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Abstract
Cokriging allows predicting coregionalized variables from sampling information, by considering their spatial joint depen-

dence structure. When secondary covariates are available exhaustively, solving the cokriging equations may become pro-

hibitive, which motivates the use of a moving search neighborhood to select a subset of data, based on their closeness to the

target location and the screen effect approximation. This paper investigates the efficiency of different strategies for designing

a sub-optimal neighborhood wherein the simplification of the cokriging equations is challenging. To do so, five alternatives

(single search, multiple search, strictly collocated search, multi-collocated search and isotopic search) are tested and com-

pared with the reference unique neighborhood, through synthetic examples with different data configurations and spatial joint

correlation models. The results indicate that the multi-collocated and multiple searches bear the highest resemblance to the

reference case under the analyzed spatial structure models, while the single and the isotopic searches, which do not

differentiate the primary and secondary sampling designs, yield the poorest results in terms of cokriging error variance.

Keywords Screening effect � Multi-collocated cokriging � Strictly collocated cokriging � Markov-type models �
Intrinsic correlation � Cokriging neighborhood � Heterotopic sampling

1 Introduction

Cokriging is used in the earth sciences for predicting core-

gionalized variables at locations where no observation is

available. Application fields include mineral resource

assessment (Journel and Huijbregts 1978; Pan et al. 1993;

Gálvez and Emery 2011; Emery 2012; da Silva and Costa

2014; Minnitt and Deutsch 2014; Uygucgil and Konuk 2015;

Cornah and Machaka 2015), petroleum reservoir modeling

(Xu et al. 1992; Hohn 1999; Masihi and Zarei 2010; Schwab

et al. 2011; Cao et al. 2014; Jalalalhosseini et al. 2014),

groundwater hydrology (Ahmed and de Marsily 1987;

D’Agostino et al. 1997, 1998; Kitanidis 1997; Boezio et al.

2006;Dalla Libera et al. 2017;Olea et al. 2018), geochemistry

(Wackernagel 1988; Roberts and McKenna 2009; Tolosana-

Delgado and van den Boogaart 2013; Lark et al. 2014; Paw-

lowsky-Glahn et al. 2015; Fabijańczyk et al. 2016; Fouedjio

2018), soil sciences (Yates and Warrick 1987; Stein et al.

1988), and environmental sciences (Goovaerts 1997; Bohor-

quez et al. 2017; Borkowski and Kwiatkowska-Malina 2017).

Cokriging is of particular importance when the variable

of main interest (hereafter called primary variable) is spar-

sely sampled and is correlated with one or several secondary

variables that are available extensively at the locations

where the primary variable must be predicted (Vargas-

Guzmán and Jim Yeh 1999; Wackernagel 2003). However,

in such a case, applying cokriging may be problematic due

to the computational requirements caused by the large

number of data to process (Emery 2009; Gálvez and Emery

2011; Chilès and Delfiner 2012). This situation motivates

the need to reduce the number of data to be used in the

cokriging system, by considering the data located in a

neighborhood of the target location and dropping out all the

remaining data. In this respect, several strategies have been

proposed to select the neighboring data, such as the strictly
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collocated cokriging approximation (Xu et al. 1992), where

a single data of each secondary variable (the one situated at

the target location) is retained, or the multi-collocated

approximation (Rivoirard 2001), which also incorporates the

secondary data that are collocated with the primary data.

The abovementioned strategies are based on the concept of

screening effect, according to which the information of the

selected neighboring data screens out the influence of the

other data, which would have a small (ideally, a zero) weight

in the full cokriging implementation (Goovaerts 1997; Chilès

and Delfiner 2012). Rivoirard (2001, 2004) and Subra-

manyamand Pandalai (2004, 2008) showed that the screening

of either primary or secondary data actually depends on the

multivariate data configuration and also on the spatial cor-

relation structure of the coregionalized variables. A situation

of interest arises when the cross-covariance functions

between the secondary and primary variables are proportional

to the direct covariance (auto-covariance) of the primary

variable, in which case the secondary data are totally screened

out by the collocated primary data (Rivoirard 2004; Subra-

manyam and Pandalai 2004). However, other authors claim

that, in such a case, only the secondary data located at the

target location is worthwhile being selected (strictly collo-

cated cokriging), a practice that is still widespread in appli-

cation fields related to natural resources assessment.

The goal of this paper is twofold. First, it is of interest to

show how the spatial correlation structure of the coregional-

ized variables relates to the screening effect property. Second,

it aims at providing guidelines to define a suitable search

strategy (design of a moving neighborhood) that yields opti-

mal or sub-optimal cokriging results, hence minimizing the

loss of information caused by the discarded data when cok-

riging in a unique neighborhood (keeping all the primary and

secondary data) is impractical. The outline is as follows:

Sect. 2 recalls the main concepts about cokriging, data

selection and coregionalization modeling that will be used in

the paper; Sect. 3 investigates, through a synthetic example,

the relationships between screening effect, strictly collocated

and multi-collocated cokriging under specific coregionaliza-

tion models, while Sect. 4 addresses the problem of compar-

ing five neighborhood designs (in terms of prediction

accuracy) under different coregionalization models, to deter-

mine which design yields the results closest to, or farthest

from, that of the unique neighborhood. Conclusions follow in

Sect. 5.

2 Recall on geostatistical multivariate
modeling and prediction

2.1 Cokriging

2.1.1 Conventional simple cokriging

Simple cokriging is a generalization of simple kriging, i.e.,

kriging with a known mean value, and aims to predict pri-

mary and secondary variables by taking into account their

joint spatial correlation structure (Journel and Huijbregts

1978; Goovaerts 1997; Wackernagel 2003; Chilès and

Delfiner 2012). Provided that these variables are represented

by second-order stationary random fields, the cokriging

predictor and the variance of the prediction error (known as

the simple cokriging variance) for the primary variable

(hereafter denoted with index 1) given one secondary vari-

able (denoted with index 2) are defined as (Myers 1982):

Z�
SCK x0ð Þ ¼ m1 þ

Xn1

a¼1

x1
a Z1 x1;a

� �
� m1

� �

þ
Xn2

a¼1

x2
a Z2 x2;a

� �
� m2

� �
ð1Þ

r2SCK x0ð Þ ¼ C11 x0 � x0ð Þ �
Xn1

a¼1

x1
aC11 x1;a � x0

� �

�
Xn2

a¼1

x2
aC21 x2;a � x0

� �
ð2Þ

where xi
a (i = 1, 2) is the weight assigned to the data

Zi xi;a
� �

of the i-th variable Zi at the a-th data location xi;a

(a = 1,… ni) of this variable, x0 is the location targeted for

prediction; mi is the mean value of the i-th variable Zi; Cij

is the direct i ¼ jð Þ or cross i 6¼ jð Þ covariance between

variables Zi and Zj (i, j = 1, 2). The previous equations can

be generalized to the case with more than one secondary

variable, at the price of heavier notation, which will not be

considered in this work. Note that the numbers of data are

not necessarily the same for the primary and secondary

variables, a case known as a heterotopic sampling design

(Wackernagel 2003) in opposition to the isotopic (equally-

sampled) case. The weights xi
a required in Eqs. (1) and (2)

are obtained by solving the following system of linear

equations:

Pn1
a¼1

x1
aC11 x1;b � x1;a

� �
þ

Pn2
a¼1

x2
aC12 x1;b � x2;a

� �
¼ C11 x1;b � x0

� �
; b ¼ 1; . . .n1

Pn1
a¼1

x1
aC21 x2;b � x1;a

� �
þ

Pn2
a¼1

x2
aC22 x2;b � x2;a

� �
¼ C21 x2;b � x0

� �
; b ¼ 1; . . .n2

8
>><

>>:
ð3Þ
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Different neighborhood strategies can be used to reduce

the number of data for cokriging. For instance, a single

search strategy selects the data locations that are geo-

graphically the closest to the target location x0, irrespective

of which variables are known at those locations, whereas a

multiple search strategy consists in selecting the closest

data of each (primary or secondary) variable.

2.1.2 Strictly collocated cokriging

Strictly collocated cokriging only retains the secondary

data located at x0 along with the primary data

Z1 x1;a
� �

; a ¼ 1; . . .n1. This secondary data is assumed to

screen out the influence of the secondary data that are

located farther away (Journel 1999). In the case of a single

secondary variable (Z2), the predictor and the error vari-

ance are built up with (Xu et al. 1992; Almeida and Journel

1994):

Z�
SCCK x0ð Þ ¼ m1 þ

Xn1

a¼1

x1
a Z1 x1;a

� �
� m1

� �

þ x2
0 Z2 x0ð Þ � m2ð Þ ð4Þ

r2SCCK x0ð Þ ¼ C11 x0 � x0ð Þ �
Xn1

a¼1

x1
aC11 x1;a � x0

� �

� x2
0C21 x0 � x0ð Þ ð5Þ

and the strictly collocated cokriging system for such a

neighborhood is:

Pn1
a¼1

x1
aC11 x1;b � x1;a

� �
þ x2

0C12 x1;b � x0
� �

¼ C11 x1;b � x0
� �

; b ¼ 1; . . .n1

Pn1
a¼1

x1
aC21 x0 � x1;a

� �
þ x2

0C22 x0 � x0ð Þ ¼ C21 x0 � x0ð Þ

8
>><

>>:

ð6Þ

with the same notations as in the previous subsection,

except for the index 0 used to numerate the location

(x2;0 ¼ x0) and the weight (x2
0) assigned to the collocated

secondary data Z2 x0ð Þ.

2.1.3 Multi-collocated cokriging

In multi-collocated cokriging, the retained secondary data

are the ones available at the target location x0 and at the

locations of the primary data x1;a; a ¼ 1; . . .n1. In the case

of a single secondary variable, the cokriging predictor and

the error variance are given by (Rivoirard 2001; Wacker-

nagel 2003; Chilès and Delfiner 2012):

Z�
MCCK x0ð Þ ¼ m1 þ

Xn1

a¼1

x1
a Z1 x1;a

� �
� m1

� �

þ
Xn1

a¼0

x2
a Z2 x2;a

� �
� m2

� �
ð7Þ

r2MCCK x0ð Þ ¼ C11 x0 � x0ð Þ �
Xn1

a¼1

x1
aC11 x1;a � x0

� �

�
Xn1

a¼0

x2
aC21 x2;a � x0

� �
ð8Þ

with x2;a ¼ x1;a for a ¼ 1; . . .n1 and x2;0 ¼ x0. The cok-

riging weights are obtained by solving the following

equations:

Pn1
a¼1

x1
aC11 x1;b � x1;a

� �
þ

Pn1
a¼0

x2
aC12 x1;b � x2;a

� �
¼ C11 x1;b � x0

� �
; b ¼ 1; . . .n1

Pn1
a¼1

x1
aC21 x2;b � x1;a

� �
þ

Pn1
a¼0

x2
aC22 x2;b � x2;a

� �
¼ C21 x2;b � x0

� �
; b ¼ 0; . . .n1

8
>><

>>:

ð9Þ

2.2 Coregionalization modeling

2.2.1 Linear model of coregionalization (LMC)

Solving the cokriging system requires the knowledge of the

direct and cross-covariances between the primary and

secondary variables. In this respect, the linear model of

coregionalization is widely used to fit such covariances,

owing to its mathematical simplicity and tractability

(Journel and Huijbregts 1978; Goovaerts 1997; Wacker-

nagel 2003). In this model, the direct and cross-covariances

Cij hð Þ (i; j ¼ 1; 2) are defined as weighted sums of L basic

covariances, also called basic nested structures:

Cij hð Þ ¼
XL

l¼1

blijcl hð Þ ð10Þ

where, for each structure (l ¼ 1; . . .L), blij

� �

i;j¼1;2
is a 2� 2

real-valued, symmetric, positive semi-definite matrix

(coregionalization matrix) and cl hð Þ is a permissible sta-

tionary covariance model (basic nested structure). In

practice, such a model can be fitted to a set of experimental

direct and cross-covariances by means of semi-automated

algorithms (Goulard and Voltz 1992; Emery 2010).

2.2.2 Markov-type models

Other models for describing the joint spatial correlation

structure of coregionalized variables are the Markov-type

models, denoted as MM1 and MM2 in the literature. MM1

needs to model the primary covariance function C11 hð Þ; the
cross-covariance functions C12 hð Þ and C21 hð Þ are then
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inferred by the following approximation (Almeida and

Journel 1994):

C12 hð Þ ¼ C21 hð Þ ffi C12 0ð Þ
C11 0ð ÞC11 hð Þ; ð11Þ

where C12 0ð Þ is the covariance between primary and sec-

ondary collocated data, while C11 0ð Þ is the variance of the

primary data. The resulting cross-covariances (Eq. 11) are

proportional to the primary direct covariance C11 hð Þ and

share its characteristics (shape, correlation range, relative

nugget effect).

If the cross-covariances C12 hð Þ and C21 hð Þ share the

characteristics of the secondary covariance C22 hð Þ, one

may use the MM2 model instead (Journel 1999):

C12 hð Þ ¼ C21 hð Þ ffi C12 0ð Þ
C22 0ð ÞC22 hð Þ; ð12Þ

so that the cross-covariances are now proportional to the

secondary direct covariance.

2.2.3 Intrinsic correlation model

The intrinsic correlation model is the simplest model, as it

assumes that all the direct and cross-covariances are pro-

portional to the same spatial correlation function (Wack-

ernagel 2003):

Cij hð Þ ¼ bijc hð Þ ð13Þ

where bij
� �

i;j¼1;2
is a 2� 2 symmetric, positive semi-defi-

nite matrix (coregionalization matrix) and c hð Þ is a per-

missible covariance model. This is a particular case of both

MM1 and MM2 models, and also of the linear model of

coregionalization (with L = 1 basic covariance).

3 Investigating the screening effect
in strictly and multi-collocated cokriging

Several authors argue that, under the assumption of a

Markov-type model (Journel 1999; Babak and Deutsch

2009) or an intrinsic correlation model (Rivoirard 2001;

Wackernagel 2003), the collocated secondary data totally

screen out the influence of any other secondary data.

In particular, there is a wide belief that it is enough, for

the prediction of a primary variable, to retain the secondary

data situated at the target location and that the remaining

secondary data do not add substantial knowledge. In other

words, strictly collocated cokriging would be equivalent to

full cokriging. One consequence of this result is that the

error variance should not be affected by adding more

secondary data.

To demonstrate that this belief is erroneous, we will

show a few examples in a two-dimensional Euclidean

space, in which non-collocated secondary data receive non-

zero weights in the cokriging predictor. The following

cases are considered.

Case I (strictly collocated cokriging) Primary data are

available at the four vertices of a square x1; x2; x3; x4f g
and a single secondary data is available at the target

location x0 that coincides with the center of the square

(Fig. 1a).

Case II (multi-collocated cokriging) Primary data are

available at locations x1; x2; x3; x4f g and secondary data

are available at locations x0; x1; x2; x3; x4f g (Fig. 1b).

Case III (full cokriging) Primary data are available at

locations x1; x2; x3; x4f g and secondary data are available

at the target location x0, at the primary data locations

x1; x2; x3; x4f g and at other four locations in the square

x5; x6; x7; x8f g (Fig. 1c).

In each case, three coregionalization models are tested,

in which the direct and cross-covariances are isotropic

exponential (Exp) structures:

• MM1:

C11 hð Þ ¼ 1:0Exp14 hð Þ;C12 hð Þ ¼ 0:7Exp14 hð Þ;C22 hð Þ
¼ 1:0Exp10 hð Þ

• MM2:

C11 hð Þ ¼ 1:0Exp10 hð Þ;C12 hð Þ ¼ 0:7Exp14 hð Þ;C22 hð Þ
¼ 1:0Exp14 hð Þ

• Intrinsic correlation:

C11 hð Þ ¼ C22 hð Þ ¼ 1:0Exp10 hð Þ;C12 hð Þ ¼ 0:7Exp10 hð Þ:

The coefficients preceding each exponential structure

indicate the sill of this structure, while the values in sub-

script indicate the practical ranges of correlation (distances

beyond which the correlation is less than 5% of the sill

value). All these models can be seen as particular cases of

the parsimonious bivariate Matérn model proposed by

Gneiting et al. (2010); the conditions of mathematical

validity are fulfilled in each case.

For each case of data configuration and each coregion-

alization model, cokriging is performed to predict the pri-

mary variable at the center of the square ðx0Þ. Table 1

shows the resulting weights assigned to the primary and

secondary data, as well as the error variance.

As can be seen in the table, one observes a reduction of

the error variance when more secondary information is

appended (i.e., from case I to case II, and from case II to

case III), which indicates equal or better precision of the
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predictor when more data is available (Emery 2009). In the

full cokriging configuration (case III), all the secondary

data, at either the locations in common with the primary

data or the extra locations, receive non-zero weights under

the MM1 spatial structure model, which indicates that no

screening effect occurs with this MM1 model. In contrast,

Fig. 1 Three different configurations for primary and secondary data locations (primary data: red crosses, secondary data: blue circles)

Table 1 Simple cokriging weights assigned to primary and secondary data, for each data configuration, coregionalization model and cokriging

type

Locations Coordinates Data MM1 MM2 Intrinsic correlation

East North Case I Case II Case III Case I Case II Case III Case I Case II Case III

x1 - 5 - 5 Primary 0.0943 0.1055 0.0946 0.0120 0.0251 0.0251 0.0563 0.1076 0.1076

x2 5 - 5 Primary 0.0943 0.1055 0.0946 0.0120 0.0251 0.0251 0.0563 0.1076 0.1076

x3 5 5 Primary 0.0943 0.1055 0.0946 0.0120 0.0251 0.0251 0.0563 0.1076 0.1076

x4 - 5 5 Primary 0.0943 0.1055 0.0946 0.0120 0.0251 0.0251 0.0563 0.1076 0.1076

x1 - 5 - 5 Secondary - 0.0161 - 0.0302 - 0.0176 - 0.0176 - 0.0753 - 0.0753

x2 5 - 5 Secondary - 0.0161 - 0.0302 - 0.0176 - 0.0176 - 0.0753 - 0.0753

x3 5 5 Secondary - 0.0161 - 0.0302 - 0.0176 - 0.0176 - 0.0753 - 0.0753

x4 - 5 5 Secondary - 0.0161 - 0.0302 - 0.0176 - 0.0176 - 0.0753 - 0.0753

x5 - 3 - 3 Secondary 0.0481 0.0000 0.0000

x6 3 - 3 Secondary 0.0481 0.0000 0.0000

x7 3 3 Secondary 0.0481 0.0000 0.0000

x8 - 3 3 Secondary 0.0481 0.0000 0.0000

x0 0 0 Secondary 0.6420 0.6428 0.6024 0.6926 0.7000 0.7000 0.6811 0.7000 0.7000

Error variance 0.4677 0.4672 0.4595 0.5094 0.5088 0.5088 0.4962 0.4837 0.4837
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under the MM2 model and intrinsic correlation model (a

particular case of MM2), the secondary data at locations

that do not coincide with the target location or with the

primary data locations receive a zero weight, which cor-

roborates that, in these spatial correlation models, full

cokriging (case III) reduces to multi-collocated cokriging

(case II), but never to strictly collocated cokriging (case I).

This result agrees with the findings of Rivoirard (2001)

and goes against the argument of Journel (1999) according

to which the collocated secondary data screen out the

influence of all other secondary data when predicting a

primary variable under a MM2 model. The proof given by

Journel is actually valid in the absence of any primary data,

but is erroneous when primary data are introduced. Several

authors (Almeida and Journel 1994; Goovaerts 1997;

Journel 1999; Babak and Deutsch 2009) have, mistakenly,

suggested the presence of a screening effect and/or the

equivalence between full cokriging and strictly collocated

cokriging under a Markov-type (either MM1 or MM2)

model.

To prove that, under the MM1, MM2 or intrinsic cor-

relation model, strictly collocated cokriging cannot be

equivalent to full cokriging (unless the specific cases of no

spatial auto-correlation for the primary variable or no

spatial cross-correlation between primary and secondary

variables), let us consider the multi-collocated configura-

tion (case II) and the intrinsic correlation model, which is a

particular case of Markov-type model (both MM1 and

MM2). When removing the collocated secondary data

Z2 x0ð Þ, it is known (Emery 2009) that the weight of any

retained data increases by the weight of the removed data

(x2
0) times the cokriging weight assigned to the retained

data when predicting the removed data. On the other hand,

under the intrinsic correlation model and in an isotopic

configuration (this situation holds when Z2 x0ð Þ is

removed), cokriging reduces to kriging each variable sep-

arately (Wackernagel 2003; Subramanyam and Pandalai

2004). Accordingly, the weights of the primary data remain

unchanged (the removal of Z2 x0ð Þ has no effect on the

primary weights), while the weight of the secondary data

Z2 x2;a
� �

(a ¼ 1; . . .; 4) increases by x2
0x

1
a and becomes

equal to zero (secondary data receive zero weights under a

isotopic configuration and intrinsic correlation model), that

is: x2
a þ x2

0x
1
a ¼ 0 for a ¼ 1; . . .; 4. Therefore, unless the

primary data receive zero weights (x1
1 ¼ x1

2 ¼ x1
3 ¼ x1

4),

which happens with a pure nugget primary direct covari-

ance model, or the collocated secondary data Z2 x0ð Þ
receives a zero weight (x2

0 ¼ 0), which happens when the

cross-covariance between primary and secondary variables

is identically zero, the secondary data weight x2
a differs

from zero. To sum up, in the intrinsic correlation model

(therefore, also in the MM1 and MM2 models), the sec-

ondary data collocated with the primary data are likely to

receive a non-zero weight and full cokriging is not the

same as strictly collocated cokriging.

4 Investigating the efficiency of cokriging
search strategies

4.1 Definition of search strategies
and coregionalization models

In this section, it is of interest to compare different

strategies for choosing the cokriging neighborhood, i.e., for

selecting the relevant data for cokriging, and to determine

to what extent multi-collocated cokriging bears a resem-

blance to full cokriging with a unique neighborhood. To do

so, a two-dimensional regular grid with 60 9 60 nodes is

created and 200 out of the 3600 nodes are randomly

selected as sampling locations. The primary variable is

allocated to the 200 sampling locations, whereas the sec-

ondary variable is exhaustively allocated to all the 3600

grid nodes (Fig. 2a). Simple cokriging is then applied to

derive the variances of the prediction errors for the primary

variable at the 3400 grid nodes where this variable has not

been sampled. These variances are used as a criterion for

comparing the following neighborhood strategies:

1. Single search (SS) This strategy searches for the data at

the 20 closest locations, irrespective of whether the

primary and/or secondary variables are known at these

locations.

2. Multiple search (MS) This strategy is implemented into

two parts: the first part searches for the 20 closest data

of the primary variable and the second part searches

for the 20 closest data of the secondary variable,

independently of the first part.

3. Isotopic search (IS) The 20 closest sampling locations

that convey both the primary and secondary variables

are selected.

4. Strictly collocated search (SCS) The primary data at

the 20 closest sampling locations are selected, together

with the secondary data at the target location.

5. Multi-collocated search (MCS) The 20 closest sam-

pling locations that convey both the primary and

secondary variables are selected, together with the

secondary data at the target location.

6. Unique search (US) All the available primary (200)

and secondary (3600) data are selected.
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Six spatial structure models, involving isotropic expo-

nential structures (Exp) and nugget effects (Nug), are

considered:

• MM1-A:

C11 hð Þ ¼ Exp56 hð Þ;C12 hð Þ ¼ 0:7Exp56 hð Þ;C22 hð Þ
¼ Exp40 hð Þ

• MM1-B:

C11 hð Þ ¼ 0:3Nug hð Þ þ Exp56 hð Þ;C12 hð Þ ¼ 0:21Nug hð Þ
þ 0:7Exp56 hð Þ;C22 hð Þ ¼ 0:3nug hð Þ þ Exp40 hð Þ

• MM2-A:

C11 hð Þ ¼ Exp40 hð Þ;C12 hð Þ ¼ 0:7Exp56 hð Þ;C22 hð Þ
¼ Exp56 hð Þ

• MM2-B:

C11 hð Þ ¼ 0:3nug hð Þ þ Exp40 hð Þ;C12 hð Þ ¼ 0:21nug hð Þ
þ 0:7Exp56 hð Þ;C22 hð Þ ¼ 0:3nug hð Þ þ Exp56 hð Þ

• Complex case-A:

C11 hð Þ ¼ 0:3nug hð Þ þ Exp56 hð Þ;C12 hð Þ
¼ 0:7Exp56 hð Þ;C22 hð Þ ¼ Exp40 hð Þ

• Complex case-B:

C11 hð Þ ¼ Exp56 hð Þ;C12 hð Þ ¼ 0:7Exp40 hð Þ;C22 hð Þ
¼ 0:3nug hð Þ þ Exp40 hð Þ:

In the Markov-type models, the cross-covariance is

proportional to the direct covariance of the primary vari-

able (MM1-A and MM1-B) or of the secondary variable

(MM2-A and MM2-B). This is no longer the case in the

last two models (complex cases), where the cross-covari-

ance is continuous (no nugget effect), while the direct

covariances have a different correlation range or the same

range and a nugget effect.

4.2 Results

Figure 3 shows the distributions (through box plots) of the

variances of the prediction errors over the 3400 target grid

nodes for the aforementioned six models and six search

Fig. 2 Four sampling designs

with 200 (a, b), 100 (c) and 400

(d) primary data locations
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strategies. The unique search neighborhood can be treated

as the reference against which to compare the results,

insofar as it corresponds to the best possible prediction (no

data discarded). In all the cases, the multi-collocated search

yields almost the same variance distribution as the refer-

ence distribution, while the isotopic and single searches

provide the poorest results (highest variances), followed by

the strictly collocated and the multiple searches, the latter

being the one that delivers results closest to the multi-

collocated search. Accordingly, in this example, the search

strategies can be ordered from the best to the worst, based

upon their closeness to the reference (unique neighbor-

hood), as follows: multi-collocated, multiple, strictly col-

located, isotopic and single searches. In order to assess the

significance of the gain or loss in the error variance,

Table 2 gives the average variance over the 3400 non-

sampled grid nodes for the different coregionalization

models and search strategies under consideration. It is seen

that, with respect to the unique search (US), the average

variance increases between 36.00 and 226.59% with the

single search (SS) (i.e., the average variance obtained with

SS is between 136.00 and 326.59% times the average

variance obtained with US), between 2.05 and 31.32% with

the multiple search (MS), between 11.00 and 273.68% with

the isotopic search (IS), between 5.60 and 161.57% with

the strictly collocated search (SCS), and between 0.08 and

19.74% with the multi-collocated search (MCS).

Fig. 3 Box plots representing

the distribution of the simple

cokriging error variances at grid

nodes with no primary data, for

different coregionalization

models and search strategies

(primary data from the sampling

design in Fig. 2a)
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4.3 Sensitization

To investigate whether or not the previous ordering is

sensitive to the chosen cokriging type and sampling design,

the same experiment is repeated with the following

modifications:

1. choosing another design of 200 randomly selected

sampling locations (Fig. 2b);

2. choosing a design of 100 randomly selected sampling

locations (Fig. 2c);

3. choosing a design of 400 randomly selected sampling

locations (Fig. 2d);

4. keeping the original design of 200 sampling locations

(Fig. 2a) and substituting ordinary cokriging (cokrig-

ing with unknown mean values) for simple cokriging.

In all the cases, the ordering of the search strategies

from best to worst remain unchanged: multi-collocated,

multiple, strictly collocated, isotopic and single searches

(Figs. 4, 5, 6, 7). Globally, the error variance increases

when fewer data are available (case of 100 sampling

locations) and decreases when more data are available

Table 2 Average error variance

over 3400 target grid nodes, for

each coregionalization model

and search strategy (200

sampling locations, simple

cokriging)

Coregionalization

model

Search

strategy

Average error variance Percentage of average error

variance obtained with unique search

MM1-A SS 0.2147 246.54

MS 0.0941 108.05

IS 0.1351 155.22

SCS 0.1180 135.51

MCS 0.0873 100.23

US 0.0871 100.00

MM1-B SS 0.4291 153.35

MS 0.3002 107.28

IS 0.5030 179.74

SCS 0.3676 131.37

MCS 0.2817 100.66

US 0.2798 100.00

MM2-A SS 0.1949 326.59

MS 0.0784 131.32

IS 0.1872 313.76

SCS 0.1561 261.57

MCS 0.0600 100.55

US 0.0597 100.00

MM2-B SS 0.2899 193.24

MS 0.1936 129.03

IS 0.5606 373.68

SCS 0.3798 253.20

MCS 0.1508 100.54

US 0.1500 100.00

Complex case-A SS 0.6036 136.00

MS 0.4529 102.05

IS 0.4927 111.00

SCS 0.4687 105.60

MCS 0.4442 100.08

US 0.4439 100.00

Complex case-B SS 0.2341 275.68

MS 0.1020 120.10

IS 0.1351 159.06

SCS 0.1153 135.74

MCS 0.1017 119.74

US 0.0849 100.00
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(case of 400 sampling locations). However, in both cases,

the orders of magnitude of the increase with respect to the

unique search (US) (Tables 3, 4) are comparable to the

case of 200 sampling locations (Table 2). The single search

(SS) provides the distribution of error variance with the

highest spread, including an unbounded distribution in the

case of ordinary cokriging. This is explained because

ordinary cokriging fails when no primary data is selected in

the cokriging neighborhood, which frequently happens

with SS (formally, the cokriging variance is infinite in such

a situation).

4.4 Discussion

The previous subsections tested six search strategies under

six coregionalization models, four sampling designs and

two cokriging types (simple and ordinary), providing some

generality to the classification of the search strategies in

terms of efficiency (how much decreases or increases the

variance of the cokriging error by selecting one or another

search strategy).

When using an inappropriate search strategy such as SS

or IS, the loss of precision is considerable in some con-

figurations of the target and sampling locations, yielding an

error variance that can be twice or three times greater than

Fig. 4 Box plots representing

the distribution of the simple

cokriging error variances at grid

nodes with no primary data, for

different coregionalization

models and search strategies

(primary data from the sampling

design in Fig. 2b)
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the error variance obtained with optimal or sub-optimal

search strategies such as MCS or MS. It is noteworthy that

MCS consistently yields a better precision (lower error

variance) than MS, although the secondary data selected

with MS are closer to the target location than the secondary

data selected with MCS. This suggests the importance of

selecting secondary data located at (or around) the same

positions as the primary data, in order to better ‘‘calibrate’’

the secondary information to the primary one.

In practice, in the presence of an exhaustively known

secondary variable, the implementation of MCS takes as

much computational time as that of IS (except for the target

location, the selected secondary data are located at the

same points as the selected primary data), while MS is

more demanding, insofar as two searches are needed, one

for the primary data (similar to MCS or IS) and the other

one for the secondary data (similar to SS). However, MS is

still applicable when the secondary variable is not

exhaustively known and therefore turns out to be particu-

larly interesting in cases of heterotopic sampling designs

with an under-sampled primary variable.

Given the current computational capacities, the extra

time needed in using an improved search strategy (MS or

MCS) is generally not a bottleneck in the application of

cokriging. In contrast, it is often critical to obtain the

lowest possible error variance. Indeed, due to the

Fig. 5 Box plots representing

the distribution of the simple

cokriging error variances at grid

nodes with no primary data, for

different coregionalization

models and search strategies

(primary data from the sampling

design in Fig. 2c)
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orthogonality relationship between the simple cokriging

predictor and the simple cokriging error (Chilès and Del-

finer 2012), the variance of the primary variable is the sum

of the variance of the predictor and the variance of the

prediction error. Accordingly, in addition to an increase of

the predictor precision, a reduction of the error variance

implies an increase in the variance of the predictor, i.e., a

decrease of the smoothing effect of cokriging. Further-

more, due to error propagations, cokriging with a moving

neighborhood can be problematic when it is used in itera-

tive simulation algorithms, such as sequential Gaussian

cosimulation (Emery and Peláez 2011) or Gibbs sampling

(Emery et al. 2014), reason for which the design of an

efficient (optimal or sub-optimal) search strategy is

essential.

As a last remark, the effect of parameter misspecifica-

tion has been ignored in all the previous experiments. In

practice, estimated mean values for the primary and sec-

ondary variables and an estimated coregionalization model,

naively assumed known without error, are used in cokrig-

ing. A misspecification of the mean values can strongly

affect the cokriging predictions, but it has no impact on the

Fig. 6 Box plots representing

the distribution of the simple

cokriging error variances at grid

nodes with no primary data, for

different coregionalization

models and search strategies

(primary data from the sampling

design in Fig. 2d)
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calculated error variances (Eqs. 1–8), so that the design of

the optimal or sub-optimal search strategy remains

unchanged; to avoid biased predictions, simple cokriging

should be substituted for ordinary cokriging. In contrast, a

misspecification of the coregionalization model can have a

significant impact on the calculated error variances. The

reader is referred to Chilès and Delfiner (2012) and refer-

ences therein for a discussion on some alternatives to tra-

ditional cokriging in the presence of uncertainty in the

covariance parameters. Irrespective of the chosen alterna-

tive, the use of a moving neighborhood for local predic-

tions yields an additional loss of precision (increase of the

error variance) with respect to the unique search

implementation, so that the results presented in the previ-

ous subsections are still of interest.

5 Conclusions

Cokriging is a widely used technique in spatial prediction

problems. Its implementation becomes prohibitive when

too many data are available, but the screening effect

approximation may allow one to reduce the number of

primary and/or secondary data without much loss of pre-

cision in the prediction. The best selection depends not

only on the geometrical configuration of the data, but also

Fig. 7 Box plots representing

the distribution of the ordinary

cokriging error variances at grid

nodes with no primary data, for

different coregionalization

models and search strategies

(primary data from the sampling

design in Fig. 2a)
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on the spatial correlation structure of the primary and

secondary variables.

Through the analyzed examples, it appears that multi-

collocated cokriging coincides with full cokriging in the

case of a Markov-type (MM2) model and does not deviate

too much from it under the other spatial correlation models.

An alternative, although providing slightly less precise

predictions, is cokriging with a multiple search strategy,

where the closest data of each variable are selected for the

prediction. The good performances of these two strategies

(multi-collocated and multiple) indicate that it is good

practice to (1) select the primary data closest to the target

location, (2) select the secondary data closest to the target

location, and (3) select the secondary data located at (or

around) the locations of the selected primary data. A

strategy fulfilling these three criteria allows incorporating

Table 3 Average error variance

over 3500 target grid nodes, for

each coregionalization model

and search strategy (100

sampling locations, simple

cokriging)

Coregionalization

model

Search strategy Average error variance Percentage of average error variance

obtained with unique search

MM1-A SS 0.3270 265.43

MS 0.1372 111.34

IS 0.1923 156.11

SCS 0.1590 129.07

MCS 0.1235 100.22

US 0.1232 100.00

MM1-B SS 0.5243 164.31

MS 0.3481 109.07

IS 0.5675 177.84

SCS 0.4003 125.45

MCS 0.3217 100.81

US 0.3191 100.00

MM2-A SS 0.3129 364.82

MS 0.1280 149.30

IS 0.2638 307.54

SCS 0.2055 239.61

MCS 0.0862 100.48

US 0.0858 100.00

MM2-B SS 0.5149 182.73

MS 0.3543 125.75

IS 0.6424 227.97

SCS 0.4356 154.59

MCS 0.2856 101.35

US 0.2818 100.00

Complex case-A SS 0.6864 141.33

MS 0.4982 102.59

IS 0.5564 114.57

SCS 0.5106 105.13

MCS 0.4862 100.11

US 0.4857 100.00

Complex case-B SS 0.3557 331.51

MS 0.1398 130.31

IS 0.1921 179.05

SCS 0.1555 144.88

MCS 0.1351 125.94

US 0.1073 100.00

196 Stochastic Environmental Research and Risk Assessment (2019) 33:183–199

123



the most relevant information (according to geographical

distance to the target location), while calibrating the sec-

ondary information to the primary one. In contrast, strictly

collocated cokriging, which omits the secondary data

except at the target location, is significantly poorer, indi-

cating that the discarded secondary data (especially the

ones at the primary data locations) have a strong influence

on the prediction precision. Cokriging based on a single

search or on an isotopic search strategy, which does not

differentiate the primary and secondary sampling designs,

yields the poorest results and should be avoided in case of a

heterotopic sampling design.
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Table 4 Average error variance

over 3200 target grid nodes, for

each coregionalization model

and search strategy (400

sampling locations, simple

cokriging)

Coregionalization

model

Search

strategy

Average error variance Percentage of average error

variance obtained with unique search
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US 0.2532 100.00
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MS 0.0511 116.57

IS 0.1395 317.89

SCS 0.1215 277.03

MCS 0.0443 100.89

US 0.0439 100.00

MM2-B SS 0.3170 137.45

MS 0.2580 111.86
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SCS 0.3690 159.97

MCS 0.2328 100.91

US 0.2307 100.00

Complex case-A SS 0.5130 123.85

MS 0.4203 101.47

IS 0.4504 108.74

SCS 0.4379 105.73

MCS 0.4149 100.15
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Complex case-B SS 0.1290 184.36
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