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A B S T R A C T

The capacity of structural systems subjected to shear loads commonly distinguished by discontinuities such as
point loads or supports, or abrupt changes of cross section, where complex fields of stresses and strains are
generated, is vital information for design. Four structural systems that present stress concentration due to ap-
plied shear loads are commonly short walls, deep beams, corbels and beam-column joints. In the present work a
model is developed to predict the shear capacity of these elements based on a panel model that considers average
strain and stresses in a reinforced concrete orthotropic material, which covers the section of the structural
element subjected to stress concentration. In addition, the panel element complies with the longitudinal equi-
librium, by equalizing the applied axial load with the internal stresses of the structural element, requiring
constitutive material laws for both concrete and steel reinforcement. The original model that has shown good
shear strength prediction requires solving the non-linear equation of vertical equilibrium. Thus, this work
eliminates the need to solve the iterative problem for the capacity estimation of four possible limit states (failure
of concrete in tension and compression, and yielding of longitudinal web and boundary reinforcement). For that,
an expression is calibrated for the strain of the model with respect to relevant parameters, for each limit state,
that allow the generation of a non-iterative model. The model results in an average predicted capacity over
experimental capacity ratio, V V/model test , of 1.0 and a COV of 0.25, with similar performance for all four structural
systems. When comparing these results with the general model that requires an iterative method, a similar
performance is observed, with an average strength ratio and COV of 0.98 and 0.23, respectively. Likewise, in
comparison with the ACI 318, the latter shows worse predictions (on average 24% lower) and with greater
scatter (on average 28% higher). The expression in AASHTO code presents better correlation than ACI with
predictions closer the proposed model.

1. Introduction

The capacity of structural systems subjected to shear loads is hin-
dered by discontinuities such as point loads or supports, or abrupt
changes of cross section, where complex fields of stresses and strains are
developed. The shear loads, for these cases, generate a diagonal com-
pression stress field in the concrete from the point of application of the
load to the support, which is balanced by the tensile forces generated in
the reinforcement and, to a lesser extent, in the concrete. Four struc-
tural systems that commonly present stress concentration due to ap-
plied shear loads are short walls (common in nuclear plants, facades
and at the parking level in buildings), deep beams (coupling beams),
corbels (elements that support beams, transferring loads to columns in
precast systems) and beam-column joints (continuity element in frame
structures).

Several models have been developed to calculate the shear capacity
of structural systems, which are separated into two groups: theoretical
and empirical (or semi-empirical). The empirical models are based
purely on the correlation of experimentally determine capacities with
respect to an expression with relevant parameters of the phenomenon
(e.g., concrete compression strength, reinforcement yielding, aspect
ratio). Expressions of this type were incorporated in the 60s on the ACI
318 standard [1] to estimate shear capacity, which were developed
after the 1955 air-force warehouse shear failure [2]. However, these
types of expressions are limited based on the experimental data used for
the calibration. Due to this limitation, in ACI 318 of 1995 [3] a large
number of over 40 expressions for shear strength estimation for dif-
ferent elements and load types have been included, which makes im-
perative to develop models with a theoretical basis that allow covering
a broad spectrum of structural elements and parameter ranges [4]. The
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understanding of shear response improved considerable with the de-
velopment of panel constitutive law for cracked reinforced concrete.
One of the first complete approaches was the Modified Compression
Field Theory [5]. This model uses a rotating-angle modeling approach
to describe the evolution of concrete average stress field that rotates as
the external actions change, provided that the principal concrete stress
direction coincide with the principal strain direction. Constitutive
stress-strain models for materials are applied along the principal di-
rections of the strain field in order to obtain the stress field associated
with the principal directions. One of the relevant considerations of the
panel or membrane model is the incorporation of the compression
softening effect. The softening effect is mainly a reduction in the
compressive stress of concrete along the principal compressive direc-
tion undergoing tensile strains in the other principal direction. The
application of this and other membrane models has led to development
of finite element formulation for detail reinforced concrete elements or
structural analysis (e.g., Vecchio [6]), but also to simplified approaches
for shear strength estimation (e.g., Collins et al. [4]).

Regarding theoretical models or based on the physics of the pro-
blem, there are two of the most accepted models to predict the shear
capacity of structural elements: (i) softened truss or panel model (e.g.,
Hsu and Mo [7], Collins et al. [4]), and the softened strut-and-tie model
(e.g., Hwang et al. [8]), some of them originally applied for walls. The
softened truss model differs from the strut-and-tie model by the way the
reinforcement and concrete stresses are incorporated in its formulation.
The softened truss model assumes that each point of the structural
element meets the stress equilibrium with a uniform distribution of
stresses and strains. In contrast, softened strut-and-tie model simulates
the force distribution in the structural element, with diagonal com-
pression struts that represent the compressive stresses generated in
concrete and tensile tensors that represent the stresses induced in the
reinforcement. Thus, the model equilibrium is satisfied by the joint
action of the strut-and-tie (lattice) system. The softened truss model
presents a relatively simple formulation, where the hypothesis of uni-
form stresses simplifies the analysis. On the other hand, although the
strut-and-tie model analyzes the phenomenon with a more convincing
concept of stress flow, its formulation is more complex and highly de-
pendent on the expression used to define the cross-sectional area of the
compression strut.

In the present work, a closed-form solution (series of expressions
that require no iterative numerical procedure for the strength estimate)
for a softened truss model applicable to short walls, deep beams, corbels
and beam-column joints is developed, based on the formulation pro-
posed by Kassem and Elsheikh [9], originally for short walls, and which
has been modified to generalize it and make it applicable to more
structural systems [10–12]. Finally, the results of the modified model

are compared with experimental results of the literature and with the
code expressions of the ACI 318. The relevance of the article is not only
showing that a simple material formulation based on general principles
can correctly predict the shear strength of reinforced concrete elements
for a large database (635 tests), but also that the iterative procedure
(nonlinear equilibrium equation) can be avoided after a fitting analysis
that keeps three main parameters such as axial load, material strength
and principal concrete stress/strain direction, maintaining the main
physics of the problem, such as the shear equilibrium equations, com-
patibility and material constitutive laws.

2. Base model and previous modifications

The base model developed by Kassem and Elsheikh [9], called the
fixed-angle panel model, considers a softened truss model to estimate
shear capacity for short walls. Geometrically, the model is detailed as
shown in Fig. 1, where a short wall of height Hw, length Lw, effective
length dw (horizontal length of the short wall between the centroids of
the boundary elements or calculated as L0.8 w for non-barbell walls) and
thickness tw is subjected to an axial load N and another shear V . The
short wall is analyzed as a panel element, in which the forces are uni-
form with respect to its axes. Two coordinate systems are considered,
the “L–t” axes that follow the orientation of the longitudinal and
transverse reinforcement of the structural element (Fig. 1a), and the
“d–r” axes inclined at an angle α representing the slope of the com-
pression diagonal strut developed in concrete (the angle represents the
concrete stress principal direction) or principal strain direction angle
(Fig. 1b), which is named in this article as principal direction angle.
Thus, the normal stresses (σ σ,L t) and shear stress (τLt) of the structural
element are defined by the stresses of the coordinate system “L–t”,
calculated according to the responses of the distributed longitudinal
reinforcement (ρ fL L) and distributed transverse reinforcement (ρ ft t),
defined by their steel ratio (ρ ρ,L t) and average steel reinforcement
stress ( f f,L t) in the L or t direction, and the principal concrete stresses
of the compression (σd) and tension (σr) directions that are in the co-
ordinate system “d–r”. All stresses are considered as average values
within the panel.

For its formulation, the work by Kassem and Elsheikh [9] applies
the equations of equilibrium of the system, strain compatibility and
constitutive laws of both concrete and reinforcing steel. For this, it
imposes a fixed angle for the principal strain direction that coincides
with the principal concrete stress direction. This angle is determined as
the one that better predicts the shear capacity of short walls for a da-
tabase of 100 tests.
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Fig. 1. Short wall – (a) Stress resultants in L–t coordinates, and (b) Stress resultants in principal direction d–r coordinates, including distributed reinforcement (after
[9,10]).
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2.1. Stress transformation and strain compatibility

The equilibrium equations along the coordinate axis Lt are based on
the principal direction concrete stresses. Since average stress fields are
considered and the model formulation is described in the principal
concrete stress direction, no stress check is imposed at the crack di-
rection for local stresses, simplifying the approach. Thus, the equili-
brium equations are defined as (Fig. 1):

= + +σ σ α σ α ρ fcos sinL d r L L
2 2 (1)

= + +σ σ α σ α ρ fsin cost d r t t
2 2 (2)

= − +τ σ σ α α( )cos sinLt d r (3)

For uniform stress distribution within the panel, the shear force (V )
is defined as,

=V τ t dLt w w (4)

Under the perfect adherence assumption between concrete and
steel, the compatibility equations between L-t and d–r system become,

= +ε ε α ε αcos sinL d r
2 2 (5)

= +ε ε α ε αsin cost d r
2 2 (6)

= − +γ ε ε α α2( )cos sinLt d r (7)

where ε ε,L t are the strain values in directions L and t, respectively; γLt is
the shear strain in the plane L–t; ε ε,d r are the principal strain values
(positive for tensile). Finally, the top lateral shear displacement is de-
termined as,

= γ HΔ Lt w (8)

2.2. Constitutive material laws

In order to determine the compressive stress in concrete (Fig. 2a,
Eqs. (9)–(11)), the constitutive law proposed by Zhang and Hsu [13] is
used, which considers softening of strength due to tensile strains in the
perpendicular direction (εr) as (solid line–dashed line does not include
the softening effect),
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where ξ is the reduction coefficient; ′fc is the concrete compressive
strength [MPa] for a consistent strain of =ε 0.002o .

The tension behavior of concrete (Fig. 2b) is defined by the material
law proposed by Gupta and Rangan [14] as,

= ⩽ ⩽σ E ε ε εif 0r c r r ct (12)

⎜ ⎟= ′ ⎛
⎝

−
−

⎞
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< ⩽σ f ε ε
ε ε

ε ε εifr ct
ut r

ut ct
ct r ut

(13)

where ′ = ′f f MPa0.4 [ ]ct c is the tensile strength; = ′E f MPa4700 [ ]c c is
the concrete elastic modulus; = ′ε f E/ct ct c is the cracking strain and

=ε 0.002ut is the ultimate tensile strain.
The reinforcing steel behavior is defined as an elasto-plastic con-

stitutive law as,

= ⩽ ⩽f E ε ε εif 0s s s s y (14)

= ⩾f f ε εifs y s y (15)

where f ε,s s are the steel stress and strain, respectively; =E 200s [GPa]
is the elastic modulus of steel; and fy is the yield steel stress.

2.3. Shear strength determination

The model, given a certain principal direction angle, can determine
the entire shear force versus shear displacement curve thought an in-
cremental analysis (incremental values of γLt). Thus, the shear strength
is defined as the maximum shear force. This is because, for a shear
strain value γLt, the model iterates over the principal compressive strain
deformation εd until it complies with the system vertical equilibrium
( =σL

N
A , where N is the applied vertical load and A is the transverse area

of the wall).

2.4. Modifications

The principal direction angle used by Kassem and Elsheikh [9]
presents problems in those cases where there is no web reinforcement
(and no axial load) because the angle expression that uses a term
ρ f ρ f( / )/( / )L L t t

0.1 becomes indeterminate (steel stress is assumed
yielding). Massone and Ulloa [10] developed a new principal direction
angle, based on experimentally validated strain expressions for walls
[15]. In this work, an underestimation of shear capacity for short walls
is observed as the amount of boundary reinforcement increases. With
this motivation, Massone and Álvarez [11] incorporate the boundary
reinforcement in the equilibrium expression that characterizes the

Fig. 2. Concrete constitutive laws – (a) in compression [13], and (b) in tension [14].
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longitudinal stress of the panel element for the case of corbels, as

= + + +σ σ α σ α ρ f βρ fcos sinL d r L L b b
2 2 (16)

where f ρ,b b are the main or boundary (located at element edges) re-
inforcement steel stress and ratio in the direction L, respectively (this
differs from the distributed longitudinal reinforcement located in the
element web, designated as fL and ); and =β 0.3 is an efficiency factor
of the main reinforcement.

The previous model formulation applied to walls [10] did not in-
corporate the transverse reinforcement in the fixed-angle formulation,
given that the amount of reinforcement was relatively low with little
impact in the strength prediction. Massone and Orrego [12] applied the
fixed-angle panel model for reinforced concrete beam-column joint.
Such structural elements are characterized by having large amounts of
transverse reinforcement in comparison with short walls (the amount of
transverse reinforcement reaches values of 3% in the studied database,
which is not observed in short walls). Thus, in order to adjust the model
to this structural system, the transverse reinforcement is incorporated
directly into the model formulation. For this, a contribution based on
equilibrium related to the transverse reinforcement is incorporated in
the concrete tensile capacity according to the work by Wang et al. [16],
as

′ = ′ +f f ρ f α0.4 [MPa] cosct c sh yh
2

(17)

where ρsh and fyh are the transversal steel ratio and yield stress, re-
spectively.

In addition, Massone and Orrego [12] incorporated the confinement
effect caused by beams and columns adjacent to the joint. With this
objective, the equations of horizontal and vertical strains (ε ε,t L) [15]
are modified by applying a factor that considers the strain decrease due
to confinement as = −ε ε λ(1 )t

mod
t t and = −ε ε λ(1 )L

mod
L L , respectively. As

defined, the factors λt and λL vary between 0 and 1, where 0 means no
effect and 1 means full constrain that reduces the respective strain to
zero. The factors were optimized such that the best strength predictions
are obtained, distinguishing between interior and exterior joints, since
confinement is commonly higher in the first case. Thus, with the new
strain expressions the principal direction angle is defined as (with a
similar procedure as described in Section 4.2),

Exterior joint
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Interior joint
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3. Database description

A database of tests from research projects in the literature is com-
piled. 635 tests are considered, corresponding to 252 of short walls, 182
of deep beams, 109 of corbels, and 92 of beam-column joints. The de-
tailed description of the database can be found as a supplementary
material, as well as in Melo [17], and partially in Massone and Ulloa for
walls specimens [10], Massone and Alvarez for corbels specimens [11],
and Massone and Orrego for beam-column joint specimens [12].

The database of 252 short walls consists of 85% of cantilever spe-
cimens and 15% of double curvature tests. The boundary reinforcement
ratio varies from 0.7% to 11%. The vertical and horizontal reinforce-
ment ratio vary between 0% and 3.7%, while the yield stress of all
reinforcing bars is between 209 [MPa] and 624 [MPa]. The compressive
strength of concrete varies from 12.4 [MPa] to 63.4 [MPa]. The axial

load, applied only in some cases, reaches a maximum value of
′f L t0.27 c w w.

The database of 182 tests of deep beams consists of 150 cases with
transverse reinforcement. The vertical reinforcement (transversal) ratio
ranges from 0% to 2.7% and the horizontal (longitudinal) reinforce-
ment varies between 0% and 3.2%. The reinforcement ratio for positive
bending ranges between 0.5% and 2.6%, while the reinforcement for
negative bending ranges from 0% to 0.9%. The yield stress of the bars
ranges from 287 [MPa] to 804 [MPa]. The compressive strength of
concrete ranges from 16 [MPa] to 86 [MPa]. The aspect ratio a/d
ranges from 0.27 to 2.7.

The 109 corbel tests lack of transverse reinforcement and 51% of the
tests do not have secondary web reinforcement. All tests were per-
formed in the absence of axial load. The web longitudinal reinforce-
ment ratio goes from 0% to 1.6%, whereas the main tensile reinforce-
ment ratio goes from 0.29% to 4.9%. The effective aspect ratio a/d
ranges from 0.15 to 1.01. The yield stress of steel bars varies between
303 [MPa] and 558 [MPa]. The compressive strength of concrete ranges
from 15 [MPa] to 105 [MPa].

The database of beam-column joints correspond to 92 tests, with 54
specimens that are external joints and 38 that are internal joints. The
compressive strength of concrete varies from 22.1 [MPa] to 92.4 [MPa].
The longitudinal reinforcement steel ratio ranges from 0% to 4%, the
boundary steel reinforcement ratio varies between 0.5% and 3.5% and
the transversal reinforcement steel ratio between 0% and 3%. The yield
stress of the longitudinal and boundary reinforcing steel varies between
280 [MPa] and 644 [MPa], and the transverse reinforcing steel between
235 [MPa] and 1320 [MPa]. The compression axial tension ranges from
0 to ′f0.75 c .

In order to compare the shear capacity predicted by the model with
the flexural capacity, models are implemented following the re-
commendations of ACI 318 by means of a sectional analysis [18].

4. Closed-form model development

4.1. General model for all four structural systems

In this section, the model is generalized and applied to four struc-
tural systems. The model can be used for any reinforced concrete panel
controlled by shear, and an analogy between the common structural
types is included for clarity. This analogy is based on relating the height
Hw and the effective length dw of the wall element with the dimensions
of the 3 remaining structural systems, which is schematized in Fig. 3.
For the case of deep beams, the panel that characterizes the shear ca-
pacity of the element is defined by the point of application of the load
and support. Thus, such distance of the beam is similar to the height of
the short wall. As for corbels, the simile with short walls is obtained by
rotating the structural element by 90°. Thus, the corbel is represented as
a small cantilevered wall of low aspect ratio. Finally, for beam-column
joints the geometry is similar to the case of short walls. It is necessary to
emphasize that, for deep beams and corbels, Hw is defined discounting
the load plate width, as proposed by [19], since the load plate limits the
expansion of strains in the surroundings. On the other hand, for deep
beams, corbels and beam-column joints, it is assumed that dw corre-
sponds to the length between the edge of the structural element (most
compressed zone) and the tensile boundary reinforcement.

4.2. Recalibration of the principal direction angle

Using the database for short walls, deep beams and corbels, a new
general principal direction angle is calibrated for these three structural
systems. For this purpose, the same method previously applied (e.g.
[10,11,12]) is used to estimate the angle of the principal direction at
the cracking level of the structural element. Although there are two
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different approaches for the crack direction (rotating-angle and fixed-
angle approach), there is experimental evidence showing that the di-
rection of principal strain tends to keep a preferred angle once the
cracks in concrete appear (e.g., short walls [9]). When several cracks
occur in concrete the compression strut develops, so that the angle of
compression strut is stabilized for greater drifts or deformations. The
beginning of the cracking is characterized by the tensile capacity of
concrete ( = ′σ fr ct), whose state is used to determine the fix angle α. In
this case, the effect of the transverse reinforcement defined in Eq. (17)
is considered. Then, at concrete cracking, and assuming a certain drift
γLt , it is possible to calculate the longitudinal (εL) and transverse (εt)
deformation of the structural element by means of calibrated expres-
sions [13], which allows to calculate the principal strain direction ac-
cording to = − + +− − −α tan ( ( ) ( ) 1 )ε ε

γ
ε ε

γ
1 2t L

Lt

t L

Lt
. With this angle, the

tensile strain is obtained as = +ε εr
γ α

t
tan
2

Lt , which must be equal than
the cracking strain. This analysis is performed until cracking is reached
by imposing an incremental drift γΔ Lt.

Thus, a series of values of principal direction angles at cracking, for
different structural systems and geometric and material parameters, are
obtained. With these results, and defining the most relevant parameters,
a calibration using the least squares method is performed to obtain an
expression for the principal direction angle. Thus, calibrated expres-
sions for elements with simple and double curvature are shown below:

Simple curvature(short walls, deep beams, corbels)

⎜ ⎟⎜ ⎟= ⎛
⎝

+ ⎞
⎠

⎛

⎝ ′
+ ⎞

⎠

− −

α H
L

N
f t L

13.9 0.5 0.1w

w c w w

0.13 0.67

(20)

Double curvature(short walls)

⎜ ⎟⎜ ⎟= ⎛
⎝

+ ⎞
⎠

⎛

⎝ ′
+ ⎞

⎠

− −

α H
L

N
f t L

9.81 0.5 0.1w

w c w w

0.08 0.78

(21)

The expressions for beam-column joints are still those determined
by Massone and Orrego [12] (Eqs. (18) and (19)), since these in-
corporate additionally the confining effect.

4.3. Shear strength for different limit states

In order to obtain the shear capacity of the structural elements,
instead of performing an incremental analysis, the strain values corre-
sponding to the four possible maximum stresses or limit states are used.
These peak strength values correspond to cases where one of the fol-
lowing is reached: the tensile or compressive capacity of concrete or the
yielding of longitudinal or boundary reinforcement. The strain and
stress associated with each maximum is determined with the respective
material constitutive laws. Thus, the strains and the stresses are defined
as shown in Table 1. With this incorporation, instead of fixing the drift
of the element, each strain value is imposed. The modification applied
in the incremental model is shown in the schematic flow diagram
presented in Fig. 4, where the step corresponding to the incremental
analysis, which assumes small drift increments, is replaced by analyzing
the four limit states.

When calculating the shear strength associated to the four limit
states, by means of a numerical method that iterates in the strains of the
panel element, the shear capacity of the structural element is obtained
as the greatest of the four possible values. The points of maximum ca-
pacity for two tests of short walls from the database, one for an element
that fails in compression and another that reaches yielding of the re-
inforcement, are presented in Fig. 5. In this figure, the shear force
versus shear strain curve is presented, which is calculated by incre-
mental analysis (requires iteration of the equilibrium equation) and the
method proposed for both specimens (not incremental, but requires

)b)a

)d)c

Fig. 3. Element analogy – (a) short wall, (b) deep beam, (c) corbel and (d) beam-column joint.

Table 1
Strains and stresses associates to all 4 limit states.

Limit state Strain Stress

Concrete compression = −∗ε ξεd o = − ′∗σ ξfd c
Concrete tension = ′∗ε f E/r ct c = ′∗σ fr ct
Longitudinal reinforcement yielding =∗ε f E/L yL S =∗σ fL yL

Main reinforcement yielding =∗ε f E/L yb S =∗σ fL yb
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iteration of the equilibrium equation). Thus, the points in the figure
correspond to the different limit states, which guarantee that this
method is capable of capturing the maximum capacity. As can be seen
in the figure, not all limit states are reached in each test. Even though

the full model formulation (before achieving the closed-form solution)
is capable of estimating the overall shear response, this work focuses on
strength prediction. The work by Massone and Ulloa [10] shows com-
parisons for short walls, where the overall response is well captured,

       Structural parameters 

Pick  (Table 1)

Calc.    Ecs. (18) to (21) 

Is  close to ? 

Calc.    Ecs. (4), (7) 

Analysed all 4 limit states? 

Calc 

END 

START 

Iterate over  (  or ) 

Calc. strains Ecs. (5), (6) 

Calc.    Ecs. (9) to (13) 

Calc.    Ecs. (14), (15) 

Calc.    Ecs. (1) to (3) 

YES 
NO 

YES 

NO 

 > 

NO 

YES 

Fig. 4. Flow chart of incremental model (dashed line) and 4-limit state model (solid line).
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Fig. 5. Estimation of shear capacity for different limit states – (a) specimen reaching capacity due to concrete in compression, and (b) specimen reaching capacity due
to yielding of reinforcement.
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but more refined material models are required to better resemble the
experimental response.

Then, for the database of all four structural systems, the capacity
obtained by the iterative model that requires an incremental analysis is
compared with the proposed non-incremental method. This comparison
is presented in Fig. 6, where it can be seen that the capacity difference
predicted by both approaches is minimal, and the data is almost per-
fectly adjusted to the 45° line. Thus, incorporating the proposed method
to the fixed-angle model is beneficial from the computational optimi-
zation point of view.

4.4. Strain calibration for closed-form solution

In order to avoid the iterative procedure that involves the calcula-
tion of the shear capacity for all limit states, a strain calibration is
performed on the model. Thus, the principal tensile or compressive
concrete strain (εr or εd, respectively) is calibrated for each limit state,
which would allow a closed-form solution for the model. The principal
tensile concrete strain εr is calibrated for the limit state associated with
concrete compression failure, the principal compression strain εd for the
limiting state associated with concrete cracking and another expression

for the yielding of boundary and web longitudinal reinforcement. For
simplicity, for the last two components (yielding of longitudinal re-
inforcement), a single expression is calibrated, since both components
are included similarly in the formulation and material properties are
commonly identical.

The calibration is performed as a multiple regression using the least
squares method, on 7 variables that describe the strain of the panel
element. The used variables are the longitudinal, transversal and
boundary reinforcement ( ′ ′ ′ρ f f ρ f f βρ f f/ , / , /L yL c t yt c b yb c ,), the axial load
( ′N f L t/ c w w), the principal strain (or concrete stress) direction angle
( αcos( )), the aspect ratio (H L/w w) and the compressive strength of
concrete ( ′fc ), which turns out to be the only non-dimensionless variable
selected for the analysis. The least squares method is applied to loga-
rithmic expressions that incorporate at most four variables, as shown
below:

… = + + … +ε var var C var c var c var c( , , ) ( ) ( ) ( )r o d n
k k

n n
k

́ 1 1 1 2 2 n1 2 (22)

With ⩽n var4, i the variable i chosen from the list of 7 parameters, ci
the constant relative to the variable i and C a dimensionless constant.

After obtaining the strain values associated with each limit state, a
calibration procedure is implemented. For this, out of the 7 variables
presented, those whose impact on the correlation (measured by the
coefficient of determination R2) between the strain obtained by the
iterative model and that estimated by the calibration are less relevant,
are eliminated, one by one. The results of this procedure are presented
in Fig. 7, where the coefficient of determination (R2) of each limit state
(best solution) is shown, according to the variables used for the cali-
bration. From left to right, the first case considers all the variables (that
is, none is eliminated) to then eliminate the variable indicated in the
figure, and continue eliminating the previous and the indicated vari-
ables, until the last case. This is done for the calibration associated with
the tensile limit state of the concrete (Fig. 7a), the concrete compression
limit state (Fig. 7b) and the vertical reinforcement yielding limit state
(Fig. 7c). One of the first variables that is discarded for all limit states is
the aspect ratio, which shows almost no reduction on accuracy once is
removed. As can be seen in the figure, the principal direction angle has
a relevant correlation for the 3 cases, as well as, the reinforcement and
the axial load. The aspect ratio is the parameter with the least influence
in the correlation, followed by the concrete compressive strength. The
latter is only relevant for the case of tension concrete.

Once the calibrated expressions that avoid the iterative process are
obtained, it is necessary to provide conditions that allow distinguishing
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the different limit states that actually develop for a structural element,
and therefore comply with the vertical equilibrium equation. Not all
limit states can be reached for every case. One way to avoid this pro-
blem is to determine if the capacity associated with the diagonal
compression limit state is reached (for a shear drift γLtc) before the
yielding of the distributed longitudinal or boundary reinforcement (for
a shear drift γLt fyL

or γLt fyb
). For the range of drift to which the com-

pression and reinforcement yielding occur (0.1–0.3%) the contribution
of the concrete tension is negligible. Then, if the concrete compression
capacity is reached, the tension of the longitudinal and boundary re-
inforcement cannot increase because the vertical equilibrium must be
maintained. Thus, if the drift related to the reinforcement yielding is
greater than the drift associate to the maximum compression, the points
associated to yielding must be omitted, since they do not comply with
the equilibrium (Eq. (23)). Conversely, if yielding of both reinforce-
ments develops, the strength of concrete in compression cannot be
reached later. Thus, if the drifts values associate to yielding of re-
inforcement are less than the drift for the maximum compression, the
last must be omitted (Eq. (24)). Thus, based on the formulation of the
panel model, the following conditions are imposed:

⎧

⎨
⎪

⎩⎪

⩽
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⎪
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c fyL

c fyb

c

(24)

where γ V γ V γ, , , ,Lt Lt Lt Lt Ltc c fyL fyL fyb
and VLt fyb

correspond to the drift and
shear force associated to the limit state of compression, yielding of
longitudinal and boundary reinforcement, respectively.

Taking into consideration the limit state that can be achieved,
closed-form models are generated by selecting a calibrated expression,
with four or less variables, for each limit state case. Despite the fact that
Fig. 7 provides relevant information regarding which parameters to
consider for a good estimation of the strain, it is necessary to verify that
such good correlation is transferred to the estimation of the capacity.
Thus, the generated closed-form models are statistically evaluated by
means of the average of the estimated capacity over the experimental
ratio (V V/model test) and its coefficient of variation COV, with the objective
of determining the one that presents less scatter (lower COV). The study
is done by generating closed-form models that use all possible combi-
nations of expressions of four or fewer parameters (a total of 125
models). In Fig. 8 the result of this analysis is plotted where, for each
limit state, and in a decreasing order of number of parameters used in
the expression, the coefficient of variation of the model with best cor-
relation is shown. Fig. 8a shows the results for the tensile limit state in
concrete, varying the number of parameters from 4 to 0 (left to right),
where the order of parameters is the same used for Fig. 7. Similarly,
Fig. 8b shows the results for the compression limit state in the concrete
(4–0 parameters), and Fig. 8c the case of yielding of the vertical re-
inforcement. Thus, it is observed that, while for concrete compression
and reinforcement yielding the error increases in the closed-form model
of better performance, as the number of expression parameters de-
creases, this does not occur for the tension of the concrete; since the
model that shows lower COV is one that integrates 2 parameters in the
expression. This shows that increasing the number of calibration vari-
ables made for strain does not directly imply an improvement in the
ability of the model to predict the capacity of the structural element,
which is explained by the imposed conditions of Eqs. (23) and (24).

Finally, from this figure it is clear that the closed-form model with the
least error considers 4 parameters for the expression of reinforcement
yielding, 4 for compression and 2 for tension of concrete. The expres-
sions related to the aforementioned parameters are shown below for
each limit state, where the three expressions include the axial load and
the principal direction angle in its formulation. Eqs. (25)–(27) provide
the calibration of a strain variable for each limit state (tension, com-
pression or reinforcement yielding). In the case of principal compres-
sive strain (εd), which is selected for Eqs. (25) and (27), there is direct
correlation to the level of axial load, which is consistent with the
longitudinal equilibrium (Eq. (16)), such that the larger the axial load
the larger the compressive strain. Moreover, the exponents for the axial
load are similar for both equations, which is also observed with the
principal direction angle exponent. On the other hand, Eq. (26) for the
tensile principal direction (εr) reduces its magnitude with the increase
of axial load. In the case of longitudinal reinforcement (distributed and
boundary), which appears in the longitudinal equilibrium equation, is
also relevant for Eqs. (26) and (27), with larger compressive strains (Eq.
(27)) and smaller tensile strains (Eq. (26)) for larger reinforcement
amount, which is also consistent with the longitudinal equilibrium (Eq.
(16)).
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(27)

In this way, the analysis of the closed-form model for shear strength
estimate requires the evaluation of compatibility equations, con-
stitutive law and equilibrium for the 4 limit states of the structural
element, which is described in the flow chart of Fig. 9.

With this methodology, the performance of the closed-form model
( −Vclosed form) developed is compared with the iterative model (Viterative)
and the experimental capacities (Vtest). For this, the ratios

− −V V V V/ , /closed form iterative closed form test and V V/iterative test with respect to the
database are evaluated statistically by the average and coefficient of
variation (COV), in order to verify the correct performance of the
closed-form model. The results of the models are shown in Figs. 10 and
11. The relationship between −Vclosed form and Viterative is shown in Fig. 10,
but in terms of tension ( =τ V t d/Lt w w), where the estimated data for the
entire database (all four structural elements) are kept close to the axis at
45°, which indicates an adequate correlation between both models. The
response of the ratios −V V/closed form test andV V/iterative test is shown in Fig. 11a
and b, respectively, where both models have similar averages (1.0 and
0.98, for closed-form and iterative model, respectively) and COVs (0.25
and 0.23, for closed-form and iterative model, respectively) with re-
spect to the experimental capacities for all specimens. In addition, the
predicted failure modes (bending or shear) are maintained from the
iterative model to the closed-form model, which guarantees that the
incorporation of the calibrated expressions does not affect the physics
of the phenomenon. The results indicate good correlation between the
model and the test results with an average close to 1 and moderate
COV. However, there are few cases (∼1%) that predict shear strength
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that are 50% or larger than observed, which are unconservative and
might not be covered by safety coefficients. Considering the large da-
tabase, it represents a small defective fraction.

4.5. Comparison with ACI 318 and AASHTO

The experimental capacity of the 4 structural systems compiled is
compared with the expressions defined in the AASHTO [20] and ACI
318 [18]. In the case of ACI 318, an earlier version is used for deep
beams [3].

For short walls, the ACI 318 standard superimposes the contribution
of concrete and horizontal reinforcement steel to the shear strength.
The contribution of concrete (Vc) depends on the aspect ratio of the
wall. As for steel, only the contribution of the distributed horizontal
reinforcement (Vs) is considered, assuming that the steel bars are
yielding. Thus, the capacity (Vn) is defined by

= + ⩽ ′V V V f A0.83n c s c w (28)

= ′V α f Ac c c w (29)

=V ρ f As t yt w (30)

where Aw is the gross area of the cross section, ρt is the transverse steel
ratio, and fyt is the yield stress of transverse steel reinforcement. The
coefficient αc is a function of the aspect ratio, and takes value of 0.25
for <H L/ 1.5w w , and 0.17 for >H L/ 2w w , and is interpolated linearly
for intermediate values.

Regarding deep beams, the ACI 318 characterizes them with an
effective length over an effective height ratio less than 1.25 for simply
supported beams, and less than 2.5 for continuous beams. Thus, for the
study of this section, the comparison of the closed-form model and ACI
318 is carried out considering only specimens that comply with these
limits. In this case, and as same as for short walls, shear strength

0.249 0.249 0.247

0.263
0.274

0.22

0.24

0.26

0.28

0.3

Tension:4
Yielding:4

Compression:4

Tension:3
Yielding:4

Compression:4

Tension:2
Yielding:4

Compression:4

Tension:1
Yielding:4

Compression:4

Tension:0
Yielding:4

Compression:4

CO
V 

V m
od

el
/V

te
st

Number of Parameters

0.247
0.256

0.275
0.285

0.296

0.22

0.24

0.26

0.28

0.3

Compression:4
Yielding:4
Tension:2

Compression:3
Yielding:4
Tension:3

Compression:2
Yielding:4
Tension:3

Compression:1
Yielding:4
Tension:3

Compression:0
Yielding:4
Tension:2

CO
V 

V m
od

el
/V

te
st

Number of Parameters

0.247
0.256 0.258 0.264

0.284

0.22

0.24

0.26

0.28

0.3

Yielding:4
Tension:2

Compression: 4

Yielding:3
Tension:2

Compression: 4

Yielding:2
Tension:2

Compression: 4

Yielding:1
Tension:2

Compression: 4

Yielding:0
Tension:4

Compression: 4

CO
V 

V m
od

el
/V

te
st

Number of Parameters

(a) 

(b) 

(c) 

Fig. 8. Scatter of shear strength ratio for strain calibration based on different number of variables – (a) concrete in tension, (b) concrete in compression, and (c)
yielding of reinforcement.

L.M. Massone, F. Melo Engineering Structures 172 (2018) 239–252

247



considers superimposing the contribution of reinforcement and con-
crete, as

= + ⩽
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where Mu and Vu are the maximum moment and shear in the critical
section of the element, respectively, ρw is the main reinforcement ratio,
fyh is the yield of the horizontal reinforcement steel, Av and Avh are the
area of the vertical and horizontal reinforcement bars, respectively, s
and s2 are the spacing of the vertical and horizontal reinforcement,
respectively, ln is the distance between the faces of support points, bw is
the thickness of the beam, and d represents the effective height of the
beam.

For reinforced concrete corbels with an aspect ratio less than 1, the
ACI 318 presents a special section for the estimation of the shear ca-
pacity based on a shear friction model. The model assumes that both the
main and secondary steel that cross the failure plane (perpendicular to
the reinforcement) are yielding. Thus, the capacity is defined as,
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Fig. 9. Flow chart of the shear strength closed-form model.
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where μ is the coefficient of friction, equal to 1.4 for monolithic con-
structions of normal weight concrete, ρf and ρh are the main and sec-
ondary reinforcement ratio, respectively, fyf and fyh are the yield stress
of the main and secondary steel, respectively.

In the case of beam-column joints, according to ACI 318, the ca-
pacity is obtained depending on the level of confinement as,

=
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c j
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c j (36)

where Aj represents the effective area of the joint. Out of the three
forms exposed in Eq. (36) to calculate the shear capacity, case (b) is
used for internal joints that have three or two opposite beams that
converge to the node, and that cover more than three quarters of the
face of the column, and case (c) is used if such beams cover less than
three quarters of the column face or if the joint is external. Finally, case
(a) is used for internal joints that meet the condition of confinement on
all four sides of the column.

In the case of AASHTO [20], the shear strength expression is con-
sistent with the approach developed by Collins et al. [4]. The design
approach uses a simplified version of the MCFT [5] separating the shear
strength in two components, one associated to the concrete strength
and another to the transversal reinforcement. In the case of concrete,
instead of using a constant strength capacity for concrete, as ACI 318
considers in most models, the strength reduces with the longitudinal
strain in the element section, among other factors. The shear strength of
concrete is defined as,

= ′ ⩽ ′V β f b d f b d0.25c c w v c w v (37)

where β is a reduction factor that account for longitudinal tensile strain
in the main reinforcement of the section (εs), with = +β 0.4/(1 750ε )s

for elements with minimum shear reinforcement and
= + +β 0.4/(1 750ε )·1.3/(1 s )s xe for other cases; sxe (m) is a crack spa-

cing parameter; dv is the effective shear depth (moment arm between
the compressive force and tensile force of main reinforcement);

= − +M d N V E Aε ( / 0.5 )/( )u v u u s ss is the longitudinal strain of the main
reinforcement for cases without pre-stressing forces; M N V, ,u u u are the
moment, axial load (compression is positive) and shear actions in the
section; and E As s is the main reinforcement stiffness.

In the case of transversal reinforcement, the contribution is defined
as,

=V A f d cotθ s/s v y v (38)

where A f d s/v y v is taken in this work as the total force that can be de-
veloped in the horizontal reinforcement, and ° = +θ ( ) 29 3500εs.

The performance shown by the code shear strength equations and
the proposed closed-form model is compared for all four structural
systems. This is done by statistically evaluating the performance of the
average and coefficient of variation (COV) of the ratio V V/model test with
respect to the database. In addition, the sensitivity is analyzed with
respect to all 7 parameters that characterize the shear capacity, such as
the slenderness H L/w w, the axial load ′N f A/( )c g , the longitudinal re-
inforcement ρ fL yL, the transverse reinforcement ρ ft yt , the boundary re-
inforcement ρ fb yb, the compressive strength of concrete ′fc , and the
principal direction angle α. The results are presented in Figs. 12–15,
where for each structural system (Fig. 12 for walls, Fig. 13 for deep
beams, Fig. 14 for corbels and Fig. 15 for beam-column joints), the ratio
between the predicted capacity (ACI 318, AASHTO and the closed-form
model) and the experimental capacity is shown, only for those elements
whose failure is predicted as shear. In each figure the results are shown
for the parameter in the horizontal axis that shows the lowest
(Figs. 12a–15a) and highest (Figs. 12b–15b) dependence of the pro-
posed model to any of those previously declared variables (7 para-
meters) by means of its trend line (also shown for the ACI 318 and
AASHTO expressions). This is done in order to compare the sensitivity
shown by the closed-form model with respect to its parameters, where
greater variation (away from 1) of the trend line represents greater
sensitivity, implying that the model is less able to capture the associated
parameter in its formulation. For the analysis, a subset of the database
is used to comply with limitations in ACI 318 expressions. As shown in
Figs. 12–15, it is concluded that in almost all cases, there is little de-
pendence on the closed-form model to the principal direction angle,
while the greater dependence is different depending on the structural
element, and in general is associated to some specimens with extreme
parameter values that accentuate an apparent dependency. Similarly,
the AASHTO expression shows little dependency to the parameters
under analysis, with comparable trends as the proposed model, except
for beam-column joints where there is dependency to the axial load.
The ACI 318, on the other hand, shows significant dependency to some
of the described parameters, such as the axial load in beam-column
joints (Fig. 15a), since the model does not consider this effect.

Table 2 shows the statistical results that characterize the perfor-
mance of the proposed model, the AASHTO and the ACI 318 for each of
the 4 structural systems, separated by predicted failure mode. Con-
sidering that the ACI 318 shear strength predictions tend to be con-
servative a larger number of tests are predicted with shear failure with
this model than with the proposed model. This table shows that, al-
though the performance shown by the predicted flexural cases is similar
for all models, the tests predicted to fail in shear by the ACI 318 code
equations show a very conservative estimate. The ACI 318 presents its
best performance for beam-column joints, with an average under-
estimation of 20% for shear and a COV of 0.24. On the other hand, the
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Fig. 11. Strength ratio −V V/closed form test and V V/iterative test for predicted shear and flexural failure for all 4 structural systems.
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deep beams present the worst performance, with average and COV for
shear of 0.55 and 0.32. The proposed model shows a similar and good
performance for all four structural systems, with strength ratio averages
that deviate 5% at most for cases that fail in shear. In the case of
AASHTO, the results are as good as the one from the proposed model,
with strength ratio averages that deviate 15% at most (shear failure). In

addition, the proposed model and AASHTO have relatively low COVs
compared to the ACI 318. When all specimens that fail in shear (all 4
element types with reduced database) are considered, the average and
COV estimates yield values of 0.99 and 0.23, respectively, for the
proposed model, and 1.03 and 0.28, respectively, for the AASHTO ex-
pression. Thus, the proposed model shows good agreement with the
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Fig. 12. Sensitivity analysis for short walls – (a) less sensitive parameter, and (b) most sensitive parameter for the proposed model.

0

0.5

1

1.5

2

2.5

55 60 65 70

V m
od

el
/V

te
st

Compression Strut Angle [°]

ACI 318
Model
AASHTO

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

V r
m

od
el

/V
te

st

Main Reinforcement bfyb [MPa]

ACI 318
Model
AASHTO

(a)                                   (b) 

Fig. 13. Sensitivity analysis for deep beams – (a) less sensitive parameter, and (b) most sensitive parameter for the proposed model.
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Fig. 14. Sensitivity analysis for corbels – (a) less sensitive parameter, and (b) most sensitive parameter for the proposed model.
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experimental evidence, capturing correctly the influence of several
parameters, resulting in a reliable method to estimate the capacity of
the 4 structural systems analyzed in this paper.

5. Conclusions

In the present work a closed-form model is developed to predict the
shear strength of short walls, deep beams, corbels and beam-column
joints. This model is based on a reinforced concrete panel element with
average strains and stresses, which covers the section of the structural
element subjected to shear stress concentration. In addition, the panel
element considers longitudinal force equilibrium (the original for-
mulation requires solving this equation by iterations) that allows cali-
brating strain expressions. Also, a new principal direction angle is ca-
librated, which covers the elements analogous to cantilever walls (short
walls in cantilever, deep beams and corbels). With this, a method is
developed to obtain the capacity of the structural element for four limit
states that are part of the model (concrete in tension and compression
and yielding of longitudinal and boundary reinforcement). Finally, one
of the normal strains of the model is calibrated using the least squares
method with respect to relevant parameters of the phenomenon, in
order to develop expressions, for each limit state, that deliver a closed-
form solution for the proposed model.

Thus, for the closed-form general model a predicted to experimental
capacity ratio V V/model test yields an average of 1.0 and a COV of 0.25,
with similar performances for all four structural systems. When com-
paring these results with the general model that requires an iterative
method, a similar performance is observed. Thus, the developed closed-
form model allows maintaining the performance of the initial model,
capturing the physics of the analyzed phenomenon.

In comparison to the ACI 318, the proposed model shows better
performance, with a better average of the shear strength ratio and a

lower COV, for each structural system. For the proposed model, the
average strength ratio does not exceed 5% of the perfect correlation
(1.0) for each structural system for shear failure, which is lower than
what is observed with the AASHTO expression (15%), with similar
COV. Considering the simplicity of the model and that its formulation is
based on the overall physics of the problem, these results validate the
proposed model as a useful tool for estimating the shear capacity of a
variety of elements such as short walls, deep beams, corbels and beam-
column joints.
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