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Abstract
The Hamming distance is a well-known measure that is

designed to provide insights into the similarity between

two strings of information. In this study, we use the Ham-

ming distance, the optimal deviation model, and the gener-

alized ordered weighted logarithmic averaging (GOWLA)

operator to develop the ordered weighted logarithmic

averaging distance (OWLAD) operator and the gener-

alized ordered weighted logarithmic averaging distance

(GOWLAD) operator. The main advantage of these oper-

ators is the possibility of modeling a wider range of com-

plex representations of problems under the assumption of

an ideal possibility. We study the main properties, alterna-

tive formulations, and families of the proposed operators.

We analyze multiple classical measures to characterize the

weighting vector and propose alternatives to deal with the

logarithmic properties of the operators. Furthermore, we

present generalizations of the operators, which are obtained

by studying their weighting vectors and the lambda param-

eter. Finally, an illustrative example regarding innovation

project management measurement is proposed, in which a

multi-expert analysis and several of the newly introduced

operators are utilized.
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1 INTRODUCTION

Group decision-making (GDM) techniques have increased in relevance in the literature. This is
mainly due to the possibility of generating rankings of diverse alternatives for specific situations
while considering multiple scenarios. GDM techniques have been widely combined with the theory
of aggregation, thereby producing a vast pool of contributions in diverse fields of knowledge such
as artificial intelligence, fuzzy systems, image processing, and decision sciences. This last field is
of special interest in our study, as it provides a basis for combining data and obtaining solutions
that are constructed based on information that is collected directly from decision makers, experts, or
stakeholders. There are many aggregation operators and aggregation functions1–4 that have proven
useful in diverse areas, for example, statistics, economics, education, biology, computer science, and
engineering.1,2 A classic example of an operator that is designed for the aggregation of information in
intelligent systems is the ordered weighted average (OWA), which is presented in Yager.5 The OWA
allows for a descending and ascending ordered aggregation mechanism, thereby yielding a result that
is between the minimum and the maximum of the values to be combined. It also provides a family of
parameterized operators, which have been adopted in several areas such as expert systems, database
systems, operational research, and fuzzy systems.6,7

Recently, the use of distance measurement techniques in the field of group GDM has gained spe-
cial relevance. The idea of providing results based on the comparison of information that is retrieved
from domain experts and an ideal collection of preferences is highly appealing.8 The current litera-
ture has extensively studied several distance measures, such as the Hamming distance, the Euclidean
distance, and the Hausdorff distance.9–11 We focus on the Hamming distance,12 which considers the
importance of each deviation value. This distance has become very popular and is applied in the field of
aggregation operators, for example, in the ordered weighted distance (OWD) measures,13 the ordered
weighted averaging distance (OWAD) operators,14 the linguistic ordered weighted averaging distance
(LOWAD) operators,15 and the induced ordered weighted averaging distance (IOWAD) operators.16

These studies have motivated research on generating additional applications, such as the intuitionistic
fuzzy ordered weighted distance (IFOWD) operator,17 the fuzzy ordered distance measures that are pre-
sented in Ref. 18, a continuous ordered weighted distance (COWD) operator for investment selection
problems,19 a probabilistic ordered weighted averaging distance operator in political management,20

the linguistic induced ordered weighted averaging distance operators for the selection of investments,21

distance measures with heavy aggregation operators (HOWAD) for strategic management,22 a linguis-
tic continuous ordered weighted distance (LCOWD) measure for a GDM in an investment selection
problem23 and, more recently, the fuzzy linguistic induced ordered weighted averaging Minkowski dis-
tance (FLIOWAMD), which generalizes the Euclidean and Hamming distances for investment strategy
decision making.24

Motivated by the recent work of Zhou and Chen,25 which proposes an operator that is based on
an optimal deviation model and is called the generalized ordered weighted logarithmic aggrega-
tion (GOWLA) operator, this study introduces the ordered weighted logarithmic averaging distance
(OWLAD) operator and the generalized ordered weighted logarithmic averaging distance (GOWLAD)
operator. These operators utilize the Hamming distance measure to provide a set of parameter-
ized families between the maximum and the minimum values, including the step-OWLAD opera-
tor, the NLHD operator, the WLHD operator, the olympic-OWLAD, the window-OWLAD operator,
the median-OWLAD operator, the centered-OWLAD, the WLGAD operator, the OWLHAD operator,
the OWLAD operator, the OWLQAD operator, and the OWLCAD operator. These families enable the
assessment of complex GDM problems in which a set of optimal preferences must be satisfied while
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considering diverse alternatives, scenarios, and preferences. An increasing number of studies are being
performed on logarithmic aggregation operators, such as the generalized ordered weighted logarithmic
proportional averaging (GOWLPA) operator,26 the generalized ordered weighted exponential propor-
tional aggregation (GOWEPA) operator,27 and the generalized ordered weighted logarithmic harmonic
averaging (GOWLHA) operator.28

The remainder of the paper is organized as follows. In Section 2, we present the preliminaries of this
study. In Section 3, we introduce the OWLAD operators, study their main properties and alternative
formulations, propose measures to characterize the weighting vector, and introduce families of the
operator. Similarly, Section 4 presents the study of the GOWLAD operators. Section 5 proposes a
decision-making problem in an innovation project management application, which is further assessed
with a numerical example in Section 6. Finally, Section 7 presents our conclusions.

2 PRELIMINARIES

The OWA operator5 describes a parameterized family of aggregation operators, which include the max-
imum, the minimum and the average criteria. Applications of this operator have been widely studied
in the literature.6

The Hamming distance12 has become a standard technique to measure the difference between two
parameters, elements or sets. This metric has been applied in several domains of knowledge; some of
the most well recognized are fuzzy sets, artificial intelligence, operations research, and engineering.13

Motivated by the application of aggregation operators to calculate the Hamming distance, Merigó
and Gil-Lafuente14 and Xu and Chen13 present the OWAD operators. The OWAD operators provide
a parameterized family of distance aggregation operators between the maximum and the minimum
values.

The generalized ordered weighted logarithmic aggregation (GOWLA) operator was developed by
Zhou and Chen.25 This operator has as its foundation the next optimal model:

min𝐽1 =
𝑛∑
𝑗=1

𝑤𝑗

[
(ln 𝑦)𝜆 − (ln 𝑎𝑗)𝜆

]2
, (1)

where 𝑦 is an aggregation operator of dimension 𝑛 and𝑤 = (𝑤1, 𝑤2,… , 𝑤𝑛)𝑇 an associated weighting
vector such that 𝑤𝑗 ∈ [0, 1] for all 𝑗 and

∑𝑛

𝑗=1𝑤𝑗 = 1. Observe that 𝜆 ∈ (−∞,∞). By calculating the

partial derivative respect to 𝑦 and 𝜕𝑦1
𝜕𝑦

= 0, we obtain the generalized weighted logarithmic averaging
(GWLA) operator:

GWLA(𝑎1, 𝑎2,… , 𝑎𝑛) = exp
⎧⎪⎨⎪⎩
(

𝑛∑
𝑗=1

𝑤𝑗(ln 𝑎𝑗)𝜆
)1∕𝜆⎫⎪⎬⎪⎭ . (2)

By reordering the arguments 𝑎𝑖, we obtain the generalized ordered weighted logarithmic averaging
(GOWLA) operator, as follows:
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Definition 1. A GOWLA operator of dimension 𝑛 is a mappingGOWLA ∶ Ω𝑛 → Ωwith an associated
weighting vector 𝑤 of dimension 𝑛, such that 𝑤𝑗 ∈ [0, 1] for all 𝑗 and

∑𝑛

𝑗=1𝑤𝑗 = 1, which includes a
parameter 𝜆 in the range of (−∞,∞) − {0} and satisfies the following formula:

GOWLA(𝑎1, 𝑎2,… , 𝑎𝑛) = exp
⎧⎪⎨⎪⎩
(

𝑛∑
𝑗=1

𝑤𝑗(ln 𝑏𝑗)𝜆
)1∕𝜆⎫⎪⎬⎪⎭ , (3)

where 𝑏𝑗 is the jth largest of the arguments 𝑎1, 𝑎2, … , 𝑎𝑛. From ln 𝑎𝑗 ≥ 0, it follows that exp(ln 𝑎𝑗) ≥
exp(0). Thus, 𝑎𝑗 ≥ 1. In the present paper, we follow the original notation25: Ω = {𝑥|𝑥 ≥ 1, 𝑥 ∈ 𝑅}.

An interesting family of the GWLA operator results when parameter 𝜆 = 1. In this case, we obtain
an extension, which is called the weighted logarithmic aggregation (WLA) operator. We define the
WLA operator as follows:

WLA(𝑎1, 𝑎2,… , 𝑎𝑛) = exp
𝑛∑
𝑗=1

𝑤𝑖(ln 𝑎𝑖). (4)

3 OWLAD OPERATORS

3.1 Weighted logarithmic averaging distance operator
The weighted logarithmic averaging distance (WLAD) operator is a distance measure that is based on
the optimal deviation model, which was proposed by Zhou and Chen.25 It uses the Hamming distance
to obtain a result that is between the minimum and maximum values that are considered in the problem.

Definition 2. A WLAD operator of dimension 𝑛 is a mapping WLAD: Ω𝑛 × Ω𝑛 → Ω that is defined
by an associated weighting vector 𝑊 such that the sum of the weights is equal to 1 and 𝑤𝑗 ∈ [0, 1],
according to the following formula:

WLAD(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp

{
𝑛∑
𝑗=1

𝑤𝑗(ln| 𝑥𝑖 − 𝑦𝑖|)} , (5)

where the argument |𝑥𝑖 − 𝑦𝑖| is a variable that is represented in the form of an individual distance.

In this paper, we follow the original definition25 ofΩ = {𝑥|𝑥 ≥ 1, 𝑥 ∈ 𝑅}. If the individual distance|𝑥𝑖 − 𝑦𝑖| = 0, it is not possible to carry out the aggregation process because in logarithmic aggregation,
we cannot use values that are less than 1. Therefore, we do not consider individual distances that are
less than 1 in the aggregation, that is, they are considered empty.

Example 1. Assume the following collection of arguments: 𝑋 = (9, 24, 11, 33), 𝑌 = (12, 15,
28, 23), and 𝑊 = (0.4, 0.1, 0.3, 0.2). The aggregation has the following result:

WLAD(𝑋, 𝑌 ) = exp{0.4 × (ln |9 − 12|) + 0.1 × (ln |24 − 15|) + 0.3 × (ln |11 − 28|)
+ 0.2 × (ln |33 − 23|)} = 7.1682.
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An alternative formulation to this approach is:

WLAD(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp

{
𝑛∑
𝑗=1

𝑤𝑗|ln (𝑥𝑖) − ln (𝑦𝑖)|} . (6)

3.2 OWLAD operator
The OWLAD operator is a generalization of the WLAD operator. The most distinctive property is
the ordering mechanism of the considered arguments. This order enables the introduction of complex
decision-making processes. Additionally, it generates the possibility of having alternative formulations
that depend not only on the ascending or descending direction of the ordering mechanism but also on
the system that is designed to solve the logarithmic distances. The main properties of the OWLAD
operator are commutativity, idempotency, boundedness, monotonicity, and non-negativity.

Definition 3. An OWLAD operator of dimension 𝑛 is a mapping OWLAD: Ω𝑛 × Ω𝑛 → Ω that has
an associated weighting vector 𝑊 , with

∑𝑛

𝑗=1𝑤𝑗 = 1 and 𝑤𝑗 ∈ [0, 1], such that:

OWLAD(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp

{
𝑛∑
𝑗=1

𝑤𝑗 ln (𝐷𝑗)

}
, (7)

where 𝐷𝑗 represents the 𝑗th largest of |𝑥𝑖 − 𝑦𝑖| over all i and |𝑥𝑖 − 𝑦𝑖| is the argument variable, which
is represented in the form of individual distances.

Example 2. Assume the same collection of arguments as was defined in Example 1: 𝑋 = (9, 24,
11, 33), 𝑌 = (12, 15, 28, 23), and 𝑊 = (0.4, 0.1, 0.3, 0.2). Then, the aggregation will yield the fol-
lowing result:

OWLAD(𝑋, 𝑌 ) = exp{0.4 × (ln |11 − 28|) + 0.1 × (ln |33 − 23|) + 0.3 × (ln| 24 − 15|)
+ 0.2 × (ln |9 − 12|)} = 9.4162.

From the ordering mechanism perspective, which differentiates this operator from the WLAD
operator, two formulations can be described: the descending ordered weighted logarithmic averag-
ing distance (DOWLAD) operator and the ascending ordered weighted logarithmic averaging distance
(AOWLAD) operator. The relation between these operators is 𝑤𝑗 = 𝑤∗

𝑛+1−𝑗 , where 𝑤𝑗 is the 𝑗th
weight of the DOWLAD operator and 𝑤∗

𝑛+1−𝑗 is the 𝑗th weight of the AOWLAD operator.
In the presence of non-normalization in the arguments, that is, 𝑊 =

∑𝑛

𝑗=1𝑤𝑗 ≠ 1 (see Ref. 1), the
OWLAD operator can be expressed as:

OWLAD(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp

{
1
𝑊

𝑛∑
𝑗=1

𝑤𝑗 ln(𝐷𝑗)

}
, (8)

where 𝑊 =
∑𝑛

𝑗
𝑤𝑗 .

The ordered weighted logarithmic aggregation operator has the following main properties: com-
mutativity, idempotency, boundedness, monotonicity, and non-negativity. The proofs of these prop-
erties are trivial. Therefore, they are omitted. These properties can be expressed by the following
theorems:
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Theorem 1. Commutativity, by the ordered weighted aggregation. Let the function 𝑓 be the OWLAD
operator. Then,

𝑓 (𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛) = 𝑓 (𝑐1, 𝑑1,… , 𝑐𝑛, 𝑑𝑛), (9)

where(𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛) represents any specified permutation of the arguments (𝑐1, 𝑑1,… , 𝑐𝑛, 𝑑𝑛).

Theorem 2. Commutativity, by the distance measure. Assume 𝑓 is the OWLAD operator. Then,

𝑓 (𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛) = 𝑓 (𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛). (10)

Theorem 3. Monotonicity. Let 𝑓 be the OWLAD operator. If |𝑥𝑖 − 𝑦𝑖| ≥ |𝑐𝑖 − 𝑑𝑖| for all 𝑖, then

𝑓 (𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛) ≥ 𝑓 (𝑐1, 𝑑1,… , 𝑐𝑛, 𝑑𝑛). (11)

Theorem 4. Boundedness. Assume the function 𝑓 is the OWLAD operator. Then,

min{|𝑥𝑖 − 𝑦𝑖|} ≤ 𝑓 (𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛) ≤ max{|𝑥𝑖 − 𝑦𝑖|}. (12)

Theorem 5. Idempotency. If the function 𝑓 is the OWLAD operator and |𝑥𝑖 − 𝑦𝑖| = 𝑎𝑖 for all 𝑖, then

𝑓 (𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛) = 𝑎. (13)

Theorem 6. Non-negativity. Let the function 𝑓 to be the OWLAD operator. Then,

𝑓 (𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛) ≥ 0. (14)

3.3 Alternative formulations of the OWLAD operators
Depending on the ordering of the arguments in the aggregation process, four alternative formulations
can be generated for the OWLAD operator:

1. The OWLADI operator can be obtained by solving |𝑥𝑖 − 𝑦𝑖|, calculating the natural logarithm of
the difference, and ordering the arguments in a descending direction, according to the following
formula:

OWLADI(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp

{
𝑛∑
𝑗=1

𝑤𝑗 ln(𝐷𝑗)

}
, (15)

where 𝐷𝑗 represents the 𝑗th largest of |𝑥𝑖 − 𝑦𝑖| over all i and |𝑥𝑖 − 𝑦𝑖| is the argument variable,
which is represented in the form of individual distances. Note that this alternative formulation is
equivalent to Equation (10).

2. The OWLADII operator is generated by finding the natural logarithm of each argument, that is,
ln(𝑥𝑖) and ln(𝑦𝑖); finding the absolute difference of the obtained results; and ordering the arguments
in a descending direction, according to the following formula:

OWLADII(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp

{
𝑛∑
𝑗=1

𝑤𝑗|𝑆𝑗 − 𝐵𝑗|} , (16)
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T A B L E 1 Results for the alternative formulations of the OWLAD operator

𝐎𝐖𝐋𝐀𝐃𝐈 𝐎𝐖𝐋𝐀𝐃𝐈𝐈 𝐎𝐖𝐋𝐀𝐃𝐈𝐈𝐈 𝐎𝐖𝐋𝐀𝐃𝐈𝐕

9.4162 1.7978 3.5944 1.2468

where 𝑆𝑗 represents the 𝑗th largest of ln(𝑥𝑖) over all i and 𝐵𝑗 represents the 𝑗th largest of ln(𝑦𝑖) over
all i. Both arguments are ordered in a descending way.

3. The OWLADIII operator is obtained when we order arguments 𝑥𝑖 and 𝑦𝑖 in a descending way,
calculate the absolute difference of the ordered arguments, and calculate the natural logarithm of
the results. This sequence of steps can be formulated as:

OWLADIII(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp

{
𝑛∑
𝑗=1

𝑤𝑗 ln(|𝐸𝑗 −𝑀𝑗|)} , (17)

where 𝐸𝑗 represents the 𝑗th largest of 𝑥𝑖 over all i and 𝑀𝑗 represents the 𝑗th largest of 𝑦𝑖 over all 𝑖.
Both arguments are ordered in a descending way.

4. The OWLADIV operator is obtained when we order arguments 𝑥𝑖 and 𝑦𝑖 in a descending way,
calculate the natural logarithm of the ordered arguments, and find the distance of the results. This
mechanism can be formulated as:

OWLADIV(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp

{
𝑛∑
𝑗=1

𝑤𝑗{[ln (𝐸𝑗)] − [ln (𝑀𝑗)]}

}
, (18)

where 𝐸𝑗 represents the 𝑗th largest of 𝑥𝑖 over all i and 𝑀𝑗 represents the 𝑗th largest of 𝑦𝑖 over all i.
Both arguments are ordered in a descending way.

Example 3. Following the same arguments as in Example 1, the results for each alternative formulation
of the OWLAD operator are described in Table 1.

3.4 Characterization of OWLAD operators
Multiple approaches have been proposed in the literature to measure and thus characterize the weights
of aggregation functions. The classical methods include, for example, the degree of orness,5 the dis-
persion measure,5,29 the balance, and the divergence. In the case of the OWLAD operator, additional
measures must be developed, as the logarithmic properties of the aggregation limit the consideration
of numbers between 0 and 1. Motivated by this, we propose a general characterization of the weighting
vector and a transformation of the OWA measures into the R-scale.

3.4.1 General characterization of the aggregation
Since logarithms do not work in the scale [0, 1], we must find additional measures to characterize the
aggregation. A general approach to characterize the descending aggregation (CDA) is formulated as
follows:

CDA =
𝑏𝑗 − 𝑏𝑛

𝑏1 − 𝑏𝑛
, (19)
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T A B L E 2 OWLAD operator general characterization of the aggregation

Measure CDA CDA* CAA CAA*
Result 0.4583 0.5417 0.7287 0.2713

where 𝑏𝑗 is the result of the OWLAD operator and 𝑏1 and 𝑏𝑛 are the largest and smallest arguments
of |𝑥𝑖 − 𝑦𝑖|, respectively. This approach requires the aggregation results to be ordered in a descending
way. Furthermore, the dual version of this formulation can be represented as:

CDA + CDA∗ = 1.

Then,

CDA∗ = 1 −
𝑏𝑗 − 𝑏𝑛

𝑏1 − 𝑏𝑛
. (20)

If the aggregation results are ordered in an ascending way, the formula for the characterization of
the ascending aggregation (CAA) needs to be changed to the following:

CAA =
𝑏𝑗 − 𝑏1

𝑏𝑛 − 𝑏1
, (21)

where 𝑏𝑗 is the result of the OWLAD operator and 𝑏1 and 𝑏𝑛 are the largest and smallest arguments of|𝑥𝑖 − 𝑦𝑖|, respectively. As presented for the descending formulation, the dual version of this represen-
tation can be obtained as:

CAA∗ = 1 −
𝑏𝑗 − 𝑏1

𝑏𝑛 − 𝑏1
. (22)

Example 4. We utilize the values that were defined in Example 2: 𝑋 = (9, 24, 11, 33), 𝑌 = (12, 15,
28, 23), and𝑊 = (0.4, 0.1, 0.3, 0.2). The general characterization results of the aggregation and their
dual versions are presented in Table 2.

3.4.2 Transformation of the OWA measures into the R-scale
An interesting mechanism for characterizing the weighting vector, including the logarithmic properties
of the WLA operators, is the transformation of the OWA measures into the R-scale. The proposed
procedure can be realized by the following steps.

Let Z be the transformation of the aggregation arguments according to the following expression:

𝑍 = min + {max − min}
(
𝑛 − 𝑗

𝑛 − 1

)
. (23)

Observe that the use of 𝑍 enables the transformation of the [0, 1] scale into a logarithmically con-
sistent one. Motivated by the result of this procedure, we propose using the 𝑍 transformation to study
the degree of orness of the OWLA operator.

STEP 1: Calculate 𝑅 − 𝛼(𝑤), which includes the 𝑍 transformation, using the following equation:

𝑅 − 𝛼 (𝑤) = 𝑒

{
𝑛∑
𝑗=1

𝑤𝑗 ln(𝑍𝑗)

}
, (24)
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where𝑍 is the transformation of the arguments in the aggregation. The complete formulation
can be expressed as:

𝑅 − 𝛼 (𝑤) = 𝑒

{
𝑛∑
𝑗=1

𝑤𝑗 ln
(
min(𝑎𝑖) + {max(𝑎𝑖) − min(𝑎𝑖)}

(
𝑛 − 𝑗

𝑛 − 1

))}
, (25)

where 𝑎𝑖 is the argument |𝑥𝑖 − 𝑦𝑖| of the aggregation.

STEP 2: The final step is to convert the result 𝑅 − 𝛼(𝑤) using the following expression:

𝑥 =
𝑦 − min(𝑎𝑖)

(max(𝑎𝑖) − min(𝑎𝑖))
, (26)

where 𝑦 is the result of 𝑅 − 𝛼(𝑤) and 𝑥 ∈ [0, 1]. The minimum is attained when 𝑥 = 0, and
the maximum, when 𝑥 = 1. We can obtain the dual of this operation by applying the following
formulation.

Let 𝑥∗ be the dual of 𝑥. Then,

𝑥 + 𝑥∗ = 1.

It follows that

𝑥∗ = 1 −
𝑦 − min(𝑎𝑖)

(max(𝑎𝑖) − min(𝑎𝑖))
=

max(𝑎𝑖) − 𝑦

max(𝑎𝑖) − min(𝑎𝑖)
. (27)

Example 5. We utilize the arguments that are defined in Example 2: 𝑋 = (9, 24, 11, 33), 𝑌 =
(12, 15,
28, 23), and 𝑊 = (0.4, 0.1, 0.3, 0.2). Then, the degree of orness in the logarithmic scale is as
follows:

𝑅 − 𝛼(𝑤) = 𝑒 {0.4[ln (3 + 14(1))] + 0.1[ln (3 + 14(0.6667))]

+ 0.3[ln (3 + 14(0.3333))] + 0.2[ln (3 + 14(0))]} = 9.1642.

Therefore,

𝑥 = 9.1642 − 3
(17 − 3)

= 0.4403,

and

𝑥∗ = 17 − 9.1642
17 − 3

= 0.5597.

It is interesting to study the families of the OWLAD operators, as they represent particular cases
that can be selected in accordance with specific problems that we are assessing. For the case of the
OWLAD operator, several parameterized families can be described, depending on the conformation
of the weighting vector.30 These particular families include the maximum and minimum distances,
the step-OWLAD operator, the normalized logarithmic Hamming distance (NLHD), the weighted
logarithmic Hamming distance (WLHD), the olympic-OWLAD, the window-OWLAD operator, the
median-OWLAD operator, and the centered-OWLAD31 operator. Note that all the alternative formu-
lations that were described previously are also applicable to the families that are presented here.32–34
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4 GENERALIZED ORDERED WEIGHTED LOGARITHMIC
DISTANCE OPERATORS

4.1 GWLA distance operator
The GWLAD operator is a generalization of the OWLAD operator. Therefore, it shares the same prop-
erties and characteristics. The GWLAD operator includes a 𝜆 parameter, which allows for a wider
representation of complex problems. Many interesting families of the GWLAD can be developed,
depending on the 𝜆 value.

Definition 4. A GWLAD operator of dimension 𝑛 is a mapping GWLAD: Ω𝑛 × Ω𝑛 → Ω with an
associated weighting vector𝑊 of dimension 𝑛 such that the sum of all𝑤𝑗 is equal to 1, and𝑤𝑗 ∈ [0, 1].
It is expressed by the following formula:

GWLAD(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp
⎧⎪⎨⎪⎩
(

𝑛∑
𝑗=1

𝑤𝑗(ln |𝑥𝑖 − 𝑦𝑖|)𝜆)1∕𝜆⎫⎪⎬⎪⎭ , (28)

where |𝑥𝑖 − 𝑦𝑖| is an argument variable, which is represented in the form of an individual distance, and
𝜆 is a parameter such that 𝜆 ∈ (−∞,∞) − {0}.

If 𝑤𝑗 =
1
𝑛

for all 𝑗, we obtain the generalized logarithmic averaging distance (GLAD) operator,
which is formulated as follows:

GLAD(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp
⎧⎪⎨⎪⎩
(
1
𝑛

𝑛∑
𝑗=1

(ln |𝑥𝑖 − 𝑦𝑖|)𝜆)1∕𝜆⎫⎪⎬⎪⎭ . (29)

Example 6. We utilize the arguments that were defined in Example 2, namely, 𝑋 = (9, 24, 11, 33),
𝑌 = (12, 15, 28, 23), and 𝑊 = (0.4, 0.1, 0.3, 0.2), as well as parameter 𝜆 = 2. The aggregation
yields:

GWLAD(X,Y) = exp{[0.4 × (ln|9 − 12|)2 + 0.1 × (ln|24 − 15|)2 + 0.3 × (ln|11 − 28|)2
+ 0.2 × (ln|33 − 23|)2]1∕2} = 8.2130.

Additionally, parameter 𝜆 in the GWLAD operator enables the study of particular cases. Table 3
presents special cases that are interesting for analysis.

T A B L E 3 Families of GWLAD operators

𝝀 Families Acronym
𝜆 → 0 Weighted logarithmic geometric averaging distance operator WLGAD

𝜆 = −1 Weighted logarithmic harmonic averaging distance operator WLHAD

𝜆 = 1 Weighted logarithmic aggregation distance operator WLAD

𝜆 = 2 Weighted logarithmic quadratic aggregation distance operator WLQAD

𝜆 = 3 Weighted logarithmic cubic aggregation distance operator WLCAD

𝜆 → ∞ Largest of the |𝑥𝑖 − 𝑦𝑖| Max

𝜆 → −∞ Lowest of the |𝑥𝑖 − 𝑦𝑖| Min
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T A B L E 4 Families of the GWLAD operator

𝝀 → 𝟎 −1 1 2 3 ∞ −∞
Aggregation 6.1353 5.2601 7.1682 8.2130 9.1541 → 17 → 3

T A B L E 5 Results for the alternative formulations of the GOWLAD operator

𝐆𝐎𝐖𝐋𝐀𝐃𝐈 𝐆𝐎𝐖𝐋𝐀𝐃𝐈𝐈 𝐆𝐎𝐖𝐋𝐀𝐃𝐈𝐈𝐈 𝐆𝐎𝐖𝐋𝐀𝐃𝐈𝐕

10.2820 1.9220 3.9026 1.2680

Example 7. We utilize the arguments that were defined in Example 2. The results for each family of
the GWLAD operator are shown in Table 4.

4.2 GOWLAD distance operator
The GOWLAD operator adds an ordering mechanism to the GWLAD operator. Therefore, as a gener-
alization of the GWLAD operator, it shares the same properties. The ordering mechanism allows for
the modeling of a wider range of more complex problems. Additionally, it introduces the possibility of
additional alternative formulations and families, depending on the value of 𝜆.

Definition 5. A GOWLAD operator of dimension 𝑛 is a mapping GOWLAD: Ω𝑛 × Ω𝑛 → Ω that is
defined by an associated weighting vector 𝑊 of dimension 𝑛 such that the sum of the weights is equal
to 1 and 𝑤𝑗 ∈ [0, 1], according to the following formula:

GOWLAD(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) = exp
⎧⎪⎨⎪⎩
(

𝑛∑
𝑗=1

𝑤𝑗(ln 𝑏𝑗)𝜆
)1∕𝜆⎫⎪⎬⎪⎭ , (30)

where 𝑏𝑗 is the |𝑥𝑖 − 𝑦𝑖| value of GOWLAD 𝑥𝑖, 𝑦𝑖, in decreasing order of the value of |𝑥𝑖 − 𝑦𝑖|. The
argument |𝑥𝑖 − 𝑦𝑖| is a variable that is represented in the form of an individual distance, and 𝜆 is a
parameter that satisfies 𝜆 ∈ (−∞,∞) − {0}.

Example 8. We utilize the arguments that were defined in Example 2 𝑋 = (9, 24, 11, 33) and 𝑌 =
(12, 15, 28, 23). Assuming 𝑊 = (0.4, 0.1, 0.3, 0.2) and 𝜆 = 2, the aggregation yields:

GOWLAD(𝑋, 𝑌 ) = exp{((0.4 × (ln |11 − 28|))2 + (0.1 × (ln |33 − 23|))2 + (0.3 × (ln |24 − 15|))2
+ (0.2 × (ln |9 − 12|))2)1∕2} = 10.2820.

The descending order of arguments 𝑏𝑗 depends on the result of |𝑥𝑖 − 𝑦𝑖|.
In addition, the GOWLAD operator is a generalization of the OWLAD operator. Thus, it also has

the properties of commutativity, monotonicity, boundedness and idempotency.
Similarly to the OWLAD operator, the GOWLAD operator exhibits four alternative formulations

that depend on the ordering of the arguments. Note that obtaining these formulations is straightforward
based on Section 3.4.

Example 9. Following the data that were presented in Examples 7 and 8, the results for each alternative
formulation of the GOWLAD operator are described in Table 5.

Several particular families of the GOWLAD operator can be delimitated by the values of the param-
eter 𝜆. Table 6 presents some representative cases of the GOWLAD operator families, including
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T A B L E 6 Families of GOWLAD operators

𝝀 Family Acronym Formula
𝜆 → 0 Ordered weighted logarithmic

geometric averaging distance
operator

OWLGAD GOWLAD(𝑥𝑛, 𝑦𝑛) = exp
{∏𝑛

𝑗=1 (ln (𝑏𝑗 ))
𝑤𝑗

}
(1)

𝜆 = −1 Ordered weighted logarithmic
harmonic averaging distance
operator

OWLHAD GOWLAD(𝑥𝑛, 𝑦𝑛) = exp
{

1∑𝑛

𝑗=1(
𝑤𝑗

ln 𝑏𝑗
)

}
(2)

𝜆 = 1 Ordered weighted logarithmic
aggregation distance operator

OWLAD GOWLAD(𝑥𝑛, 𝑦𝑛) = exp
∑𝑛

𝑗=1𝑤𝑗 (ln 𝑏𝑗 ) (3)

𝜆 = 2 Ordered weighted logarithmic
quadratic aggregation distance
operator

OWLQAD GOWLAD(𝑥𝑛, 𝑦𝑛) =

exp
{√

(
∑𝑛

𝑗=1𝑤𝑗 (ln 𝑏𝑗 )2)
} (4)

𝜆 = 3 Ordered weighted logarithmic
cubic aggregation distance
operator

OWLCAD GOWLAD(𝑥𝑛, 𝑦𝑛) =
exp

{(∑𝑛

𝑗=1𝑤𝑗 (ln 𝑏𝑗 )3
)1∕3} (5)

𝜆 → ∞ Largest of the 𝑏𝑗 , for 𝑗 = 𝑛 Max GOWLAD(𝑥𝑛, 𝑦𝑛) = max{𝑏𝑗} (6)

𝜆 → −∞ Lowest of the 𝑏𝑗 , for 𝑗 = 𝑛 Min GOWLAD(𝑥𝑛, 𝑦𝑛) = min{𝑏𝑗} (7)

Note that for all cases, 𝑏𝑗 is the |𝑥𝑖 − 𝑦𝑖| value of GOWLAD 𝑥𝑖, 𝑦𝑖, in decreasing order of values of |𝑥𝑖 − 𝑦𝑖|.

the ordered weighted logarithmic geometric averaging distance (OWLGAD) operator, the ordered
weighted logarithmic harmonic averaging distance (OWLHAD) operator, the ordered weighted loga-
rithmic aggregation distance (OWLAD) operator, the ordered weighted logarithmic quadratic aggre-
gation distance (OWLQAD) operator, the ordered weighted logarithmic cubic aggregation distance
(OWLCAD) operator, the maximum, and the minimum.

5 GDM IN INNOVATION PROJECT MANAGEMENT

The GOWLAD operator, which is based on the Hamming distance mechanism, is applicable to a wide
range of problems in decision-making procedures. This operator can also be applied to statistical anal-
ysis, operations, engineering and economic studies.1,2,4,35

This paper presents a decision-making36,37 application in the field of innovation project
management.38 The main motivation for using the GOWLAD operator in this area is the possibility
of retrieving the opinions of several experts to select the most efficient solution for a company when
managing new projects. Commonly, project management performance has been measured in terms of
cost, duration and return over investment.38,39 However, the GOWLAD operator opens the option to
evaluate uncertain and subjective factors such as the extent of internal communication of the impli-
cated areas when developing a new product40 and the collaborations with suppliers41 and customers,42

as they have been identified as sources that contribute to the innovation process. The general process
to assess a multi-person decision-making situation using the GOWLAD operator can be described as
follows:

STEP 1: Let 𝐴 = {𝐴1, 𝐴2,… , 𝐴𝑚} be a set of limited options, and 𝐶 = {𝐶1, 𝐶2,… , 𝐶𝑚}, a set of
finite options or alternatives. Both sets form a matrix (𝑥ℎ𝑖)𝑚×𝑛. Let𝐸 = {𝐸1, 𝐸2,… , 𝐸𝑞} be
a finite set of decision makers. Assume that the decision makers have diverse levels of impor-
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T A B L E 7 Ideal project

𝐶1 𝐶2 … 𝐶𝑖 … 𝐶𝑛

𝑃 𝑦1 𝑦2 … 𝑦𝑖 … 𝑦𝑛

tance, where 𝑉 = (𝑣1, 𝑣2,… , 𝑣𝑝) represents the weighting vector of importance, which
satisfies

∑𝑝

𝑘=1 𝑣𝑘 = 1 and 𝑥𝑘 ∈ [0, 1]. At that point, each decision maker must deliver a pay-
off matrix (𝑥ℎ𝑖)𝑘𝑚×𝑛.

STEP 2: Ideal characteristics must be set for the ideal project to be developed; see Table 7. In this
case, 𝑃 is the ideal project, which is represented by a subset; 𝐶𝑖 represents the 𝑖th considered
characteristic; 𝑦𝑖 ∈ [1, 100]; and 𝑖 = 1, 2,… , 𝑛 is a number between 1 and 100. Each decision
maker must provide an ideal project 𝑦𝑖

𝑘.

STEP 3: Apply the weighted average (WA) to aggregate the information of the decision makers 𝐸 by
using the weighting vector 𝑉 . The result will be the collective payoff matrix (𝑥ℎ𝑖 − 𝑦ℎ𝑖)𝑚×𝑛.
Therefore, 𝑥ℎ𝑖 − 𝑦ℎ𝑖 =

∑𝑝

𝑘=1 𝑣𝑘(𝑥
𝑘
ℎ𝑖
− 𝑦𝑘

ℎ𝑖
). Note that more complex aggregations can be

developed if the experts’ opinions are aggregated with a different method than WA, for exam-
ple, the OWA operator.

STEP 4: Solve for the GOWLAD operator, as described in Equation 30. The value of 𝜆 is usually set
to 1; however, any of the families that are described in Table 6 can be used, depending on the
problem that is being assessed.

STEP 5: Establish a ranking of the evaluated options, compare the results for the problem that is being
assessed and develop a decision-making approach.

To summarize this aggregation mechanism, we propose the utilization of the following aggregation
operator, which is named the multi-person-GOWLAD (MP-GOWLAD) operator:

Definition 6. An MP-GOWLAD operator is an aggregation operator with an associated weighting
vector 𝑉 of dimension 𝑝 such that the sum of the weights is 1 and 𝑣𝑘 ∈ [0, 1], and a weighting vector
𝑊 of 𝑛 dimension such that

∑𝑛

𝑗=1𝑤𝑗 = 1 and 𝑤𝑗 ∈ [0, 1]:

MP − GOWLAD
((
𝑥11,… , 𝑥

𝑝

1
)
,
(
𝑦11,… , 𝑦

𝑝

1
)
,… ,

(
𝑥1
𝑛
,… , 𝑥𝑝

𝑛

)
,
(
𝑦1
𝑛
,… , 𝑦𝑝

𝑛

))
= exp

⎧⎪⎨⎪⎩
(

𝑛∑
𝑗=1

𝑤𝑗

(
ln 𝑏𝑗

)𝜆)1∕𝜆⎫⎪⎬⎪⎭ , (31)

where 𝑏𝑗 is the |𝑥𝑖 − 𝑦𝑖| value of the MP-GOWLAD (𝑥𝑖, 𝑦𝑖) in decreasing order of the values of the
argument |𝑥𝑖 − 𝑦𝑖|. The argument |𝑥𝑖 − 𝑦𝑖| = (

∑𝑝

𝑘=1 𝑣𝑘|𝑥𝑘𝑖 − 𝑦𝑘
𝑖
|), where |𝑥𝑘

𝑖
− 𝑦𝑘

𝑖
| are variables that

correspond to the opinions of each expert in the form of individual distances and 𝜆 is a parameter
that satisfies 𝜆 ∈ (−∞,∞) − {0}. The MP-GOWLAD operator shares the properties of the GOWLAD
operator.

The MP-GOWLAD operator can be reduced to a series of particular cases by following the method-
ology that is presented in section 3. Interesting cases include the multi-person-normalized logarithmic
Hamming distance (MP-NLHD) operator, the multi-person-weighted logarithmic Hamming distance
(MP-WLHD) operator, the multi-person-OWLAD (MP-OWLAD) operator, the multi-person-OWLA
(MP-OWLA) operator, and the multi-person WLA (MP-WLA) operator.
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6 NUMERICAL EXAMPLE

This section presents an illustrative example of a strategic decision-making procedure in innovation
project management that uses a multi-person analysis and the GOWLAD operator. Observe that addi-
tional business-decision-making applications can be assessed, especially in the area of innovation man-
agement, which has been widely described as an uncertain and subjective topic. Thus, it is an interesting
area for expert decision-making procedures.

STEP 1: Assume that a real-estate construction company must select the most adequate project to
develop from their portfolio of six potential projects:

• 𝐴1 Industrial park

• 𝐴2 Small multi-family housing

• 𝐴3 Residential building

• 𝐴4 City villas

• 𝐴5 Commercial building

• 𝐴6 Luxury apartments

To select the project to be developed, the company chooses diverse experts to evaluate 6 key
characteristics:

• 𝑆1 Cost of the project

• 𝑆2 Duration

• 𝑆3 Return on investment (ROI)

• 𝑆4 Expertise

• 𝑆5 Internal communication

• 𝑆6 External communication

A total of three experts are asked for their opinions. The results for each of the projects are shown
in Tables 8–10. All valuations are expressed in terms of numbers between 1 and 100, where 100 is the
maximum valuation.

STEP 2: Representing the objectives of the decision makers, each of the experts constructs the ideal
project to be developed. The results of this process are shown in Table 11.

STEP 3: The weighting vector that represents the importance of each expert in the analysis is 𝑉 =
(0.5, 0.25, 0.25). With this information, we use the weighted average to aggregate the infor-
mation into a collective matrix. The results are shown in Table 12.

T A B L E 8 Characteristics of the project: valuations from expert 1

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔

𝐴1 88 56 59 95 90 64

𝐴2 68 88 69 96 97 96

𝐴3 95 62 85 99 82 79

𝐴4 79 62 100 72 67 79

𝐴5 86 82 100 96 72 58

𝐴6 60 93 53 59 87 73
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T A B L E 9 Characteristics of the project: valuations from expert 2

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔

𝐴1 79 88 76 83 61 85

𝐴2 63 61 86 68 76 74

𝐴3 77 86 69 86 71 88

𝐴4 74 76 66 89 65 62

𝐴5 61 65 65 84 78 80

𝐴6 86 73 61 81 85 68

T A B L E 10 Characteristics of the project: valuations from expert 3

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔

𝐴1 75 54 75 59 39 35

𝐴2 33 35 50 92 96 56

𝐴3 93 63 64 71 38 48

𝐴4 48 42 70 70 55 77

𝐴5 61 74 94 61 49 88

𝐴6 77 90 86 78 35 39

T A B L E 11 Ideal investment

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔

𝐸1 70 80 100 100 60 80

𝐸2 90 80 100 90 70 90

𝐸3 80 90 100 70 50 80

T A B L E 12 Collective results in the form of individual distances

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔

𝐴1 5 19 32.75 7 10 20.5

𝐴2 19.5 14.5 31.5 2 31.5 2

𝐴3 12.5 14.25 24.25 1.25 8.25 9

𝐴4 7.5 22 16 14.25 3.5 8.25

𝐴5 4 6.75 10.25 5.75 7.75 11.5

𝐴6 6.75 4.75 36.75 20.75 13.5 19.25

STEP 4: We apply some of the GOWLAD operator families, aggregate the collective information and
obtain the final results. Tables 13 and 14 show the results of the aggregations.

STEP 5: To generate a complete picture of the aggregations, we must establish a ranking of the perfor-
mance of each project that is based on the preferences of the decision makers. The ordering
of alternatives is presented in Table 15. The symbol "}" denotes “preferred to”. Moreover, for
each of the selected aggregation operators, a different ranking can be generated. Therefore,
distinct decision-making processes will result from that operation.

The ranking changes depending on the aggregation mechanism of the chosen operator. In our exam-
ple, based on the opinions of three experts, the closest options to an ideal project are 𝐴5 (Commercial
building) and 𝐴3 (Residential building). It is inferred that the company has more experience in
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T A B L E 13 Aggregated results 1

Max Min NLHD WLHD Step (k = 3) WLAD
𝐴1 32.7500 5.0000 2.5519 2.7613 3.4889 15.8196

𝐴2 31.5000 2.0000 2.3218 2.4974 3.4500 12.1508

𝐴3 24.2500 1.2500 2.1502 2.3586 3.1884 10.5759

𝐴4 22.0000 3.5000 2.3164 2.2806 2.7726 9.7830

𝐴5 11.5000 4.0000 1.9771 2.1007 2.3273 8.1718

𝐴6 36.7500 4.7500 2.6108 2.8433 3.6041 17.1724

T A B L E 14 Aggregated results 2

GOWLAD −1 GOWLAD 1 GOWLAD 2 GOWLAD 3 Median Olympic
𝐴1 1.0594 11.8888 3.1291 2.1189 13.7840 12.8499

𝐴2 1.0407 8.3796 2.9116 2.3097 16.8152 11.5528

𝐴3 1.0270 7.6037 2.6840 1.9969 10.6066 10.7240

𝐴4 1.0532 9.4683 2.8235 1.9785 10.8426 10.8984

𝐴5 1.0471 6.7485 2.3457 1.8549 7.2327 7.4516

𝐴6 1.0611 12.2402 3.1545 2.2880 16.1206 13.8125

T A B L E 15 Ranking of the performances of the concepts to be developed

Ranking Ranking
Max 𝐴5}𝐴4}𝐴3}𝐴2}𝐴1}𝐴6 GOWLAD (𝜆 = −1) 𝐴3}𝐴2}𝐴5}𝐴4}𝐴1}𝐴6

Min 𝐴1}𝐴6}𝐴5}𝐴4}𝐴2}𝐴3 GOWLAD (𝜆 = 1) 𝐴5}𝐴3}𝐴2}𝐴4}𝐴1}𝐴6

NLHD 𝐴5}𝐴3}𝐴4}𝐴2}𝐴1}𝐴6 GOWLAD (𝜆 = 2) 𝐴5}𝐴3}𝐴4}𝐴2}𝐴1}𝐴6

WLHD 𝐴5}𝐴4}𝐴3}𝐴2}𝐴1}𝐴6 GOWLAD (𝜆 = 3) 𝐴5}𝐴4}𝐴3}𝐴1}𝐴6}𝐴2

Step (k = 3) 𝐴5}𝐴4}𝐴3}𝐴2}𝐴1}𝐴6 Median 𝐴5}𝐴3}𝐴4}𝐴1}𝐴6}𝐴2

WLAD 𝐴5}𝐴4}𝐴3}𝐴2}𝐴1}𝐴6 Olympic 𝐴5}𝐴3}𝐴4}𝐴2}𝐴1}𝐴6

developing these real-estate constructions. Moreover, it is implied that the innovative characteristics
of the company align in an adequate way with the preferences of the firm.

7 CONCLUSIONS

This paper introduces a new family of OWLAD operators, including the OWLAD operator and the
GOWLAD operator. The foundation of this approach is the optimal deviation model, which is based on
the GOWLA operator. Therefore, it shares the same properties. The main motivation is the extension of
its characteristics to consider a wider range of complex problems. The main advantage of the OWLAD
operators is the introduction of distance measures, specifically the Hamming distance, to consider an
optimal set of preferences and compare them to the options or alternatives that are selected by the
decision makers.

The OWLAD and GOWLAD operators have diverse properties such as commutativity, idempo-
tency, boundedness, monotonicity, non-negativity, and reflexivity. We have studied different classical
measures to characterize the weighting vector including the degree of orness, dispersion, balance, and
divergence measures. Moreover, motivated by the observation that these measures fail to work with
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numbers that are between 0 and 1, we propose additional measures to characterize the aggregation,
including a transformation of the OWA measures into the R-scale. We have also presented four alter-
native formulations of the OWLAD and GOWLAD operators, which can be utilized depending on the
ordering of the arguments to be aggregated.

Several particular cases of the OWLAD operators have been analyzed. First, depending on the con-
formation of the weighting vector, the OWLAD operator can be reduced to the maximum and minimum
distances, the step-OWLAD operator, the NLHD operator, the WLHD operator, the olympic-OWLAD,
the window-OWLAD operator, the median-OWLAD operator, and the centered-OWLAD. Second, by
analyzing the parameter 𝜆, the GOWLAD operator is found to correspond to specific families, includ-
ing the maximum and the minimum, the OWLGAD operator, the OWLHAD operator, the OWLAD
operator, the OWLQAD operator and the OWLCAD operator.

The OWLAD and GOWLAD operators, including their particular cases and families, are designed
to aid GDM processes. Engineering, statistics and economics are some of the scientific areas to which
this new approach could be applied. To exemplify the use of the OWLAD and GOWLAD operators,
we present a multi-person GDM problem in the area of innovation project management. The main
advantage of this method is the utilization of several experts to assess a complex decision-making
procedure that involves objective and subjective factors. Innovation management has been described
as an uncertain series of steps and procedures; this makes the topic interesting and viable to analyze.
The results in the illustrative example represent different combinations of options and alternatives that
depend on the complex attitudinal characteristics of the decision makers among an ideal series of
characteristics and enable the comparison among the possible projects to realize.

Additional research is needed to address the main limitations of this study, which are the multifaceted
properties of the logarithms, which complicate the development of characterization measures for the
weighting vector. In addition, complex decision-making processes such as innovation management
require the development of new and robust techniques that consider uncertain information such as
fuzzy numbers,43 linguistic variables,37 and interval numbers, as well as heavy aggregations of other
complex formulations.
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