g., feed pattern, sludge retention time (SRT), cycle length)
during each reaction phase. Therefore, all these operating strategies
present a series of challenges: 1) reduction of cycle length, 2)
minimization of energy costs, 3) stabilization of efficiency on a
long-term basis, taking into account the compliance of local legis-
lation for nitrogen removal. In order to reach the proposed objec-
tives, interdisciplinary operating strategies have been designed,
including the development of partial nitrification, real-time con-
trol, mathematical modeling, data-driven based modeling and
artificial intelligence.

In this paper, a review of several strategies applied to produce
BNR in SBRs are discussed, focusing mainly on tools used for opti-
mizing nitrification (aerobic phase) as the rate-limiting step in the
overall BNR process. This is based on the intrinsic behavior of BNR,
where nitrification products are further used as reactants for
denitrification (Kirchman, 2012), implying that an efficient nitrifi-
cation represents the first goal for developing an efficient denitri-
fication. Most of the revised works are mainly based on suspended
biomass SBRs, although in some cases the review extends over
other reactor configurations.

This article is organized as follows. In Section 2, the concept of
BNR through the nitrification-denitrification process and the
concept of partial nitrification are introduced. In Section 3, the SBR
concept, operation modes and their application to the BNR process
are presented. In Section 4, activated sludge models (ASMs) are
presented as a tool for dynamic simulation, a state estimator and
optimization of BNR processes. In Section 5, a technique called
bending-points detection is described, which can reduce operating
costs by estimating the phase length for nitrification and denitri-
fication. In Section 6, several data driven-based modeling tech-
niques are introduced, which are able to estimate critical variables
of the nitrification-denitrification process, with the aim of moni-
toring the process, improving efficiency and reducing costs. Finally,
in Section 7 conclusions are given.

2. Biological nitrogen removal and partial nitrification

Nitrogen removal through nitrification-denitrification is a
widely studied process and is one of the most frequently practiced
process for removing nitrogen fromwastewaters (Ruiz et al., 2006;
Wiesmann et al., 2007). Compared to physical-chemical treat-
ments, it seems to bemore effective and relatively cheap (Guo et al.,
2010). In nitrification under aerobic conditions, ammonium (NHþ

4 )
is transformed into nitrite (NO�

2 ) by means of ammonia-oxidizing
bacteria (AOB) in alkaline conditions. Subsequently, nitrite is
transformed into nitrate (NO�

3 ) by means of nitrite-oxidizing bac-
teria (NOB) (Antileo et al., 2006). Afterwards, the denitrification
process under anoxic conditions and via easily biodegradable
organic matter converts this nitrate into nitrite, then to nitric oxide
(NO), then to nitrous oxide (N2O), and finally to molecular nitrogen
(N2), which is innocuous (Mokhayeri et al., 2008; Rodríguez et al.,
2011b).

Since the nitrite is formed and consumed by nitrification and
formed again during denitrification, the nitrite oxidation becomes
an unnecessary step (Antileo et al., 2006). Hence, the concept of
partial nitrification or shortcut biological nitrogen removal
emerges as an attractive alternative (Claros et al., 2012).

To carry out nitrite accumulation it is necessary to enhance the
activity of the AOB and to selectively reduce/inhibit the activity of
the NOB (Guo et al., 2010; Zeng et al., 2009), also called NOB
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washout (Jubany et al., 2009). Nitrite accumulation can be achieved
through the control of the following environmental variables: pH,
DO, temperature, SRT (Bae et al., 2001) and reaction time (Pambrun
et al., 2008). Once nitrite is accumulated, it can be directly deni-
trified (Sinha and Annachhatre, 2007) (Fig. 1). A big challenge
during partial nitrification is to achieve a stable depletion of NOB
activity on a long-term basis (months) (Fu et al., 2010; Guo et al.,
2009).

In the literature, it is mentioned that the approach of partial
nitrification saves approximately 25% of aeration costs during the
nitrification phase (Blackburne et al., 2008; Ciudad et al., 2005) and
40% of organic matter during the denitrification phase (Wei et al.,
2014) in addition to decreasing the surplus sludge production
(Pambrun et al., 2008).
3. Sequencing batch reactor

A SBR cycle is characterized by a series of phases which are
principally fill, react, settle and draw, where each of these phases
has a defined time (Wilderer et al., 2001). The operation of SBR
begins with the fill phase, the reactor is filled and stirring and
oxygenation are applied leading to the reaction phase. This stage
can be further divided into two, aerobic and anoxic. In the settle
phase, stirring is removed to allow settlement of the sludge. The
next step is the draw phase, where the effluent is discharged. Once
the reactor is emptied, a new cycle starts by filling the reactor again.
For each new cycle, aerobic/anoxic phases duration could differ
depending on the operational needs of the wastewater treatment
plant (WWTP). Specifically, the sequence of phases is defined in
function of the influent characteristics and effluent requirements
according to environmental standard policies (Fuentes et al., 2010;
Shammas and Wang, 2009).

Referring to the suspended biomass SBR certain characteristics
must be mentioned; it is a system that is severely affected by un-
certainties (Guo and Li, 2013). Batch-to-batch it exhibits some
variations in the microbiological distribution, non-linear and time-
variant dynamic behavior due to the diversity and kinetics of
autotrophic and heterotrophic communities (Chen and Liu, 2002;
Lee et al., 2005). Additionally, batch processes are notably subject to
significant disturbances such as hydraulic changes, variability in
the concentration of the inlet flow, change in microbial activity
from batch-to-batch (Aguado et al., 2007; Yoo et al., 2006), equip-
ment/instrumentation failures (e.g., blower, mixer, influent pump,
nitrogen sensors) (Caccavale et al., 2010; Kim et al., 2006), and
deterioration of the closed-loop control performance (e.g., DO
closed-loop control) (Mu~noz et al., 2009). Furthermore, small
changes in concentrations or flows among batch cycles can affect
the kinetics of non-linear biological reactions, which leads to
variability in effluent quality and sludge growth (Yoo et al., 2004),
making it difficult to maintain the performance of the designed
operation strategies over the SBR over the long-term.
Fig. 1. Scheme of partial nitrification process by using shortcut between nitrification
and denitrification.
A remarkable feature of SBR processes is the possibility of
implementing an automatic control and monitoring of the reaction
time (aeration/mixing times) in order to make adjustments ac-
cording to the wastewater quality requirements. This feature (in
case of aerobic phase) also may be complemented with aeration
control strategies, which can be divided in two types: continuous
aeration and intermittent aeration (Li et al., 2011). All of these
operation possibilities improve the efficiency and energy savings of
WWTPs, but they also entail more complex operation modes that
require highly reliable automation methods (Yang et al., 2010).

The total cycle time in the SBR is the sum of the lengths of its
phases. In a conventional SBR operation, each phase has a fixed
duration regardless of the process dynamics and the nitrogen
concentration in the influent. In terms of energy consumption
costs, this may result in a highly inefficient operation (Marsili-
Libelli, 2006; Zhu et al., 2009). Therefore, the advanced moni-
toring and control tools have been steadily applied to adapt the
reaction time of the aerobic/anoxic phases to the particular re-
quirements of the effluent quality (Marsili-Libelli et al., 2008). The
accuracy for estimating the length of each phase is critical due to
the non-linearity of the bacterial growth kinetic and the un-
certainties inherent to the SBR process, which means the advanced
monitoring tools must be able to adapt to the previouslymentioned
drawbacks in order to avoid two undesirable scenarios: insufficient
reaction times leading to an incomplete nitrogen removal and
longer than necessary phase lengths increasing the operating costs
(e.g., aeration and external organic matter consumption) (Wilderer
et al., 2001; Yoo et al., 2006). In both cases, the AOB/NOB ratio
might be affected, leading to an unstable partial nitrification on a
long-term basis.

3.1. Nitrification-denitrification applied in SBRs

Most BNR practices have focused on the SBR operation for the
treatment of domestic and industrial wastewater. One of these
studies was reported by Ra et al. (2000), where a piggery manure
wastewater treatment system and operating strategies that mini-
mize costs were implemented. Their results showed a nitrogen
removal of around 97% for an average influent ammonium con-
centration of 250mg NHþ

4 eN/L. In Obaja et al. (2003) a piggery
wastewater treatment was studied, the nitrogen concentration of
which was as high as 1500mg NHþ

4 eN/L, achieving a removal
performance of 99.7%. In Rodríguez et al. (2011a), the authors
treated a combination of two types of wastewater from a meat
product processing company with different ammonium concen-
trations (average values 365 and 616mg NHþ

4 eN/L), by several
experiments varying the proportions of each type of wastewater
they achieved removal efficiencies up to 71%. Guo et al. (2011) re-
ported a nitrogen removal up to 78% at 89mg NHþ

4 eN/L initial
concentration. At full-scale SBR, Fernandes et al. (2013) used do-
mestic wastewater with an ammonium concentration of 45.9mg
NHþ

4 eN/L, obtaining an average of 61% of removal efficiency. A
summary of the above research is presented in Table 1.

3.2. Partial nitrification in SBRs

Partial nitrification has also been successfully applied in SBRs. In
Ciudad et al. (2005) the effect of DO on nitrite accumulation was
reported, showing that at 1.4mg O2/L, 75% of nitrite accumulation
and 95% of ammonia removal occurred after 170 days of operation.
On the other hand, Sinha and Annachhatre (2007) reviewed several
works related to partial nitrification, where they found that a SBR
operated at high temperatures (>25 �C), with a pH in the range
7.5e8.5 and DO < 0.5mg O2/L can accumulate nitrite. Moreover, in
Yang et al. (2007), a strategy for partial nitrification at low



Table 1
Research into nitrification-denitrification applied in SBRs.

Publication Wastewater source Nitrogen removal Validation time

Ra et al. (2000) Piggery industry 97% Around 117 days
Obaja et al. (2003) Piggery industry 99.7% N/A
Rodríguez et al. (2011a) Meat products processing company 71% 252 days
Guo et al. (2011) Synthetic wastewater 78% Around 70 days
Fernandes et al. (2013) Domestic wastewater 61% 180 days

Validation time: Time in which nitrification-denitrification was experimentally carried out.
N/A: Information not available.
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temperatures based on a DO and a real-time control during the
aerobic phase was performed, obtaining a stable partial nitrifica-
tion for a long period of 180 days and a nitrite accumulation rate
above 95%. Additionally, in Galí et al. (2007) the optimal operating
conditions to achieve nitrogen removal via nitrite accumulation for
the treatment of reject water (800e900 NHþ

4 eN/L) was found at pH
between 7.5 and 9.0, DO below 1.0mg O2/L, temperature of 32 �C
and a cycle length of 8 h leading to a nitrogen removal of 0.8 kg N/
d,m3. Guo et al. (2010) reported that the degradation ammonium
rate decreased 1.5 times when the temperature was reduced from
25 to 15 �C; however, at low temperatures (12e17 �C) there was no
deterioration in nitrite accumulation, achieving an efficiency of 95%
in two months of SBR operation. Furthermore, Yuan et al. (2010)
assessed the effects of intermittent aeration, pH, temperature,
DO, and SRT. The best conditions to ensure partial nitrificationwere
pH between 7.5 and 8.0, temperature between 30 and 40 �C, DO
between 1.0 and 1.5mg O2/L and a SRT higher than 15 days.
Additionally, in Li et al. (2011), during 180 days of operation and
using an influent with 300mg NHþ

4 eN/L, it was found that for a SRT
working longer than 100 days, with intermittent aeration, a tem-
perature around 20 �C and a pH between 7.1 and 7.4, 90% of nitrite
accumulation was achieved. In another work, Sun et al. (2015)
combined free ammonia (FA) inhibition for NOB growth with
real-time control during the aerobic phase (based on DO, pH and
ORP measures) to successfully achieve partial nitrification under
low operating temperatures (13.0e17.6 �C). Finally, in Soliman and
Eldyasti (2016) a DO control strategy using a reactor with variable
mixing speed was implemented, a system consisting of high tem-
perature and pH, FA/free nitrous acid (FNA) inhibitions and with
different feeding strategies, was able to achieve ammonia removal
efficiency (ARE) of 99% and nitrogen loading rate (NLR) of 93%. A
summary of the analyzed parameters and the results of the partial
nitrification experiments are presented in Table 2.

As can be seen in Table 2, most research on partial nitrification
Table 2
Operating parameters used to achieve partial nitrification.

Publication Biomass growth method Operating Parameters

Ciudad et al. (2005) Suspended biomass DO

Sinha and
Annachhatre (2007)

Both suspended and biofilm
biomass systems are reviewed

pH, DO, and temperatur

Yang et al. (2007) Suspended biomass DO and length of the ae
Galí et al. (2007) Suspended biomass pH, DO, temperature, an
Guo et al. (2010) Suspended biomass Temperature
Yuan et al. (2010) Suspended biomass pH, temperature, DO, an

Li et al. (2011) Suspended biomass pH, intermittent aeratio
temperature, and SRT

Sun et al. (2015) Suspended biomass FA inhibition and aerob
reaction duration

Soliman and
Eldyasti (2016)

Suspended biomass DO, temperature, feedin
pH, and FA/FNA inhibiti

Validation time: Time in which partial nitrification was experimentally carried out.
N/A: Information not available.
has focused mainly in suspended biomass systems rather than in
biofilm ones. Regarding to this, optimal relationships among oxy-
gen mass transport-biofilm thickness/bulk DO concentrations
should be pursued in future works in order to strongly limit the
NOB/AOB ratio in biofilm systems.

Partial nitrification in BNR is of great importance from the point
of viewof operating costs (subject to legislation compliance), which
is shown by the efforts of different investigations into operating
strategies to maintain nitrite accumulation at high levels. The
application of an advanced automatic control based on process
simulation and AOB/NOB monitoring using molecular tools will be
the new challenges to overcome in this issue so as to achieve a
stable partial nitrification on a long-term basis.

4. Activated sludge models

Biological wastewater treatments are complex systems
involving physical, chemical and biological processes. Not all vari-
ables can be measured or estimated reliably. Therefore, mathe-
matical models offer a quantitative evaluation of these critical
variables (Ferrer et al., 2008). For the purposes of creating a com-
mon nomenclature of BNR models, the International Water Asso-
ciation (IWA) produced some phenomenological models called
ASMs (Henze et al., 2000), which include: ASM1 (Henze et al.,
1987), ASM2 (Gujer et al., 1995), ASM2d (Henze et al., 1999) and
ASM3 (Gujer et al., 1999). The ASM1 describes the complex pro-
cesses related to the removal of carbon and nitrogen removal from
municipal wastewater (Wiesmann et al., 2007). The ASM2 is an
extension of the ASM1, this model includes many more compo-
nents to characterize the biological phosphorus and nitrogen re-
movals (Bagheri et al., 2016; Henze et al., 1999). The ASM2d is built
from the ASM2 and includes the denitrifying activity of phosphorus
accumulating organisms (Gernaey et al., 2004). The ASM3 was
developed to correct some limitations of ASM1, together with
Results Validation time

75% Nitrite accumulation 170 days
95% Ammonia removal

e Nitrite accumulation was possible N/A

robic phase 180 days of stable nitrification 180 days
d cycle length Nitrogen removal of 0.8 kg N/d,m3 1-2 months

Nitrite accumulation was higher than 90% 135 days
d SRT Best operational conditions to accomplish

partial nitrification
At least 7 days

n, Nitrite accumulation of 90% 180 days

ic NOB limitation growth under
low temperatures

233 days

g strategy,
ons

Ammonia removal efficiency of 99% 130 days
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including storage of organic substrates as a new process (Gujer
et al., 1999).

ASMs are generally used for state estimation, simulation (or
description) of WWTPs, BNR optimization (energy use, cycle length
and/or reagents use), state predictions, and design of automatic
control strategies. In the literature, the work by Boaventura et al.
(2001) for state estimation reported the development of state ob-
servers based on Extended Kalman Filter (Chui and Chen, 2009) in
order to estimate the concentration of heterotrophic biomass,
autotrophic biomass, nitrate, ammoniacal nitrogen and carbona-
ceous substrates. An example of BNR optimization is the work by
Coelho et al. (2000), where a model-based optimization was
applied to minimize the total batch time in a SBR using constrained
successive quadratic programming (SQP) (Floudas and Pardalos,
2008) as the optimization algorithm, and the feed rate profile, fill
time and aeration time as decision variables. On the other hand, in
Corominas et al. (2006) an ASM1 was used to evaluate the SBR
performance under control strategies (DO control, phase length
control) and no control strategy, where the effluent quality, the
energy required for aeration and the treatment capacity were used
as performance indices. Furthermore, Kim et al. (2008) aimed to
maximize both the nitrogen removal and removal efficiency based
on a performance index that incorporates the total area under the
trajectory curves of DO and nitrogen concentrations. This optimi-
zation might be implemented through a simplified ASM1 and
iterative dynamic programming (IDP) (Luus, 2000). Cho et al.
(2010) used a modified ASM1 for maximizing nitrogen removal;
the effects of feed pattern fill and aeration type were also studied.
Regarding the use of ASMs to describe wastewater plant behavior
and to predict state variables in a BNR processes, Pambrun et al.
(2006) formulated a complete model able to describe the short-
term dynamics of two-step nitrification and predict the partial
nitrification efficiency in a SBR fed at a high inlet ammonia con-
centration. Magrí and Flotats (2008) calibrated a model to simulate
the nitrification-denitrification processes for treating the liquid
fraction of pig slurry, where the calculated concentrations of DO,
NHþ

4 , NO
�
2 , and NO�

3 were compared with experimental data. In
Cruz-Bournazou et al. (2012) a model reduction (to a nine-state,
six-state and five-state version) of an extended-ASM3 was pro-
posed, which reduced the calculation time while maintaining its
accuracy. A summary of ASMs applications in SBRs are presented in
Table 3. In another work, and using a reduced five-state version of
an extended-ASM3, Cruz-Bournazou et al. (2013) developed an
optimization framework which searches an optimal intermittent
Table 3
Applications of ASMs in SBRs.

Publication ASM application

Boaventura et al. (2001) State observer was used for BNR modeling

Coelho et al. (2000) ASM used for BNR optimization
Corominas et al. (2006) Evaluation SBR performance

Kim et al. (2008) Nitrogen removal and energy
efficiency maximization

Cho et al. (2010) BNR optimization
Pambrun et al. (2006) Process description and prediction

Magrí and Flotats (2008) Nitrification-denitrification simulation
Cruz-Bournazou et al. (2012) Extended ASM3 for a model simplification
Cruz-Bournazou et al. (2012) Optimal intermittent aeration profile to minim

the operation time and the energy required fo

Soliman and Eldyasti (2017) Calibrated model to describe the long-term d
behavior of the partial nitrification process in
aeration profile in order to minimize both the operation time and
the energy required for aeration of a SBR cycle under partial nitri-
fication. Moreover, in Soliman and Eldyasti (2017) implemented
and calibrated a model of a lab-scale SBR using Biowin® software to
describe the long-term dynamic behavior of the partial nitrification
process.

All the aforementioned studies show the potential of ASMs for
modeling the biological reaction in a BNR process. By contrast,
there is a lack of studies on SBR performance throughout multiple
consecutive operation cycles, and the effect associated with the
uncertainty of the model parameters has not yet been studied. It is
necessary to predict and control critical operation variables of the
BNR process more reliably so as to affect microbiology dynamics of
the AOB/NOB on a long-term basis.
5. Bending-points detection

Nowadays nitrogen control systems are mainly based on online
ammonium/nitrate analyzers (Ruano et al., 2012), thereby allowing
them to provide valuable information about the status of the plant,
which can be used by the operator to implement real-time control
strategies and thus optimize the process performance (Claros et al.,
2012; Huang et al., 2010). Aerobic phase length control and DO
control are examples of strategies based on online measurements
of ammonium, which have been proposed for energy savings (Hajji
et al., 2016; Olsson, 2012). Nevertheless, the major disadvantages of
these analyzers are their high investment and maintenance costs
(Casellas et al., 2006; Ruano et al., 2009), significant time delay
(Cecil and Kozlowska, 2010), and complex operation (Yang et al.,
2010). To overcome these drawbacks several researchers have on-
line monitored physical-chemical parameters such as DO, pH, ORP
(Akin and Ugurlu, 2005; Won and Ra, 2011) and oxygen uptake rate
(OUR) (Puig et al., 2005) (also called secondary variables) which can
be used to estimate the duration of the nitrification and denitrifi-
cation phases.

Bending-points detection is a strategy that uses secondary var-
iables like those previously mentioned to determine the lengths of
the aerobic/anoxic phases in a SBR in order to save energy and
process capacity (Ruano et al., 2012). When pH, DO, ORP and OUR
are not closed-loop controlled, it is possible identify relative
changes (bending-points) in their profiles during aerobic/anoxic
reactions. These bending-points in the secondary variables profiles
are used to determine the end-point of each reaction phase (Wu
et al., 2007), which leads to a reduction in aeration costs and
Variables involved

Dissolved and particulate concentrations
of all organic/nitrogen compounds
Minimization of the total batch time
Performance indices: the effluent quality,
the required energy for aeration and wastewater flow
Nitrogen removal and energy efficiency

Optimization of the nitrogen removal
Nitrification description and partial
nitrification prediction
DO, pH, NHþ

4 , NO
�
2 , and NO�

3 predictions
Nine-state, six-state and five-state models

ize both
r aeration

Optimization parameters: Equal length for all
aeration intervals, equal length for all anoxic
intervals, and the duration of the last aeration
interval of the intermittent aeration profile

ynamic
a lab-scale SBR

A reduced five-state version of an extended-ASM3
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reaction time (Antileo et al., 2013; Casellas et al., 2006; Puig et al.,
2005). Since in the long-term a sustained increase in NOB pop-
ulations might occur in the reactor, researchers face the challenge
of limiting/inhibiting NOB growth to reach a stable nitrite accu-
mulation over time (Guo et al., 2009). In Fig. 2 a scheme is pre-
sented of the sensors involved in the detection of the bending-
points for both the aerobic and anoxic phases.

The bending-points commonly associated with nitrification in
the aerobic phase are as follows: ammonia valley for pH (Peng et al.,
2006; Traor�e et al., 2005) (Fig. 3A), plateau for ORP (Peddie et al.,
1990; Poo et al., 2006) (Fig. 3B), elbow for DO (Li et al., 2011;
Martín de la Vega et al., 2012) (Fig. 3C) and changes in the OUR
profile Paul et al. (1998); Puig et al. (2005) (Fig. 3D). In the case of
denitrification they are: nitrate knee for ORP Holman andWareham
(2002); Wang et al. (2013) (Fig. 3E) and nitrate apex for pH (Rubio
et al., 2004; Zeng et al., 2008) (Fig. 3F). The principal problem lies in
the fact that the bending-points may be significantly affected (it
does not appear in the profiles of the measured variables) by feed
pattern, variations of inlet concentrations, changes in environ-
mental parameters or measurement noise in the reactor (Poo et al.,
2006).

On the other hand, and as mentioned above, bending-points
detection acts upon variables with no closed-loop control, mak-
ing its application to partial nitrification difficult since pH and DO
closed-loop control has to be used to limit/inhibit the NOB growth.
However, some studies have applied bending-points detection to
promote partial nitrification (Antileo et al., 2013; Gu et al., 2012).
Fig. 4 displays the manipulated variables carbonate consumption
(total number of sodium carbonate pulses injected to the reactor)
and air valve opening (percentage of opening) of the pH and DO
closed-loop control during aeration phase of a BNR process con-
ducted in a laboratory scale SBR (Antileo et al., 2013). The novelty of
these approaches has been in finding patterns in the manipulated
variables when pH and DO are subjected to a proportional-integral-
derivative (PID) feedback control during nitrification in a SBR.

The works reported in this issue aim to study the application of
several strategies to achieve an efficient detection under different
operating conditions where the closed-loop control of pH and DO is
not used. For instance, in Pav�selj et al. (2001) the derivatives of
filtered online signals of pH and DOwere used, where the bending-
points criteria were when two local maximums were noted in the
DO derivative and the pH derivative fell under a certain value. Puig
et al. (2005) detected the end-point once the online measured OUR
Fig. 2. SBR instrumentation scheme
reached a minimum OUR value. Moreover, in Poo et al. (2006)
different bending-points criteria for each of the measured vari-
ables were studied: for ORP D2ORP z0 and DORP z0 were used,
for pH when a pH increase was observed, for DO when a threshold
was reached or a DO increased in its profile. In addition, both in Guo
et al. (2007) and Kishida et al. (2008) the pH derivative was used as
a decision parameter and a sharply changing value from negative to
positive as the bending-point. By contrast, in Ga and Ra (2009) a
method called a moving slope change (MSC) was applied to the pH
profile; therefore, when the MSC reached a value of � 0:3, the
aerobic phase was finished.

Artificial intelligence was used in Cohen et al. (2003), where a
classifier based on artificial neural networks (ANNs) (Haykin, 2011)
was created, which used geometric features from the DO profiles as
inputs. And in order to make the bending-points detection more
robust, they developed a system based on evolving fuzzy neural
networks (EFuNN) (Kasabov, 2001). These allow the classifier to
adapt to new patterns generated by each newly performed SBR
cycle. On the other hand, Marsili-Libelli (2006) proposed a pattern
recognition system based on fuzzy clustering (Babu�ska, 2012) of the
filtered derivatives of pH, DO and ORP. Mach�on-Gonz�alez and L�opez
García (2006) proposed a combination of self-organizing maps
(SOM) (Kohonen, 2012) and K-means (Duda et al., 2012) to detect
the aerobic end-point in a coke WWTP by using the selected vari-
ables of DO, % air valve opening (manipulated variable of the
installed DO controller) and temperature. Marsili-Libelli et al.
(2008) also developed a fuzzy inference system (Sivanandam
et al., 2006) based on the first derivative of pH and DO profiles
and also included the second derivative of the ORP profile to decide
when the aerobic phase ended. Moreover, in Luccarini et al. (2010)
an algorithm based on ANNs was developed to identify represen-
tative patterns (“apexes”, “knees”, and “steps”) related to the end of
nitrification and denitrification.

Regarding methodologies based on statistical and probabilistic
models, Villez et al. (2010) applied Hotelling's statistic (Ye, 2013)
with the information obtained from a model generated with five
process variables (air flow rate and the derivatives of air flow rate,
pH, DO and ORP) to estimate the length of the aerobic phase.
Kocijan and Hvala (2013) proposed a Gaussian process (GP)
Rasmussen (2004) model to estimate the length of the phases in
the SBR cycle; the GP was used for both the smoothing and clas-
sifying of online measured variables (pH, DO, and ORP).

Recent works have used pH and DO closed-loop control in SBRs.
for bending-points detection.



Fig. 3. Bending points for nitrification (AeD) and denitrification (EeF), where arrows show the specific bending point for each parameter profile. Adapted from Puig et al. (2005)
and Poo et al. (2006).

Fig. 4. Example of bending points for nitrification based on a closed-loop control technique on the secondary variables pH and/or DO, where arrows show bending points being
measured in a laboratory process.
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In Gu et al. (2012) the DO in the reactor was controlled by a cen-
trifugal blower equippedwith a frequency converter; consequently,
a strategy that involved the application of MSC to the blower fre-
quency data and defining a MSC value equal to�1 as the end-point
criterion was designed and evaluated. In other study, employing
the profiles of the manipulated variables pH (carbonate consump-
tion) and DO (percentage of air valve opening) (Antileo et al., 2013),
determined the end of the aerobic phase when carbonate con-
sumption remained constant for 30min and air valve opening
reached a value of 25%. And in a more recent article (Jaramillo et al.,
2018), proposed a strategy based on feature extraction over the
manipulated variables of the pH and DO controller together with
support vector machines (SVMs) classification to estimate the
aerobic phase length. Table 4 summarizes the previously reviewed
strategies.

These strategies take information from derivatives shown to be
effective, but care should be taken with some issues that can affect
the discriminant information obtained from them: sensors affected
by noise and variations in the operating/environmental conditions
in the reactor. Regarding the methodologies based on artificial in-
telligence and statistical/probabilistic models, these respond effi-
ciently to the operating conditions/characteristics for which they
were trained, but they do not appear towork effectively in the long-
term due to the non-linear and time-variant characteristics pre-
sented in the nitrogen removal process applied to SBRs.

Finally, there are still not many studies that use a closed-loop
control technique on the secondary variables pH and/or DO in or-
der to achieve partial nitrification. In these cases, the bending-
points detection methods must use the manipulated variables of
the process in order to obtain information related to nitrogen
removal dynamics. Linking online monitoring over the manipu-
lated variables (in a closed-loop control of pH/DO) to a biological
process model would be interesting to explore in the future. It is
worth noting that any strategy for bending-points detection might



Table 4
Bending points detection strategies.

Publication Detection Technique Variables related to the Bending points Validation time

Pav�selj et al. (2001) Derivatives pH and DO N/A
Puig et al. (2005) Minimum Value OUR 3 months
Poo et al. (2006) An increase pH and DO N/A
Guo et al. (2007) Derivatives pH 6 months
Kishida et al. (2008) Derivatives pH 185 days
Ga and Ra (2009) MSC pH N/A
Cohen et al. (2003) ANN classifier Geometric features from the DO profiles N/A
Marsili-Libelli (2006) Pattern recognition based

on fuzzy clustering
Filtered derivatives of pH, DO and ORP 5 days

Mach�on-Gonz�alez and
L�opez García (2006)

SOM and K-means DO, manipulated variable of the DO controller:
% air valve opening and temperature

N/A

Marsili-Libelli et al. (2008) Fuzzy inference system First derivative of pH and DO profiles, and
second derivative of ORP profile

6 months

Luccarini et al. (2010) ANNs Identification of “apexes”, “knees”, and “steps” 3 years
Villez et al. (2010) Hotelling's statistic Air flow rate and the derivatives of air

flow rate, pH, DO, and ORP
11 days

Kocijan and Hvala (2013) Gaussian process model pH, DO, and ORP N/A
Gu et al. (2012) MSC Manipulated variable of the DO controller:

Blower frequency
More than 180 days

Antileo et al. (2013) Constant value and threshold value Manipulated variables: Carbonate consumption
and % air valve opening

220 days

Jaramillo et al. (2018) Feature extraction and SVM classification Manipulated variables: Carbonate consumption
and % air valve opening

220 days

Validation time: Time in which the proposed bending-points strategies were analyzed/validated.
N/A: Information not available.
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be affected in the long-term since during a biological reaction in
SBRs the AOB/NOB distribution is time-variant so that the
controller parameters must be tuned systematically (Mu~noz et al.,
2009; Tzoneva, 2007). For these drawbacks, and in order to
contribute with more robust advanced monitoring tools, the joint
use of feature extraction/selection to obtain adequate indicators
that reveal whether an interesting pattern is emerging
(Vachtsevanos et al., 2007), along with machine learning tools (e.g.,
SVMs, ANNs, SOM, among others) Duda et al. (2012), is a very
interesting alternative to detect bending points on themanipulated
variables curves.

6. Data-driven modeling

Having information about the process evolution available allows
plant operators to improve their operating practices, leading to a
more stable efficiency over the long-term. This requires having
ammonium and nitrate sensors installed in reactors, but these
sensors are far from widely available given their high costs, oper-
ation sensitivity and complexity in their maintenance. This leads to
the motivation of producing software sensors (or soft-sensors)
(Haimi et al., 2013) based on online measurements of the second-
ary variables (pH, DO, ORP) to generate online estimations of
ammonium, nitrite and nitrate in the reactor.

On this topic, the contribution of Luccarini et al. (2002) should
be considered, where a soft-sensor for estimating NHþ

4 and NO�
3

trends in a pilot-scale SBR was proposed, using the Elman neural
network (Elman, 1990) as part of their methodology. Through a
Table 5
Techniques applied for the development of soft-sensors for nitrogen species.

Publication Technique

Luccarini et al. (2002) Elman Neural Network
Hong et al. (2007) MPCA and ANN
Huang et al. (2009) Fuzzy Neural Network
Huang et al. (2010) Fuzzy Neural Network

Validation time: Time in which the proposed soft-sensor were analyzed/validated.
N/A: Information not available.
software sensor based on both a multiway principal component
analysis (MPCA) (Nomikos and MacGregor, 1994) and ANNs, online
concentrations of NHþ

4 , NO
�
3 and PO3�

4 using online measurements
of pH, ORP and DO as input data were estimated in the work by
Hong et al. (2007). In Huang et al. (2009) a soft-sensor based on
fuzzy neural networks (FNNs) (Liu and Li, 2004) was designed to
estimate NHþ

4 , NO
�
3 and COD for both the aerobic and anoxic phases

using online measurements of pH, ORP and DO as input data as
well. Finally, in Huang et al. (2010), a variation of the previous soft-
sensor based on a FNN was implemented, with this soft-sensor
enabling the estimation of NHþ

4 , NO
�
3 and PO3�

4 in a pilot-scale
SBR. A summary of data-driven techniques are shown in Table 5.

The soft-sensor for variable estimation of ammonium, nitrite
and nitrate is a powerful tool for online monitoring, and thus
relevant information is available to improve the SBR operating
policies that can minimize costs and maximize the efficiency of the
BNR.

One shortcoming of the soft-sensor review is the lack of
emphasis on how the soft-sensor performance is affected after
multiple operation cycles of the SBR (long-term). In addition, there
are no studies of the process being operated under partial nitrifi-
cation by using closed-loop control of pH and/or DO; in this case,
the soft-sensor should be designed using themanipulated variables
of pH and DO as input data.

In other disciplines, such as biological sciences, electrical and
mechanical engineering, tools to incorporate uncertainty into the
modeling of systems have been applied to acquire greater infor-
mation about the variables of interest for an adequate prediction of
Estimated variables Validation time

NHþ
4 and NO�

3 N/A
NHþ

4 , NO
�
3 and PO3�

4 N/A
NHþ

4 , NO
�
3 and COD N/A

NHþ
4 , NO

�
3 and PO3�

4 18 months
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the model, e.g., expected value, confidence intervals. In particular,
Bayesian filters (e.g., Kalman filter and extended Kalman filter (Chui
and Chen, 2009) or a particle filter (Arulampalam et al., 2002)) have
been widely used to overcome uncertainty problems in dynamic
systems (Ching et al., 2006). Future investigations could apply these
tools to improve the prediction quality of the models associated
with the elimination of ammonia nitrogen in SBRs.

7. Conclusions

In this work, a number of relevant recent studies proposing
strategies to improve nitrification in SBRs was reviewed. Bending
points is the most widely used strategy to determine aeration
length when pH/DO are not closed-loop controlled. However,
closed-loop control seems to be more suitable to achieve stable
partial nitrification. Future investigations should focus on
adequately integrating real time control, artificial intelligence, and
activated sludge and data-driven modeling to predict the dynamic
behavior of BNR processes and to validate such strategies on a long-
term basis by monitoring bacteria population dynamics with mo-
lecular tools.
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