
Assessing So�ware Development Skills Among K-6 Learners in a
Project-Based Workshop with Scratch

Francisco J. Gutierrez
Department of Computer Science

University of Chile
Santiago, Chile

frgutier@dcc.uchile.cl

Jocelyn Simmonds
Department of Computer Science

University of Chile
Santiago, Chile

jsimmond@dcc.uchile.cl

Nancy Hitschfeld
Department of Computer Science

University of Chile
Santiago, Chile

nancy@dcc.uchile.cl

Cecilia Casanova
Department of Computer Science

University of Chile
Santiago, Chile

ccasanov@dcc.uchile.cl

Cecilia Sotomayor
Graduate School, FCFM
University of Chile
Santiago, Chile

cecilia.sotomayor@u.uchile.cl

Vanessa Peña-Araya
Department of Computer Science

University of Chile
Santiago, Chile

vpena@dcc.uchile.cl

ABSTRACT

Recent literature reports a fair amount of initiatives on how to

engage younger populations in achieving computational literacy.

However, there is considerable less research on how to effectively

deliver software development skills in a way that can be accepted

and ultimately adopted by this user group. As a way to bridge this

gap, we ran an extracurricular project-based workshop, targeting

10-12 years old learners with no prior coding experience, deliv-

ered over five days in the computer labs at the University of Chile.

In this workshop, participants follow hands-on activities where

they acquire the basics of computer programming and develop

a small-scale software application using Scratch. These activities

showcase that good software engineering practices can be taught

to K-6 students, where these students are guided by experienced

computer science undergraduate and graduate students. This paper

presents a descriptive case study that focuses on assessing how K-6

learners assimilate and use these practices when developing their

first computing application in a non-traditional learning experience.

In order to do this, we designed and calibrated a rubric to evalu-

ate the software products generated by the workshop participants.

Our findings provide further evidence that it is indeed possible to

teach initial notions of software engineering to this user group,

structuring these constructs in a non-technical language that can

be assimilated by novice developers. Furthermore, we did not ob-

serve significant differences in this matter according to gender and

socio-economic status.

CCS CONCEPTS

• Social andprofessional topics→Computing education; Stu-

dent assessment; K-12 education; Computational thinking;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5660-2/18/05.
https://doi.org/10.1145/3183377.3183396

KEYWORDS

Software engineering education; Software development; Rubric;

K-6 learners; Scratch; Case study

ACM Reference Format:

Francisco J. Gutierrez, Jocelyn Simmonds, NancyHitschfeld, Cecilia Casanova,

Cecilia Sotomayor, and Vanessa Peña-Araya. 2018. Assessing Software

Development Skills Among K-6 Learners in a Project-Based Workshop

with Scratch. In ICSE-SEET’18: 40th International Conference on Software

Engineering: Software Engineering Education and Training Track, May 27-

June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3183377.3183396

1 INTRODUCTION

Software development has been increasingly reaching more diverse

population, who do not necessarily fit into the traditional “computer

scientist” or “software engineer” profiles. For instance, over the last

few years there has been an explosion of computational thinking

(CT) initiatives [16, 29] that look to introduce children and teenagers

to coding, as a way to integrate engineering in K-12 education [17].

According to the K-12 Computer Science Framework [7], CT

is a desirable set of skills among younger populations, aligning

computer science, science, and engineering by promoting: (1) the

development and use of abstractions, (2) the creation of new com-

putational artifacts, and (3) testing and refining the created artifacts.

These constructs resonate with the foundations of software engi-

neering (SE), which according to Bollin et al. [4] is a useful drive to

instantiate CT as a global framework for problem-solving, and not

merely as a way to write source code.

Acknowledging that the main goal of software development is to

create, produce, and deploy pieces of software considered acceptable

by end-users [27], education and training in SE must encompass a

broad array of knowledge and competencies that anyone who will

eventually be involved in software production needs to embrace

[5]. One of the challenges that SE research still faces in this matter

is the need for fresh, empirical evidence [18], particularly in the

case of education and training among younger populations.

At first sight, it may seem impossible to teach software devel-

opment skills to young learners, given that this age group does

98

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering Education and Training



ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden F.J. Gutierrez et al.

not necessarily have working knowledge of SE concepts, tech-

niques, and methods, such as requirement analysis and elicitation,

design and abstraction of software solutions to a specific problem,

coding in a programming language, debugging, quality assurance,

object-oriented programming, and design by patterns. Hermans

and Aivaloglou [15], analyzing how young learners participated

in a MOOC for learning to code with Scratch, suggest that soft-

ware development skills, and particularly maintainability, can be

effectively delivered to K-12 students. In that respect, Scratch1 is

a visual block-based programming language, translated to more

than 70 languages and widely used in both formal and informal

educational settings [24]. Likewise, Bollin and Sabitzer [5] studied

how to deliver SE in formal educational scenarios (i.e., students

enrolled in a course following classes with a fixed schedule and be-

ing instructed by a teacher in regular coursework), suggesting that

teaching software engineering is indeed possible in high-school.

In this paper we focus on a particular subgroup of K-12 students.

We claim that it is indeed possible to teach K-6 learners (i.e., aged

between 10 and 12 years old) basic software development skills

in extracurricular workshops following a project-based approach,

which are usually seen as a complement to specific topics being

delivered in formal education courses [7]. Students must pay to

attend this workshop. The particularity of our workshop is that it is

structured along a project that links both coding and core software

development principles, presented in a non-technical language.

The analysis of the conducted workshop follows the tradition of

empirical SE in the form of a descriptive case study [30], hence

extending prior results [15] and serving as fresh evidence taken

from a different kind of non-traditional educational setting.

As context scenario, we run our workshop in Chile, where SE

education and computer programming are not usually included

in the formal course curricula [13]. Therefore, the challenge—and

eventual benefits—of introducing software engineering practices to

this particular age group are two-sided. On the one hand, it would

be possible to directly impact in this target population and measure

over time the acceptance and adoption of CT and SE practices—

through controlled and longitudinal studies—in both formal and

informal educational and training settings. On the other hand, it

would be possible to study as future work the impact that the local

culture has on the acceptance and adoption of CT and SE practices

among younger populations. As such, this work provides a first

insight on this matter, building upon and contrasting with the

state-of-the-art, developed mostly in America and Western Europe.

As a result, the presented case study seeks to contribute to SE ed-

ucation and training by providing new evidence on how to deliver

software development principles to younger populations. Further-

more, researchers and practitioners interested in designing and/or

adapting interventions to promote SE in both formal and informal

settings can reuse the workshop materials and assessment rubric to

measure how software artifacts developed by 10-12 years old learn-

ers adhere to basic software development principles. This work

represents a step towards understanding how to effectively design

and deploy SE learning and training programs tailored to younger

populations.

1https://scratch.mit.edu

The rest of this paper is structured as follows. We discuss the

related work in Section 2, and present our intervention in Section 3.

Section 4 describes the case study design, specifying our research

question, data sources, and how we evaluated the student projects.

Section 5 describes the main results of our case study, which are

then discussed in Section 6. Finally, we conclude and provide per-

spectives on future work in Section 7.

2 RELATED WORK

According to Bollin et al. [4], there are few research and practical ini-

tiatives in SE education particularly targeted to promoting software

development practices among K-12 learners [4]. Conversely, several

block-based programming environments [11, 20, 23], activities [2],

and online courses [8] have recently emerged as alternatives to

help young children get started with computer programming.While

valuable, the focus of these initiatives still remains on promoting

CT, rather than specifically focusing on SE.

Hermans and Aivaloglou [15] designed and manage a MOOC for

introducing K-12 students to general programming and software de-

velopment principles. The results obtained from this experience are

quite encouraging, as the authors suggest that younger generations

are able to learn SE principles under this kind of instructional sce-

nario. For example, this MOOC raises awareness about code smells

[1, 14], as a way to encourage software maintanability. Likewise,

Robles et al. [26] are concerned about the “clone-and-own” reuse

approach in Scratch and how it relates to knowledge acquisition

and mastery in CT projects.

The literature also reports automated tools for assessing code

production and software quality when developing Scratch-based

projects, as a way of assisting both teachers and students in this

endeavor. For instance, Hairball [3] and Dr. Scratch [22] can auto-

matically identify and count code smells and other oddities in the

development, such as duplicated sprites, issues with sprite naming,

dead code identification, use of synchronization and parallelism,

level of user interactivity, among others.

Finally, in terms of software production, two of the preferred

software development approaches to empower novice program-

mers are disciplined methods (e.g., incremental) and agile processes

[25]. While the former are structured and based on phases and

roles, the latter are unstructured, focused on the product, and based

on team self-organization. In particular, Robillard and Dulipovici

[25] recommend that inexperienced developers should start out

following a disciplined process, since these provide a structured

recipe to assist students in accomplishing their endeavors.

Also, in the SE community there has been a recent spike in in-

terest in better understanding the nuances of behavioral attitudes

expressed by different user groups around software development,

particularly millennials [9] and younger populations [15, 21]. Fur-

thermore, related work reports several measures for assessing the

quality of the produced software by young programmers. For in-

stance, Tsan et al. [28] used a set of tasks, which are then objectively

measured with a rubric by analyzing the generated code. In order

to generate a result, all items are then weighted and consolidated

according to quality measures, such as: requirements (i.e., ensuring

correct and complete functionality), consistency, and usability.

99



Assesing So�ware Development Skills Among K-6 Learners ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

Building upon the reviewed lines of research, we designed in

2012 —and iteratively refined over the years—an extracurricular

workshop, linking both initial programming activities with project-

based tasks. Through a dedicated set of workbooks that motivate

student reflection as well as code design and analysis, we stimulated

K-6 learners to acquire basic software development skills, without

using excessively technical language and putting into practice dis-

ciplined methods.

3 INTERVENTION

Wedesigned a 5-dayworkshop to encourage children between 10-12

years old to develop their own, small software project. The goal is to

evaluate if children are able to understand certain good SE practices

and use them during the development of a project. Children are not

explicitly told that they are being taught good SE practices. At the

beginning of each session they receive a workbook for the day, that

states: (1) the goal of the class, (2) associated learning outcomes, (3)

related CT and Scratch programming concepts, and (4) activities

that are used to introduce SE practices and put into action the CT

and programming concepts in a hands-on manner. Three types

of activities are used in the workbooks: (1) explain what a code

snippet does, (2) answer a question about a sample project, and (3)

modify a sample project in some way and discuss the results of this

modification.

Since 2012 we have run 1-2 of these workshops per year, dur-

ing the winter and summer holidays. In this paper we analyze the

2016 winter workshop, because it is the result of extensive piloting

conducting over the last four years. In particular, by the end of the

workshop, most participants showed a positive attitude and effec-

tively proved they acquired basic CT and programming skills [13].

Children are enrolled in the workshop by their parents, as these

workshops have a monetary cost (used to pay instructors and tu-

tors). We use Facebook and Twitter to advertise these workshops,

and they are held at the computer labs of the Department of Com-

puter Science at the University of Chile. Each of the five sessions is

3.5 hours long, with a 30 minute break. Participating students come

from different public and private schools in the country, where

children coming from private schools usually have broader access

to current technology. They also usually benefit from more person-

alized interaction with their teachers, as class sizes are smaller in

private schools. Workshop participants are selected so as to have a

balanced cohort in terms of gender and socio-economic status, in

order to encourage diversity among participants. No student had

prior programming experience at the beginning of the intervention.

Approximately sixty students enroll in each workshop, and each

instructor is in charge of at most 30 students, assisted by one tutor

for each 5 students. These numbers have been determined empiri-

cally over the different pilots, as a way to work with the participants

in an engaging way. The goal is to answer any student questions

as quickly as possible, encourage active learning, and motivate stu-

dents to work on their own projects. Half of the teaching staff are

women, and all of the instructors and tutors are advanced under-

graduate and graduate students of the University, with experience

in working with K-6 learners. Each class starts with an introduc-

tion given by the instructor to motivate the topics that will be

addressed during the session, followed by hands-on activities with

the computer and project-based tasks. All workshop participants

work individually on a computer, and we actively encourage par-

ticipation and collaboration.

We now describe the topics covered over the different sessions,

the expected learning outcomes, the associated activities and the

SE practices showcased or reinforced in each session. Accompa-

nying workbooks and scripts are available for download from our

institutional repository2. Note that topics and sample projects are

presented in growing order of complexity.

3.1 Day 1: Problem Solving

The learning outcomes are: (1) identify the data relevant to solve a

problem, (2) propose a set of sequential steps to solve a problem,

and (3) recognize the main elements of the Scratch programming

environment. The main CT concept taught is algorithm, exemplified

through everyday activities. Programming concepts are first intro-

duced using a simple Scratch program that only includes event, look,

and motion blocks, and later through a more complex animation

program that adds control, operator and sensor blocks. Students are

encouraged to execute each program and determine which block

corresponds to a particular object action. Moreover, they are asked

to modify these programs, and to test and explain what happens.

Students are first asked to make superficial changes, like change

the rate of movement, but are later asked to add new functionality.

The SE practices involved are: (1) source code reviewing, (2)

reading and interpret functional requirements for designing an al-

gorithm in a CS-Unplugged context [2], and (3) extending programs

through the addition of new code. This last practice requires stu-

dents to create abstractions, reuse existing code, identify where the

change should be made, add new blocks and integrate them with

the rest of the program, and to finally test the modified program.

3.2 Day 2: Animations with Scratch

The learning outcomes are: (1) understand simple animations and

(2) create an animated story in Scratch. The notion of algorithm is

reinforced by making students think about and write a storyboard

in a CS-Unplugged context. The CT concepts are extended by intro-

ducing synchronization and message broadcasting. We ask students

to read, understand, and execute two programs that animate the

same short story: one synchronizes two sprites using time, while

the other uses message broadcasting.

The SE practices introduced during the first class are reinforced.

In addition, we introduce two synchronization software patterns,

showing the advantages of message passing over concurrent time-

based synchronization. During the last hour of the session, students

are challenged to start working on their own software projects.

3.3 Day 3: Videogames in Scratch

The learning outcomes are: (1) understand the code for small video-

games in Scratch, (2) modify these small videogames, and (3) create

their own videogame. The CT concepts included in this session

include the definition of control-flow statements, such as condi-

tions and looping. Students are asked to execute and understand the

control blocks used in partial versions of well-known games (pac-

man, pong, etc.) that are available as example projects in Scratch

2http://bit.ly/scratch-dcc-uchile

100



ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden F.J. Gutierrez et al.

and were slightly modified to fit with the scope and activities de-

signed in the class workbook (e.g., by illustrating the application

of SE good practices). We call these examples “sample projects” in

the rest of this paper. We also introduce the concept of variables,

which are used to keep score in the sample games. As these games

are interactive, students must learn how to move sprites and use

sensors.

During the first two hours, participants are asked to modify and

add simple functionalities and sprites to the sample projects. During

the last hour, they are encouraged to continue the development of

their own project. We reinforce the idea of remixing what they have

learned during the previous days with the new instruction blocks

taught that day. The SE practices strengthened in this class are: (1)

event-based interaction, (2) pattern-driven design (e.g., collision

detection and motion), (3) reading and writing code documentation,

and (4) the use of meaningful variable and sprite names.

3.4 Day 4: Data Representation

The learning outcomes in this session are: (1) understand how the

computer represents discrete and continuous data, such as numbers,

text, and images, and (2) reinforce software development skills

during the completion of the student projects. The first part of

this session consists of CS-Unplugged activities that explain how

information is internally represented in a computer. They learn

that images are discrete, that colors are represented using triadic

codes, and that numbers are stored using a binary system [2].

During the second part of the session, students continue working

on their software projects, guided by their tutors. This time, students

develop a finer notion of testing and code inspection on their own

projects.

3.5 Day 5: Data Algorithms

The learning outcomes for the final session are: (1) understand

how the computer internally searches for and sorts data, and (2)

complete the project and present it to other students and their

parents. The final day of the workshop is used to introduce search

and sort algorithms in a CS-Unplugged context [2]. They also work

on their projects during an hour.

The final activity for the day is a presentation session, where

students show and explain their projects to their classmates and

their parents in a closing social event. We estimate that students

spend around 6 hours in total working on their own projects, which

corresponds to about a third of the time allotted to the workshop.

4 METHODOLOGY

The objective of this work is to understand the impact that the

early introduction of SE practices had in an extracurricular learn-

ing experience. These practices are usually introduced at a much

later stage, when students are formally enrolled in computer sci-

ence or software engineering programs, and have already had some

experience developing programs. In particular, we wanted to un-

derstand whether students this young could assimilate and use

these practices. Concretely, we focused on the following research

questions:

RQ1: How are the SE practices included in the workshop as-

similated and used?

RQ2: How does gender affect the assimilation and use of these

practices?

RQ3: How does socioeconomic level affect the assimilation

and use of these practices?

Given the nature of these research questions, we decided to

conduct a descriptive case study [30], where the unit of analysis

is the workshop presented in the previous section. Since we only

study the 2016 cohort, it is a single case study.

4.1 Data sources

Given our research questions, the following data sources were con-

sidered relevant for our case study: (1) basic demographic informa-

tion, (2) workshop entry and exit surveys, (3) workshop materials,

and (4) the projects created by the students. We now discuss each

data source, indicating what data was collected and how.

4.1.1 Basic demographic information about the 2016 cohort (e.g.,

age, sex, public/private school, etc.). The academic unit in charge of

the workshop collected data like the age and sex of the participants,

as well as the name of the school where they study. One of the co-

authors of this paper looked up the classification of these schools

in a Ministry of Education database. The data is kept anonymized,

students are identified using a numeric id.

The sample for this case study consists of 55 students (26 girls and

29 boys), aged 10 to 12 years old, all with no prior programming

experience. 68.2% of the workshop participants attended public

schools, while 31.8% attended private schools. This information was

obtained in a self-report questionnaire applied to all students during

enrollment. This breakdown is the opposite of country averages,

as reported by UNICEF3: 38% of Chilean students attend public

schools and 60% private schools.

4.1.2 Entry and exit surveys applied to workshop participants.

These surveys are structured questionnaires designed by two of

the co-authors of this paper. These surveys try to gauge what the

students understand by “computer” and “computing”, and have

been applied to participants of this workshop since 2013. These

questionnaires have both open and closed questions and students

are identified using the previously assigned numeric id.

In order to analyze this dataset, the questionnaires were tran-

scribed and tabulated by five co-authors of this paper. Data analysis

was structured in a systematic way around a grounded theory ap-

proach, consisting on iterative open, axial, and selective coding,

and then theory framing using affinity diagrams and triangulation

with the collected socio-demographic data.

4.1.3 Workshop materials: workbooks and sample projects. Each

day of the workshop has its own workbook, which lists the learning

objectives for that day, explains some concepts relevant to the day’s

activities, as well as the activities themselves. These materials were

designed by three co-authors of this paper, who are participant-

observers of this case study, as they designed and have taught

several editions of this workshop.

4.1.4 Projects created by the students. Students are told from the

beginning that they are expected to work on a final project using

what they have learned in the workshop, and are given formal

3http://unicef.cl/web/educacion/

101



Assesing So�ware Development Skills Among K-6 Learners ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Rubric for evaluating student projects

None (0) Beginner (1) Developing (2) Competent (3)

(A) % of sprites that only control themselves [0%, 10%] (10%, 40%] (40%, 70%] (70%, 100%]

(B) % of blocks that have a single purpose [0%, 10%] (10%, 40%] (40%, 70%] (70%, 100%]

(C) documentation 0 comments 1-2 comments 3-6 comments > 6 comments

(D) % of reachable blocks [0%, 10%] (10%, 40%] (40%, 70%] (70%, 100%]

(E) % of items with appropriate names [0%, 10%] (10%, 40%] (40%, 70%] (70%, 100%]

(F) % of superficial changes w.r.t sample projects (70%, 100%] (40%, 70%] (10%, 40%] [0%, 10%]

(G) project novelty the expected behavior

is not clear

quite similar to a sam-

ple project

extends a sample

project in a novel way

quite different from

the sample projects, or

integrates 2 or more

sample projects

instructions on this task by the end of day 2. Students were free

to pick the subject matter and of their projects, and could either

start from scratch or choose to extend one or more of the sample

projects provided during the workshop.

These projects were downloaded for analysis at the end of the

workshop. The projects were identified using the numeric id as-

signed to each student.

4.2 Evaluating Student Projects

As a first step to measure the degree of acquisition of the software

development skills addressed in the workshop, we evaluated the

final projects with two assessment tools: Dr. Scratch4 and a project

evaluation rubric designed by the authors of this paper.

Dr. Scratch is an automatic assessment tool, specifically tailored

to measure CT skills in Scratch projects showing a high degree of

correlation between human and automatic evaluations [22]. This in-

strument measures specific CT dimensions, based on the structure

of Scratch applications: (1) logical thinking, (2) data representation,

(3) user interactivity, (4) flow control, (5) abstraction and prob-

lem decomposition, (6) parallelism, and (7) synchronization. Each

dimension has 4 mastery levels: None, denoting that little or no

mastery; Beginner, denoting a basic mastery; Developing, denoting

that there is some mastery, and Competent, denoting competency.

Being competent assigns the highest score (3), whereas None does

not assign any points (0).

In order to complement the evaluation yielded by Dr. Scratch, we

designed a project evaluation rubric, based on the specific software

development skills delivered in the workshop. After a calibration

step, every project from the 2016 cohort was evaluated using this

rubric by one of the 4 co-authors of this paper. We now describe

these steps in more detail.

4.2.1 Rubric design. We followed an iterative process to create

the rubric shown in Tab. 1, that assesses the level of mastery that

the students achieve with regard to several dimensions related

to the SE practices mentioned in Sect. 3. Two of the authors of

this paper were involved in this process: one of such is also a

co-author of the workbooks, and the other is an external expert

in software engineering education. Both reviewers individually

and independently identified a set of SE practices motivated in

the activities as explicit or implicit prompts. Once these lists were

completed, both authors discussed and reached agreement on the

4http://www.drscratch.org

final set of SE practices to be evaluated in the rubric. We list these

practices here to facilitate the discussion:

(1) review existing and own source code

(2) read and understand functional requirements

(3) extend programs through the addition of new code

(4) adequate use of names (e.g., sprites and variables)

(5) pattern-based design and implementation

(6) testing

(7) read and write documentation

Some of these practices can be directly measured, and have

corresponding dimensions in our rubric: this is the case of practices

(4) and (7), which correspond to dimensions (E) and (C), respectively.

Practice (5) can be indirectly measured by Dr. Scratch, by combining

the scores along the logical thinking, flow control, parallelism, and

synchronization dimensions.

We cannot evaluate practices (1), (2) and (6) directly in the final

projects, so we assess the use of these practices by proxy, defining

several dimensions that measure the quality of the project code.

We posit that students who follow these practices produce code of

better quality, specifically with respect to cohesion (dimension (A)),

functional decomposition (dimension (B)), and amount of reachable

code (dimension (D)). Note that the descriptions of these dimen-

sions in Tab. 1 show how we have adapted these dimensions to the

Scratch.

Finally, dimensions (F) and (G) evaluate practice (3). On the one

hand, we wanted to see how much of the sample projects were

being incorporated into the final projects (dimension (F)), and on

the other hand, we wanted to gauge if the participants could use

what they learned in the course to extend the sample projects in

new and interesting ways (dimension (G)).

Just like Dr. Scratch, we defined 4 levels of mastery for each di-

mension: None, Beginner, Developing, and Competent. Competent

assigns 3 points to the evaluation score, whereas None does not

assign any points. As there is an even number of levels, the middle

level does not become a “catch-all” category.

Since more that one researcher was going to apply the rubric,

we explicitly quantified the cross between dimensions and mastery

levels, in order to allow a more objective application of the rubric.

The exception is dimension (G), where we described the expected

products for each mastery level.

4.2.2 Rubric calibration. We ran a pilot evaluation of the rubric

in order to both calibrate the instrument and assess its applicability

102



103



104



ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden F.J. Gutierrez et al.

Table 6: SE Practices and their Level of Assimilation and Use.

Note that in the case of practice (5), we directly refer to the

corresponding Dr. Scratch dimensions.

SE Practice Dimensions Level

(1) Review existing and own source code A, B, D XX

(2) Read and understand functional require-

ments

A, B, D XX

(3) Extend programs through addition of

new code

F, G X

(4) Adequate use of names E X

(5) Pattern-based design and implementa-

tion

Logic, Flow,

Parall, Synchr

∼

(6) Testing A, B, D XX

(7) Read and write documentation C X

RQ1: How are the SE practices included in the workshop assimilated

and used?

In the case of practices (1), (2) and (6), we see strong evidence that

these SE practices are indeed assimilated and used by the workshop

participants, as all three of the associated dimensions score Devel-

oping to Competent in Fig. 1b. We use a double checkmark (XX)

to indicate this in Tab. 6. We also see relatively strong evidence

for practice (3), since the median for both practices (F) and (G) in

Fig. 1b is 2, so we have put a single checkmark in the corresponding

row of Tab. 6.

In the case of practice (5), we use a ∼ in Tab. 6 to show that the

evidence for the assimilation and use of this practice, as defined,

is not clear. Since the dimensions defined by Dr. Scratch focus

on whether projects make use or not of specific Scratch language

constructs, a project would need to make use of a variety of blocks

and patterns in order to get an overall Developing to Competent

score when grouping several Dr. Scratch dimensions, like we did

in this case. Moreover, since several of the Competent-level blocks

required byDr. Scratchwere not included in theworkshopmaterials.

Participants also only spent approximately 6 hours working on their

projects, so there may have not been enough time to explore new

instructions on their own.

If we divide practice (5) into two sub-practices, (5a) focusing

on Logic and Flow, and (5b) focusing on Parall and Synchr, we

can be more conclusive about their assimilation. Participants have

not yet seemed to master more complex cases of control flow, like

conditionals nested within looping blocks, but did not have much

trouble understanding and using messages as a synchronization

mechanism between sprites.

Finally, in the case of practices (4) and (7), we see little to no evi-

dence of these practices in the student projects, which is indicated

using a X in Tab. 6. In general, participants used default names for

sprites and messages, which is not a problem at the moment, since

these projects are relatively small, but this does not bode well for

projects as they get larger [1]. The same goes for documentation:

it is important to learn what needs to be documented, as we want

to avoid the extreme cases of no comments vs. comments about

every single instruction. Note that we are currently studying if the

order and depth with which the topics are covered affects student

assimilation of Scratch and SE practices.

RQ2: How does gender affect the assimilation and use of these

practices?

According to the analysis of our data (c.f. Tab. 4), overall there

is no significant difference in rubric scores by gender. This is a

promising result. We could also attribute this result to the gender

balance of the teaching staff. As mentioned in Sect. 4, we take

special care to reach gender parity when selecting course tutors,

since workshop participants spend a lot of time with them. These

tutors many times become role models to the students, as they are

closer in age to the participants than the instructors. Cheryan et

al. [6] have shown that role models show significant effects on

female students’ self-confidence when pursuing careers in STEM

fields. So, by targeting K-6 learners, we may be reaching girls with

a positive and constructive STEM experience before they “self-

select” out of STEM fields [10]. One might argue that the students

that participate in these workshops are those who already have

an interest in the computing field, but, as stated in Sect. 4, in our

experience it is usually the parents that select the workshops, and

not the students.

RQ3: How does socioeconomic level affect the assimilation and use

of these practices?

Aswith gender, we did not detect a significant difference in rubric

scores by socioeconomic status (c.f. Tab. 5). We did not expect to see

this result, as students at private schools tend to have earlier and

broader access to technology, including Internet access. However,

when taking into account the words used to define “computing”

(c.f. Tab. 3), we see that there is general misconception of what

computing is, and students tend to focus on the physical computer.

This is similar to what has been reported by other authors [12].

Even the inclusion of CS-Unplugged activities did not do much to

change this perception. Similar to the trend we see in gender, we

seem to be reaching students before the digital divide is evident by

targeting K-6 students. This reinforces the idea that the earlier CT

and SE are introduced in the standard curriculum, the better.

In order to understand if the answers to RQ2 and RQ3 can be

generalized, we are now building the case study database for this

year’s workshop, as this year’s cohort has a similar gender and

socioeconomic distribution as the 2016 cohort.

6.2 Implications

The future needs software engineers from different cultures, gender

and socioeconomic status, among other characteristics, but we are

all aware of how hard it is to get younger people interested in

CS and SE, especially women. The results of our extracurricular

workshop show that K-6 learners are mature enough and know

enough mathematics to start thinking about building their own

small software projects. In the current SE curriculum, students

gradually adopt good SE practices over time, through exposure to

projects of different scope and complexity. Our main take-away

from this case study is that we do not need to wait until students

are in a formal CS or SE program to begin exposing them to good

SE practices.

Another advantage of starting early is that students, in particular

women, have not yet seemed to internalize socio-cultural biases

about “who” works in computing. In our case study, we did not

see any significant difference in project scores by gender or by

105



Assesing So�ware Development Skills Among K-6 Learners ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden

socioeconomic status. This is quite different from other programs

targeting K-12, like the International Olympiad in Informatics (IOI).

Recent statistics show that female participation in the IOI is even

lower than the already low participation of women in computing,

and their performance has been historically lower than that of their

male peers [19].

We would also like to emphasize that the idea of this paper is

not that everyone should become a software developer. What is im-

portant is that in this data-driven world, knowing how to manage

your own data and make use of it is going to be an increasingly

valuable life skill. We are not teaching K-6 learners good SE prac-

tices in order to convince them to become software engineers. We

are doing this because we are convinced that everybody should

learn the fundamental computing concepts that drive most of the

applications we now use daily, and to give them the opportunity to

explore computing.

6.3 Lessons Learned

We now list some of the lessons we learned about our workshop:

Show participants real student projects from previous workshops

in an early fashion. We believe that participants are now mainly

basing their projects on the “stories” sample project, as this is the

sample that is used the day that they start working on their projects.

We know that some percentage of the students will change the

focus of their project the next day, when they see more complex,

game-like sample projects. However, what is not clear is how many

participants keep working on their “stories”-style project because

of the sunk cost. At the next workshop, we plan to show students

more complex examples at the beginning of the workshop. These

will probably be selected from previous student projects, so that

students get a clearer idea of what they can achieve in the time

assigned to the project during the workshop.

Reinforce the practices of appropriate names and documentation.

Even though the workbooks and sample projects all made use of

appropriately named variables, sprites and messages, participants

usually resorted to default values, which usually makes it harder

to manually trace through the code. In the case of documentation,

this does not necessarily need to be in the form of code comments.

We could ask participants to informally specify what their project

is going to do. The idea is that this will help them keep track of

what they are trying to do, and it would help us better evaluate the

process, instead of just the final product. Ideally, participants could

keep a blog, updating it every day to specify what functionality

they tried to implement that day, what they managed to test, and

they managed to implement correctly that day. Since K-6 students

are not always accustomed to writing in a freeform style, we can

give them prompts to guide the documentation process.

Incorporate new Scratch instructions in thematerial. Several Scratch

instructions have been introduced in order to reduce sprite and

code duplication, like custom blocks and instance clones. We need

to evaluate if K-6 learners are mature enough to understand these

concepts, and if it is feasible to include these instructions and the

necessary exercises during an already busy week.

6.4 Threats to Validity

We have specified the protocol of our case study and the analysis of

the resulting data in detail, in order to aid replicability. In order to

allow the verification of the case study, the corresponding database

(including student projects) will be made available upon formal

request and approval from our Institutional Review Board.

6.4.1 Internal Validity. The workshop used for informing the

conducted case study is the result of iterative refinement over the

years. In particular, the first version of theworkshopswas conceived

in 2012 and the data used for the empirical analysis correspond

to that gathered on 2016. We acknowledge that the length of the

workshop may affect our results, a follow-up study is required to

understand how much students retain of what they learned. Also,

we need to replicate the analysis with new cases, in order to ensure

the consistency of the reported findings.

6.4.2 External Validity. Although the sample size for our analy-

sis was n = 55, it is relatively small for generalizing our findings

to the entire population. Also, the experience was carried out in

a particular socio-demographical context in Latin America, so we

cannot ensure that the case study findings could be generalizable,

due to the lack of evidence on the influence of cross-cultural in the

advancement of software development practices among younger

populations.

6.4.3 Construct Validity. To avoid threats to construct validity,

we defined a clear protocol for designing the evaluation rubric, and

we also validated it through a calibration step that involved three

of the co-authors of this paper and external sources of data. To

avoid subjective evaluations, all data that could not be obtained

in a straightforward way was coded or evaluated by 2 or more co-

authors of this paper. Finally, the relationships between rubric di-

mensions and SE practices were specified before the student project

scores were computed.

7 CONCLUSION

Through a descriptive case study with 55 students (26 girls and

29 boys), aged 10-12 years old, this paper presents the design of a

one-week project-based workshop for promoting the achievement

of software development skills among K-6 learners using Scratch.

The promoted practices were: (1) review existing and own source

code, (2) read and understand functional requirements, (3) extend

programs through the addition of new code, (4) adequate use of

names (e.g., sprites and variables), (5) pattern-based design and

implementation, (6) testing, and (7) read and write documentation.

These practices were empirically assessed with a rubric we designed

and calibrated to measure the level of mastery that the students

achieve with regard to several dimensions related to the SE prac-

tices. The results of this process show that the stated practices can

be effectively assimilated, accepted, and used by workshop partic-

ipants. Furthermore, we did not find significant differences that

can be attributed to both gender and socio-economic status in the

acquisition of the proposed SE development practices.

Although this kind of non-traditional software engineering train-

ing experience is short and conducted in an informal fashion (i.e., as

an extracurricular initiative instead of a formal course), our results

provide promising perspectives on the feasibility and effectiveness

106



ICSE-SEET’18, May 27-June 3, 2018, Gothenburg, Sweden F.J. Gutierrez et al.

of delivering introductory software engineering concepts to this

age group. This acts both as a complement to the existing broad

of knowledge in promoting computational thinking and project-

based learning endeavors. In consequence, we do not need to wait

until students are enrolled in a formal computer science program

to begin their involvement with good SE practices.

As ongoing work, we are studying if the order and depth with

which the different topics are covered affects how students assimi-

late CT concepts, as well as SE practices. In a new version of the

workshop (2018), we gave the students a more compact introduc-

tion to Scratch, so that they could see all the sample projects before

starting their own projects. We also gave them more time to work

on their projects. We are now analyzing the results of this experi-

ence. We also want to study the impact that these workshops have

had over the long run.

ACKNOWLEDGMENTS

We would like to thank Fernanda Ramírez, Jorge Romo, and Giselle

Font for helping create the workshop activities. We would also like

to thank the workshop tutors and participants, as well as Escuela

de Verano, for all their support.

REFERENCES
[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How kids code and how we

know: an exploratory study on the Scratch repository. In Proceedings of the ACM
Conference on International Computing Education Research (ICER’16). ACM, New
York, NY, USA, 53–61. https://doi.org/10.1145/2960310.2960325

[2] Tim Bell, Ian H. Witten, and Mike Fellows. 2015. CS Unplugged: an enrich-
ment and extension programme for primary-aged students. (2015). Retrieved
October 18, 2017 from http://csunplugged.org/wp-content/uploads/2015/03/
CSUnplugged_OS_2015_v3.1.pdf

[3] Bryce Boe, Charlotte Hill, Michelle Len, Greg Deschler, Phillip Conrad, and
Diana Franklin. 2013. Hairball: lint-inspired static analysis of scratch projects.
In Proceedings of the ACM Technical Symposium on Computer Science Education
(SIGCSE’13). ACM, New York, NY, USA, 215–220. https://doi.org/10.1145/2445196.
2445265

[4] Andreas Bollin, Stefan Pasterk, Peter Antonitsch, and Barbara Sabitzer. 2016.
Software engineering in primary and secondary schools - informatics education
is more than programming. In Proceedings of the IEEE International Conference on
Software Engineering Education and Training (CSEE&T’16). IEEE, New York, NY,
USA, 132–136. https://doi.org/10.1109/CSEET.2016.26

[5] Andreas Bollin and Barbara Sabitzer. 2015. Teaching software engineering in
schools on the right time to introduce software engineering concepts. In Pro-
ceedings of the IEEE Global Engineering Education Conference (EDUCON’15). IEEE,
New York, NY, USA, 518–525. https://doi.org/10.1109/EDUCON.2015.7096019

[6] Sapna Cheryan, John Oliver Siy, Marissa Vichayapai, Benjamin J. Drury, and
Saenam Kim. 2011. Do female and male role models who embody STEM stereo-
types hinder women's anticipated success in STEM? Social Psychological and
Personality Science 2, 6 (2011), 656–664. https://doi.org/10.1177/1948550611405218
arXiv:https://doi.org/10.1177/1948550611405218

[7] K-12 Computer Science Framework Steering Committee. 2016. K-12 Computer
Science Framework. (2016). Retrieved August 28, 2017 from http://www.k12cs.org

[8] Inés Friss de Kereki and Areti Manataki. 2016. “Code Yourself” and “A Programar”:
a bilingual MOOC for teaching computer science to teenagers. In Proceedings
of the IEEE Frontiers in Education Conference (FIE’16). IEEE, New York, NY, USA.
https://doi.org/10.1109/FIE.2016.7757569

[9] Hakan Erdogmus and Cécile Péraire. 2017. International workshop on software
engineering curricula for millennials (at ICSE 2017). (2017). Retrieved October
19, 2017 from http://secm2017.se-edu.org/wp/

[10] Bernhard Ertl, Silke Luttenberger, and Manuela Paechter. 2017. The Impact of
Gender Stereotypes on the Self-Concept of Female Students in STEM Subjects
with an Under-Representation of Females. Frontiers in Psychology 8 (2017), 703.
https://doi.org/10.3389/fpsyg.2017.00703

[11] Louise P. Flannery, Brian Silverman, Elizabeth R. Kazakoff, Marina Umaschi
Bers, Paula Bontá, and Mitchel Resnick. 2010. Designing ScratchJr: support for

early childhood learning through computer programming. In Proceedings of the
International Conference on Interaction Design and Children (IDC’10). ACM, New
York, NY, USA, 1–10. https://doi.org/10.1145/2485760.2485785

[12] Shuchi Grover, Daisy Rutstein, and Eric Snow. 2016. "What is A computer": what
do secondary school students think?. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE ’16). ACM, New York, NY,
USA, 564–569. https://doi.org/10.1145/2839509.2844579

[13] Francisco J. Gutierrez, Jocelyn Simmonds, Cecilia Casanova, Cecilia Sotomayor,
and Nancy Hitschfeld. 2018. Coding or hacking? exploring inaccurate views on
computing and computer scientists among K-6 learners in Chile. In Proceedings of
the ACM Technical Symposium on Computer Science Education (SIGCSE’18). ACM,
New York, NY, USA. https://doi.org/10.1145/3159450.3159598

[14] Felienne Hermans and Efthimia Aivaloglou. 2016. Do code smells hamper novice
programming? A controlled experiment on Scratch programs. In Proceedings of
the IEEE International Conference on Program Comprehension (ICPC’16). IEEE,
New York, NY, USA, 1–10. https://doi.org/10.1109/ICPC.2016.7503706

[15] Felienne Hermans and Efthimia Aivaloglou. 2017. Teaching software engineer-
ing principles to K-12 students: a MOOC on Scratch. In Proceedings of the In-
ternational Conference on Software Engineering: Software Engineering, Educa-
tion, and Training Track (SEET’17). IEEE, Piscataway, NJ, USA, 13–22. https:
//doi.org/10.1109/ICSE-SEET.2017.13

[16] Yasmin B. Kafai. 2016. From computational thinking to computational par-
ticipation in K-12 education. Commun. ACM 59, 8 (Aug. 2016), 26–27. https:
//doi.org/10.1145/2955114

[17] Linda Katehi, Greg Pearson, and Michael Feder. 2009. Engineering in K-12 Educa-
tion: Understanding the Status and Improving the Prospects. National Academy of
Engineering and National Research Council.

[18] Timothy C. Lethbridge, Jorge Diaz-Herrera, Richard J. Jr. LeBlanc, and J. Barrie
Thompson. 2007. Improving software practice through education: challenges
and future trends. In Proceedings of the Conference on the Future of Software
Engineering (FOSE’07). IEEE, New York, NY, USA, 12–28. https://doi.org/10.1109/
CSEET.2016.26

[19] Stefano Maggiolo. 2015. An update on the female presence at the IOI. Olympiads
in Informatics 9, 127 (2015), 127–137. https://doi.org/10.15388/ioi.2015.10

[20] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The Scratch programming language and environment. ACM Trans-
actions on Computing Education 10, 4 (Nov. 2010), article 16. https://doi.org/10.
1145/1868358.1868363

[21] Marcello Missiroli, Daniel Russo, and Paolo Ciancarini. 2016. Learning agile
software development in high school: an investigation. In Proceedings of the
International Conference on Software Engineering: Software Engineering, Education,
and Training Track (SEET’16). ACM, New York, NY, USA, 239–302. https://doi.
org/10.1145/2889160.2889180

[22] Jesús Moreno-León, Marcos Román-González, Casper Harteveld, and Gregorio
Robles. 2017. On the automatic assessment of computational thinking skills:
a comparison with human experts. In Extended Abstracts of the ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI’17). ACM, New York,
NY, USA, 2788–2795. https://doi.org/10.1145/3027063.3053216

[23] Rachel S. Phillips and Benjamin PC Brooks. 2017. The Hour of Code: Impact on
Attitudes Towards and Self-Efficacy with Computer Science. (2017). Retrieved
October 19, 2017 from https://code.org/files/HourOfCodeImpactStudy_Jan2017.
pdf

[24] Mitchell Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun. ACM
52, 11 (Nov. 2009), 60–67. https://doi.org/10.1145/1592761.1592779

[25] Pierre N. Robillard andMihaela Dulipovici. 2008. Teaching agile versus disciplined
processes. International Journal of Engineering Education 24, 4 (July 2008), 671–
680.

[26] Gregorio Robles, Jesús Moreno-León, Efthimia Aivaloglou, and Felienne Her-
mans. 2017. Software clones in scratch projects: on the presence of copy-and-
paste in computational thinking learning. In Proceedings of the IEEE Interna-
tional Workshop on Software Clones (IWSC’17). IEEE, New York, NY, USA, 31–37.
https://doi.org/10.1109/IWSC.2017.7880506

[27] Ian Sommerville. 2015. Software Engineering (10th ed.). Pearson Education.
[28] Jennifer Tsan, Kristy Elizabeth Boyer, and Collin F. Lynch. 2016. How early

does the CS gender gap emerge?: a study of collaborative problem solving in
5th grade computer science. In Proceedings of the ACM Technical Symposium on
Computer Science Education (SIGCSE’16). ACM, New York, NY, USA, 388–393.
https://doi.org/10.1145/2839509.2844605

[29] Jeannette M. Wing. 2006. Computational thinking. Commun. ACM 49, 3 (March
2006), 33–35. https://doi.org/10.1145/1118178.1118215

[30] Robert K. Yin. 2013. Case Study Research: Design and Methods (5th ed.). SAGE
Publications.

107


