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Abstract. In this paper, an analysis on extensions of multi-expert decision
making model based on ordered weighted averaging (OWA) operators is pre-
sented. The focus is on the aggregation of criteria and the aggregation of
individual judgment of experts. First, soft majority concept based on induced
OWA (IOWA) and generalized quantifiers to aggregate the experts’ judgments
is analyzed, in which concentrated on both classical and alternative schemes of
decision making model. Secondly, analysis on the weighting methods related to
unification of weighted average (WA) and OWA is conducted. An alternative
weighting technique is proposed which is termed as alternative OWA-WA
(AOWAWA) operator. The multi-expert decision making model then is
developed based on both aggregation processes and a comparison is made to see
the effect of different schemes for the fusion of soft majority opinions of experts
and distinct weighting techniques in aggregating the criteria. A numerical
example in the selection of investment strategy is provided for the comparison
purpose.

Keywords: Multi-expert decision making � OWA operator � IOWA operator
Weighting methods � Soft majority concept

1 Introduction

In the past, various multi-criteria decision making methods have been developed as
tools for modeling human decision making and reasoning, see [4, 5]. The methods have
effectively used in numerous applications to deal with the rating, ranking and selection
of option(s). In complex decision making, normally a group of experts or decision
makers involved in which each of them offset and/or support the others for the com-
prehensive decision. Since then, the expansion of such models to multi-expert decision
making have been extensively focused.

Central to the decision making problems, aggregation process play a crucial role in
deriving the final decision, either to aggregate the criteria with respect to each option or
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to aggregate the final agreement of individual experts. Weighted average (WA) and
ordered weighted averaging (OWA) operators are generally employed as aggregation
processes in decision making models. OWA operators [17, 18, 19] provide a param-
eterized class of aggregation operators which can be ranged from minimum to maxi-
mum and average as normal case. In contrast to the WA which represents the reliability
of information sources or criteria, the weights in OWA reflect the importance of values
with respect to ordering. The OWA operators can be explained as applying the concept
of fuzzy set theory to modify the basic aggregation process used in decision making,
precisely, using generalized quantifiers [7, 8, 26] for soft aggregation processes. In
addition, the induced OWA (IOWA) operators [22] as its extension deal with the
problem which involve pair of values, for example, the additional parameters used to
induce the argument values to be aggregated. The OWA and IOWA are useful in the
case of the need to consider the attitudinal character of experts, for instance, the
behavior of experts regarding the proportion of criteria to consider. Analogously, with
respect to group decision making, the soft majority agreement among experts can be
implemented using the IOWA operators, which synthesizes the opinions of the
majority (such as semantics “most”) of the experts. In this case, a majority opinion
refers to consensual judgment of a majority of experts who have similar opinions.

With respect to that, the purpose of this paper is on analyzing the multi-expert
decision making model based on these two aggregation processes, i.e., aggregation of
criteria and aggregation of experts’ judgments. At first, the soft majority concept
models for aggregating the experts’ judgments based on IOWA operators and linguistic
quantifier are reviewed, particularly the method as proposed in [14] and its extension as
proposed in [2]. The difference between the two majority concept models can be
divided into: (i) on assigning the weights for the experts, (ii) the measures used in
calculating the support between experts (proximity metric), and (iii) the approach in
deriving the support between experts, either based on options (classical scheme) or
criteria (alternative scheme). Pasi and Yager [14] proposed the method in case of
weights between experts are considered as identical (homogeneous group decision
making) and used the support function based on distance measure to compute the
overall level of agreement between experts. Besides, the support between experts is
calculated with respect to the final result of options of each expert. On the other hand,
Bordogna and Sterlacchini [2] extended this idea to include the case of where the
experts are assigned with different weights (heterogeneous group decision making) and
utilized similarity measure based on Minkowski OWA to calculate the overall support
between experts. Moreover, the approach used to calculate the support between experts
is based on the similarity measure with respect to each criterion instead of on each
option. In this paper, for the purpose of comparison, some modifications have been
made to both methods, include an extension of the Pasi and Yager’s method from
classical scheme to alternative scheme. On contrary, the Bordogna and Sterlacchini’s
method has been modified to deal with classical scheme. Hence, two additional
methods with the existing two original methods are compared as to examine the effect
of the approaches on decision scheme used.

Secondly, the weighting methods which stipulate decision strategies for the com-
pensation of criteria in making the decision are studied. Specifically, we analyze some
of the methods in deriving the weights based on the unification of WA and OWA, such

180 B. Yusoff et al.



as, methods for including importances using combination of ‘or-and’ operators [18],
linguistic quantifier [23], fuzzy system modeling [24], weighted OWA (WOWA) [15],
OWAWA [10], hybrid WA (HWA) [16] and immediate WA (IWA) [9]. In addition, we
propose an alternative OWAWA (AOWAWA) operator which combines the charac-
teristics of IWA and OWAWA using the idea of geometric means. As comparison, the
multi-expert decision making model with respect to Bordogna and Sterlacchini’s
approach on alternative scheme is used as to observe the results of distinct weighting
techniques in aggregation of criteria.

The outline of the paper is as follows. In Sect. 2 the definitions of OWA, IOWA
and Minkowski OWA distance operators are presented. In Sect. 3 the aggregation
techniques for soft majority concept is discussed and then Sect. 4 reviews the
weighting methods based on WA and OWA. In Sect. 5, multi-expert decision making
model based on different schemes and weighting techniques of aggregation processes
are outlined. A numerical example in a selection of investment strategy is provided in
Sect. 6. The paper then is summed up with a conclusion in the Sect. 7.

2 Preliminaries

This section provides some definitions and basic concepts related to OWA and IOWA
operators and their generalizations that will be used throughout the paper.

2.1 OWA Operator

Definition 1 [18]. An OWA operator of dimension n is mapping OWA : Rn ! R that
has an associated weighting vector W of dimension n, such that wj 2 0; 1½ � andPn

j¼1 wj ¼ 1, according to the following formula:

OWA a1; . . .; anð Þ ¼
Xn

j¼1
wjar jð Þ ð1Þ

where ar jð Þ denotes the components of A ¼ a1; a2; . . .; anð Þ being ordered in
non-increasing order ar 1ð Þ � ar 2ð Þ � . . . � ar nð Þ.

The OWA operators are all meet commutative, monotonic, bounded and idempotent
properties. Given that a function Q : 0; 1½ � ! 0; 1½ � as a regular monotonically
non-decreasing fuzzy quantifier and it satisfies: (i) Q 0ð Þ ¼ 0, (ii) Q 1ð Þ ¼ 1, (iii) a [ b
implies Q að Þ � Q bð Þ, then the associated OWA weights can be derived using this
function such in the next definition.

Definition 2 [18]. Let Q be a non-decreasing fuzzy quantifier, then a mapping OWA :
Rn ! R is an ordered weighted average (OWA) operator of dimension n if:

OWAQ a1; a2; . . .; anð Þ ¼
Xn

j¼1
xjar jð Þ; ð2Þ
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where ar jð Þ denotes the components of A ¼ a1; a2; . . .; anð Þ being ordered in

non-increasing order ar 1ð Þ � ar 2ð Þ � . . . � ar nð Þ and xj ¼ Q j
n

� �� Q j�1
n

� �
, being a

monotonic non-decreasing function.

2.2 IOWA Operator

Definition 3 [22]. An IOWA operator of dimension n is mapping IOWA : Rn ! R that

has an associated weighting vector W such that wj 2 0; 1½ � andPn
j¼1

wj ¼ 1, according to

the following formula:

IOWA u1; a1h i; u2; a2h i; . . .; un; anh ið Þ ¼
Xn

j¼1
wjar jð Þ ð3Þ

where the notion r jð Þ denotes the inputs uj; aj
� �

of the order-inducing variable uj and
argument variable aj reordered such that ur 1ð Þ � ur 2ð Þ � . . . � ur nð Þ and the conven-
tion that if z of the are tied, i.e., ur jð Þ ¼ ur jþ 1ð Þ ¼ . . . ¼ ur jþ z�1ð Þ, then, the value ar jð Þ
is given as follow [8, 20]:

ar jð Þ ¼ 1
z

Xr jþ z�1ð Þ

k¼r jð Þ
ak ð4Þ

The IOWA operators are all meet commutative, monotonic, bounded and idempo-
tent properties.

2.3 Minkowski OWA Distance

Definition 4 [11]. A Minkowski OWAD operator of dimension n is a mapping
MOWAD : Rn � Rn ! R that has an associated weighting vector W of dimension
n such that

Pn
j¼1 wj ¼ 1 with wj 2 0; 1½ � and the distance between two sets A and B is

given as follows:

MOWAD d1; d2; . . .; dnð Þ ¼
Xn

j¼1
wjd

k
r jð Þ

� �1=k
; ð5Þ

where dr jð Þ denotes the components of D ¼ d1; d2; . . .; dnð Þ being ordered in
non-increasing order dr 1ð Þ � dr 2ð Þ � . . . � dr nð Þ, and dj is the individual distance
between A and B, such that dj ¼ aj � bj

�� �� with k is a parameter in a range
k 2 �1;1ð Þ.

The MOWAD operators are all meet commutative, monotonic, bounded and
idempotent properties. By setting different values for the norm parameter k, some
special distance measures can be derived. For example, if k ¼ 1, then the Manhat-
tan OWA distance can be obtained, k ¼ 2 then the Euclidean OWA distance can be
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acquired, k ¼ 1 then Tchebycheff OWA is derived, etc. Equivalently, OWA and
IOWA can be generalized using the same formulation, see [12, 20, 25].

3 Aggregation Methods for Soft Majority Concept

In this section, the methods for aggregating the soft majority opinion of individual
experts are presented. The method by Pasi and Yager [14] as well as its extension,
Bordogna and Sterlacchini [2] are studied. The extension of both methods then are
made and applied in a multi-expert decision making model for the analysis purpose.
Before that, the general framework of decision making schemes in which the basis of
Pasi and Yager’s method and also Bordogna and Sterlacchini’s method are presented,
i.e., a classical scheme and an alternative scheme of decision making process.

3.1 Multi-expert Decision Making Schemes

In general, the method as proposed in [14] is mainly based on the classical scheme
where the result of consensus measure is determined according to the support on each
option of individual experts. While the method in [2] is based on the alternative scheme
in which the majority opinion particularly focuses on each specific criterion.

The classical scheme of group decision making process can be divided into two
stages of aggregation process, namely internal and external aggregations. The internal
aggregation involves the fusion of criteria for each expert, either full or partial com-
pensation. At this stage, the ranking of alternatives for each expert is derived. As regard
to this ranking, then in the external aggregation, the soft majority concept is imple-
mented to find the final ranking which reflects the majority opinion of individual
experts. Note that the fusion of experts’ judgments in this case is focused on each
option as proposed in [14].

On the other hand, for the alternative approach, instead of dealing with internal
aggregation at the first step, where the individual ranking of options of each expert is
derived, this method initiated with the external aggregation to fuse the majority opinion
with respect to each criterion. At this stage, the new decision matrix which represents
the soft majority of experts is obtained. Then, the internal aggregation to fuse the
criteria is performed with the flexibility to compensate the criteria for the final decision.

3.2 The Method Based on Pasi and Yager’s Approach

In the following, a brief description of the aforementioned methods is conferred. Two
fundamental steps in each method are on determining the inducing variable and
deriving the associated weights of experts. The methodology used to obtain the
majority opinion based on Pasi and Yager [14] can be expressed as follows:

Suppose that a collection of individual opinion of h experts h ¼ 1; 2; . . .; kð Þ is
given as the vector Ph

i ¼ p1i ; p
2
i ; . . .; p

k
i

� �
with respect to each option i; i ¼ 1; 2; . . .;mð Þ.

For a simple notation, ph can be used instead of phi since each option is evaluated
independently using the same formulation. For a single option, the similarity of each
expert can be calculated using the support function as follows:
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supp pl; pg
� � ¼ 1 if pl � pg

�� ��\ b;
0 otherwise:

	
ð6Þ

The support function represents the similarity or dissimilarity between expert l with
respect to all the other experts g, such that l; g 2 h. Then the overall support for each
individual expert l can be given as:

ul ¼
Xk

g ¼ 1
g 6¼ l

supp pl; pg
� �

; ð7Þ

where ul; l 2 h ¼ 1; 2; . . .kð Þ constitute the values of order inducing variable U ¼
ur 1ð Þ; . . .; ur kð Þ
� �

which ordered as ur 1ð Þ � ur 2ð Þ � . . . � ur kð Þ. Note that, here the
values of inducing variable are reordered in non-decreasing order instead of
non-increasing order as in the original IOWA, such in Eq. (3). This type of ordering
reflects the conformity of quantifier ‘most’ as to model the majority concept, see [14]
for clarification.

In consequence, to compute the weights of the weighting vector, define the values tl
based on an adjustment of the values ul, such that: tl ¼ ul þ 1 (the similarity of pl with
itself, similarity value equal to one). The tl values are in non-decreasing order,
t1 � . . . � tk . On the basis of tl values, the weights of the weighting vector are
computed as follows:

wl ¼ Q tl=kð ÞPk
l¼1 Q tl=kð Þ : ð8Þ

The value Q tl=kð Þ denotes the degree to which a given member of the considered
set of values represents the majority. The quantifier Q based on membership function
for semantics “most” of experts can be given as follows:

Q rð Þ ¼
1 if r � 0:8;
2r � 0:6 if 0:3\ r\ 0:8;
0 if r � 0:3;

8<
: ð9Þ

where r ¼ tl=k. As can be seen, the weight of experts here is derived based on the
arithmetic mean (AM) where each expert is considered as having an equal degree of
importance or trust, e.g., reflect the average of the most of the similar values. Then, the
final evaluation is determined using the IOWA operators such in Eq. (3). Note that,
here the IOWA is based on the non-decreasing of inputs ul; pl, as well as weights wl as
to comply with the concept of majority opinions.

However, in some cases, the values of the vector Ph
i ¼ p1i ; p

2
i ; . . .; p

k
i

� �
derived after

the internal aggregation process are very close to each other due to, for example, the
normalization process. This case then leads to the values of pl � pg

�� �� less differentiable
and cause a difficulty in assigning a value for b. Hence, in this paper, a slight
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modification has been made to cope with this problem. The support function in Eq. (6)
then can be modified as follows:

supp pl; pg
� � ¼ 1 if

pl�pgj j
max

l
pl�pgj j \ b;

0 otherwise:

8<
: ð10Þ

3.3 The Method Based on Bordogna and Sterlacchini’s Approach

In the following, the method based on Bordogna and Sterlacchini [2] is presented.
Contrary to the previous method, here, the majority opinion of experts with respect to
each specific criterion is conducted for every option. Suppose that a collection of
individual opinion of h experts is given as vector Ph

i ¼ p1i ; p
2
i ; . . .; p

k
i

� �
for each option

i; i ¼ 1; 2; . . .;mð Þ. In this method, instead of using the support function, they used the
Minkowski OWA based similarity measure to obtain the Qcoherence for inducing vari-
able. The Qcoherence of each expert can be defined as follows:

ul ¼ Qcoherence Pl;Phð Þ ¼ MOWA s1; . . .; skð Þ ¼
Xk
h¼1

xhs
k
h

 !1=k

; ð11Þ

where xh are the ordered weights with the inclusion of importances of experts (or trust

scores of experts, th; h ¼ 1; 2; . . .; k), such that xh; th 2 0; 1½ � with
Pk

h¼1 xh ¼
�

Pk
h¼1 th ¼ 1

�
and sl ¼ 1� pl � phj j as similarity measure between expert l with

respect to all the other experts h (includes itself), such that l 2 h. The norm parameter
k 2 �1;1ð Þ provides a generalization of the model.

Then, the order inducing vector can be given as:

U ¼ u1; . . .; ukð Þ ¼ Qcoherence P1;Phð Þ; . . .;Qcoherence Pk;Phð Þð Þ; ð12Þ

Moreover, Q as generalized quantifiers can take any semantics to modify the
weights of experts (or trust degrees) for different strategies or behaviors. When
Q xð Þ ¼ x, then Qcoherence is reduced to:

ul ¼ coherence Pl;Phð Þ ¼
Xk
h¼1

ths
k
h

 !1=k

; ð13Þ

which is the weighted average of trust degrees with similarity measure of experts.
This can be explained as the generalization of trust degrees, where in [14] the trust,

th are considered as equal, while here they can be extended to WA and OWA weights.
Subsequently, the weights of weighting vector for the IOWA operator can be

deriving using the following formula:
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mh ¼ argminh u1 � t1; . . .; uk � tkð ÞPk
h¼1 argmini u1 � t1; . . .; uk � tkð Þ ; ð14Þ

where mh are ordered in non-decreasing order. Further, given the quantifier Q with
semantics “most” as Eq. (9), the weighting vector W ¼ x1; . . .;xkð Þ can computed as:

xh ¼ Q mhð ÞPk
h¼1 Q mhð Þ : ð15Þ

Next, the overall aggregation process is computed using the IOWA operator with
non-decreasing inputs ul; plh i. Similarly, here, a simple modification can be made to the
similarity measure to cope with the small difference between the values as follows:

s pl; pg
� � ¼ 1� pl � pg

�� ��
max

l
pl � pg
�� ��

0
@

1
A: ð16Þ

4 The Methods Based on Unification of WA and OWA

In this section, the method for deriving the associated weights for aggregation of
criteria is discussed. In particular, the weighting methods based on unification of WA
and OWA are reviewed. In addition to the previously proposed methods in the liter-
ature, an alternative weighting technique called as AOWAWA operator is suggested.
The analysis on some functions that generalizes WA and OWA operators which was
done in [9] i.e., WOWA, HWA, OWAWA and IWA, then is extended to include some
other functions like OWA-OA, OWA-FSM, and the proposed AOWAWA.

4.1 The Existing Methods

Prior to the definition of unification of WA and OWA as weighting methods, the
general definition of WA and OWA weights are given.

Definition 5. A weighting vector V ¼ v1; v2; . . .; vnð Þ is a weighting vector of
dimension n if and only if vj 2 0; 1½ � and Pj vj ¼ 1.

Definition 6. Let P be a weighting vector of dimension n, then a mapping WA :
Rn ! R is a weighted average of dimension n if WAP a1; a2; . . .; anð Þ ¼Pj pjaj.
The WA are monotonic, idempotent and bounded, but it is not commutative [1, 6].

Definition 7 [20]. Let W be a weighting vector of dimension n, then a mapping
OWAW : Rn ! R is an ordered weighted averaging (OWA) operator of dimension n if:

OWAW a1; a2; . . .; anð Þ ¼
X

j
wjar jð Þ; ð17Þ
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where ar jð Þ denotes the components of A ¼ a1; a2; . . .; anð Þ being ordered in
non-increasing order ar 1ð Þ � ar 2ð Þ � . . . � ar nð Þ.

There are a number of methods proposed in the literature for obtaining the OWA
weights, e.g., linguistic quantifier [18] such in Eq. (2), maximum entropy OWA [13],
etc. For the overview of methods for determining OWA weights, see [26]. Next, some
of the unification methods of WA and OWA are given.

Definition 8 [18]. Let P and W be two weighting vectors of dimension n., then a
mapping OWA : Rn ! R is an OWA operator of dimension n if:

OWAP;W a1; a2; . . .; anð Þ ¼
X

j
wjar jð Þ; ð18Þ

where ar jð Þ denotes the components of �A ¼ �a1; �a2; . . .; �anð Þ being ordered in

non-increasing order �ar 1ð Þ � �ar 2ð Þ � . . . � �ar nð Þ such that �aj ¼ H aj; pj
� � ¼ pj _ �a

� � �
aj
� �pj_a and a ¼Pn

j¼1

n�j
n�1wj is the orness measure and �a ¼ 1� a is its complement.

This method is based on ‘or-and’ lattice operator and for the sake of simplicity, in
this paper it can be termed as OWA-OA. Note that if a ¼ 0, then it is a pure ‘and’

operator, given as aj ¼ apjj . Since wn ¼ 1, then D xð Þ ¼ Min
j ¼ 1; . . .; n

Aj xð Þpj , Aj xð Þ ¼ aj.

Conversely, if a ¼ 1, then it is a pure ‘or’ operator, given as aj ¼ pjaj. Since w1 ¼ 1,

then D xð Þ ¼ Max
j ¼ 1; . . .; n

pjAj xð Þ, Aj xð Þ ¼ aj. The OWA-OA operators are all meet

commutative, monotonic, bounded and idempotent properties. But, OWA-OA opera-
tors do not satisfy Og

p ¼ Fp and Ow
g ¼ Fw.

Definition 9 [24]. Let P and W be two weighting vectors of dimension n, then a
mapping OWA : Rn ! R is an OWA operator of dimension n if:

OWAP;W a1; a2; . . .; anð Þ ¼
X

i
wjar jð Þ; ð19Þ

where ar jð Þ denotes the components of Â ¼ â1; â2; . . .; ânð Þ being ordered in
non-increasing order âr 1ð Þ � âr 2ð Þ � . . . � âr nð Þ given that âj ¼ H aj; pj

� � ¼ �a�pj þ pjaj
and �a ¼ 1� a, that is the orness measure a ¼Pn

j¼1
n�j
n�1wj. This method is based on

fuzzy system modeling and can be termed as OWA-FSM. The OWA-FSM operators
are all meet commutative, monotonic, bounded and idempotent properties. But,
OWA-FSM operators do not satisfy Mg

p ¼ Fp and Mw
g ¼ Fw.

Definition 10 [15]. Let P and W be two weighting vectors of dimension n, then a
mapping WOWA : Rn ! R is a weighted ordered weighted averaging (WOWA)
operator of dimension n if:

WOWAP;W a1; a2; . . .; anð Þ ¼
X

j
xjar jð Þ; ð20Þ
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where ar jð Þ denotes the components of A ¼ a1; a2; . . .; anð Þ being ordered in

non-increasing order ar 1ð Þ � ar 2ð Þ � . . . � ar nð Þ and xj ¼ w� P
k� j pr jð Þ

� �
�

w� P
k� j pr jð Þ

� �
with w� being a monotonic non-decreasing function that interpolates

the points j=nð Þ;Pk� j wj

� �
together with the point 0; 0ð Þ. The function w� required to

be a straight line when the points can be interpolated in this way.
WOWA operators satisfy Wg

p ¼ Fp and Ww
g ¼ Fw. Moreover, they are monotonic,

idempotent, and bounded [16]. In a similar way that for the OWA operator, the
WOWA operator can be defined using a fuzzy quantifier instead of having the
weighting vector w. This definition is similar to the Yager’s definition of OWA using
importances [23].

Definition 11 [23]. Let Q be a non-decreasing fuzzy quantifier, let p be a weighting
vector of dimension n, then a mapping OWA : Rn ! R is an OWA operator of
dimension n if:

OWAP;Q a1; a2; . . .; anð Þ ¼
X

j
xjar jð Þ; ð21Þ

where ar jð Þ denotes the components of A ¼ a1; a2; . . .; anð Þ being ordered in

non-increasing order ar 1ð Þ � ar 2ð Þ � . . . � ar nð Þ and xj ¼ Q
P

k� j pr jð Þ
� �

�
Q
P

k� j pr jð Þ
� �

.

This operator generalizes the weighted mean and the OWA operator: when p ¼
1
n ;

1
n ; . . .;

1
n

� �
the operator reduces to the OWA operator and when w ¼ 1

n ;
1
n ; . . .;

1
n

� �
the

operator reduces to the WA.

Definition 12 [16]. Let P and W be two weighting vectors of dimension n, then a
mapping HA : Rn ! R is a hybrid averaging (HA) operator of dimension n if:

HAP;W a1; a2; . . .; anð Þ ¼
X

j
wjar jð Þ; ð22Þ

where ar jð Þ denotes the components of �A ¼ �a1; �a2; . . .; �anð Þ being ordered in
non-increasing order �ar 1ð Þ � �ar 2ð Þ � . . . � �ar nð Þ given that �aj ¼ npjaj and n is the
balancing coefficient.

HWA operator generalizes both OWA and WA operators and reflects the impor-
tance degrees of both the given argument and the ordered position of the argument.
HWA operators satisfy Hg

p ¼ Fp and Hw
g ¼ Fw. Moreover, they are monotonic [9].

Definition 13 [9]. Let P and W be two weighting vectors of dimension n, then a
mapping IWA : Rn ! R is an immediate weighted averaging (IWA) operator of
dimension n if:

IWAP;W a1; a2; . . .; anð Þ ¼
X

j
pjar jð Þ; ð23Þ
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where ar jð Þ denotes the components of A ¼ a1; a2; . . .; anð Þ being ordered in
non-increasing order ar 1ð Þ � ar 2ð Þ � . . . � ar nð Þ and pj ¼ wjpj=

Pn
j¼1 wjpj.

As can be seen, the IWA is a manipulation of immediate probability [3, 11, 21] by
using the WA instead of probability distribution. IWA operators satisfy Igp ¼ Fp and
Iwg ¼ Fw[9].

Definition 14 [11]. Let P and W be two weighting vectors of dimension n, then a
mapping OWAWA : Rn ! R is an ordered weighted averaging-weighted average
(OWAWA) operator of dimension n if:

OWAWAP;W a1; a2; . . .; anð Þ ¼
X

j
ujar jð Þ; ð24Þ

where ar jð Þ denotes the components of A ¼ a1; a2; . . .; anð Þ being ordered in
non-increasing order ar 1ð Þ � ar 2ð Þ � . . . � ar nð Þ and uj ¼ bwj þ 1� bð Þpr jð Þ with
b 2 0; 1½ �.

OWAWA operator is all meet monotonic, idempotent, bounded properties. More-
over the value returned by the OWAWA operator lies between the values returned by
the WA and OWA, and coincides with them when both are equal. But, OWAWA
operators do not satisfy Ng

p ¼ Fp and Nw
g ¼ Fw.

In addition, by taking the advantages of IWA and OWAWA operators, a new
weighting method can be derived as in the next sub-section.

4.2 The Proposed Alternative OWAWA Operator

Definition 15. Let P and W be two weighting vectors of dimension n, then a mapping
AOWAWA : Rn ! R is an alternative ordered weighted averaging-weighted average
(AOWAWA) operator of dimension n if:

AOWAWAP;W a1; a2; . . .; anð Þ ¼
X

j
ûjar jð Þ; ð25Þ

where ar jð Þ denotes the components of A being ordered in non-increasing order

ar 1ð Þ � ar 2ð Þ � . . . � ar nð Þ and ûj ¼ wb
j � p 1�bð Þ

r jð Þ =
Pn
j¼1

wb
j � p 1�bð Þ

r jð Þ with b 2 0; 1½ �, by

convention ð00 ¼ 0Þ.
The AOWAWA operator is monotonic, bounded, idempotent. However, it is not

commutative because the AOWAWA operator includes the WA. In addition,
AOWAWA operators do not satisfy Ag

p ¼ Fp and Aw
g ¼ Fw.

Theorem 1 (Monotonicity). Assume f is the AOWAWA operator, let a1; a2; . . .; anð Þ
and b1; b2; . . .; bnð Þ be two sets of arguments. If aj � bj, 8j 2 1; 2; . . .; nf g, then:

f a1; a2; . . .; anð Þ � f b1; b2; . . .; bnð Þ:

Proof. It is straightforward and thus omitted.
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Theorem 2 (Idempotency). Assume f is the AOWAWA operator, if aj ¼ a,
8j 2 1; 2; . . .; nf g, then:

f a1; a2; . . .; anð Þ ¼ a:

Proof. It is straightforward and thus omitted.

Theorem 3 (Bounded). Assume f is the AOWAWA operator, then:

Min aj

 � � f a1; a2; . . .; anð Þ � Max aj


 �
:

Proof. It is straightforward and thus omitted.

5 Multi-expert Decision Making Model Based on Different
Schemes of Aggregation Processes

In this section, some multi-expert decision making models based on classical and
alternative aggregation schemes are presented. First, the majority concept of Pasi and
Yager’s method which is originally based on classical aggregation scheme is extended
to the alternative scheme. Here, the multi-expert decision making model using Pasi and
Yager’s method with respect to classical scheme is stated as MEDM-PY I and for
alternative scheme is denoted as MEDM-PY II. Secondly, Bordogna and Sterlacchini’s
method which is based on alternative scheme is modified to the case of classical
method. Here, the MEDM-BS I represents decision making model using the alternative
scheme and MEDM-BS II denoted as the method based on classical scheme. Moreover,
for the aggregation process of criteria, each of the weighting methods based on uni-
fication of WA and OWA are implemented for comparison purpose.

5.1 The Proposed Alternative OWAWA Operator

Stage I: Internal aggregation (Local aggregation)

Step 1: First, a decision matrix for each expert Dh; h ¼ 1; 2; . . .; k, is constructed as
follows:

C1 . . . Cn

Dh ¼
A1

..

.

Am

ah11 � � � ah1n

..

. . .
. ..

.

ahm1 � � � ahmn

0
BB@

1
CCA;

ð26Þ

where Ai indicates the alternative i i ¼ 1; 2; . . .;mð Þ and Cj denotes the
criterion j j ¼ 1; 2; . . .; nð Þ, and ahij with ahij 2 0; 1½ � denotes the preferences
for alternative Ai with respect to criterion Cj.
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Step 2: Determine the weighting vector for each expert using the unification of WA
and OWA. All the weighting methods can be implemented such as in
Eqs. (17)–(25). In this step, the attitudinal character of experts reflects the
proportion of criteria used under consideration.

Step 3: Aggregate the judgment matrix of each expert by the weighting vector in
Step 2. At this stage, each expert derives the ranking/priorities of all alter-
natives individually (individual experts’ judgments).

Stage II: External aggregation (Global aggregation)
With respect to the type of aggregation method, the consensus measure for the

majority of experts can be calculated as follows:

(A) Pasi and Yager’s method: MEDM-PS I (Homogeneous group decision making)

Step 4A: Determine the inducing variable using the Eqs. (6)–(7) or in case of the
values are very close to each other, use the modified support function such
in Eq. (10).

Step 5A: Calculate the weighting vector which represents the majority of experts
using the Eq. (8) based on quantifier “most” such in Eq. (9). In this case, the
weights are considered as equal for all experts.

(B) Modified version of Bordogna and Sterlacchini’s method: MEDM-BS I
(Heterogeneous group decision making process).

Step 4B: Determine the inducing variable using the Eq. (11) or in case of the values
are very close to each other use the similarity measure such in Eq. (16).

Step 5B: Calculate the weighting vector using the Eqs. (14)–(15). In this case, the
weights of experts or trust degrees are associated to each expert.

5.2 The Proposed Alternative OWAWA Operator

Stage I: External aggregation (Local aggregation)

Step 1: By the similar way, a decision matrix for each expert is constructed such in
Eq. (26). Then the aggregation of majority of experts can be implemented
using one of the methods as follows:

(A) Bordogna and Sterlacchini’s method: MEDM-BS II

Step 2A: Determine the inducing variable such in Step 4B of classical scheme. But,
instead of aggregate the opinion of experts with respect to each option, in
this step, the aggregation process is conducted on each criterion.

Step 3A: Calculate the weighting vector such in Step 5B of classical scheme using the
values of inducing variable in Step 2A.

(B) Extension of Pasi and Yager’s method: MEDM-PS II

Step 2: Determine the inducing variable such in Step 4A of classical scheme. But,
instead of aggregate the opinion of experts with respect to each option, here,
the aggregation process is conducted on each criterion.

Step 3: Calculate the weighting vector such in Step 5A of classical scheme using the
values of inducing variable in Step 2B.
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Stage II: Internal aggregation (Global aggregation)

Step 4: Determine the weighting vector using the unification of WA and OWA such
in Eqs. (17)–(25).

Step 5: Finally, aggregate the judgment matrix of majority of experts by the derived
weighting vector. Here, the proportion of criteria is respected to the attitu-
dinal character of majority of experts.

6 Numerical Example

In the following, a numerical example is presented. An investment selection problem is
studied where a group of experts are assigned for the selection of an optimal strategy.

Different cases of multi-expert decision making methods are analyzed, in particular
with respect to aggregation process of majority opinions of experts based on different
schemes (namely classical and alternative schemes), and also on different weighting
methods. Note that with this analysis, the optimal choices will be obtained depend on
the scheme and aggregation operator used in each particular case. As can be seen each
scheme and aggregation operator leads to different results and decisions.

Assume that a company plans to invest some money in a region. At first, they
consider five possible investment options as follows: A1 ¼ invest in the European
market, A2 ¼ invest in the American market, A3 ¼ invest in the Asian market,
A4 ¼ invest in the African market, A5 ¼ do not invest money.

In order to evaluate these investments, the investor has brought together a group of
experts Ek . This group considers that each investment option can be described with the
following characteristics: C1 ¼ benefits in the short term, C2 ¼ benefits in the
mid-term, C3 ¼ benefits in the long term, C4 ¼ risk of the investment, C5 ¼ other
variables.

The available investment strategies, depending on the characteristic Ci and the
option Ai for each expert are shown in Table 1.

The aggregated results of the different approaches are presented in the Table 2 and
their rankings are given in Table 3. Should be noted that in this case, all the criteria are
set to have equal degrees of importance and the experts’ weights are given as 0.3, 0.1,
0.1, 0.4, 0.1 for expert E1, E2, E3, E4 and E5, respectively for MEDM-BS I and
MEDM-BS II. While for MEDM-PY I and MEDM-PY II the experts’ weights are
considered as equal.

As can be seen, there is a slight difference between the results which derived from
both soft majority aggregation approaches with respect to different decision schemes.
The majority opinion of individual experts which calculated based on the classical
scheme provided A4, A2, A1, A5 and A3 as ranking for both methods. While the
majority opinions computed with respect to alternative scheme gave the ranking of A4,
A1, A5, A2 and A3 for both methods. Hence, the results show the effect of different
decision schemes in ranking the options.
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Table 1. Available investment strategies of each expert, Eh

Table 2. The aggregated results

MEDM-PY I MEDM-PY II MEDM-BS I MEDM-BS II

A1 0.7143 0.7726 0.7169 0.7989
A2 0.7178 0.6992 0.7200 0.6580
A3 0.6280 0.6361 0.5952 0.6057
A4 0.7886 0.8027 0.7800 0.8000
A5 0.7029 0.7225 0.6800 0.6969

Table 3. The ranking of financial strategies

Method Ranking

MEDM-PY I A4 > A 2 > A1 > A5 > A3
MEDM-PY II A4 > A1 > A5 > A2 > A3
MEDM-BS I A4 > A 2 > A1 > A5 > A3
MEDM-BS II A4 > A1 > A5 > A2 > A3
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As further analysis, we extend the method of Bordogna and Sterlacchini II to
include the unification of WA and OWA weights with different criteria’ weights.
Tables 4 and 5 show the aggregated results and the final ordering of the financial
strategies.

The weighted average, p for each criteria is given as 0.1, 0.2, 0.3, 0.3, 0.1 and the
ordering weights, w which represent ‘most’ of the criteria is given as 0.0044, 0.0356,
0.1200, 0.2844, 0.5556. As can be seen, the proposed AOWAWA weights with b ¼
0:5 provided the ranking similar to the IWA weights. While the rest weighting tech-
niques shown slightly different results.

7 Conclusions

In this paper, the analysis on extensions of multi-expert decision making model based
on ordered weighted average (OWA) operators is conducted. The focus is on the
aggregation processes with respect to criteria and individual judgment of experts. First,
the soft majority concept based on induced OWA (IOWA) and linguistic quantifiers to
aggregate the experts’ judgments is analyzed, in which concentrated on the classical
and alternative schemes of decision making model. Then, analysis on the weighting
methods related to integration of weighted average (WA) and OWA is conducted. The
alternative weighting technique has been proposed which is termed as alternative
OWA-WA (AOWAWA) operator. The multi-expert decision making model based on
both aggregation processes then has been developed and a comparison is made to see
the effect of different weighting techniques in aggregating the criteria and the results of
using different schemes for the fusion of soft majority opinions of experts. A numerical
example in the selection of investments is provided for the comparison purpose.

Table 4. The aggregated results with respect to MEDM-BS II model

OWA
(Q)

WOWA
(Q)

HA IWA OWA
WA

AOWAWA OWA
(FSM)

OWA
(OA)

A1 0.880 0.764 1.193 0.872 0.845 0.851 0.355 0.255
A2 0.914 0.421 1.097 0.942 0.767 0.853 0.343 0.196
A3 0.678 0.586 0.922 0.685 0.652 0.663 0.301 0.164
A4 0.947 0.687 1.210 0.965 0.868 0.910 0.360 0.211
A5 0.838 0.657 1.066 0.806 0.778 0.785 0.330 0.234

Table 5. The ordering of financial strategies

Ordering Ordering

OWA (Q) A3 > A 2 > A5 > A1 > A4 OWAWA A2 > A4 > A5 > A1 > A3
WOWA (Q) A1 > A5 > A4 > A2 > A3 AOWAWA A3 > A2 > A5 > A1 > A4
HA A2 > A3 > A5 > A1 > A4 OWA (FSM) A2 > A3 > A5 > A1 > A4
IWA A3 > A2 > A5 > A1 > A4 OWA (OA) A1 > A4 > A5 > A3 > A2
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