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a b s t r a c t 

We propose a multicriteria decision-making framework to support strategic decisions in forest manage- 

ment, taking into account uncertainty due to climate change and sustainability goals. In our setting, 

uncertainty is modeled by means of climate change scenarios . The decision task is to define a harvest 

scheduling that addresses, simultaneously, conflicting objectives: the economic value of the strategy, the 

carbon sequestration, the water use efficiency for biomass production and the runoff water, during the 

whole planning horizon. While the first objective is a classical managerial one, the later tree objectives 

aim at ensuring the environmental sustainability of the forest management plan. 

The proposed framework is a combination of Goal Programming and Stochastic Programming. Depend- 

ing on the decision-maker preferences, the model produces harvest scheduling policies that yield differ- 

ent trade-offs among the conflicting criteria. Furthermore, we propose the incorporation of a risk-averse 

component in order to improve the performance of the obtained policies with respect to their economical 

value. 

This novel approach is tested on a real forest, located in central Portugal, which is comprised of a large 

number of stands (aggregated into 21 strata), climate change is modeled by 32 scenarios, and a planning 

horizon of 15 years is considered. The obtained results show the capacity of the designed framework to 

provide a pool of diverse solutions with different trade-offs among the four criteria, giving to the manager 

the possibility of choosing a harvesting policy that meets her/his requirements. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction and motivation 

Strategic, tactical and operational planning in forest manage-

ent usually involves conflicting objectives and pre-defined eco-

omical and operational goals that guarantee the viability of a

roject. Typically, decision-makers need to define harvest schedul-

ng plans (or more generally forest management plans) for mid-

nd long-term horizons, i.e., they need to decide on when and

ow the different units comprising the forest must be harvested.

uch decisions are made taking into account the variability of
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arket conditions and resource availability. Nowadays, climate

hange adds a higher dimension of complexity. On the one hand,

here is more uncertainty regarding the growth of the forest (and

onsequently, the productivity); and on the other hand, it entails

he introduction of new environmental regulations to ensure the

ustainability of this economical activity. 

Climate change may impact substantially the forest sector in

urope and elsewhere ( Kirilenko, Sedjo, 2007 ; Lindner, Maroschek,

etherer, & Kremer, 2010 ). Several studies indicate that win-

ers will become warmer and both the length of the dry sea-

on and the frequency of extreme events, like forest fires, will

ncrease ( Christensen, Hewitson, Busuioc, & Chen, 2007 ). Other

tudies indicate that these trends will impact the growth of the

rees (see, e.g., Barreiro, 2011; Kellomäki & Vaisanen, 1997 ). This

ntroduces additional uncertainty in future forecast of timber pro-

uction. In addition, there is uncertainty in the climate itself. In
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fact, the magnitude and regional exposure are subject to substan-

tial uncertainty (see Solomon, 2007 ). 

Moreover, mitigating the impact of the forest industry on the

environment is crucial because, as most of human activities, it con-

tributes to the loss and degradation of biosphere balances (see

Koskela, 2011 ); this, ultimately, leads towards the very causes of

climate change ( Hardy, 2003 ). Such relation demands for the de-

sign of sustainable management plans, which must ensure, as it is

stated by Ministerial Conference on the Protection of Forests in Eu-

rope in 1992 ( Spilsbury, 2005 ), “the use of forests and forest lands in

a way, and at a rate, that maintains their biodiversity, productivity,

regeneration capacity, vitality and their potential to fulfill, now and in

the future, relevant ecological, economic, and social functions, at local,

national, and global levels, and that does not cause damage to other

ecosystems ”. In other words, the climate change process has raised

the need for the design of sustainable policies and operations in

the forestry and related industries. In this sense, the Food and

Agriculture Organization initiated in 1992 a series of initiatives to

promote sustainable practices both in the exploitation and preser-

vation of forests ( Sustainable Forest Management Initiative (FAO),

2016; Sustainable Forest Management Toolbox (FAO), 2016 ). In this

paper, sustainability is approached by designing harvesting policies

that, along with the optimization of the forest’s economical value,

meet other requirements such as minimum quotas of carbon (CO 2 )

sequestration, minimum levels of water use efficiency, maximum

levels of water runoff (which is related to land erosion), minimum

volume of standing forest at the end of the planning horizon, and

even production of timber along the years; more details will be

given in the remainder of the paper. 

From an industrial point of view, addressing climate change is a

challenge to forest managers. Harvest scheduling plans that fail to

anticipate climate change impacts may end up in increasing costs

(e.g., penalties included in the timber supply contracts) due to the

incapacity to satisfy the timber demand from the industry. Histor-

ically, forest managers and industry have used empirical models

to predict forest growth. These models are based in historic in-

ventory data; they assume that future growing conditions will be

similar to those of the past ( Landsberg & Waring, 1997 ). There-

fore they are inadequate as a mean to support decision-making

under climate change. Thus, forest managers need growth and

yield models, such as a process-based models, that are sensitive to

environmental changes. These models are based on physiological

processes controlled by climatic and edaphic factors which make

them useful tools to predict forest growth under changing environ-

mental conditions (see, e.g., Kellomäki & Vaisanen, 1997 ). In this

context, Rammer et al. (2013) developed a decision support sys-

tem (DSS) toolbox that includes a vulnerability assessment tool as

well as an optimization tool to generate optimized management

plans at a forest-wide level. More recently, Garcia-Gonzalo, Borges,

Palma, and Zubizarreta-Gerendiain (2014) developed an alternative

DSS to help forest managers to address climate change in forest

planning. This DSS combined operations research techniques with

a process based model in order to optimize strategic management

plans under uncertainty of climate change. 

Addressing climate change when developing management plans

may be even harder if multiple-objectives are involved in the plan-

ning problem as usually decision-makers have to consider a wide

range of often conflicting criteria. In this context, the efficiency

and effectiveness of the managements plans developed may be en-

hanced if (previous) information on the trade-offs between the dif-

ferent criteria is available to the decision maker. This calls for the

use of approaches to represent and solve multi-criteria forest man-

agement planning problems (see, e.g., Martell, Gunn, & Weintraub,

1998 ). 

According to the Portuguese forest Inventory, eucalyptus is the

most important forest species in Portugal, extending over 812,0 0 0
hectares] corresponding approximately to 26% of the forest terri-

ory ( Ministério da Agricultura, 2014 ). Eucalyptus is a fast growing

pecies which provides the main raw material used by the pulp

nd paper industry in Portugal. This industry is extremely impor-

ant to the Portuguese (export) economy. This importance explains

he concerns about the uncertainty in future timber supply due to

limate change. 

In this paper, we consider a problem involving medium-term

15 years) forest planning considering multiple criteria (embodied

y objectives) and climate change uncertainty. The study area is

 eucalyptus forest located in central Portugal which provides raw

aterial for the pulp and paper industry. The main decisions in-

olved are related to which stands (units) to harvest in each pe-

iod of the planning horizon. The management problem in this

ase study area was characterized during interviews to stakehold-

rs in the frame of the consultation process described by Marques,

orges, Garcia-Gonzalo, Lucas, and Melo (2013) . The stakeholders

nvolved in the interviews included the forest industry, as well

s non-industrial private forest owners, and forest owner associ-

tions. During the interviews, stakeholders acknowledged the fact

hat forests provide multiple sustainability services beyond tim-

er production. Besides the maximization of economic returns,

takeholders agreed upon important sustainability goals of forest

lanning: maximization of carbon stocks, maximization of water

se efficiency, and reduction of runoff water. Moreover, they de-

lared the importance of regulating harvest flows while satisfy-

ng timber demand. The role of forest management in maintain-

ng forest carbon stocks, which in the long run might help to

itigate climate change, has been acknowledged (see, e.g., Jarvis,

brom, Linder, Griffiths, & Jarvis, 2005 ). Additionally, minimizing

unoff water may be considered as a proxy for minimizing po-

ential erosion in the study area; runoff water corresponds to the

ose of water from precipitation, that flows on the surface of the

and. 

Therefore, the problem to be solved can be summarized as fol-

ows: find a set of mid-term harvesting policies that: (i) perform,

imultaneously, reasonably well for the different objectives afore-

entioned; (ii) incorporate and tackle the presence of uncertainty

nduced by climate change in the different ecological dynamics of

he studied forest; and (iii) satisfy a set of operative requirements

hat must be met regardless of the realized uncertain data. 

There are many examples of addressing uncertainty in forest

lanning (see Badilla, Watson, Weintraub, Wets, and Woodruff,

014; Pasalodos-Tato et al., 2013; Quinteros, Alonso, Escudero,

uignard, and Weintraub, 2006; Yousefpour et al., 2012 , for thor-

ugh reviews). In the particular case of climate change, the un-

erlying presence of uncertainty has been typically managed by

eans of scenario analysis (see, e.g., Eriksson, 2006; Garcia-

onzalo, Borges, Palma, & Zubizarreta-Gerendiain, 2014; Lasch,

adeck, Suckow, Lindner, & Mohr, 2005; Lindner, Garcia-Gonzalo,

olstrom, Green, & Reguera, 2008; Nitschke & Innes, 2008; Seidl,

ammer, Jäger, & Lexer, 2008 ); nonetheless, alternative uncertainty

odels, such as fuzzy sets have been also used (see, e.g. Krcmar,

tennes, van Kooten, & Vertinsky, 2001 ). 

There are a couple of examples of DSS developed to address

limate change in harvest scheduling problems. In Krcmar, Stennes,

an Kooten, and Vertinsky (2001) , the authors present a case study

n which timber yield as well as carbon sequestration are sub-

ect to uncertainty; the goal is to find a harvest scheduling plan

hat maximizes a fuzzy-based measure of the economic returns,

hile satisfying carbon sequestration quotas and other operative

equirements. Later, Eriksson (2006) proposed Stochastic Program-

ing models for tackling scenario-based uncertainty in the growth

nd yield projections due to climate uncertainty in later peri-

ds. Moreover, the above mentioned work ( Garcia-Gonzalo, Borges,

alma, & Zubizarreta-Gerendiain, 2014 ), also includes the inherent
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ncertainty induced by climate change as crucial element of the

ecision-making process. 

As in many other application fields, the use of multicriteria

echniques is a quite developed area in forest planning (see, e.g.

omero, 2004; Tóth, McDill, & Rebain, 2006; Tóth & McDill, 2009 ).

orges et al. (2014) further demonstrated the potential of adaptive

earch methods (developing Pareto fronts between multiple crite-

ia) to enhance decisions when three or more criteria are consid-

red. Moreover, some application driven research has lead to mod-

ling and algorithmic tools combining both optimization under un-

ertainty and multicriteria models (see Diaz-Balteiro and Romero,

008 , and the references therein). The issues related to sustainable

orest management planning have already call for the use of mul-

iciteria analysis (see, e.g., Sheppard and Meitner, 2005; Spilsbury,

005 , and the references therein). A similar situation also stands

or industrial sectors associated to forestry; for instance, several

ulticriteria models have been proposed for addressing sustain-

bility issues in the forest biomass energy generation industry (see

ristobal, 2011; Scott, Ho, & Dey, 2012; Vaskovi ́c, Halilovi ́c, Gvero,

edakovi ́c, & Musi ́c, 2015 ). 

Despite of all this research, we believe that there is still need

or providing decision-making tools for the development of sus-

ainable forest management plans considering climate change un-

ertainty, including more sustainability criteria than those consid-

red in literature, and capable to be extended by incorporating

isk-aversion measures and the possible occurrence of catastrophic

vents. 

.1. Our contribution and outline of the paper 

From the methodological point of view, the main contributions

f this paper consist of demonstrating how existing techniques can

e suitably combined in order to obtain ad-hoc models, solutions,

nd analysis in the decision-making processes of forest manage-

ent when taking into account the effect of climate change. More

recisely, we identify four elements comprising the methodologi-

al contribution: first, we propose a modeling framework for mul-

icriteria harvest scheduling problems under uncertainty; the pro-

osed approach, that we refer to as Stochastic Goal-Based Harvest

cheduling problem, combines Goal Programming and Stochas-

ic Programming. Second, after incorporating the decision-maker

references into the resulting optimization model, we present a

ethodology for exploring the pool of obtained solutions empha-

izing the trade-offs among them with respect to the different cri-

eria. Third, we extend the proposed model by incorporating a risk-

verse component with the aim of reducing the worst-case results

ith respect to the criterion that accounts for the economical value

f the solutions. And fourth, we demonstrate how the proposed

odeling setting is able to hedge not only against forest dynam-

cs uncertainty but also against the eventual occurrence of catas-

rophic events such as fires. 

The proposed methodology produces harvesting policies that

upport the decision-making process of forest managers. As it will

e shown later, the obtained solutions yield harvesting plans that

onsider different possible realizations of climate conditions and

otential catastrophic events. This enables to the decision-makers

o have insights about the economical and environmental out-

omes of exploiting a given forest. 

The paper is organized as follows. In Section 2 we present the

tochastic Goal-Based Harvest Scheduling problem (SGH), and the

ethodological and modeling elements that comprised it. The de-

cription of the case study and the results obtained when ap-

lying the proposed methodology are presented in Section 3 .

n Section 4 we first present how the Conditional Value-at-Risk

CVaR) concept can be incorporated into the proposed model, and

e then report the obtained results. The capacity of the proposed
odels to manage the occurrence of catastrophes, such as fires, is

nvestigated in Section 5 . Finally, conclusions and paths for future

ork are presented in Section 6 . 

. Stochastic goal based approach for harvesting management 

The decision-making context addressed in this paper can be de-

cribed as follows. The decision-maker has to develop a harvesting

anagement model for a forest area comprised by several stands;

ypically, these stands are grouped into homogeneous strata, i.e.,

ts elements share common characteristics such as species and age.

he stands conforming each stratum do not need to be adjacent.

or this forest we must define a yearly-based harvesting policy on

 planning horizon of T years; in other words, we must define the

roportion of each strata that will be harvested in a specific year

period) during the T years. The performance or quality of a har-

esting policy, whose feasibility is constrained by a set of require-

ents, is assessed not only by economical criteria (e.g. net present

alue, timber production), but also by environmental ones. In this

ork, we consider three environmental criteria: (i) carbon stock

C S ); it is measured by the mass of atmospheric carbon, from car-

on dioxide (CO 2 ), that is stored long-term by each of the forest

nits. (ii) Runoff water (RW); it corresponds to the volume of wa-

er from rain that, instead of being absorbed by the soil of a forest

nit, flows over its surface. (iii) Water use efficiency (WUE); it is a

atio between the amount of water consumed by a forest unit, in

 given period of time, and the amount of biomass growth of the

nit in the same period. 

The growth of the forest is a parameter that it is intrinsically

ubject to uncertainty. Nonetheless, due to the effect of climate

hange, the growth dynamic become considerably more fluctuat-

ng since the mid-term environmental conditions are dramatically

uctuating as well. This means that not only the growing profile,

ut also its needs of water, its capacity to retain carbon, etc., are all

ndicators subject to uncertainty. Therefore, our objective is to find

 harvesting policy that performs reasonably well for all economi-

al and environmental criteria simultaneously, taking into account

ll the possible future outcomes. Because this is a complex multi-

riteria problem, such solution shall be found by means of an opti-

ization framework that takes into account the uncertainty due to

he effect of the climate change and uses multi-criteria techniques

ith a Stochastic Programming component. The planning decisions

nvolve how much timber volume of each unit will be harvested

n each period. In addition, timber flows constraints are used to

nsure a sustainable flow of timber to the pulp mills. 

.1. Preliminaries: Goal Programming and Stochastic Programming 

We will now present basic elements of two key components of

ur modeling framework; Goal Programming and Stochastic Pro-

ramming. Although we will provide generic definitions, these are

nough to understand how these two approaches are articulated in

ur model. 

oal Programming. Generically speaking, in a Goal Programming

GP) problem we have a set Q of goals or criteria (e.g, profit, cost,

roduction volume, efficiency, etc.). Decision variables are grouped

nto a n -sized vector x ∈ R 

n , and the feasibility set is given by F .

or a given criterion q ∈ Q and a feasible solution x ∈ F , let f q ( x )

e the achieved value of goal q . The decision maker sets a nu-

eric target level M q , for each goal, representing the ideal outcome

hat an optimal solution should achieve with respect to that goal.

or each criterion q ∈ Q , we define the following goal constraint

f q (x ) + n q − p q = M q , where n q is the negative deviation variable of

oal q (it represents the under -achievement of the target value M q ),

nd p q is the positive deviation variable of goal q (it represents the
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over -achievement of the target value M q ). Depending on the type

of goal, one would like to find a solution x ∈ F such that n q → 0

(we want to achieve at least M q ), or p q → 0 (we want to achieve

at most M q ), or n q + p q → 0 (we want to achieve exactly M q ). The

resulting Goal Programming problem is given by 

min { g(x , n , p ) | f q (x ) + n q −p q =M q , ∀ q ∈ Q , x ∈ F and p , n ≥ 0 }
(1)

where g ( ·) is, typically, a function that penalizes the deviation vari-

ables depending on the type of goal. For further details on GP and

extensions, we refer the reader to Jones and Tamiz (2010) . 

Note that there are other goal-based models which broaden the

scope of GP by assessing the quality of a solution using alterna-

tive measures; two prominent examples correspond to the VIKOR

and the TOPSIS approaches (see Opricovic and Tzeng, 2004 , for a

comprehensive presentation of both models). 

Stochastic Programming. Suppose that we have an optimization

problem where decision are to be made in T stages. Future val-

ues of the objective function coefficients c ω (prices, costs, etc.) are

subject to uncertainty, which is modeled by a set of discrete sce-

narios �, such that ρω ≥ 0 indicates the probability that scenario

ω ∈ � occurs ( 
∑ 

ω∈ � ρω = 1 ). Extending the notation presented

before, let (x 1 , . . . , x ω , . . . , x | �| ) ∈ R 

n ×T ×| �| be a collection of de-

cision variable vectors, such that x ω 
it 

is the decision corresponding

to the i th decision element at period t ∈ { 1 , . . . , T } if scenario ω ∈
� is realized. Likewise, let F(T , ω) be the feasibility set to which

any vector x ω must belong. If the aim is to find an optimal policy

(x 1 ∗, . . . , x ω∗, . . . , x | �|∗) that minimizes the expected value of the

corresponding objective function, one has to solve the following

Stochastic Programming problem 

min 

{ ∑ 

ω∈ �
ρω c ω x 

ω | x 

ω ∈ F(T , ω) , ∀ ω ∈ � and (x 

ω , x 

ω ′ ) 

verify non-anticipativity, ∀ ω , ω 

′ ∈ �

} 

. (2)

In this generic model, every pair of decisions x ω and x ω 
′ 
, ∀ ω , ω 

′ 
∈ � must satisfy the so-called non-anticipativity constraints; they

ensure that if two different scenarios ω and ω 

′ are identical up

to a given stage, then decisions x ω and x ω 
′ 

must be identical up

to that stage ( Rockafellar & Wets, 1991 ). Model (2) has the typical

structure of a Stochastic Programming problem. For a classical text-

book on fundamental topics of SP we refer to Birge and Louveaux

(2011) . 

2.2. The stochastic goal-based harvesting problem 

Let I be the set of strata, T = { 1 , . . . , t max } be the set of peri-

ods (or stages ), and � be the set of scenarios. For a given i ∈ I ,

t ∈ T and ω ∈ �, NPV 

ω 
i,t [euro] is the net present value obtained

by harvesting stratum i at period t if the scenario ω is realized.

Likewise, V h ω 
i,t 

[cubic meter] is the available volume of wood that

can be harvested from stand i , at period t in case scenario ω is re-

alized. The volume of standing timber in stratum i , at the end of

the planning horizon, in case it is harvested in period t , if scenario

ω occurs, is denoted by V f ω 
i,t 

[cubic meter]. C S 
ω 
i,t [ton] is the total

amount of carbon that it is captured by stratum i under scenario

ω, during the whole planning horizon, in case it is harvested in pe-

riod t . RW 

ω 
i,t [liter] is the total volume of water that runs off from

stratum i , if scenario ω is realized, if it is harvested in period t . Fi-

nally, WUE ω i,t [gram per liter] is the average of water use efficiency

for biomass production (measured in [gram per liter] or grams of

growth forest biomass per liters of water), induced by harvesting
tratum i in period t in case scenario ω occurs. For the purposes of

his study, our goal set is given by Q = { NPV , C S , RW , WUE } . 
As operative requirements, let Dmin t [cubic meter] be the min-

mum demand of timber volume that must be satisfied in period

 ∈ T (regardless the realized scenario), let Vol T [cubic meter] be

he minimum total volume of standing forest required at the end

f the planning horizon t max , and let η ∈ [0, 1] be a flow produc-

ion factor such that the production at period t must be between

(1 − η) and (1 + η) times the one of period t + 1 . 

Let x ω 
i,t 

∈ [0 , 1] be the portion of stratum’s timber volume i ∈ I

hat is harvested, in period t ∈ T , if scenario ω ∈ � is realized.

or a given scenario ω ∈ �, a feasible harvesting decision x ω ∈ [0,

] | I | × | T | is such that it satisfies the following constraints ∑ 

t∈ T x 
ω 
i,t 

= 1 , ∀ i ∈ I ( X 

ω . 1 )

∑ 

i ∈ I V h 

ω 
i,t 

x ω 
i,t 

≥ Dmin t , ∀ t ∈ T ( X 

ω . 2 )

 

i ∈ I 

∑ 

t∈ T 
V f ω i,t x 

ω 
i,t ≥ V ol T , ( X 

ω . 3 )

∑ 

i ∈ I V h 

ω 
i,t 

x ω 
i,t 

≤ (1 + η) 
∑ 

i ∈ I V h 

ω 
i,t+1 

x ω 
i,t+1 

, ∀ t ∈ T \ { t max } 
( X 

ω . 4 )

∑ 

i ∈ I V h 

ω 
i,t 

x ω 
i,t 

≥ (1 − η) 
∑ 

i ∈ I V h 

ω 
i,t+1 

x ω 
i,t+1 

, ∀ t ∈ T \ { t max } 
( X 

ω . 5 )

onstraint ( X 

ω .1) imposes that every stratum should be completely

arvested during the planning horizon. Constraint ( X 

ω .2) ensures

hat, at each period t ∈ T , the minimum demand Dmin t has to be

atisfied. Constraint ( X 

ω .3) forces that, at the end of the planning

orizon, the total volume of standing forest is greater or equal than

ol T . And constraints ( X 

ω .4) and ( X 

ω .5) model the fact that the

roduction in period t + 1 must be at most (1 + η) and at least

(1 − η) times the production of period t , respectively. 

Besides, any feasible vector x ω must also satisfy the so-called

on-anticipativity constraints, i.e., 

 

ω 
t = x 

ω ′ 
t , ∀ t ∈ T \ { t max } , ∀ ω , ω 

′ ∈ G 

t ⊆ �, ( X 

ω . 6 )

here G 

t corresponds to the set of scenarios that are indistin-

uishable up to period t . Complementary, one can also state that

hese constraints ensure that at each period t , the harvesting deci-

ions should depend only on information available at the time of

he decision, i.e., on an observed realization of the economical and

cological parameters up to t , and not on future observation. The

onsideration of these constraints is independent of the particu-

ar stochastic behavior of the uncertain parameters; hence, even if

cenarios are equiprobable, they must be included as long as some

cenarios share common branches along the scenario tree ( Shapiro,

entcheva, & Ruszczy ́nski, 2009 ). 

For the sake of simplicity, we will denote by �( �) the set of all

ectors X(�) ≡ (x 1 , . . . , x | �| ) ∈ [0 , 1] | I|×| T |×| �| that simultaneously

atisfy ( X 

ω .1) –( X 

ω .6) for each ω ∈ �. An element X ( �) ∈ �( �) will

e referred to as a harvesting policy . 

Let M NPV be the target (or ideal) value, fixed by the decision

aker, of the total net present value to be obtained from the

hole forest as result of a harvesting policy during the whole plan-

ing horizon. Note that this target value is scenario-independent.

ikewise, let M C S 
be the target value of the total amount of se-

uestrated carbon, M RW 

be the target value of the total volume of

unoff water, and M WUE be the target value of the average water

se efficiency. A procedure for obtaining sound values for these

argets will be discussed later. 
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Deviation variables are defined as follows. d ω 
NPV , − (resp. d ω 

NPV , + )
s total shortfall (resp. surplus) of a harvesting policy, under sce-

ario ω, with respect to the target value M NPV ; in the same way,

 

ω 
C S , − (resp. d ω 

C S , + ) is the shortfall (resp. surplus) with respect to the

arget value M C S 
, d ω 

RW , − (resp. d ω 
RW , + ) is the shortfall (resp. surplus)

ith respect to the target value M RW 

, and d ω 
WUE , − (resp. d ω 

WUE , + ) is
he shortfall (resp. surplus) with respect to the target value M WUE .

ccording to the definitions presented in Section 2.1 , an optimal

arvesting policiy should yield a solution such that the deviation

ariables verify d ω 
NPV , − → 0 , d ω 

C S , − → 0 , d ω 
RW , + → 0 and d ω 

WUE , − → 0 .

Decision-maker preferences are given by the criterion weights

 NPV , w C S 
, w RW 

and w WUE . These weights must verify w NPV +
 C S 

+ w RW 

+ w WUE = 1 . 0 , i.e., they must produce a linear con-

ex combination among the criteria performance. As it will be

lear when presenting the optimization model, this relationship

mong weights allows a more effective analysis when compar-

ng results obtained for different weight configurations w Q =
 w NPV , w C S 

, w RW 

, w WUE } . 
The resulting Stochastic Goal Programming model reads as fol-

ows: 

 

∗(�) : min �(X (�)) 

= 

∑ 

ω∈ �
ρω 

(
w NPV 

d ω 
NPV , −

M NPV 

+ w C S 

d ω 
C S , −

M C S 

+ w RW 

d ω 
RW , + 

M RW 

+ w WUE 

d ω 
WUE , −

M WUE 

)
(SGP.1) 

.t. 
∑ 

i ∈ I 

∑ 

t∈ T 
NPV 

ω 
i,t x 

ω 
i,t + d ω NPV , − − d ω NPV , + = M NPV , ∀ ω ∈ � (SGP.2) 

∑ 

i ∈ I 

∑ 

t∈ T 
C S i,t 

ω x ω i,t + d ω C S , − − d ω C S , + = M C S , ∀ ω ∈ � (SGP.3) 

∑ 

i ∈ I 

∑ 

t∈ T 
RW 

ω 
i,t x 

ω 
i,t + d ω RW , − − d ω RW , + = M RW 

, ∀ ω ∈ � (SGP.4) 

∑ 

i ∈ I 

∑ 

t∈ T 
WUE 

ω 
i,t x 

ω 
i,t + d ω WUE , − − d ω WUE , + = M WUE , ∀ ω ∈ � (SGP.5) 

 

ω 
NPV , −, d ω C S , −, d ω RW , −, d ω WUE , − ≥ 0 , ∀ ω ∈ � (SGP.6) 

 

ω 
NPV , + , d 

ω 
C S , + , d 

ω 
RW , + , d 

ω 
WUE , + ≥ 0 , ∀ ω ∈ � (SGP.7) 

 (�) ∈ �(�) (SGP.8) 

n this model, objective function (SGP.1) corresponds to the ex-

ected value of the weighed sum of the deviations (positive or

egative depending on the type of goal), across all scenarios, in-

uced by the optimal harvesting policy X ∗(�) = arg min �(X(�)) .

onstraints (SGP.2) –(SGP.5) account for each goal and the level in

hich their target values are achieved or not. For instance, if for a

iven ω ∈ � a solution x ω is such that 
∑ 

i ∈ I 
∑ 

t∈ T NPV 

ω 
i,t x 

ω 
i,t 

≥ M NPV ,

hen the target value is achieved or surpassed, the correspond-

ng shortfall variable d ω 
NPV , − will be 0, and the term w NPV 

d ω 
NPV , −

M NPV 

ill not contribute to the objective value. On the contrary, if
 

i ∈ I 
∑ 

t∈ T NPV 

ω 
i,t x 

ω 
i,t 

< M NPV , then the target value is not achieved,

o the shortfall variable d ω 
NPV , − will be greater than 0, and the

erm w NPV 

d ω 
NPV , −

M NPV 
will contribute to the objective value. Constraints

SGP.6) and (SGP.7) are the sign constraints on negative and posi-

ive deviation variables, respectively. Finally, constraint (SGP.8) en-

ures the feasibility of the harvesting policy. In the following,
e will refer to problem (SGP.1) –(SGP.8) as the Stochastic Goal-

ased Harvesting Problem (SGH). Note that if | �| = 1 , then model

SGP.1) –(SGP.8) reduces to a classical Goal Programming model. 

Let X ( �) ∈ �( �) be a solution of (SGP.1) –(SGP.8) , obtained for

 given configuration of target values and a given weight setting

 Q . We can calculate the performance of each criterion q ∈ Q mea-

ured as the expected value of the total induced value. For in-

tance, for the NPV criterion, its performance is given by 

PV = 

∑ 

i ∈ I 

∑ 

t∈ T 

∑ 

ω∈ �
ρω NPV 

ω 
i,t x 

ω 
i,t . 

ikewise, the average deviation is given by 

 ̄NPV = 

∑ 

ω∈ �
ρω 

d ω 
NPV , −

M NPV 

. 

he same applies for the other criteria. 

elated work on Stochastic Goal Programming. Stochastic Goal Pro-

ramming models have been proposed in the literature (see, e.g.

ouni, Ben-Abdelaziz, & Martel, 2005; Aouni, Ben-Abdelaziz, &

orre, 2012; Ballestero, 2001; Bravo & Gonzalez, 2009 ). Most

f the models proposed in previous works are closely related

ith Chance-Constrained Programming, developed by Charnes and

ooper (1952) , Charnes and Cooper (1959) . The model based on

atisfaction functions presented in Aouni, Ben-Abdelaziz, and Mar-

el (2005) is complementary to ours. In their model the technol-

gy coefficients (e.g., NPV 

ω 
i,t ) are deterministic and the target values

re the ones subject to uncertainty; moreover, the whole model is

uild upon a strict assumption of normality of the stochastic be-

avior of the target values. For alternative models of multicrite-

ia Stochastic Programming we refer the reader to Ben-Abdelaziz

2012) and the references therein. 

Three complementary models to the one proposed in this pa-

er can be found in Eyvindson and Kangas (2014) . In that recent

ork, the authors consider uncertainty only in the initial forest in-

entory, and the goals correspond exclusively to economic ones:

he net present value of the sought harvest scheduling plan, and

he income obtained at each period. One of the key purposes of

hat work is to show, by comparing the solutions obtained by each

f their three models, the so-called value of information . One the

ne hand, the obtained results show that their models are able to

op with different levels of risk aversion of the decision makers;

nd on the other hand, the results show the importance of having

orrect estimations of the initial forest inventory and appropriate

haracterization of the sources of uncertainty. 

.3. A procedure for calculating robust target values 

A crucial issue when using GP is the definition of the target val-

es M q . Although these values are defined by the decision maker

nd correspond to an input of the problem, they should fall within

imits that consider the operational constraints of the problem and

he data of the instance. An inadequate definition of the target val-

es will not only induce, for instance, exaggeratedly large devia-

ions, but it will also hinder the practical interpretation of the ob-

ained solution. 

Moreover, in the case studied in this paper, we have that, for

 given criterion q (e.g., NPV) the deviations with respect to the

orresponding target value M q will differ among different scenarios

n �. Therefore, the definition of the target values should be such

hat it takes into account the performance of the different criteria

mong the different scenarios. 

In our framework, we use a methodology to obtain an interval

 M 

−
q , M 

+ 
q ] , from where to take M q , that accounts for the possible

utcomes of the criterion across all scenarios. For instance, for the

PV criterion the corresponding interval [ M 

−
NPV 

, M 

+ 
NPV 

] is calculated
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as follows: 

M 

−
NPV 

= min 

ω∈ �
max 

{ ∑ 

i ∈ I 

∑ 

t∈ T 
NPV 

ω 
i,t x 

ω 
i,t | ( X 

ω 
. 1) 

−( X 

ω 
. 5) and x 

ω ∈ [0 , 1] | I|×| T | 
} 

and 

M 

+ 
NPV 

= max 
ω∈ �

max 

{ ∑ 

i ∈ I 

∑ 

t∈ T 
NPV 

ω 
i,t x 

ω 
i,t | ( X 

ω 
. 1) 

−( X 

ω 
. 5) and x 

ω ∈ [0 , 1] | I|×| T | 
} 

. 

Clearly, M 

−
NPV 

corresponds to the minimum , across all scenarios ω ∈
�, maximum NPV that verifies the operational feasibility imposed

by constraints X 

ω .1 –( X 

ω .5) . Likewise, M 

+ 
NPV 

corresponds to the max-

imum , across all scenarios ω ∈ �, maximum feasible NPV. Generally

speaking, if criterion q is such that we aim at achieving at least the

target value, then the limits of the corresponding interval are de-

fined as 

M 

−
q = min 

ω∈ �
{ max { f q (x 

ω , ω) | x 

ω ∈ X } } and 

M 

+ 
q = max 

ω∈ �
{ max { f q (x 

ω , ω) | x 

ω ∈ X } } ;
and on the other hand, if criterion q is such that we aim at achiev-

ing at most the target value, then the limits of the corresponding

interval are defined as 

M 

−
q = min 

ω∈ �
{ min { f q (x 

ω , ω) | x 

ω ∈ X } } and 

M 

+ 
q = max 

ω∈ �
{ min { f q (x 

ω , ω) | x 

ω ∈ X } } . 
In both cases, f q ( x 

ω , ω) corresponds to the outcome of criterion q

induced by a feasible x ω ∈ X under scenario ω ∈ �. 

The interval [ M 

−
q , M 

+ 
q ] contains all the possible performances of

criterion q when, for each scenario ω ∈ �, an optimal policy can

be achieved without imposing any goal to the other criteria. This

is why we regard the values within [ M 

−
q , M 

+ 
q ] as robust target val-

ues, since they are all associated with optimal performances for

all scenarios. Nonetheless, the way these target value intervals are

calculated implies that it is very unlikely that when solving a mul-

ticriteria problem, such as the SGH, all targets will be simultane-

ously achieved. This procedure only ensures that, at some extent,

both the operational requirements and the uncertainty in the prob-

lem parameters are taken into account when defining the target

values, which contributes to the practical interpretation of the ob-

tained results. Note that this is one possible alternative to define

target values, and it is suitable in circumstances in which these

values are not known beforehand. Notwithstanding, there might be

a regulation that defines, for instance, the desired amount of car-

bon that must be sequestrated by any feasible harvesting policy, so

there is no need to calculate the corresponding interval. 

3. Computational results for the SGH: an application in 

Portugal 

3.1. Case study: a forest in Portugal 

For testing purposes we consider a Eucalyptus forest located

in central Portugal. We selected this area as Eucalyptus is the

most important forest species in Portugal, extending over 812,0 0 0

[hectares] corresponding approximately to 26% of the forest ter-

ritory ( Ministério da Agricultura, 2014 ). Besides, it is the main

source of raw material used by the pulp and paper industry. In
his case study area, the mean annual rainfall is 826 [millimeters],

ut less than 20% occurs between May and September (130 [mil-

imeters]). Soils are of low fertility, with low organic carbon con-

ent (0.23–0.28%) with an average of 395 [millimeters] (range be-

ween 242 and 737 [millimeters]) of water holding capacity. They

re mostly sandy and may be classified, according to the Food and

griculture Organization of the United Nations (FAO) standards, as

renosols ( Fabiao et al., 1995 ). The forest area is mainly managed

y the forest industry. 

A block diagram of the information flow of our decision-making

ool is displayed in Fig. 1 . As can be seen from the figure, the first

hases (Blocks 1 and 2) correspond to data gathering, from the for-

st (geographical and biometric data) and from climate scenario

tudies (weather data). This data is then used as input in a simu-

ation performed by the process-based model Glob3PG (which will

e described later, Block 3); as result of this simulation, a set of

cenarios (i.e., different growth and yield parameter realizations)

s modeled (Block 4). The determination of the economic parame-

ers (Block 5), is done by combining the output of the simulations

ith the economic indicators of forest operations. Finally all the

rocessed data provides the coefficient to define the mathematical

odel SGH (Block 6). In the following, we will describe the core

lements in each of these blocks. 

lock 1 (B.1). Environmental and biometric data from the study

rea were stored in a relational database. The forest is divided into

0 0 0 harvesting units (stands) and in this planning problem, for

ach time period the planner must decide the portion to cut from

ach stand. The entire forest is suitable for harvesting and will be

otally harvested during the 15-year planning horizon; for model-

ng purposes, the 10 0 0 units are aggregated into 21 strata based

n their age and rotation. 

In this application we consider that if a portion of a strata i

s harvested at some period t , then it is replanted (in case of fi-

al cut) or it continues growing as a coppice (where multiple trees

ppear from the old root system) for the remaining T − t periods.

he trees can only be harvested if they are older than 9 years at

he time of cutting. Since each stratum has a different age at the

eginning of the planning period some strata can start being har-

ested from the 1st period, while others, for instance, only from

he 7th period. This is imposed by some additional constraints that

rohibits harvesting some strata in some periods. 

lock 2 (B.2). To represent the variability of forest growth over

ime due to climate change, 32 possible climate change scenarios

ere used. Each scenario is a series of weather data over the plan-

ing horizon including temperature, radiation, precipitation, num-

er of frost days, number of rain days and relative humidity. There-

ore, the uncertainties will be expressed as scenarios, considering

alues for the uncertain parameters in each period through the

orizon. This is a well known approach to express future uncer-

ainty. 

The 32 climate scenarios are based on the ENSEMBLES

2016) that provided climate datasets developed by Hadley Cen-

er (2016) using emission scenarios developed by the Intergovern-

ental Panel on Climate Change (IPCC), which are described in

he IPCC Special Report on Emission Scenarios (SRES) ( Nakicenovic

 Swart, 20 0 0 ). The climate change scenarios of the ensembles

roject are considered the most appropriate for Portuguese condi-

ions ( Soares et al., 2012 ). According to a study in Portugal ( Climate

hange in Portugal, 2016 ), climate change may act as a shift of

eather from Southern Portugal to Northern Portugal of up to

50 kilometers. Based on this information, and in order to gener-

te more scenarios, we combined the climate change scenario pre-

icted for our study area with the climate scenarios predicted for

 weather stations located in a range of 100 kilometers from the
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Fig. 1. Block diagram of the decision-making tool. 

Fig. 2. Scenario-tree of the 32 climate change scenarios. 
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tudy case area (4 northern and 4 southern). The resulting scenar-

os cover a wide range of possible climates for the case study area

i.e., from very dry and hot climate to a weather cooler and with

ore rain). It is known that extreme scenarios are less likely to oc-

ur than the scenarios that are concentrated around the average. To

apture this pattern, and because we assigned equal weight to each

cenario, we used a higher number of scenarios around the average

xpected climate for the case study area while we used few sce-

arios with extreme weather. In Fig. 2 is shown the scenario-tree

long the 15 1-year periods (stages). 

locks 3 (B.3) and 4 (B.4). The decision support system SADfLOR v

cc 1.0 ( Garcia-Gonzalo, Borges, Palma, & Zubizarreta-Gerendiain,

014 ), which addresses eucalyptus forest management planning

nder climate change scenarios, was used to predict forest growth

nd timber yields (i.e., the volume in cubic meter per hectare that

ould be harvested on each unit if harvested in period t ), C stocks,

unoff and efficiency in the use of water (i.e. amount of water con-

umed per gram of timber produced) under the different climate

cenarios over the planning horizon. 

SADfLORs projection module consists of a set of routines and

rowth and yield functions that allow generating the outcomes of

ifferent management alternatives (i.e. cutting rules) for each land

nit and climate scenario. It integrates the process-based model
lob3PG (Block B.3), first developed by Tomé et al. (2004) and that

as been recently updated by Oliveira and Tome (2017) , and val-

dated by Barreiro, Duran, Tome, and Tome (2014) . Glob3PG is a

ybridization of the empirical model Globolus 3.0 ( Tomé, Oliveira,

 Soares, 2006 ) and the process-based model 3PG calibrated for

ortuguese conditions by Fontes et al. (2006) , Landsberg and War-

ng (1997) . Specifically, Glob3PG takes advantage of the flexibil-

ty and ability of 3PG to predict the effects of changes in grow-

ng conditions (e.g. climate change, fertilisation) and of Globolus

.0s prediction capacity under current conditions ( Barreiro, 2011 ).

rocess-based models are based on physiological processes (e.g.,

hotosynthesis) that are controlled by climatic and edaphic fac-

ors (see, e.g., Kellomäki & Vaisanen, 1997 ) and therefore they can

redict the impact of environmental changes on forest productiv-

ty. In Fig. 3 the conceptual mechanism behind Glob3PG is rep-

esented. As it can be seen, the inputs needed by the Glob3PG

rocess-based model to predict on monthly basis the development

f Eucalyptus globulus stands are: the stand data (i.e. informa-

ion about its location and data about the trees comprising the

tand), the cutting rules (possible cutting ages that will define in

hich period each stand can be harvested) (see Block 1), and the

onthly weather data included in the climate scenarios (see Block

). With all these variables, the growth and yield model uses a se-

ies of equations, developed based on experimental observations
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Fig. 3. Block diagram of the Glob3PG process-based model. 
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(see Fontes et al., 2006; Landsberg & Waring, 1997 ), to compute

the amount of photosynthesis produced and therefore the growth

of the different components of the trees. These equations allow

transforming the climate scenarios (a sequence of weather data for

the whole simulation time) in growth scenarios and therefore they

can be used for decision-making under changing climatic condi-

tions. Thus, simulator computes, for each land unit, the monthly

growth of the trees, the total volume of harvestable timber, the to-

tal water consumed, the carbon stored in biomass and other auxil-

iary variables ( Fig. 3 ). These values are transformed in annual val-

ues to be used in the management model. 

Glob3PG has been validated recently against permanent forest

inventory plots, and its performance has been compared to an em-

pirical growth and yield model Globulus 3.0 (that had been already

validated against permanent inventory plots). In the comparison,

modeling efficiency, bias and precision for the model estimates

were analyzed. Accurate estimations were successfully achieved

with the Glob3PG ( Barreiro, 2011; Tomé, Oliveira, & Soares, 2006 ). 

Block 5 (B.5). For the economic calculations a timber sale price is

fixed (i.e. 36 [euros per cubic meter]) and a 3% interest rate is used.

The estimated yearly demand (for the whole planning horizon)

is the following: D 1 = 119 , 0 0 0 [cubic meters], D 2 = 118 , 227 [cu-

bic meters], D 3 = 117 , 714 [cubic meters], D 4 = 118 , 421 [cubic

meters], D 5 = 118 , 859 [cubic meters], D 6 = 119 , 374 [cubic me-

ters], D 7 = 120 , 075 [cubic meters], D 8 = 120 , 807 [cubic meters],

D 9 = 121 , 483 [cubic meters], D 10 = 122 , 241 [cubic meters], D 11 =
123 , 045 [cubic meters], D 12 = 123 , 918 [cubic meters], D 13 =
124 , 753 [cubic meters], D 14 = 125 , 642 [cubic meters] and D 15 =
126 , 539 [cubic meters]. These estimations were provided by the

forest manager. 

3.2. Efficiency analysis, trade-offs and the effect of uncertainty 

The resulting optimization model (SGP.1) –(SGP.8) requires a

quite large number of user-defined parameters: the target val-

ues and the criterion weights. These parameters, and specially the

weights, are not necessary clear for the decision-maker. Moreover,

different parameter settings can lead to very different solutions.

Therefore, it is required to devise a methodology to compare the

harvesting policies obtained for different values of these parame-
ers. The comparison of solutions should allow to assess the trade-

ffs among the performance of the different criteria. 

The first step of our approach is applying the procedure for

alculating the robust target values. Following the procedure pre-

ented in Section 2.3 , we fix M NPV = M 

+ 
NPV 

= 69 . 57 [millions of

uros], M C S 
= M 

−
C S 

+ 0 . 5 × (M 

+ 
C S 

− M 

−
C S 

) = 585 . 12 [MTon] (thousands

f tons), M RW 

= M 

−
RW 

+ 0 . 5 × (M 

+ 
RW 

− M 

−
RW 

) = 5 . 69 [millions of

iters], and M WUE = M 

−
WUE 

+ 0 . 5 × (M 

+ 
WUE 

− M 

−
WUE 

) = 26 . 87 [grams

er liter]. This setting implies that, with respect to the NPV crite-

ion (which we regard as the most relevant one) we aim at achiev-

ng the maximum possible value, while for other criteria the mid-

oint of the corresponding interval is enough. Higher target values

or the C S , RW and WUE criteria, will imply an undesired sacri-

ce of the level of achievement of the NPV criterion. Although dif-

erent decision makers might define a different configuration, we

ave chosen these target values for illustrative purposes. 

All the mathematical optimization problems were solved by

sing the commercial solver CPLEX 

TM 

12.5 on an Intel Core 
TM 

i7

4702QM) 2.2 gigahertz machine (8 cores) with 16 gigabytes RAM.

he resulting problems were all linear programming problems,

herefore, only few seconds were required to solve each of them

o optimality. 

rade-off analysis with multidimensional Pareto fronts. For show-

ng and analyzing the trade-offs among the performance of the

ifferent criteria ( Q = { NPV , C S , RW , WUE } ), we construct multidi-

ensional Pareto fronts (see, e.g., Lotov, Branke, Deb, Miettinen, &

teuer, 2005 ). In this type of charts, one typically fixes the weights

f |Q| − 2 criteria, and shows the trade-offs of the 2 remaining

nes (usually those that are more relevant); hence, by varying the

verage performances attained by the |Q| − 2 criteria (induced the

iven weights), one can show trade-offs among all of them. 

In Fig. 4 (a) we show an application of the multidimensional

areto front analysis. In this graphic the weight of the WUE crite-

ion ( w WUE ) is fixed to zero. We can see that in the graphic there

re 6 different Pareto fronts showing trade-offs between the values

f NPV and C S , i.e., the average values of these criteria for a par-

icular setting of w Q . Each of these fronts is obtained for a fixed

alue of w RW 

, associated with a specific value of RW . The x -axis

orresponds to values of C S in [MTons], and the y -axis to values

f NPV in [millions of euros]. The legend below the x -axis shows
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Fig. 4. Pareto fronts of C S v/s NPV for different values of w RW 

and w WUE ∈ { 0 . 0 , 0 . 1 } . 
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he values of RW in [millions of liters] (corresponding to differ-

nt values of w RW 

); for instance, from Fig. 4 (a) we can see that

f w RW 

= 0 . 8 the resulting value of RW is 3.09 [millions of liters].

ence, each point in this legend corresponds to a level , since the

hole graphic can be seen as a collection of level curves. Note

hat having w WUE = 0 . 0 results in WUE = 20 . 57 [grams per liter],

s shown in the upper part of the graphic. Evidently, each point in

 NPV − C S curve corresponds to a management plan (i.e., a selec-

ion of management alternatives for each stratum) that provides a

pecific level of NPV , C S , RW and WUE for the whole case study

rea. 
5  
For analyzing how these curves function, let us take for exam-

le the one with w RW 

= 0 . 0 . In this case w WUE = 0 . 0 and w RW 

=
 . 0 , so every point corresponds to a pair ( C S , NPV ) obtained for

ombinations of w NPV and w C S 
holding w NPV + w C S 

= 1 . 0 . We can

ee, from the third axis, that this curve is related with RW =
 . 2 [millions of liters]. The curve is convex, since it shows an effi-

ient front: increasing the performance of one of the criterion (NPV

r C S ) results in a decrease of the performance of the other one. 

The analysis of the trade-offs among criteria can be done as fol-

ows. Let us take point A in Fig. 4 (a); this point corresponds to C S =
08 . 54 [MTon], NPV = 51 . 8 [millions of euros], RW = 3 . 09 [millions
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Table 1 

Average performances different points on Pareto fronts. 

Point NPV (millions of euros) C S (MTon) RW (millions of liters) WUE (grams per liter) 

A 51.8 508.54 3.09 20.57 

B 56.1 508.54 3.12 20.57 

C 51.8 558 3.12 20.57 

D 50.5 538 3.09 20.57 

E 57.4 553 3.15 20.57 

F 57.4 553 3.19 22.64 

Table 2 

Values of �( X ( �)) (in %) corresponding to different values of w q . 

w q 

q 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

NPV 6.55 8.63 10.43 11.82 12.87 13.68 14.37 14.96 15.46 15.89 16.25 

C S 11.41 11.27 10.93 10.42 9.79 9.1 8.38 7.64 6.83 5.95 4.98 

RW 12.1 11.59 10.97 10.27 9.49 8.61 7.62 6.49 5.27 3.95 2.51 

WUE 9.43 10.26 10.73 11.00 11.12 11.06 10.84 10.41 9.85 9.21 8.52 
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of liters] and WUE = 20 . 57 [grams per liter]. Point A, and the other

points in Fig. 4 (a), as well as those in Fig. 4 (b), are summarized

in Table 1 . Now, let us suppose we want to increase the value of

NPV but maintaining the same value of C S ; in this case, we can in-

crease w NPV and decrease w RW 

which leads us to point B . In this

point NPV is now 56.1 [millions of euros] ( �AB NPV ≈ 4 [millions

of euros]), C S does not change but RW increases to 3.12 [millions

of liters] ( �AB RW = 0 . 03 [millions of liters]). Now, let us suppose

that we want to increase the performance of the C S criterion but

preserving NPV ; we can do this by increasing w C S 
and decreasing

w RW 

, moving from A to C . Following the same idea, suppose that

we want to increase C S without decreasing the performance of the

RW criterion; this can be done, by increasing w C S 
and decreasing

w NPV , which takes us from A to D . Changing w RW 

actually implies

moving down or up from one level to another. 

In the previous analysis, the performance of criterion WUE is

assumed to be, in average, constant. This is because in this graphic

w WUE = 0 . 0 , implying WUE = 20 . 57 [grams per liter]. Now, let us

suppose that we are in point E in Fig. 4 (a) and we want to find an

alternative harvesting policy with the same outcomes of NPV and

C S , but with better value of WUE . We can achieve that, by decreas-

ing RW (increasing w WUE and decreasing w RW 

). In Fig. 4 (b) we dis-

play the Pareto fronts obtained when w WUE = 0 . 1 , which produces

WUE = 22 . 64 [grams per liter]. In this graphic, point F yields ap-

proximately the same values of NPV and C S than point E ; WUE

increases, but at the expenses of increasing RW . 

An equivalent analysis can be performed for other values of

w WUE , which produced different balances among criteria. The

Pareto fronts for w WUE = { 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 } are show in Fig. 5 . Al-

though the obtained graphics seem to be quite similar, it is possi-

ble to see how increasing the relative importance of one criterion

(which is quite clear in the case of WUE), leads to a reduction of

the values attained by the other criteria. 

Further details on the effect of criteria weights. The previous discus-

sion has focused on the performance induced, for each criterion, by

different weight configurations w Q . However, one might be inter-

ested in knowing how �( X ( �)), the SGH objective function value,

behaves for different w Q . In Table 2 we report the average value

of �( X ( �)) for different settings of w q . The values in this table

are interpreted as follows. Let us take q = C S and w C S 
= 0 . 6 ; the

corresponding value is 8.38, this value corresponds to the average

of the values of �( X ( �)) when w C S 
= 0 . 6 (and all weights verify

w NPV + w C S 
+ w RW 

+ w WUE = 1 . 0 ). The first observation is that the

NPV criterion is the one that contributes the most to the worsen-

ing of the performance of the model as a whole. There is clear in-
rease of �( X ( �)) when increasing w NPV ; this means that although

e give higher penalization to the deviations with respect to M NPV ,

he values of these deviations remain high (if compared with the

ther criteria). A different situation occurs for the RW criterion, for

hich the increase of w RW 

yields a clear decrease of �( X ( �)); this

eans that M RW 

is much easier to be achieved (or to be close to)

han M NPV . For the other two criteria, C S and WUE, the behavior is

ore or less comparable to the RW criterion, i.e., there is a clear

ecrease of the corresponding �( X ( �)) value when w C S 
and w WUE ,

espectively, take values near 1.0. 

The previously described behavior of the model can be ex-

lained by the fact that the target value of the NPV criterion is

et to M 

+ 
NPV 

, which corresponds to the highest value according to

he procedure for calculating target values, while for the other cri-

erion is set to the midpoint M 

−
q + 0 . 5 × (M 

+ 
q − M 

−
q ) . 

A more simplified analysis of the trade-off among criteria can

e done by looking at Table 3 . In this table the average perfor-

ance of each criterion for different values of w q is reported. The

alues can be read as follows. Let us take the NPV criterion and

 NPV = 0 . 5 , the corresponding value in the table is 57.38; this

eans that if we set w NPV = 0 . 5 (and all weights verify w NPV +
 C S 

+ w RW 

+ w WUE = 1 . 0 ) we would have obtained an average NPV

alue equal to 57.38 [millions of euros]. As expected, for all cri-

eria we can verify that increasing the corresponding weight pro-

uces an improvement of the criterion performance. The values in

his table help the decision maker to discriminate among differ-

nt possible settings of w Q . For instance, if the decision maker de-

nes that the average value of runoff water (RW) cannot be greater

han 3.00 [millions of liters], then she/he must set w RW 

to a value

reater than 0.2. On the other hand, if she/he decides that the ob-

ained NPV cannot be, in average, less than 56 [millions of euros],

hen w NPV must be fixed to any value greater than 0.4. This simple

nalysis helps the decision-maker to locate the appropriate mul-

idimensional Pareto front from where to develop a more accurate

nalysis with regard to the trade-offs (as the one presented above).

he effect of uncertainty. All the analysis presented so far is based

n average values, which are obtained across the 32 scenarios.

owever, a deeper analysis should consider how the performance

f a given criterion behaves among these different scenarios. In

ig. 6 we report, by means of boxplots, how the achieved values of

he NPV criterion and of the corresponding deviations vary among

he different scenarios. 

In each boxplot, the bold line in corresponds to the median or

econd-quartile (Q2), the lower limit of the box to the first-quartile

Q1) and the upper part to the third-quartile (Q3). The horizontal
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Fig. 5. Pareto fronts of C S v/s NPV for different values of w RW 

and w WUE ∈ { 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 } . 

Table 3 

Values of average performances ( NPV , C S , RW , WUE ) corresponding to different values of w q . 

w q 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

NPV (millions of euros) 49.71 51.04 53.30 55.33 56.73 57.38 57.73 57.96 58.14 58.22 58.26 

C S (MTon) 5.22 5.36 5.46 5.54 5.58 5.60 5.61 5.62 5.63 5.65 5.67 

RW (millions of liters) 3.18 3.08 3.01 2.94 2.85 2.77 2.68 2.60 2.58 2.54 2.36 

WUE (grams per liter) 20.57 22.64 23.17 23.50 23.79 24.05 24.27 24.46 24.55 24.57 24.58 
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F  
ines at the end of the vertical lines corresponds to the lowest

alue still within 1.5 IQR (interquartile range) of Q1 and the high-

st value still within 1.5 IQR of Q3, respectively. All values below

r above these horizontal lines, shown in circles, should be con-

idered as outliers. The boxplots in Fig. 6 (a) show the dispersion of

he values 
∑ 

i ∈ I 
∑ 

t∈ T NPV 

ω 
i,t x 

ω 
i,t 

for the 32 different scenarios ω ∈ �,

or each value of w NPV . If, for example, we take w NPV = 0 . 2 , we can

ee that the attained NPV value can be higher than 57 [millions of

uros] (for at least one scenario) and lower than 51 [millions of

uros] (for at least one scenario), with an average value equal to

3.3 [millions of euros] (which coincides with the value reported

n Table 3 ). We report the average value of NPV for each value of

 NPV (marked with 

∗), and the average deviation with respect to
he target value M NPV (below each boxplot). From Fig. 6 one can

asily see how the presence of uncertainty leads to very differ-

nt outcomes, measured as the dispersion of each of the obtained

oxplots. However, this effect of uncertainty can be tackled by in-

reasing the corresponding criterion weight; on the one hand it in-

reases the average performance of the criterion, and on the other

and, it reduces the dispersion (for that criterion) of the values and

ecreases the average deviation with respect to the target value

from 28.54% to 16.25%). 

To complement the previous discussion, we show in Fig. 6 (b)

he boxplots corresponding to the values of the deviation, with

espect to M NPV , obtained when using different values of w NPV .

or each boxplot we also report the minimum deviation (symbol
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Fig. 6. Boxplots of NPV and d̄ NPV for different values of w NPV . 

Table 4 

Average values of the VSS indicator (in %) of each criterion for different values of w q . 

w q 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Ave. 

NPV 1.68 (9) 15.03 (9) 16.32 (9) 10.79 (9) 5.27 (2) 2.88 (3) 2.5 (2) 2.49 (0) 1.45 (0) 1.08 (0) 1.38 (0) 5.23 

C S 3.62 (9) 6.52 (9) 7.29 (9) 5.68 (9) 3.36 (9) 3.42 (9) 3.46 (9) 4.16 (9) 5.37 (9) 5.12 (9) 4.5 (9) 4.77 

RW 5.93 (3) 4.32 (9) 4.92 (9) 5.11 (9) 4.54 (9) 3.84 (9) 3.02 (9) 2.21 (9) 1.5 (9) 0.86 (9) 0.1 (9) 3.29 

WUE 0.03 (9) 0.53 (9) 0.57 (9) 0.54 (9) 0.48 (9) 0.37 (9) 0.24 (9) 0.11 (9) 0.09 (9) 0.08 (9) 0.08 (8) 0.28 
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� ), the maximum deviation (symbol 
 ) and the average deviation

(symbol ∗). As well as for the case of the previous boxplot, we

can see how, for a given w NPV , the values of 1 
| �| 

∑ 

ω∈ �
d ω 

NPV , −
M NPV 

differ

among different scenarios. Likewise, one can observe how increas-

ing w NPV leads to less dispersion of the values, smaller maximum

and average values, and minimum values tending to (and reach-

ing) 0.0%. If we consider the results obtained for w NPV ≥ 0 . 4 , we

can see that there are some scenarios for which the target value

is achieved, i.e., the deviation is 0.0%, but there are other scenarios

for which the distance with respect to the target value is almost

30% (even if w NPV = 1 . 0 ). 

A complementary indicator to measure the effect of uncertainty,

and the benefits of considering a stochastic decision model, is the

so-called value of the stochastic solution (VSS) ( Birge, 1982 ). Intu-

itively speaking, the VSS can be calculated as follows. Let ω̄ be the

average scenario, i.e., at each period t , the value of the parame-

ters, for instance the one associated with the NPV ( NPV 

ω̄ 
i,t ), is cal-

culated as NPV 

ω̄ 
i,t = 

1 
| �| 

∑ 

ω∈ � NPV 

ω 
i,t . For such unique scenario and

for a given criteria weight setting w Q , the corresponding SGH is

solved, yielding the solution X̄ ; such solution is referred to as the

deterministic solution. Likewise, let X 

∗ be the optimal solution ob-

tained for the SGH (considering all scenarios) for the same vector

w Q . Clearly, due to the way that X̄ is obtained, it might occur that

for a given scenario ω ∈ � this solution might fail in satisfying

constraints X 

ω .1 –( X 

ω .5) , i.e., X̄ might not be feasible for scenario

ω. Let �( ̄X ) be the set of scenarios for which the deterministic

solution X̄ is feasible. Therefore, the VSS associated with criterion

NPV is given by average difference between the performance of X̄

and X 

∗ across �( ̄X ) , i.e., 

VSS NPV = 

1 

| �( ̄X ) | 
∑ 

ω∈ �( ̄X ) 

( ∑ 

i ∈ I 

∑ 

t∈ T 
NPV 

ω 
i,t x 

ω ∗
i,t −

∑ 

i ∈ I 

∑ 

t∈ T 
NPV 

ω 
i,t ̄x 

ω 
i,t 

) 

×100% . 
n Table 4 detailed values of the VSS of the different criteria are

eported for different configurations of w Q ; besides, information

bout the number of scenarios where infeasibility is verified is

lso shown. For instance, the entry corresponding to VSS C S and

 C S 
= 0 . 5 is 3.42 (9), and it can be interpreted as follows: the

tochastic solution is, in average, 3.42% better than the determinis-

ic one when w C S 
= 0 . 5 (and all weights verify w NPV + w C S 

+ w RW 

+
 WUE = 1 . 0 )), and there are, in average, 9 scenarios in which the

he deterministic solution is not feasible. From this table one can

onclude that the stochastic solution X 

∗ is systematically better

han the deterministic one for all criteria. Moreover, it is possible

o see that the deterministic solution fails in satisfying the opera-

ive requirements in almost a third of the scenarios. 

By taking a particular criterion q , one can observe that increas-

ng the value of w q , typically leads to a decrease of the value of

SS q . For explaining this outcome, let us consider the following

wo observations: (i) greater values of w q will necessarily induce

etter solutions, in both the deterministic and stochastic case, in

erms of that particular criterion q ; and (ii), by increasing w q one

educes the number of combinations verifying w NPV + w C S 
+ w RW 

+
 WUE = 1 . 0 . The combined effect of these two facts induces more

imilarities between the stochastic and the deterministic solution

at least with respect to q ). 

onsiderations for the decision-maker. The obtained results show

hat the model is effective in providing a wide range of different

olutions to the decision-maker. Each particular weight configura-

ion w Q not only yields a different outcome with respect to the

erformance of a given criterion, but it actually entails a differ-

nt harvesting policy, i.e., a different harvest scheduling along the

lanning horizon that produces different trade-offs among crite-

ia. In consequence, by solving the SGH for different configurations

 Q , the decision-maker has the chance to select from a pool of

olicies the one that suits the most to her/his economical, envi-

onmental and operating preferences. Such selection shall be made
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n the basis of a quantitative analysis supported on the use multi-

imensional Pareto Fronts, indicators as those shown in Tables 2 –4 ,

nd statistical measures as those reported in Fig. 6 . 

Beyond the fact that a large pool of feasible solutions (policies)

s provided, the ranges in which the performances of the differ-

nt goals vary can be used by the decision-maker to analyze the

conomical benefits and environmental consequences of the har-

esting the considered forests. 

. Hedging against worst case: SGH combined with CVaR 

The results presented so far show that the SGH model is very

ensitive to different scenarios. This is expressed by the wide range

f values of the deviations, especially for the NPV criterion. Con-

retely, although for some scenario ω 1 ∈ � we can achieve the

arget value ( d 
ω 1 
NPV 

= 0 . 0% ), there are other scenarios, say ω 2 ∈ �,

or which we get d 
ω 2 
NPV 

≥ 30 . 0% (e.g., see results for w NPV = 0 . 4

n Fig. 6 (b)). These results can be ascribed to the fact that the

ecision-making approach embodied by the SGH is risk- neutral , i.e.,

oes not focus on any worst-case measure. 

In order to contrast this, assume that besides the target value

 NPV , the decision maker defines a shortfall threshold value α ∈
 ≥0 and a probability level β ∈ [0, 1]. The new additional goal of

he decision maker, is to find a risk- averse harvesting policy such

hat the β-conditional expectation of the shortfalls greater than α
s minimum. For example, if α = 50 0 , 0 0 0 [euros] and β = 0 . 95 , it

eans that the decision maker seeks a harvesting policy that en-

ures that the average of the worst 5% of the shortfalls greater than

0 0,0 0 0 [euros], with respect to M NPV , is as small as possible. More

ormally, for a given ω ∈ �, let γ ( x ω ) be the shortfall function de-

ned as 

(x 

ω ) = M NPV −
∑ 

i ∈ I 

∑ 

t∈ T 
NPV 

ω 
i,t x 

ω 
i,t . (γ )

or a given harvesting policy X ( �) ∈ �( �), the ( β , α)-Conditional

alue-at-Risk (( β , α)-CVaR), defined as the β-conditional expecta-

ion of the shortfalls greater than α, is given by 

(X (�) , α, β) = α + 

1 

1 − β

1 

| �| 
∑ 

ω∈ �
[ γ (x 

ω ) − α] 
+ 
, (CVaR) 

here 

 r] 
+ = 

{
r, if r > 0 , 

0 , if r ≤ 0 . 

VaR was proposed in the seminal paper by Rockafellar and Urya-

ev (20 0 0) . In that paper, CVaR corresponds to the objective of a

athematical optimization problem; such representation enabled

he authors to prove that CVaR is tractable under general circum-

tances. Moreover, in case of discrete finite distributions (as our

ase), CVaR optimization problems admit linear programming for-

ulations. 

The key idea of our new approach is the following: find a solu-

ion X ( �) ∈ �( �) such that the function 

(X (�) , λ) = (1 − λ)�(X (�)) + 

λ

M NPV 

�(X (�) , α, β) , (�)

s minimized, with λ ∈ [0, 1], and the constraints (SGP.1) –(SGP.8)

re satisfied. In other words, we look for a solution that pro-

ides a balance, given by λ, between the expected value of the

eighted sum of the deviations of the different criteria (a risk-

eutral approach), and the CVaR of the NPV criterion (a risk-averse

pproach). 

Note that if one wants to use the CVaR measure �( X ( �), α, β)

ithin a linear mathematical programming model, it is necessary

i  
o transform it into the linear expression 

(X (�) , α, β) = α + 

1 

1 − β

1 

| �| 
∑ 

ω∈ �
u ω , ( �. 1 )

omplemented with 

γ (x 

ω ) + α + u ω ≥ 0 , ∀ ω ∈ � ( �. 2 )

 ω ≥ 0 , ∀ ω ∈ �. ( �. 3 )

herefore, the ( α, β)-risk-averse SGH (( α, β)-RASGH) is given by

he following linear programming model 

in { �(X (�) , λ) | ( SGP . 2 ) − ( SGP . 8 ) , ( �. 2 ) − ( �. 3 ) } . (RASGH) 

The optimization model (RASGH) is one of the contributions

f this paper. To the best of our knowledge, a similar formula-

ion combining Stochastic Programming, Goal Programming and

VaR has not been proposed before in the literature. Note that this

odel does not only fit in the context of forest management, but

n any decision-making context in which multicriteria decisions are

o be made considering uncertainty. 

.1. Constraining CVaR 

A natural alternative to the model presented above is to impose

n upper bound on the β-conditional expectation of the shortfalls

reater than α, instead of minimize it. In other words, we want to

nsure that the β-conditional expectation of the shortfalls greater

han α is less or equal than α′ . Therefore, the corresponding CVaR-

onstraint is given by α + 

1 
1 −β

1 
| �| 

∑ 

ω∈ � [ γ (x ω ) − α] 
+ ≤ α′ , which

an be reordered as 

1 

1 − β

1 

| �| 
∑ 

ω∈ �
[ γ (x 

ω ) − α] 
+ ≤

(
α′ − α

)
. (CVaRC) 

ence, the resulting ( α, β , α′ )-CVaR-constrained SGH (( α, β , α′ )-
VaRSGH) can be defined as 

in { �(X (�)) | ( SGP . 2 ) − ( SGP . 8 ) , (( CVaRC )) , ( �. 2 ) − ( �. 3 ) } . 
(CVaRSGH) 

his model allows to explicitly impose an upper bound on the

VaR value; however, the feasibility of the model is sensitive with

espect to α′ . Note that in our computational experiments, which

ill be presented later, we use α′ = 2 α, which means that we look

or a solution such that the conditional expectation of the short-

alls greater than α is, at most, 2 α. 

CVaR-constrained models have been proposed before (see, e.g.,

abian, 2008 , and the references therein). An alternative CVaR-

ased GP model has been proposed before in Kaminski, Czupryna,

nd Szapiro (2009) in the context of portfolio optimization. 

.2. Reducing worst-case shortfalls via CVaR approach 

esults for ( α, β)-RASGH. Based on the previous discussion, one

hould expect that the ( α, β)-RASGH turns out to be more effective

n reducing the deviations (or shortfalls) with respect to the tar-

et value M NPV . We have performed a battery of experiments con-

idering β = 0 . 95 , λ ∈ {0.25, 0.75} and α ∈ {0.05 × M NPV , 0.10 ×
 NPV , 0.15 × M NPV , 0.20 × M NPV }. These values of α mean that we

im at minimizing the 0.95-conditional expectation of the short-

alls greater than, for instance, the 15% of the target value M NPV .

arger values of α were not considered to avoid greater reductions

f the other criteria performances. In Fig. 7 (a) we show the box-

lots of the deviations obtained for eight different combinations

f ( α, λ). The first conclusion that can be drawn from the figure

s that λ has a clear impact on the model; the results obtained
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Fig. 7. Boxplots of NPV and d̄ NPV for different values of w NPV . (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 
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for λ = 0 . 75 are considerably better, i.e., smaller deviations are ob-

tained, than those obtained for λ = 0 . 25 . The second observation

is that setting the threshold α to 0.05 × M NPV (see red boxplot)

produces the best result in terms of both, the average deviation

(17.64%) and the dispersion of the values. 

To complement this result, in Fig. 7 (b) we present how the

values of w NPV impact on the performance of the model when

λ = 0 . 75 and α = 0 . 05 × M NPV . When comparing this figure with

the boxplots in Fig. 6 (b), one can clearly see the benefits of using

the CVaR component in the objective function: (i) the maximum

deviation decreases, (ii) the average values decreases, and (iii) the

dispersion decreases in all boxplots. Moreover, one can see that al-

ready for w NPV = 0 . 1 it is possible to have scenarios for which the

target value is attained (deviation equal 0.0%). 

Results for ( α, β , α′ )-CVaRSGH. As we pointed out before, instead

of minimizing the CVaR component, one can explicitly impose an

upper bound on its value by means of the constraint (CVaRC) ,

i.e., the ( α, β , α′ )-CVaRSGH. In order to show how this alterna-

tive model performs, we have carried out experiments consider-

ing β = 0 . 95 , α ∈ {0.05 × M NPV , 0.10 × M NPV , 0.15 × M NPV , 0.20

× M NPV }, and α′ = 2 × α (with α taking the already mentioned

values). In Fig. 8 (a) the boxplots corresponding to different values

of α are shown. From this graphics we can conclude that setting

α = 0 . 20 (yellow bloxplot) provides the best results since it yields

the smallest average deviation (18.88%) with respect M NPV and the

less dispersed values. 

A more detaile d analysis of the results obtained with α = 0 . 20

is presented in Fig. 8 (b), where the impact of w NPV on the rela-

tive deviations with respect to M NPV is shown. When comparing

this figure with Fig. 6 (b) it is clear that, as in the ( α, β)-RASGH

model, this approach produces a clear improvement in the val-

ues of the deviations. However, when comparing these results with

those shown in Fig. 7 (b) (produced by the RASGH model), we can

see that the CVaRSGH approach leads to smaller maximum devia-

tions, but larger average and minimum deviation. In other words, it

seems that imposing a constraint on the CVaR value is more effec-

tive in reducing the worst-case performance, but does not properly

penalize (as the RASGH approach does) all the shortfalls, including

the smallest ones. In any case, and due to the influence of the term∑ 

ω∈ � w NPV 

d ω 
NPV , −

M NPV 
in the objective function of both models, the dif-

ferences between them tend to disappear when having w > 0 . 5 .
NPV 
We have summarize in Table 5 the values of NPV , with respect

o different values of w NPV , obtained for the SGH, and the above

iscussed settings of the RASGH and CVaRSGH models. This helps

o have a clear picture of how the different proposed models im-

act on the performance of the NPV criterion. The first observation

s that, in general, the differences in the value NPV are not signif-

cant when w NPV ≥ 0 . 5 . The second observation is that the RASGH

s the best one in terms of the resulting performance of the NPV

riterion since it yields the highest average values, specially when

 NPV < 0 . 5 . 

Up to now, we have focused the analysis of these risk-averse

pproaches only in terms of the NPV criterion. The improvements

n the performance of this criterion necessarily require decrements

n the performance of the other criteria. In other words, reducing

he risk of getting very bad outcomes is not for free, it will produce

 worsening of the performance of the other criteria. Furthermore,

f a decision-maker decides to impose strict level of achievement

f the other criteria, and still reduce the risk of bad outcomes for

he NPV criterion, then it is the value of NPV that will be reduced.

In Fig. 9 the multidimensional Pareto fronts obtained when con-

idering the RASGH ( Fig. 9 (a)) and CVaRSGH ( Fig. 9 (b)) approaches

re displayed (for w WUE = 0 . 0 ). In each of these charts, the fronts

btained for the SGH model are shown in dotted lines (they co-

ncide with those displayed in Fig. 4 (a)). In both cases it is pos-

ible to verify that the resulting fronts are above those of the SGH

odel, meaning that higher values of NPV are attained at expenses

f a deterioration of the performance of the other criteria. 

Similarly as for the SGH model, the two alternatives presented

n this section enable the decision-maker to count with a collec-

ion of harvesting policies. Each of these policies yield different

evels of risk-aversion and different criterion performances, giving

he decision-maker the possibility to chose a solution that balance

hese two dimensions according her/his preferences. 

. Hedging against catastrophes: mitigating the effect of fires 

So far, we have assumed that effect of the climate change is

mbodied by different outcomes of the growth profile of the for-

st, and its consequences in the ecological behavior (measured

y carbon sequestration, runoff water, and water use efficiency).

onetheless, one can consider other sources of uncertainty in fu-

ure realizations, such as the possible occurrence of fires and the

onsequent catastrophic loses (see, e.g. Boychuk & Martell, 1996 ).
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Fig. 8. Boxplots of NPV and d̄ NPV for different values of w NPV . (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 

Table 5 

Values (in millions of euros) of the average performance NPV obtained for the different models. 

w NPV 

Model 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

SGH 49.71 51.04 53.30 55.33 56.73 57.38 57.73 57.96 58.14 58.22 58.26 

RASGH 52.23 53.50 55.04 56.33 57.14 57.57 57.83 58.02 58.16 58.22 58.26 

CVaRSGH 51.89 52.92 54.31 55.80 56.87 57.42 57.75 57.97 58.14 58.22 58.26 

Fig. 9. Pareto fronts of C S v/s NPV using the two proposed risk-averse CVaR-based models. 
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i  
urthermore, the climate change phenomenon is likely to increase

he frequency of extreme events, like forest fires, due to the exten-

ion of the dry season. 

As a consequence, decision-makers might be interested in hav-

ng insights of harvesting policies obtained by models that account

or catastrophic events. In order to address such issue, we have

erformed further computations modifying some of the scenarios

y simulating the effect of fires, of different intensity, occurring at

ifferent periods of the planning horizon. More precisely, we have

elected two scenarios; the one associated with particularly long

nd harsh dry seasons (scenario 1), and the one associated with

hort and moderate dry seasons (scenario 26). For each scenario,
hich are decoupled from the other scenarios in the tree, we have

imulated the occurrence of a fire in years 1 and 5, and we have

onsidered that such fire affects the forest in a relatively homoge-

eous way, i.e., each stand loses the 5%, 15% or 30% of its standing

rees. Evidently, not only the volume of available wood is reduced,

ut also the potential sequestration of carbon, the capacity of the

oil to retain rain water (which avoids surface runoff), and the ef-

ciency of the forest biomass in the using the available water, are

ltered as well. 

Note that assuming an homogeneous fire on the whole for-

st does not entail a requirement for the validity of the model;

t is rather a simple way to characterize the catastrophic event
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Fig. 10. Boxplots of NPV and d̄ NPV for different values of w NPV (SGH). 
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without the need of any particular supposition. Such simulations

aim at showing the impact of different magnitudes of a catas-

trophic event on the performance of the NPV criterion. Notwith-

standing, since strata are comprised by units that do not necessar-

ily meet adjacency requirements, the proposed approach cannot be

used, straightforwardly, for designing mitigation plans against the

occurrence of fires; the readers are referred to Minas, Hearne, and

Martell (2014) and Diaz-Balteiro, Martell, Romero, and Weintraub

(2014) for recent works addressing this issue. 

In the following, we will report the behavior of the SGH and the

RASGH approaches when incorporating the potential occurrence of

the above mentioned catastrophic situations. 

5.1. SGH and the effect of catastrophic fires 

Evidently, the occurrence of a fire will necessarily entail a wors-

ening of the performance of all criteria due to the loss of an im-

portant mass of forest for one scenario. Nonetheless, our models

should be able to mitigate this effect by providing policies that op-

timally schedule the harvest process so that, in average, the perfor-

mance of each criteria is not severely affected. For the purposes of

this analysis we report results associated with the NPV criterion;

nonetheless, the methodology can be straightforwardly extended

to the other criteria. 

In Fig. 10 (a) we report the boxplots of the relative deviations

(%) of the attained NPV values with respect to the NPV goal when

considering the occurrence, in scenario 1, of fires of three magni-

tudes (5%, 15% and 30%), at periods 1 and 5. Complementary, the

first boxplot corresponds to the attained relative deviations in the

case without fires. From the figure we can draw two main ob-

servations. First, in terms of both, average (marked with 

∗) and

worst-case deviation (marked with 
 ), a fire that occurs in the first

period impacts more on the performance of the policies that if it

occurs later at the fifth period. Second, although the worst case

deviations are considerably larger than the one attained when no

fire occurs (e.g., 55.85% compared with 37.74%), the average devia-

tions are more or less similar even if a 30% of the forest is hit by a

fire in the first period (26.09% compared with 23.1%). The first ob-

servation can be explained by the fact that we have assumed that

once that portion of the forest is burned, it will not recover within

the time horizon; so, the earlier the fire, the larger the reduction

in the available timber along the whole period. The second obser-

vation reveals the capacity of the SGH to hedge against this catas-
rophic event by providing a set of harvesting policies that avoid

he over-representation of really bad scenarios. 

Complementary, in Fig. 10 (b) the same statistics of the NPV de-

iations are reported for fires occurring if scenario 26 is realized.

e can notice that the effect of a catastrophic event is notably less

armful than if occurs in case scenario 1 is realized. Clearly, this is

ecause the climate conditions corresponding to scenario 26 are

ore favorable, so the timber losses due to the fire are compen-

ated later on by a better growing profile of the rest of the forest. 

.2. RASGH and the effect of catastrophic fires 

As shown in Section 4 , it is possible to reduce worst-case short-

alls by including a CVaR component into the model. The presence

f potential catastrophic events, such as fires, makes even more

mportant to define policies that mitigate the over-representation

f such scenarios. 

In Fig. 11 (a), comparable to Fig. 10 (a), we report the results ob-

ained by applying the RASGH model (with a CVaR component in

he objective), considering α = 0 . 05 and λ = 0 . 75 . As in the case

f the SGH model, the occurrence of a fire in period 1 seems to

mpact more on the performance of the forest than if it occurs

n period 5. However, and in contrast to the performance of the

GH approach, there are clear differences in the average values of

he NPV deviations, with respect to different percentages of the

urned forest. This is mainly because the objective function of the

ASGH model is far more sensitive to the variations in the worst

ase shortfalls due to the fact that λ = 0 . 75 . 

Notwithstanding, although the resulting model seems to be

ore sensitive to the percentage of the potential fire, it is clearly

ore effective in finding solutions that provide better performance

ith respect to the NPV criterion. Compared to the model with-

ut the CVaR component (see Fig. 10 (a)), the average deviations

marked with 

∗) are better, and the average worst case deviations

marked with 
 ) are considerably better. In this case, the largest

eviation (24.91%) is less than half than the one obtained by the

revious model (55.85%). This shows the benefits, at least in terms

f the NPV criterion, of incorporating the CVaR component for

ackling the occurrence of particularly bad realizations. 

Additionally, we have obtained results for the RASGH model

onsidering that the fire occurs (in different periods) if scenario 26

s realized. A summary of these results are reported in Fig. 11 (b).

ne can draw similar conclusions as for the case of fire occurring
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Fig. 11. Boxplots of NPV and d̄ NPV for different values of w NPV (RASGH). 
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f scenario 1 is realized, with the consideration that scenario 26

rovides better conditions for compensating the impact of a fire. 

. Conclusions and future work 

In this work we have proposed a novel framework for decision-

aking in sustainability-oriented forest management when mul-

icriteria decisions are to be made and there is uncertainty in

he data due to climate change. Based on a combination of Goal

rogramming and Stochastic Programming, the developed frame-

ork calculates stochastic harvest scheduling policies whose per-

ormance is measured in terms of one economical criterion (eco-

omic value of the forest), and three sustainability criteria (the to-

al carbon sequestration, the water use efficiency and the runoff

ater). Using a real case study, we showed that the developed

ethodology is effective in providing a wide range of different so-

utions. This enables the decision-maker the flexibility to choose a

olution according to her/his preferences with respect to the trade-

ffs among the performance of the different criteria. 

Although the model is effective in providing a pool of diverse

olutions, its risk-neutral nature implies that the quality of the so-

utions is calculated only with respect to the expected value. As a

atter of fact, the case study data is such that different scenarios

ield quite different outcomes. To overcome this behavior we have

ncorporated a Conditional-Value-at-Risk component for the NPV

riterion (in one case into the objective function, in other case as a

onstraint). This provides risk-aversion to the model, resulting in a

eduction of the value of the worst-case outcomes. The results ob-

ained by these two alternative models are consistent with the ex-

ected behavior: the worst-case outcomes are effectively reduced,

.e., higher values of NPV are obtained. However, this improvement

s not for free, and we have shown how the improvement of the

olution with respect to the NPV criterion results in a deteriora-

ion with respect to the other criteria. 

The benefits of the proposed modeling framework were also as-

essed in presence of catastrophic events such as fires. Our origi-

al SGH model and those incorporating risk-aversion components,

ere used to show the effects, in the harvest policies, of differ-

nt intensities of fires occurring at different periods and associated

ith different scenarios. The obtained results show the capacity

f the devised models to integrate such potential events into the

ecision-making process without leading to over-conservative so-

utions. On the contrary, the obtained solutions evidence a balance

n their performance; they are, in average, comparable to those
ithout the occurrence of catastrophes, exhibiting differences only

n their extreme values. 

The different models show that it is possible to define stochas-

ic harvest scheduling plans that, while ensuring an economical

enefit for the stockholders, perform reasonably well with respect

o sustainability goals. Moreover, the devised frameworks are flex-

ble enough to adapt to different environmental contexts with

ifferent sustainability issues and scale. For instance, some local

cosystems might require forest managers to handle their forests

ocusing, mainly, on reducing the impact on land erosion, while in

ther ecosystems the focus shall be on carbon sequestration. This

ransforms the designed framework into a powerful tool for ad-

ressing sustainability matters in the forestry industry. 

The application of the designed tool in another forest, de-

ends on the application of process-based models to simulate for-

st growing profiles for different future climate scenarios. Hence,

t is required to first properly calibrate the routines of applications

uch as SADfLOR ( Garcia-Gonzalo, Borges, Palma, & Zubizarreta-

erendiain, 2014 ) to the particular species and the particular loca-

ion. Likewise, sustainability criteria and their corresponding goals

hould be defined according to the specific regulation and environ-

ental conditions of the region where the forest is located. Despite

f these considerations, the tool is still valid as a modeling and so-

ution analysis tool for policy making. 

An important characteristic of the proposed methodology is

hat it can be applied to any other forest planning setting with

ifferent operational requirements, it can be extended to any

ther set of criteria, and it can address uncertainty from any

ther source different than climate change. Moreover, it would

e interesting to study how alternative multicriteria approaches,

uch as VIKOR and TOPSIS ( Opricovic & Tzeng, 2004 ), perform in

ddressing uncertainty due to climate change and sustainability

riteria. 

As for future work, one could investigate whether the proposed

ramework can be used for other economical activity where sus-

ainability has raised as a critical issue. One example corresponds

o the mining industry; as well as in the forestry case discussed

n this paper, in the mining industry managers are expected to

esign extraction and transformation plans that must be econom-

cally attractive and, also, environmentally sustainable. Moreover,

hey must also face uncertainty not only in the ore quality but

lso in the future market conditions; such uncertainty not only im-

acts on achieving the economical goals of the stockholders (such

s NPV, yearly extracted volume) but also their sustainability goals
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Fig. 14. Boxplots of WUE and d̄ WUE for different values of w WUE . 
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