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ABSTRACT
Live Programming environments allow programmers to get feed-

back instantly while changing software. Liveness is gaining atten-

tion among industrial and open-source communities; several IDEs

offer high degrees of liveness. While several studies looked at how

programmers work during software evolution tasks, none of them

consider live environments. We conduct such a study based on an

analysis of 17 programming sessions of practitioners using Pharo,

a mature Live Programming environment. The study is comple-

mented by a survey and subsequent analysis of 16 programming

sessions in additional languages, e.g., JavaScript. We document the

approaches taken by developers during their work. We find that

some liveness features are extensively used, and have an impact on

the way developers navigate source code and objects in their work.
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1 INTRODUCTION
Live Programming aims to free programmers from the edit-compile-

run loop of standard programming, going as far as to allow pro-

grams to be changed while they run. Recent years have shown that

there is considerable interest in Live Programming, and liveness

in general: the new programming language Swift from Apple fea-

tures Interactive Playgrounds [1]; Microsoft recently purchased a

company developing Live Programming tools [2]; Facebook’s React

supports instant feedback [3]; web browsers come with interactive

consoles and inspectors [4]. Academically, a series of international

conferences and workshops have been held on Live Programming,
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with LIVE 2013 being the most popular workshop at ICSE 2013 [5]

(see Section 2 for background on Live Programming).

While some see Live Programming as “the future of program-

ming”, some of its proponents have more concrete and immediate

issues. Microsoft Research’s Sean McDirmid [6] wrote: “The biggest

challenge instead is live programming’s usefulness: how can its

feedback significantly improve programmer performance?”

While the full vision of Live Programming is yet to be imple-

mented and made available at scale to practitioners, many elements

of it are in use on a daily basis in some developer communities.

In particular, many of the Live Programming concepts have been

present for decades in the Smalltalk and Lisp development environ-

ments; Smalltalk and Lisp feature high degrees of liveness.
This offers us a critical opportunity to understand how liveness

is used today, and offers insights to practitioners, researchers, lan-

guage designers, and tool builders on how to effectively use and

support Live Programming. In this paper, we provide answers to

several research questions on the use of Live Programming features

in practice. We first provide essential background on Live Program-

ming and our main study subject, the Pharo IDE, in Section 2.

We then present our methodology (Section 3): we analyzed 17

development sessions of 11 programmers, totaling 13 hours of cod-

ing with familiar and unfamiliar code. This was followed by two

confirmatory phases: a survey of 190 Smalltalk developers, and an

analysis of 16 online videos (25 hours) of HTML/JavaScript, C#,

PHP, Haskell, and C/C++ programmers.

Section 4 answers our first research question, “Do developers
use the Live Programming features of Pharo?”, in the the af-

firmative: we find that Live Programming features and tools were

used extensively by Pharo users.

Section 5 answers our second research question: “Howdo devel-
opers use Live Programming in Pharo?”. We describe several

usages of Live Programming and contrast them against traditional

programming approaches. Our overall finding is that simple ap-

proaches were favored, and their combinations can be powerful.

We then answer our third research question “Do developers,
other than those we analyzed, behave similarly?” in two parts.
First, we find that surveyed Pharo users agree with most of the

observations we made (Section 6). Subsequently, we observe that

users of other languages and tools use more limited capabilities

due to the limited extent of the tool support, and with the aim of

getting feedback early and often (Section 7).

We then discuss our findings in the context of existing studies and

tool support in Section 8. In particular, we discuss how a reduced

toolset, centering on the concept of the object inspector supports a
large range of use cases.

Finally, we close the paper with a discussion of the threats to

validity of this study in Section 9 and conclude with implications

for tool builders, researchers, and language designers in Section 10.

https://doi.org/10.1145/3180155.3180200
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2 BACKGROUND AND RELATEDWORK
2.1 Live Programming Environments
The reader wishing to experience Live Programming concretely

may visit the http://livecoder.net web site for a JavaScript example.

Degrees of liveness. Live Programming allows programmers to

obtain nearly instantaneous feedback from their programs through

always accessible evaluation [7]. Tanimoto describes four levels

of liveness [8]. At level 1, the user must restart the whole applica-

tion to obtain any kind of feedback. At level 2, semantic feedback

is available on-demand; this is the level provided by interactive

interpreters (Read-Eval-Print loops). At level 3, incremental feed-

back is automatically provided after each edit operation. Finally,

level 4 applies changes to a running application without explic-

itly initiating the application under change. Each level creates a

different experience and cover solutions such as auto-testing, Read-

Eval-Print loops (REPLs), or systems where development tools and

applications share the same environment [9].

While elements of Live Programming date back decades, with

some versions of it supported in LISP’s Read-Eval-Print Loop [10],

or in Smalltalk and its descendants (e.g., Self [11], Squeak/Smalltalk

[12] or Lively Kernel [13]), it has seen a resurgence of interest in

academia and in the industry.

Live Programming research. Academically, both the LIVE pro-

gramming workshop [14] and the International Conference on Live

Coding [15] held their 3rd edition in the fall of 2017. Many Live

Programming languages and tools have been proposed, but most

of them are experimental. As we focus on the usage of liveness in

practice—and due to space constraints—we only give a brief cover-

age of a handful of seminal work. The 90’s saw an interest in Live

Programming for visual languages, such as Tanimoto’s VIVA [16],

that introduced the 4 liveness levels. Burnett et al. implemented

level 4 liveness in a visual language [17]. They also conducted a con-

trolled experiment of debugging comparing live and non-live tasks

[18]. They found that subjects performed twice as many changes in

live tasks, but the effect in terms of time and accuracy was mixed.

Recent works include languages such as McDirmid’s SuperGlue

[19], Jonathan Edward’s subtext [20], and Glitch [21]. Microsoft’s

TouchDevelop has beenmodified to support Live Programming [22].

DeLine et al. proposed Tempe, a Live Programming environment

for data analysis [23].

Liveness in practice. Several frameworks and tools nowadays add

ways to integrate immediate feedback, particularly on the web. The

Chrome web development tools [4] allow changes to web pages

and JavaScript code without reloading a webpage. Modern, popular

JavaScript frameworks including Facebook’s React.js support Live

Programming in live code editors [3].

Mainstream languages also take steps in this direction: Java sup-

ports a limited replacement of application parts while it is running

through the Java Platform Debugger Architecture [24]. Apple’s

new language Swift supports Live Programming with interactive

playgrounds [1]. Finally, Microsoft’s Visual Studio 2015 supports in-

teractive programming for C# and F# with REPLs [25, 26]. Microsoft

also recently acquired the CodeConnect startup, which developed

the Alive extension for Visual Studio [2].

2.2 Live Programming in Pharo
Why Pharo? Pharo [27] is a programming language and develop-

ment environment derived from the Squeak/Smalltalk [12] dialect

of Smalltalk-80 [28]. As the development tools and the applications

share the same runtime environment, developers naturally work

on running applications. In addition, developers constantly im-

prove Pharo itself by altering it while it is running. Since Pharo can

update any part of an application at runtime, it supports up to Tan-

imoto’s fourth level of liveness. As a descendant of Squeak, Pharo

also features the direct manipulation Morphic UI [29], originally

implemented in Self [11].

As a descendant of Smalltalk-80, liveness is present in Pharo

since more than three decades. This has two consequences that

made Pharo the case study of choice in this work. First, liveness

was designed in the language and the tools since its inception; the

support is both mature and seamless. More importantly, liveness

is also part of the culture of the development community. Pharo is

used by an active community of developers, both in industry and

academia. Pharo users are introduced to liveness when they learn

the language from the very beginning, and as a result practitioners

use it naturally as part of their daily tasks. This characteristic is

the main driver of our choice of Pharo, as we wanted to know how

developers familiar with liveness use it, in practice.

Liveness in Pharo. We now present the main liveness features of

Pharo, contrasting it with a traditional IDE, Eclipse (assuming a

default configuration).

Code evaluation. The first difference is the ease of evaluating code
in Pharo. Since the compiler is a user-accessible object, any piece of
text can be selected, and then be executed, printed out, inspected, de-
bugged, or profiled, either via menus or keyboard shortcuts. Eclipse

can only run applications in normal or debug mode, and execute

tests. This difference has far-reaching consequences. For instance,

in Pharo it is common to encounter executable examples embedded

in method comments. To better understand a method, a user can

simply select the example, execute it, and observe the result.

Pharo can also compile and update a single method at a time.

This can be done even while applications are running: any new call

to the changed method from then on will call the updated behavior.

Accessing objects. The Object Inspector is a tool that displays

object states [30]. Developers can navigate the object graph, modify

instance variables, evaluate code snippets, browse its source code,

and invoke inspectors from virtually anywhere. They may open

multiple inspectors at the same time and keep them for arbitrary

long periods of time. This is useful for contrasting the object be-

haviors and for evaluating the result of source code change on live

objects. The inspector can be embedded in other tools [31]. Many

objects have custom inspector views.

Eclipse has a more limited Object Inspector in its debugging

perspective that can only navigate the object’s structure, change the

values of primitive types, and is dismissed as soon as the developer

leaves the debugging perspective.

Playground. The Playground is a tool to write code snippets and

explore their results, which are displayed in an embedded Object

Inspector. Playgrounds can be used to experiment with example

code snippets. Developers can open various playgrounds and keep

them open indefinitely. Eclipse does not provide a similar tool.

http://livecoder.net
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Debugger. The Pharo Debugger is composed of a stack trace

at the top, a source code editor in the middle, and an embedded

inspector in the lower part with instance and method variables.

Developers can change the variable values, edit source code, and

observe the effects of these changes. Pharo developers can have

several debuggers open at the same time, which allows for easy

comparison of the execution of two execution scenarios. When a

non-existent method is invoked on an object, the debugger offers to

create it, generates a stub, and then navigates inside themethod stub,

allowing the developer to implement it with live arguments and

variables at his or her disposal. This process, called “programming

in the debugger” can be repeated indefinitely (e.g., a newly added

method can in turn call a non-existing method), and is especially

popular among proponent of test-driven development.

Eclipse developers can evaluate code snippets inside of a debug-

ger. However, Eclipse does not support multiple opened debuggers.

Changing source code at run-time is limited to methods visible in

the call stack; any other change needs an application restart. Pharo

developers can change any source code elements, including class

definitions. The Pharo debugger is automatically invoked whenever

an error occurs, while Eclipse’s has to be invoked manually.

Halo. Originating from Morphic [32], the Halo enables interac-

tions with on-screenwidgets. The Halo is invoked on the UI element

under the mouse via keyboard shortcuts. Buttons appear around

the widget, triggering actions such as copying, altering, deleting,

or inspecting it. Eclipse does not offer a similar functionality.

2.3 Studies of Developers
Many observational studies of developers have been conducted. We

very briefly list some here—see Section 8 for discussions in context.

Ko et al. studied how developers seek information during main-

tenance tasks [33]. Lawrance et al. studied how developers debug

from an information foraging perspective [34]. LaToza et al. present
developer activities and the tool support level for them [35]. Roehm

et al. conducted an observational study about software comprehen-

sion in seven companies and report on comprehension strategies

[36]. LaToza et al. compared novice and experts during program

comprehension [37]. Robillard et al. contrasted 5 successful and

non-successful developers during maintenance tasks [38].

As they work, developers ask many questions. Several studies

seek to catalogue them and analyze their tool support. Sillito et
al. [39, 40] observed 27 software maintenance sessions, and listed

44 questions asked during them. LaToza et al. focus on reacha-

bility questions and provide 12 questions rated by difficulty and

frequency [41]. Ko et al. identify 21 questions about interaction

with codebases and co-workers [42]. Fritz et al. present 78 devel-
oper questions with lack of tool support that involve information

integration from various sources [43]. Duala-Ekoko et al. conducted
a study on unfamiliar APIs and identified 20 questions [44].

Some studies disallowed the use of runtime information (e.g.,
Robillard et al. [38]); others did allow it, but did not specifically

report it (such as Ko et al. and Lawrance et al. [33, 34]). Thus,
studies of live environments, where a high amount of runtime

information is available, complement previous work. DeLine and

Fisher performed such a study, but in the restricted context of Data

Scientists [45], not in software development.

Table 1: Participant information.

Participant Programming experience in Current Conducted

Id Any language Smalltalk Position Sessions

[years] [years]

P1 5.5 3 Ph.D. Student S1

P2 15 11 Professor S2

P3 5 1.5 Professional S3

P4 20 13 Professor, Professional S8, S11

P5 7 0.5 Master Student, Professional S9, S12

P6 22 16 Professor S10, S13

P7 10 6 Ph.D. Student S4

P8 4 2 Bachelor Student S5, S14

P9 7 3 Ph.D. Student S6, S15

P10 3 0.5 Professional S16

P11 5 3 Ph.D. Student S7, S17

3 RESEARCH METHOD
3.1 Exploratory Study
Participants. We recruited eleven male participants consisting of

students, academic staff, and professional developers from distinct

small local companies. Their programming experience spanned

from 5 to 22 years, with a median of 6 years. Experience in Pharo

or Smalltalk ranged from 0.5 to 16 years, with a median of 3 years.

The participants consisted of 1 bachelor student, 4 Ph.D. students,

2 professors, 2 professional developers, and 2 persons with mixed

positions. Details are illustrated in Table 1.

Tasks. We conducted 17 programming sessions, of which 10

sessions (S1–S10) included an unfamiliar codebase, and 7 sessions

(S11–S17) a familiar codebase. A session was classified as familiar
if the participant was one of the authors of the codebase. In this

case we asked the participant to choose a programming task of

his or her project on which he or she can work during 40 minutes,

and stressed it was not important to finish the task at the end of

the session. In unfamiliar sessions, the participant had little or no

knowledge of the codebase beforehand. We provided him or her a

prepared Pharo image related to a particular bug-fixing or extension

task and an explanation of the task.

Study Setting. Participants completed the study using Pharo ver-

sion 3. They could use any IDE features, and any documentation

resources. They were advised to proceed with their work as usual.

Before each session, we setup the participant’s device and explained

the procedure of the session. We asked participants to verbalize

their thoughts while solving their tasks. Participants did not re-

ceive any additional prior training for our study. After about 40

minutes, we informed participants that they could finish whenever

they wanted.

Data Collection and Transcription. We used three data collection

techniques: screen captured videos (including audio, 13 hours in

total), user interactions, and interviews. We summarized what the

participants said, and described the actions they were performing

on the screen; we developed tools to attach timestamps to the

transcripts and navigate back to the videos as needed during the

analysis. These data, recordings, and tools are available at [46? ? ].
We complemented this data with IDE user interactions [47],

whichwe capturedwith the DFlow framework [48]. Events included

opening, closing, and moving of windows, clicks on UI elements,

navigation and changes to the source code, etc. (see details in [48]).
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The interactions were not recorded in the session S14 due to the

participant’s incompatible setup; we exclude S14 when we report

on DFlow data (in Section 4, and in Figure 2; we manually checked

the presence of each tool but did not count the windows).

After each session we conducted semi-structured interviews

in which participants were asked to comment on the challenges

experienced during the sessions and divergences with their day-to-

day work. The interviews lasted from five to fifteen minutes.

3.2 On-line Survey
Since our aim was to confirm the exploratory study findings, we

used an on-line survey as it is a data collection approach that scales

well [49]. The survey is split into three parts: demographic informa-

tion, tool usage questions with multiple choices, and open-ended

questions. None of the questions were mandatory. Excluding de-

mographics questions, the survey consisted of 34 multiple-choice

questions and 2 open-ended questions, and answering it took about

10 minutes. The survey is available at [46].

We first ran a pilot survey with a limited number of people

to clarify our questions. We then advertised the survey through

seven mailing lists related to Smalltalk communities, and Twitter.

To attract participants we included a raffle of two books.

The survey received 190 responses. Our participants were expe-

rienced (60% more than 10 years; 10% 6 to 10 years; 16% 3 to 5 years;

and 14% 2 years or less), and many were from industry (44% from

industry, 19% from academia, 24% both, 13% others, e.g., hobby).
This balances with our study participants, primarily from academia.

Respondents used several Smalltalk dialects; 70% programmed daily.

3.3 On-line Coding Session Videos
As conducting an exploratory study is a time-consuming process

even with a limited number of sessions, we complement this study

with an analysis of publicly available coding session videos. We

searched for programming videos on YouTube, using keywords

such as “coding session”, “programming session”, and “live pro-

gramming”, and environments and frameworks that were more

likely to feature a degree of liveness, such as “Javascript”, “React”,

“C#”, or “Swift”. We also considered the related videos proposed by

YouTube. We selected potentially relevant videos based on their

title and skimming their contents. The initial list included 44 videos,

totaling about 50 hours. This data is available at [46].

In the second step, we watched and categorized each video in

order to determine whether it is a programming session or a pre-

arranged tutorial or talk. We end up with 16 coding session videos

of about 25 hours. We then carefully watched these videos, looking

for five events: (1) a developer observes a running application or

variable values after a change; (2) a developer modifies source code

or variable values of a running application; (3) a developer uses an

inspector to get runtime values; (4) a developer uses a debugger to

understand a problem; (5) a developer write and run code snippets.

For each event we identified whether: (i) we observe it at least

once; (ii) we observe a part where it is used iteratively after a small

meaningful change; or (iii) we do not observe it.

The video subjects use the following programming languages:

11 HTML/JavaScript (69%, 15 hours), 2 Haskell (13%, 3 hours), 1

PHP (6%, 2 hours), 1 C# (6%, 4 hours), and 1 C/C++ (6%, 14 minutes).

4 RESULTS: USAGE OF LIVENESS
In this section, we are concerned whether participants of the ex-

ploratory study use the Live Programming features. To answer it,

we divide development tools into two categories: static tools if the
main purpose is to present source code (e.g., Source Code and Refer-
ences Browsers); and dynamic tools if the main purpose is to present

the state of an application (e.g., Debugger, Playground, Inspector,
Test Runner, Profiler). The goal of this classification is to get us a

first-order approximation of the use of Live Programming. This is

only an approximation, as developers can change source code with

static tools and have an immediate feedback, or use dynamic tools

and observe application states without performing changes.

Figure 1: Dynamic and static tool usage per session.

Figure 1 shows the usage of static (gray) and dynamic (black)

tools over time in all the sessions. Each session label includes the

following information: session ID, unfamiliar or familiar task, par-

ticipant ID, and dynamic tool usage percentage. In total, our par-

ticipants spent 5.5 hours (42%) using dynamic tools and 7.5 hours

(58%) using static tools, with 5 sessions having 60% or more of the

time spent with dynamic tools. In addition, we can see that develop-

ers routinely switched between static and dynamic tools, even for

short durations. Those numbers highlight the high overall usage of

dynamic tools during the sessions, and its frequency.

Figure 2: Number of windows opened per session

Figure 2 shows, for the most frequently used tools, the number

of windows opened in each session. Results are aggregated for
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compactness: each tool is summarized by a bar divided in cells.

Each cell represents the number of sessions for which a specified

range of windows were opened; gray cells to the left indicate sparse

or no usage of a tool, while green cells to the right indicate prolific

users. We subdivide debugger usage in two categories: explicit user

invocation with breakpoints, and automatic invocation by the IDE

when runtime errors occur.

Figure 2 allows us to easily rank tools by usage. The system

browser (222 of 750 development tool windows, or 30%), used to

browse and edit code, unsurprisingly goes first: all subjects used it

extensively. Then comes the object inspector: all but one participant

used it (139 total windows, 19%), and many did very frequently. Our

most prolific participant opened 30 of them! Note that this is an

underestimate, as this number does not include inspectors embed-

ded in other tools (debuggers, playgrounds). Debuggers caused by

runtime errors follow (91 windows, 12%). They were present in all

but 3 sessions, and appeared for the following reasons: non-existent

methods (60), test case assertion failures (19), and other runtime er-

rors (12). The method browser used for reference navigation comes

next (91 windows, 12%), being extensively used by half of the par-

ticipants. Next, the playground appears (46 windows, 6%), although

this metric may be somewhat misleading: all but one participant

used playgrounds, and these windows tend to be long-lived. Finally,

debuggers invoked on breakpoints are next (47 windows, 6%), with

8 participants never using them. Other tools such as test runners

(2 windows), profilers (3 windows), or version control tools (16

windows) saw little use.

Summary: Participants used dynamic tools frequently. Chief among
them was the Object Inspector.

5 RESULTS: LIVENESS EPISODES
In this section, we describe the strategies that programmers took

to make progress in their tasks. They took a variety of approaches,

sometimes taking advantage of Pharo’s liveness (accessing objects,

finding and modifying examples, crafting code snippets, modifying

applications), sometimes employing more traditional approaches

(unit testing, debugging, code search, and static exploration). Each

type of usage (or episode, reusing the terminology of Zieris and

Prechelt [50]) is illustrated by one or more examples from the tran-

scripts. Finally, we highlight how the approaches can be combined.

5.1 Accessing and Manipulating Objects
Accessing objects with the inspector is the most common strategy

participants took; it was present in all but one sessions. Inspectors

were used frequently due to Pharo’s ease of executing source code

anywhere, including in code browsers, playgrounds, debuggers, and

inspectors themselves. Usages vary in sophistication from simple

accesses (checking of class names, variable values), to manipulation

through execution of method calls and code snippets on the objects.

Basic usages. Participant P4 (S8) copy-pasted an example in a

playground in order to understand a library. He had no idea what

a variable was; its name “a” was far from useful. By adding the

method call “a inspect” at the end of the example and executing

it, P4 received an inspector on “a”, where he could see the object’s

state, including its class name.

Using multiple inspectors. An important feature of the inspector

is that one can keep any number of inspected objects opened, for

as long as necessary. In the case of Eclipse, developers lose access

to objects when they exit a debugging session. Pharo developers

thus can change code and regularly execute methods in previously

inspected objects to see the impact of their changes.

Participant P9 (S6) worked with the Rubric framework that cre-

ates text editors. P9 found out how the library works by opening

inspectors on objects of interest: P9 obtained an inspector on a UI

widget representing an editor view. The view had a model hold-

ing information about the contained text. Within the inspector,

P9 evaluated and asked for the view’s model and opened it in an-

other inspector. Then P9 was sending messages to both objects, and

observed how they interact and change each other.

Inspecting UI objects. Participant P11 (S7) wanted to find where a

mouse click that opened a UI window is handled. He inspected the

UI window using a halo (see Section 2.2), and found the window’s

class. He then put a breakpoint in the class constructor, triggered

the mouse click again, and found the source code in the debugger.

Note that being able to inspect graphical widgets does not always

result in finding relevant information. Similarly to P11, Participant

P5 (S9) wanted to know where a particular dialog was executed.

He inspected the dialog widget, but started diving in the (complex)

structure of the object, expecting to find a relevant method name

(this approach is possible, but is challenging). P5 spent about 20

minutes before realizing he could do like P11 who subdivided the

question in two steps: identifying the widget class, then using a

breakpoint to find out where it is created.

Using multiple inspectors with halos is possible too: Participant

P6 (S10) had to fix a bug relating to an application’s text editing

area. Noticing that the bug is not present in another application,

he used halos to find out whether the text editing areas in the two

applications were similar; they were of two different UI widget

classes. P6 could then focus on one class of widgets only.

5.2 Finding, Modifying, and Executing
Examples

Our participants found examples from a variety of sources: in docu-

mentation, in source code, in test cases, and in dedicated browsers.

They were easy to execute and change, but more complex examples

were more challenging to reuse. Even if seldom used, we observe

that having an example browser with running (living) examples

simplifies exploration and comprehension.

Basic usage.After identifying the class of the text area (see above),
P6 searched for references of the text area class. Executing some of

the examples he found in his search, he concluded that the problem

is not in the widget itself, but likely in its configuration or usage.

Example browser. Participant P4 (S8) was tasked with enhancing

the Glamour UI framework: P4 had to show that time-consuming

UI operations were in progress, avoiding the impression that the

UI is frozen. P4 first searched for a code example that had such a

time-consuming operation in the Glamour example browser. The

example browser is a browser that only shows methods annotated

as examples; the examples are automatically executed, showing the

results with a domain-specific view (for Glamour, it shows the UI

generated by the example). When he found a suitable example, he
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pasted it into a new playground to execute it. Once he was familiar

with it, he made changes related to his task.

Isolation issues. Participant P9 (S6) had to replace the legacy text

editor framework in the Nautilus browser with a new framework,

called Rubric. He found an example of a Rubric editor. Despite

having a working example, it took P9 about two and half minutes

to isolate the relevant parts in order to reduce the size of the example

to the minimum working solution.

5.3 Crafting Code Snippets
Pharo’s playground is a simple but powerful combination of a code

editor and an inspector; participants used it to write small code

snippets that helped them evaluate solutions and isolate bugs.

Isolating bugs. Participant P11 (S17) explored performance issues

in an application. He thought that the issue may be caused by one of

three libraries—three application layers. To remove suspicion from

the uppermost layer of the application, he wrote a code snippet

that was a minimal prototype of the application and only used the

second layer. As the owner of the second layer library, he wrote it

from memory in about two minutes. After four minutes, he had a

working prototype and discarded the third layer from suspicion.

Multiple snippets. Participant P4 (S8), tasked with enhancing

Glamour’s responsiveness (see above), found a non-responsive ex-

ample to get started. P4 constructed possible solutions, writing

prototypes in different playgrounds. Thus he thought up of several

solutions to the task, made changes in the library, and observed

the behavior of the running prototypes. P4 said that he usually

keeps examples, because “it is an easy way to get back [to an earlier
version] or share gained knowledge with others.”

5.4 Modifying Running Applications
Participants frequently manipulated running applications, particu-

larly when a feature is accessible from the GUI.

Immediate feedback. Nautilus is a source code browser in Pharo.

P11 (S17) was asked to make its fast navigation functionality user-

visible. P11 worked in Nautilus itself, iteratively performed changes

in the codebase, and immediately tested the change effects in the

running application. This way, he verified the correctness of his

progress. In this case, it was not necessary to recompile and restart

Nautilus each time he made progress.

Misleading feedback. Participant P9 (S6, see above) was also asked
to change Nautilus: P9 had to replace an old text editor framework

with a new one called Rubric. Upon finding relevant source code,

P9 modified it to ensure that he found the right location. However,

his changes were unexpectedly not visible in his running version

of Nautilus. P9 spent about three minutes understanding why the

changes were not reflected in the running application: the method

P9 modified is called only once during the startup of Nautilus (this

could be seen as a limitation of Pharo’s liveness). P9 opened a new

browser and was finally able to see the changes.

5.5 Traditional Approaches
We briefly cover approaches documented in other work.

Test Cases. We found overall few uses of test cases; they were

more common on familiar codebase. Participants P4 (S11) and P8

(S14) used the test driven development (TDD) methodology: They

first wrote test cases, then enhanced source code to satisfy the tests.

The tests ensured their solution’s accuracy. Both were working on

familiar code, and knew since the start what they had to do.

P4 stated during his first session (S11) that he always uses TDD,

but he did not write any test cases in session S8, on unfamiliar

code. He confirmed that in this case, he did not have enough knowl-

edge to write test cases. P4 instead wrote several prototypes that

reflected his ideas, and then iteratively made changes to the code

that he tested on his prototypes. Similarly, participant P6 (S13) was

enhancing a graphical user interface. He expressed—while repeat-

edly manually testing the user interface—that he usually writes test

cases, but “it is hard to write test cases for graphical user interfaces.”
Using the debugger. Participants used a debugger at least once

in each session. Only half of them used breakpoints; the others

only reacted to errors. Participants did not usually change source

code in the debugger. Typically, the errors had to be fixed in source

code locations other than where the error occurred. P4 (S11) fixed

a few test cases directly in the debugger, when it was possible to

do changes locally. We did not see instances of “programming in

the debugger”.

When using breakpoints, participants were usually interested

in variable values and where a method is called from. This helped

them to comprehend programs (e.g., P11 in S7 above). P8 (S5) used

the debugger to find where and how a particular application part is

initialized. Later, he regularly changed the code, executed it, and

watched if the implemented parts worked and what was necessary

to fix next. He rewrote his code several times. One reason was that

the objects he needed were available in different moments of the

execution. He gained the knowledge during his work.

P6 (S10) spent nearly the entire session in a single debugger,

exploring in detail a long method with several conditionals. He

carefully read each statement, evaluated expressions to check their

return values, and observed all variable values. Finally, he identified

where to do the change, and changed it (in the debugger itself).

Text Search. Along with reading source code statically, search is

a common tool in traditional IDEs. We observed few text searches.

A possible reason is that Pharo has fragmented search tools, that

increase the cost of searching: one tool searches in source code text,

while others do semantic searches e.g., class and method names.

Participant P5 (S12) looked for a class implementing a tree graph,

searching for classes including the word tree. He was not successful,
but was convinced that “something as fundamental as a tree object
structure has to exist”. He thus searched the Internet and an online

book. He did not find anything and solved his task differently.

P6 (S13) explored a class and looked for a method using auto-

completion, saying, “there should be a method named something like
open.” After several tries he found the method openWithSpec.

Source code exploration. When all else failed, participants had

to resort to static source code exploration. Deciding when to stop

reading code and start changing it was not trivial.

Stopping too early, one risks missing important information

and make incorrect decisions. P2 (S2) was on the right track at

the beginning of his session. Before any changes, he first statically

explored code in order to confirm his thoughts. He focused on the

right code, but dismissed details because he thought it was “too low-
level code.” He could not confirm his assumptions, missed important

code for his task, and ended up with a complex solution.
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Neither did exploringmore than necessary lead to good decisions.

P1 (S1) spent his session mostly browsing code. He soon ended up

in a framework that was not important to understand; he spent

almost half his time exploring it. While he gained a comprehensive

knowledge about it, he did not find a starting point for the task.

5.6 Combining Approaches
These episodes are not observed in isolation. Participants switched

techniques during the course of a session as necessary, and also

combined techniques, thanks to Pharo’s ability to open unlimited

instances of each tool. For instance, P11 combined halos, inspectors

and debugging in S7 (above). This is best exemplified by Participant

P7, while seeking to isolate a bug in a graphical library:

P7 (S4) wrote a code snippet in a playground. The code repre-

sented the minimal steps to reproduce the bug in the application.

In addition to running the application, P7 was concerned about a

particular object it used. He thus added the inspect message to

his snippet and executed it, obtaining the application’s graphical

window and an inspector with the object of interest. He then crafted

a similar code snippet that involved other UI widgets, and behaved

correctly. He executed this second snippet, and opened a second

inspector. P7 regularly modified and executed the code snippets on

both cases and observed the differences in behavior. By observing

both running examples and the corresponding source code, he was

able to reveal the problem and fix it.

Summary: Participants employed a variety of approaches, but pre-
ferred simpler ones. Combining approaches had powerful results.

6 RESULTS: ON-LINE SURVEY
In this section, we present the survey results. Figure 3 displays an

overview of frequency answers, Figure 4 then reveals agreement

responses. Due to the space constraints, we simplified the wording

of the individual claims. For easier comparison of the claims, the

responses “Rarely”, “Occasionally/ Sometimes”, “Regularly”, “Dis-

agree”, “Somewhat disagree”, and “Neutral” are aligned on the left.

Figure 3: Frequency answers.

Tool usage.We find that our respondents indicate that they use

the liveness in Smalltalk IDEs overwhelmingly and often. All but

3 of the respondents (98%) indicated that they used at least one

of the tools often. The inspector once again took the lead (172

Figure 4: Agreement answers.

respondents used it at least often, 90%), followed by the debugger (all

debugger usages, 155 respondents, 82%), then examples (aggregated,

152 respondents, 80%), code snippets writing tools (e.g., Pharo’s
playground, 141 respondents, 74%). Modifying running applications

was somewhat less popular (116 respondents, 61%).

Specific practices. We note that keeping inspectors open for long

periods of time (more than one hour) is practiced often by a re-

spectable amount of our respondents (73 respondents, 38%), and

regularly by an additional 44 respondents (23%). Participants also

tended to evaluate code snippets more than directly changing data

structures, be it in the inspector or the debugger (74 vs 32%, and

62% vs 36%). This also indicates that the playground is not the only

place where code snippets are crafted. We note that examples were

popular overall, but that the sources are varied. Dedicated example

browsing tools, still relatively new, were not used extensively.

Agreement answers. We find that our respondents generally

agreed with the statements we proposed. There is a particularly

broad agreement with our assertions on the inspector, and the

debugger. Agreement is more moderate in the case of examples

(finding relevant source code examples is not always easy), and

code snippets (code snippets are less used to sketch out program

structures). Respondents found that fast feedback was somewhat

easier to achieve in inspectors and debuggers than with code snip-

pets (presumably since many queries in the inspector or debugger

do not involve writing code). They finally indicated a strong pref-

erence to check their changes as often as possible, and not only

after finishing a task. We restate that all of the statements proposed

were generally met with agreement.

Comparisons.We also asked our participants to compare reading

code with other approaches, on both familiar and unfamiliar code.

We briefly relate the results for space reasons. Participants indicated

that they found it easier to read code than to write either tests or

code snippets. On the other hand, they indicated that they found

it easier to understand programs by running them (or running

examples), rather than reading code. In all cases, reading code was

slightly easier when said code was familiar.

Summary: Survey participants confirmed that they used liveness
extensively; the inspector was again the most frequently used.
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7 RESULTS: ON-LINE CODING SESSIONS
In this section, we present the results of on-line coding session

videos. Figure 5 displays our observations for each programming

approach. For easier comparison, the conclusions “Not Observed”

have negative values.

Figure 5: On-line coding session video observations.

Immediate feedback. This was the most used approach. Partici-

pants usually tried to write the minimum amount of source code

that they were able to run and test; sometimes an incorrect behavior

was expected. In some cases, the application restart was performed

automatically, others manually. Two programmers used test cases

that were re-executed automatically in a text console.

Inspector usage. An object inspector, in particular HTML/DOM

inspector and JavaScript object inspector, was the second most fre-

quent tool. Developers predominantly inspected HTML pages and

explored HTML DOM and CSS rules. JavaScript’s object inspector

was frequently used in a browser console in order to check a vari-

able value, less often to observe an object’s internal structure. Two

programmers expressed confusion when they explored the internal

structure of JavaScript objects: the JavaScript inspector exposes

many internal object attributes (e.g., __proto__ variables) that are
usually not relevant to developers.

Code snippet usage.We observe two sessions where programmers

wrote and executed code in a JavaScript internet browser console. In

the first case, the developer was testing return values while sending

methods to an object. In the second case, the developer wondered if

sending a particular method to an object was properly handled. To

obtain the object, he logged the variable to the console in his source

code and refreshed the application. When the object appeared in the

console, he used the “Store as Global Variable” feature to make the

object accessible across runs. He then resumed his work, sending

the method to the object several times.

Debugger usage. The debugger was used in only one session,

where a participant put breakpoints in a web browser and observed

variable values of his recently written program.

Modifying running application. One programmer modified the

runtime state of his JavaScript program. He evaluated some code

in a browser console and thus tested its correct behavior.

Discussion. We conclude that developers use feedback in their

runtime environment; this includes executing applications and oc-

casionally runtime state exploration. We think tool support has

an important impact. We believe that participants used the HTM-

L/DOM inspector iteratively because it is a mature solution: they

can easily jump from HTML to source code, manipulate it and thus

understand how it works. Similarly, the inspector integrated in

web browser consoles was used frequently. But developers did not

explore internals of JavaScript objects: understanding it is com-

plex and tool support is insufficient. Further analysis is needed to

confirm these implications and is out of scope of this paper.

Summary: Developers in other languages use feedback when they
can have it; more limited tool support restricts their options.

8 FINDINGS AND DISCUSSION
We discuss our findings taking as our main point of comparison

the study of Sillito et al. [39] and in particular the extended account

found in Sillito’s thesis [40]. This is the most extensive and in-depth

account of a programming observation study that we know of. It

also has the richest source of implications to which we can contrast

findings. We also explicitly refer to other work as necessary.

8.1 On Liveness
No silver bullet. We agree with Tanimoto [8] that “Liveness by itself
is not a panacea for programming environment. Neither it is necessary
for all programming tasks”. We find some instances where subjects

were unable or unwilling to use liveness; they were subject to

the same static exploration issues observed in traditional IDEs.

Examples include P1 losing time in an overly exhaustive static

exploration, and P2missing valuable information from a too shallow

one (similar to the “Inattention Blindness” phenomenon described

by Robillard [38]). Missing knowledge, as observed by Murphy-Hill

et al. [51] was a factor too, as we observed several instances where

the halo or the debugger could have been used, but were not.

More generally, exploring unfamiliar code also imposed restric-

tions on how participants could obtain feedback, particularly with

test cases (P4, P6), echoing observations by Sillito—writing test

cases was the exception and in some cases challenging—and La-

Toza et al., who in their study found that tests were not extensive

enough and that developers could not rely on them [41].

In other cases, participants employed a variety of liveness tech-

niques, but were not successful. P9 expected feedback, and lost time

when he did not receive it. P4 kept several prototypes of solutions

to his task as code snippets, experimenting with them iteratively,

but did not succeed in his task as he “did not want to play with
threads, because it is too complex”, despite threads being necessary.

Liveness eases checking assumptions. Checking assumptions is

important to ensure task progress, as Sillito observed: “Program-
mers’ false assumptions about the system were at times left unchecked
and made progress on the task difficult.” This was more likely when

questions could not be answered directly by tools. In particular,

Sillito found that setting breakpoints in the debugger was often

used to assess if code was relevant for the execution of a feature.

LaToza et al. [37] observed participants “gambled” when they did

not have sufficient information, and noticed that “false facts” they

inferred often led to further chains of “false facts”.

Our participants were able to check their assumptions in a variety

of additional ways, such as P11 quickly discarding an application

layer from consideration thanks to a code snippet; or P6 finding out

that two widgets were from different classes by inspecting them,

and then finding functioning examples of the widget to infer the

error came from its configuration, rather than the widget itself.
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The participants were often able to quickly check their assump-

tions, ranging from the simplest (what is the class of this object?)

to the more refined, thus spending less time on false tracks. When

it was possible to progressively perform source code changes and

test the behavior on running applications, participants did take

full advantage of it. For example, participant P11 tested his work

after every small change. Sometimes he expected a broken behavior,

sometimes a positive progress; he checked regardless.

Liveness eases refining context. Context is a major hurdle that

tools do not handle well, according to Sillito: “A programmer’s
questions often have an explicit or implicit context or scope. [...] Tools
generally provide little or no support for a programmer to specify such
context [...], and so programmers ask questions more globally than
they intend.” The broadened scope makes information more likely

to be missed and makes it even harder to check assumptions.

Pharo’s static exploration tools have the same scoping issues as

traditional tools. In fact, due to the lack of type annotations, scoping

issues are worse than in statically typed languages [? ? ? ]. However,
we have seen examples of liveness features being used to reduce

the scope of investigations, such as P11 discarding an application

layer thanks to a code snippet. A key point is that Pharo makes it

easier to scope runtime questions as it is often not necessary to run
the entire application. A developer can focus on an application’s

objects of interest (e.g., P9 inspecting a model and its view) and

explicitly interact with those, for as long as necessary. Similarly,

code snippets can call parts of existing code, and examples focus

on a subset of an API.

Some “hard questions” are easier to answer using liveness. Sillito
describes 44 questions developers asked during his sessions. While

questions in categories 1 (finding focus points) and 2 (expanding

focus points) all had full or partial tool support, questions in cate-

gories 3 (understanding a subgraph) and 4 (questions over groups

of subgraphs) had mostly minimal, or at best partial support. These

questions were higher level and the hardest to answer.

While liveness can not help for all questions, in some instances

it definitely can. Question 27 (how does this data structure look

at runtime?) is directly supported by the object inspector. Sillito

found that 15% of sessions asked this question. All but one of our

sessions (94%) used the inspector. Similarly, Question 37 (What is

the mapping between these UI types and these model types?) can

be easily answered by inspecting UI elements thanks to the halo.

Several questions in the fourth category concern comparisons

between types, methods, or runtime behavior. Sillito states that

“Generally making comparisons is difficult” and “In some cases, even
harder is a comparison between a system’s behavior in two different
cases as in question 34 (How does the system behavior vary over these
types or cases?)”. One of Sillito’s subjects wanted to “figure out why
one works and one does not”, and did two series of static reference

navigations, comparing the differences. The participant obtained

only a partial answer and missed the most important difference.

We found these kinds of comparisons in 12 out of 17 sessions,

often thanks to multiple inspectors or snippets. Examples include

P4 experimenting with multiple solutions in parallel, P6 inspecting

two similar widgets for differences, P7 contrasting the behavior of

two code snippets (one correct, one incorrect), or P11 contrasting

an application with a snippet. While it is possible to open multiple

debuggers at the same time, we did not observe this.

8.2 On Tool Support
Tool support drives Live Programming. Some major differences be-

tween this study and Sillito’s stem from tool support. Sillito states

“[...] the questions asked and the process of answering those are influ-
enced by the tools available [...]. Given a completely different set of
tools or participants our data could be quite different.”

We found evidence of this, as behavior that was easy to perform

with Live Programming tools were frequently used. For instance,

inspecting an object or executing an example are always one click

away; so programmers used them very frequently. On the other

hand, the Pharo search tools are fragmented: different tools perform

different types of searches. The tools are both more difficult to use,

and less frequently used. Knowledge is also a factor: accessing UI

objects via halos was under-used, because many participants did

not know the shortcut to activate it.

Few searches. Study participants used few searches, which con-

trast with studies that find code search to be a common behavior.

Sadowski et al. [52] summarized these studies, finding code search-

ing prevalent at Google. This finding agrees with Ko et al. [53], who
found that developers preferred to use search tools that required

less details. Another reason could be that users found other tools

more effective, be it inspectors, debuggers, or browsing source code

references. Ko and Myers observed in an experiment that users of

the Whyline (with extensive runtime information) relied much less

on search than users of their control group [54].

Examples are more frequently used. Sillito observed that in only

26% of sessions (7 out of 27), participants searched for examples

(asking question Q4). The use of examples occurred in 59% of our

sessions (10 out of 17). Pharo has amore prevalent “culture” of exam-

ples, including executable method comments, classes and methods

marked as examples, and dedicated example browsers. Our survey

offers additional insights. We find agreement with Sillito when

he states that finding examples is challenging, as our participants

indicated that finding relevant examples was more difficult than

executing or modifying them. We think that the ease of execution

of examples is a significant factor. It is harder to execute, for in-

stance, a Java code snippet found on Stack Overflow, as it needs

to be imported (resolving dependencies) and compiled before one

can try it. Approaches facilitating this process, such as Ponzanelli

et al.[55] or Subramanian et al. [56] should significantly ease these

issues.

Simple works best. Some of the most advanced approaches were

under-used by our participants.Whilemany debuggerswere opened

(every runtime error in Pharo opens one), they tended to be quickly

dismissed; comparatively few of them were used in depth, or explic-

itly opened via breakpoints. While several respondents mention

that they value being able to "program in the debugger" in our

survey’s free-form comments, we observed none in our sessions.

Similarly, we previously mentioned that writing test cases and using

halos were under-used, the former as it needs extensive knowledge

of the code to test, the latter for lack of awareness.

In contrast, the comparatively simpler tools such as the inspec-

tor and the playground were used by virtually all the participants.

These tools are easily accessible: any piece of code can be evaluated

and inspected. They are also very versatile, and this is partly due to

the possibility to open multiple instances of the tools at once, and
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keep them for a long period of time. Having several code snippets or

inspectors open at once makes it easy to perform comparisons be-

tween different scenarios. Keeping these tools open for long periods

of time makes it easier to check one’s progress. Thus, combining

these techniques yields powerful results, best exemplified by P7’s

use of two code snippets and two inspectors simultaneously.

Comparison with online videos.While we observed some liveness

in the analyzed online coding sessions, we found much less usage

than for Pharo participants. All of the online coding sessions used

the facilities afforded by immediate feedback (either by manual

reload of applications, or automatically after source code changes)

to check progress on their tasks. Nearly all (10 of 11) sessions using

JavaScript and HTML made use of the object inspector provided

by the web browser. However, the JavaScript inspector usage was

more limited since the tool support is less mature. Other usages of

liveness were minimal. This confirms our previous observation that

tool support is vital for people to make use of liveness effectively.

9 THREATS TO VALIDITY
Empirical studies have to make tradeoffs between internal and

external validity [57]. This study’s focus being on how developers

used liveness in practice, we tried to maximize its external validity.

To this aim, we performed our study in 3 steps.

We first observed 11 participants in 17 sessions who all used

the same environment. To vary the situations, they worked on

different tasks from ten different codebases. However, the duration

of the tasks was short (40 minutes to an hour), which restricted the

types of activities we observed. We could not do more for logistical

reasons.

We further attempted to diversify our choice of settings by gath-

ering 16 additional recorded coding sessions online, covering a

variety of languages, settings, and tasks. We wanted to include ses-

sions of the Jupyter interactive notebook [58], which has interesting

features similar to the playground.Wewere ultimately unsuccessful:

we found mostly tutorials, not real-world coding sessions.

We had limited choice of participants, and our participants were

all male; studies like the ones of Beckwith et al. [59] have shown
that males are more comfortable than females in tinkering. A Live

Programming environment does encourage tinkering. In a follow-

up study of debugging by end-users [60], females were found to be

less frequent, but more efficient users of tinkering, showing that the

relationship is not at all obvious. As such, studies of how females

use Live Programming would greatly extend this work.

The tasks we investigated may not be representative or advanta-

geous to a Live Programming environment, because such a repre-

sentative task list does not exist yet. We only defined the tasks on

unfamiliar code in the first study: we had no control on the tasks

related to familiar code and the online video tasks, as both sets of

tasks were defined by the participants themselves.

The transcription of the activity during the tasks was performed

by the primary author. In such cases where the author was unsure,

we held discussions on specific examples. To minimize biases in

interpretation, most of the activity under study was related to tool

usage (plus vocalizations), and we used Minelli and Lanza’s DFlow

to systematically record interaction data [48] (except in one session).

According to McDirmid, Smalltalk environments such as Pharo

do not cover the entire spectrum of Live Programming (a specific

example is provided by McDirmid [19]). We nevertheless chose

Pharo as it is the “liveliest” environment used by practitioners that

we had access to, and note that Pharo does include Morphic [29],

which fits McDirmid’s stricter definition of Live Programming. We

also focus on liveness, rather than strictly Live Programming.

We kept the survey as short as possible to maximize responses.

We had to make choices in what to ask and could not include every

observation. Statistics omitted for lack of space—not respondents.

10 CONCLUSION AND IMPLICATIONS
The live feedback that Live Programming provides is gaining accep-

tance in mainstream tools. We performed a multi-phase study on

how developers use liveness in practice. After observing 17 devel-

opment sessions of Pharo developers, we concluded that they used
liveness very frequently, and documented the various approaches

they took. We found that participants favored simple approaches,
and that liveness allowed them to check their assumptions. Advanced
participants were able to easily compare and contrast execution

scenarios; practitioners may learn from the successful episodes we
described. A follow-up survey confirmed our observations on the

frequency of usage of liveness. Finally, we contrasted our findings

with online coding sessions in other languages, finding extensive

use of immediate feedback, but limitations due to tool support.

Implications for tool builders and language designers. The major

implication of this study is that even small doses of liveness may have
a large impact. We saw that the most advanced approaches were

sometimes not necessary, if simpler approaches such as inspecting

could do the job. Technologically impressive tools such as the Why-

line [54] have been developed, while the Debugger Canvas [61] or

TouchDevelop [22] have been put in production. These tools are

extremely useful and required a lot of effort to build. Yet, we think

that adding a simple playground and inspector to an IDE could go

a long way, particularly if multiple instances are allowed.

Similarly, Live Programming research focuses on languages with

maximal liveness [6]. Yet we believe that exploring the design space

of simpler representations such as the inspector and playgrounds

could lead to significant improvements on its own, particularly if

longevity and multiplicity are included. The notebook metaphor

employed by Jupyter [58] elegantly allows for multiple code snip-

pets (cells) to coexist, while providing easy visualization of the

results (particularly for data), even if it is not fully live. The mold-

able inspector of Chis et al. [30] can be customized for each type of

objects to display the most relevant information. Combining both

approaches may be very intriguing.

Implications for software engineering researchers. The major im-

plication is that there is still a lot to learn in how developers use

liveness. As these features slowly but surely enter mainstream tools,

multiple studies beyond this one are needed to fully understand

how developers can best take advantage of the new capabilities

their development environments will afford them.
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