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Abstract

The induced ordered weighted average is an averaging

aggregation operator that provides a parameterized

family of aggregation operators between the minimum

and the maximum. This paper presents some new

generalizations by using Bonferroni means (BM) form-

ing induced BM. The main advantage of this approach is

the possibility of reordering the results according to

complex ranking processes based on order‐inducing
variables. The work also presents some additional

extensions by using the weighted ordered weighted

average, immediate weights, and hybrid averages. Some

further generalizations with generalized and quasi‐
arithmetic means are also developed to consider a wide

range of particular cases including quadratic and

geometric aggregations. The article also considers the

applicability of the new approach in‐group decision‐
making developing an application in sales forecasting.
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1 | INTRODUCTION

Sales forecasting has become one of the most important issues in strategic management and
planning among the organizations. This occurs because a poor forecast leads to bad decisions in
inventory, profitability, and risk in losing the competitive position of the company.1,2 The main
difficulty with sales forecasting is that the problem is complex, ill‐structured and the
environment where business works presents a lot of uncertainty.3
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A very common technique that is used to forecast sales is the common average. But this
technique main limitation is that it only considers the historical data. In the decision‐making
process, the knowledge, expertise and expectations of the decision‐maker4 is essential, which
can improve the sales forecasting to establish future scenarios where the company will be. One
of the most common aggregation operators is the ordered weighted average (OWA) operator
developed by Yager.5 Aggregation operator allows aggregating different types information and
attitudinal character of decision‐maker that represents the degree of subjectivity and the degree
of uncertainty.6 Since then many applications have been made.7,8

One extension that will be taken into account in the paper to improve the sales forecasting is
the induced OWA (IOWA) operator.9 The main attribute of this operator is that the reordering
step is not based on the value of the arguments, instead they are based on induced values, that
are related to the appreciation of the decision‐maker or special characteristics of the
problem.10,11

Finally, it is important to not only include the traditional average in the formulation because
there is sometimes information that can be included if different functions are used. Among
them, there is the Bonferroni means (BM)12 that are useful because they take into the
formulation the interrelationship between the arguments, in this sense new scenarios can
be seen.

The main objective of this paper is to introduce a new operator that takes into the same
formulation the IOWA operator and the BM. This is important because it will be possible to
generate better results that will not consider only the expectations, knowledge, and attitude of
the decision‐maker but also the interrelationship of the data. This new operator is called
Bonferroni IOWA (BON‐IOWA) operator. Also, some of the particular cases using quasi‐
arithmetic means are presented.

The BON‐IOWA operator is used in a case of sales forecasting for a Mexican enterprise based
on the historical data from 2010 to 2016 and considering the experience of the decision‐maker.
The results obtained are compared with other operators to visualize the different scenarios
when additional information is added to the formulation or not.

The paper is structured as follows: section 2 shows some of the preliminaries and main
definitions that will be used in the rest of the paper. Sections 3, 4, and 5 present the BON‐IOWA
operator, the BON‐IOWA operator with hybrid averages, and the generalized BON‐IOWA
operator respectively. Section 6 shows an application of the BON‐IOWA operator in sales
forecasting, and finally, in Section 7, the conclusions of the paper are presented.

2 | PRELIMINARIES

In this section, we briefly review BM, OWA and IOWA operators and BON‐OWA to develop
new tools based on BM in combination with IOWA operator.

2.1 | Bonferroni means

The BM12 are an averaging aggregation function that allows capturing the interrelationship
between arguments. Recently several authors have used it with OWA operators,13,14 uncertain
data,15 linguistic variables,16,17 intuitionistic information,18,19 hesitant representation,20,21 and
distance measures.22-26 By rearranging the terms,13 it can be formulated in the following way:
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2.2 | OWA and IOWA operators

The OWA operator5 is a method that allows aggregating information with the possibility to
obtain the maximum operator and the minimum operator and providing a parameterized class
of mean‐type of aggregation operators. It can be defined as follows.

Definition 1 An OWA operator of dimension n is a mapping →OWA: R Rn that has an
associated weighing vector W of dimension n with ∈w    [0, 1]j and ∑ w = 1j

n
j=1 ,

such that:

∑OWA a a a w b( , ,…, ) = ,n
j

n

j j1 2
=1

(2)

where bi is the jth largest of the ai.

Based on the OWA operator, great deals of extensions have been developed. One of these
extensions is the IOWA operator, which is proposed by Yager and Filev.9 In this operator,
we shall reorder the arguments by a inducing variable, such that:

Definition 2 An IOWA operator of dimension n is an application →IOWA: R R R×n n

that has a weighting vector associated, W of dimension n where the sum of the weights is
1 and ∈w [0, 1]j , where an induced set of ordering variables are included u( )i such that
the formula is

∑IOWA u a u a u a w b( , , , ,…, , ) = ,n n
j

n

j j1 1 2 2
=1

(3)

where bj is the ai value of the OWA pair u a< , >i i having the jth largest ui .ui is the order‐
inducing variable and ai is the argument variable.

2.3 | Bonferroni OWA

BON‐OWA is an operator proposed by Yager13 which allows aggregating information and
making multiple comparison between input arguments and capturing its interrelationship to
present information. It can be defined as follows:

⎛
⎝
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n
a OWA V− ( , …,   ) = 1 ( ) ,n
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r q
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where ∑
≠

OWA V a( ) = ( )W
i

n j
j

n
j
q1

− 1 =1
i

with V( )i being the vector of all aj except ai and w being an
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n − 1 vector Wi associated with αi whose components wij are the OWA weights. Let W be an

OWA weighing vector of dimension n − 1 with components ∈w [0, 1]i when ∑ w = 1i i . Then,

we can define this aggregation as ∑( )OWA V w a( ) =W
i

j
n

i π j=1
−1

( )k , where aπ j( )k is the largest

element in the tuple V i and w =i n
1
− 1 for all i.

3 | BM WITH IOWA OPERATORS

As previously noted, BON‐OWA aggregates, makes multiple comparison, and captures
interrelationship of the present information. This allows obtaining the maximum and
minimum operators in a comparative and continuous interrelationship of each one of the
arguments. Now, we propose a new operator that also allows us to reorder the information by
using induced variables. This proposition is defined as follows:

Proposition 1 The BON‐IOWA is a mean‐type continuous aggregation operator that can
be defined as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑

BON IOWA u a u a

n
b IOWA V

− ( , ,…,   , )

= 1 ( ) ,

n n

i
i
r

W
i

1 1

r q
1
+

(5)

where bi is the ai value of the BON‐IOWA pair u a< , >i i having the jth largest ui and

∑
≠

IOWA V b( ) = ( )W
i

n j
j

n
j
q1

− 1 =1
i

with V( )i being the vector of all bj except bi and w being an

n − 1 vector Wi associated with αi whose components wij are the OWA weights. Let W be an

OWA weighing vector of dimension n − 1 with components ∈w [0, 1]i when ∑ w = 1i i ,

where the weights are associated according to the largest value of ui and ui is the order‐
inducing variable.

Furthermore, BON‐IOWA has the following properties. Note that the proofs are trivial and thus
omitted. Commutativity‐OWA aggregation: assume f is the BON‐IOWA operator, the
f u a u a f u b u b( , , …,   , ) = ( , , …,   , )i i n n i i n n . Monotonicity: assume f is the BON‐IOWA
operator; if ≥u a u b| , | | , |i i i i for all ii, then ≥f u a u a f u b u b( , , …,   , ) ( , , …,   , )i i n n i i n n .
Bounded: assume f is the BON‐IOWA operator, then ≤ ≤a f u a u a amin{ } ( , , …,   , ) max{ }i i i n n i .
Idempotency: assume f is the BON‐IOWA operator; if u a a| , | =i i for all i,
then f u a u a a( , , …, , ) =i i n n .

In addition, if q = 0, then by (5), then it follows that:
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If r q= 2 and = 0, then (13) reduces to square mean:
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If r q= 1 and = 0, then (13) reduces to average:
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n
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k

n

i
1,0

=1

(8)

If → ∞r q+ and = 0, then (13) reduces to the max operator:
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If →r q0 and = 0, then (13) reduces to geometric mean:
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If r q= = 1,  then BON‐IOWA reduces to the following expression:
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Likewise, it is considered that the different measures have been used in the OWA literature
to characterize the weighting vector.27 In Blanco‐Mesa et al,23 it is mentioned that the weighting
vector can be fixed by a numbers of manners. Thus, the entropy of dispersion, the balance
operator, the divergence of W, and the degree of orness5,27 are defined as follows:

The entropy of dispersion is defined as follows
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For the balance operator, we obtain
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For the divergence of W, we obtain
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For the degree of orness, we obtain
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Now, the following simple example illustrates the proposition:

Example 1 We have assumed that IOWA pair μ a,i i is given by 3, 0.2 ,
6, 0.5 , 1, 0.9 , 5, 0.8 . wi is the weighting vector of the μ a,i i associated with αi
whose components vij. Here we shall let α α α α= 0.4,   = 0.3,   = 0.7, and = 0.51 2 3 4 . The
ordered OWA pair is 6, 0.5 , 5, 0.8 , 3, 0.2 , 1, 0.9 , that is, the ordered list ai is
0.5, 0.8, 0.2, 0.9. We take r q= = 0.5. In addition: V = (0.8 + 0.2 + 0.9)1 ,
V = (0.5 + 0.2 + 0.9)2 , V = (0.5 + 0.8 + 0.9)3 , and V = (0.5 + 0.8 + 0.2)4 . Then,

IOWA V( ) = 0.4 × (0.8 + 0.2 + 0.9) = 0.76,v
1

1

IOWA V( ) = 0.3 × (0.5 + 0.2 + 0.9) = 0.48,v
2

2

IOWA V( ) = 0.7 × (0.5 + 0.8 + 0.9) = 1.54,v
3

3

IOWA V( ) = 0.5 × (0.5 + 0.8 + 0.2) = 0.75,v
4

4

⎜ ⎟
⎛
⎝

⎞
⎠BON IOWA− = 1

4
× ((0.5 × 0.76) + (0.8 × 0.48) + (0.2 × 1.54) + (0.9 × 0.75))

= 0.6608.

0.5

4 | BM WITH INDUCED WEIGHTED OWA OPERATORS
AND HYBRID AVERAGES

Further extension to the BON‐IOWA could be developed following the current developments
on the aggregation operators.28,29 In this sense, in this study, we introduce new approaches that
unify framework between BM, OWAWA operator,30 and immediate weighted (IW) average.31

Hence, we would obtain the BON‐IOWA weighted average (BON‐IOWAWA) operator, the
Bonferroni induced IW OWA (BON‐IIWOWA) operator, and Bonferroni induced hybrid
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weighted average (BON‐IHWA) operator. The main advantage of this approach is that it can
combine classical Bonferroni aggregation, OWAWA, IW, and HWA operators at the same
formulation, which allows considering the attitudinal character characteristic of the decision‐
maker. These new formulations are presented as follows: it is important to observe that the
formulas proposed by Merigó30 are followed.

The OWAWA operator is an aggregation operator proposed by Merigó30 in which the WA
and OWA operators are unified in the same formulation. In this operator, the degree is
considered that each concept has in the analysis. It can be defined as follows:

Definition 3 An OWAWA operator of dimension n is a mapping →OWAWA: R R R×n n

that has an associated weighting vector W, ∑ w = 1j
n

j=1 and ∈w  [0, 1]j such that:

∑OWAWA a a v b( , …, ) = ˆ ,n
j

n

j j1
=1

(16)

where bj is the jth largest of the ai, each argument ai has an associated weight (WA) vi
with ∑ v = 1j

n
j=1 and ∈v [0,1]i , v βw β vˆ = + (1 − )j j j with ∈β [0,1] and vj is the weight

(WA) vi ordered according to bj, that is, according to the jth largest of the ai.

By using this approach, let us extend the BON‐IOWA operator with the OWAWA operators,
forming the BON‐IOWAWA operator.

Proposition 2 A BON‐IOWAWA is a mean‐type continuous aggregation operator that
can be defined as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑

∑

BON IOWAWA u a u a

β
n

a IOWA V β

n
a IWA V

− ( , , …,   , )

= × 1 ( ) + (1 − )

× 1 ( ) ,

n n

i
i
r

W
i

i

n

i
r

V
i

1 1
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r q

1
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where bi is the ai value of the OWA pair u a< , >i i having the jth largest ui and ∈β [0, 1].
Observe that β = 1 forms the BON‐IOWA operator and β = 0 the induced weighted
Bonferroni (BON‐IWA) that is expressed as:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑BON IWA u a u a

n
b IWA V− ( , , …,   , ) = 1 ( ) ,n n

i

n

i
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where bi is the ai value of the WA pair u a< , >i i having the jth largest ui and

∑
≠

v bWA ( ) = ( )v
i

n j
j

n
j
q1

− 1 =1
i

i with V( )i being the vector of all bj except bi and vi being an n − 1

vector Vi associated with λi whose components vij are the IWA weights.
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Now, the following simple example illustrates the proposition:

Example 2 We have assumed that the IOWA pair μ a,i i is given by 3, 0.2 ,
6, 0.5 , 1, 0.9 , 5, 0.8 . wi is the weighting vector of the μ a,i i associated with αi
whose components vij. Here we shall let α α α α= 0.4,   = 0.3,   = 0.7 and = 0.51 2 3 4 . The
ordered OWA pair is 6, 0.5 , 5, 0.8 , 3, 0.2 , 1, 0.9 , that is, the ordered list ai is
0.5, 0.8, 0.2, 0.9. We take r q= = 0.5. In addition: V = (0.8 + 0.2 + 0.9)1 ,
V = (0.5 + 0.2 + 0.9)2 , V = (0.5 + 0.8 + 0.9)3 and V = (0.5 + 0.8 + 0.2)4 . Then

IOWA V( ) = 0.4 × (0.8 + 0.2 + 0.9) = 0.76,v
1

1

IOWA V( ) = 0.3 × (0.5 + 0.2 + 0.9) = 0.48,v
2

2

IOWA V( ) = 0.7 × (0.5 + 0.8 + 0.9) = 1.54,v
3

3

IOWA V( ) = 0.5 × (0.5 + 0.8 + 0.2) = 0.75,v
4

4

⎜

⎟

⎛
⎝

⎞
⎠

BON IOWA− = 1
4

× ((0.5 × 0.76) + (0.8 × 0.48)

+ (0.2 × 1.54) + (0.9 × 0.75))

= 0.6608.

1

Since BON‐IOWA is part of BON‐IOWAWA corresponding to

∑( )b IOWA Vβ × ( )n i i
r

w
i1

i
r q

1
+ , now we develop the other part β(1 − ) ×

∑( )b IWA V( )n i
n

i
r

V
i1

=1 i
r q

1
+ . v = (0.1,  0.2,  0.1, 0.2)i is the weighting vector associated

with IWA and β = 0.3. Then,

IWA V( ) = 0.1 × (0.8 + 0.2 + 0.9) = 0.19,v
1

1

IWA V( ) = 0.2 × (0.5 + 0.2 + 0.9) = 0.32,v
2

2

IWA V( ) = 0.1 × (0.5 + 0.8 + 0.9) = 0.22,v
3

3

IWA V( ) = 0.2 × (0.5 + 0.8 + 0.2) = 0.30,v
4

4
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⎛
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BON IWA− = 1
4

× ((0.5 × 0.19) + (0.8 × 0.32)

+ (0.2 × 0.22) + (0.9 × 0.30))

= 0.4076,

0.5

BON IOWAWA− = 0.3 × 0. 6608 + (1 − 0.3) × 0.4076 = 0.48352.

The immediate weighting (IW)32 is an operator that the extended concept of immediate
probabilities,33-35 which considers the information used in the weighted average. It can be
defined as follows:

Definition 4 An IW operator is a mapping →IW: R Rn of dimension n, which has an
associated weighting vector W with ∑ w = 1j

n
j=1 and ∈w  [0, 1]j , such as:

∑IW a a a v b( ,  , …, ) = ˆ ,n
j

n

j j1 2
=1

(19)

where bj is the jth largest of the ai, each ai has associated a WA vi, vj is the associated WA
of bj, and ∑v w v w vˆ = ( / )j j j j

n
j=1 j .

As we can see, if w n= 1/j for all j, then we get the weighted average and if v n= 1/j for all j,
then the OWA operator. Thus, Merigó and Gil‐Lafuente32 extended this measure using OWA
for getting the IWOWA operator, which is defined as follows:

Definition 5 An IWOWA operator of dimension n is a mapping →IWOWA: R R Rxn n

that has an associated weighted vector W of dimension n ∈w  [0, 1]j and ∑ w = 1j
n

j=1 ,
such that:

∑IWOWA x y x y v b( , , …, , ) = ˆ ,n n
j

n

j j1 1
=1

(20)

where bj is the jth largest of the ai, each ai has associated a WA vi, vj is the associated WA
of bj, and ∑v w v w vˆ = ( / )j j j j

n
j j=1 .

Recently, Blanco and Merigó26 proposed Bonferroni IW ordered weighted ordered distance
(BON‐IWOWAD)

Proposition 3 Bonferroni induced IW (BIIW) is a mean‐type continuous aggregation
operator that can be defined as follows:

⎛
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⎞
⎠
⎟⎟∑BIIW u a u a

n
b IW V( , ,…,   , ) = 1 ( ) ,n n
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(21)
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where bi is the ai value of the BIIW pair u a< , >i i having the jth largest ui and

∑ ∑
≠

IW V v v b( ) = ( ( / ) )w
i

n j
j i

n j j
n

j
j

q1
1 − =1 =1i with V( )i being the vector of all bj except bi, wi being

an n − 1 vector Wi associated with αi whose components wij are the weighting vector and a

weighting vector vi associated with the WA.

Proposition 4 A BON‐IIWOWA is a mean‐type continuous aggregation operator that can
be defined as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑

BON IIWOWA u a u a

n
b IIWOWA V

− ( , , …,   , )

= 1 ( ) ,

n n

k

n

i
r

w
i

1 1

=1
i

r q
1
+

(22)

where bi is the ai value of the BON‐IIWOWA pair u a< , >i i having the jth largest ui and

∑ ∑
≠

OWA V v v bIIW ( ) = ( ( / ) )w
i

n j
j k

n j j
n

j
j

q1
1 − =1 =1i with V( )i being the vector of all bj except bi

and wi being an n − 1 vectorWi associated with αi whose components wij are the BON‐OWA

weights and a weighting vector vi associated with the WA. In this case, if w n= 1/j for all j,

we get the BON‐IW and if v n= 1/j for all j, the BON‐IOWA operator. If one of the sets is

empty, we get the BIIW operator.

Now, the following simple example illustrates the proposition:

Example 3 We have assumed that the OWA pair μ a,i i is given by 3, 0.2 , 6, 0.5 ,
1, 0.9 , 5, 0.8 . v = (0.12,  0.09,  0.1,  0.2)j is the weighting vector associated with
WA and wi is the weighting vector of the argument bi associated with αi whose
component is vij. Here we shall let α α α α= 0.4,   = 0.3,   = 0.7 and = 0.51 2 3 4 . The ordered
OWA pair is 6, 0.5 , 5, 0.8 , 3, 0.2 , 1, 0.9 , that is the ordered list ai is 0.5, 0.8, 0.2, 0.9.
We take r q= = 0.5. In addition: V = (0.8 +1 0.2 + 0.9), V = (0.5 + 0.2 + 0.9)2 ,
V = (0.5 + 0.8 + 0.9)3 , and V =4 (0.5 + 0.8 +0.2). Also: ∑ j

n
=1w v =i j (0.4 × 0.12) +

(0.3 × 0.09) + (0.7 × 0.1)+(0.2 × 0.5) = 0.245. Using this, we get:

IIWOWA V( ) = 0.09 × 0.4
0, 245

× 0.8 + 0.10 × 0.4
0, 245

× 0.2 + 0.20 × 0.4
0, 245

× 0.9 = 0.444,v
1

1

IIWOWA V( ) = 0.12 × 0.3
0, 245

× 0.5 + 0.10 × 0.3
0, 245

× 0.2 + 0.20 × 0.3
0, 245

× 0.9 = 0.318,v
2

2

IIWOWA V( ) = 0.12 × 0.7
0, 245

× 0.5 + 0.09 × 0.7
0, 245

× 0.8 + 0.20 × 0.7
0, 245

×0.9 = 0.891,v
3

3
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IIWOWA V( ) = 0.12 × 0.5
0, 245

× 0.5 + 0.09 × 0.5
0, 245

× 0.8

+ 0.10 × 0.5
0, 245

× 0.2 = 0.310,

v
4

4

⎜

⎟

⎛
⎝

⎞
⎠

BON IIWOWA− = 1
4

× ((0.5 × 0, 444) + (0.8 × 0.318)

+ (0.2 × 0.891) + (0.9 × 0.310))

=0. 4832.

0.5

Another approach to unify the OWA operator with the weighted average is by using the
HWA.36 Recently, Blanco and Merigó26 has proposed Bonferroni hybrid weighted distance
(BON‐HWD). With induced aggregation operators, the HWA operator becomes the IHWA
operator. Hence, the BON‐IOWA operator can be extended with this approach forming the
BON‐IHA operator. Note that the main advantage of this operator is the possibility of using
hybrid averages with BM in a complex environment where the data are reordered with order
inducing variables.

Definition 6 A HWA is a mapping →HWA: R Rn of dimension n, it has an associated
weighting vector W of the dimension n, with ∑ w = 1j

n
j=1 , ∈w  [0, 1]j , such as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑HWA a a w a λ( , …, ) = ( ) ,   > 0,n

j

n

j j
λ

λ

1
=1

1/

(23)

where aj is the the jth largest of the weighted arguments mw ai i and m is a balancing
coefficient which plays a balancing role.

Proposition 5 Bonferroni HWA (BON‐HWA) operator is a mean‐type continuous
aggregation operator that can be defined as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑BON HWA a a

n
a HWA V− ( , …, ) = 1 ( ) ,n

i

n

i
r

w
i

1
=1

i λ

r q
1

1
+

(24)

where ∑
≠

HWA V v m a( ) = ( ( ) )w
i

n j
j

n i j
q λ1

1 − =1
i

i with V( )i being the vector of all aj except ai, wi

being an n − 1 vector Vi associated with αi whose components of the argument ai are
weights, a weighting vector vi associated with the HWA and m is a balancing coefficient
which plays a balancing role.

Proposition 6 BON‐IHWA operator is a mean‐type continuous aggregation operator that
can be defined as follows:
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑BON IHWA a a

n
b HWA V− ( , …, ) = 1 ( ) ,n

i

n

i
r

w
i

1
=1

i λ

r q
1

1
+

(25)

where bi is the ai value of the BON‐IHWA pair u a< , >i i having the jth largest ui and

∑
≠

V v m bIHWA ( ) = ( ( ) )w
i

n j
j

n i j
q λ1

1 − =1
i

i with V( )i being the vector of all bj except bi, wi being

an n − 1 vector Vi associated with αi whose components of the argument ai are weights, a
weighting vector vi associated with the HWA and m is a balancing coefficient which plays a
balancing role.

Note that if the reordering of the order inducing variables is the same than the ordering of
the OWA operator based on a decreasing or increasing perspective, then, the BON‐IHWA
operator becomes the BON‐HWA operator.

To understand the BON‐IHWA numerically, let us present a simple example.

Example 4 We have assumed that OWA pair μ a,i i is given by 3, 0.2 , 6, 0.5 ,
1, 0.9 , 5, 0.8 . v = (0.12,  0.09,  0.1,  0.2)i is the weighting vector associated with
HWA and wi is the weighting vector of the argument bi associated with αi whose
components vij, these values are specified by a value αi. Here we shall
let α α α α= 0.4,   = 0.3,   = 0.7 and = 0.51 2 3 4 .

The ordered OWA pair is 6, 0.5 , 5, 0.8 , 3, 0.2 , 1, 0.9 , that is, the ordered list ai
is 0.5, 0.8, 0.2, 0.9. We take r q= = 0.5 and λ = 1. In addition: V = (0.8; 0.2; 0.9)1 ,
V = (0.5; 0.2; 0.9)2 , V = (0.5; 0.8; 0.9)3 , and V = (0.5; 0.8; 0.2)4 . Using this, we get

VIHWA ( ) = 4 × 0.09 × 0.4 × 0.8 + 4 × 0.10 × 0.4

× 0.2 + 4 × 0.20 × 0.4 × 0.9 = 0.7808,
v

1
1

VIHWA ( ) = 4 × 0.12 × 0.3 × 0.5 + 4 × 0.10 × 0.3

× 0.2 + 4 × 0.20 × 0.3 × 0.9 = 0.3120,
v

2
2

VIHWA ( ) = 4 × 0.12 × 0.7 × 0.5 + 4 × 0.09 × 0.7

× 0.8 + 4 × 0.20 × 0.7 × 0.9 = 0.8736,
v

3
3

VIHWA ( ) = 4 × 0.12 × 0.5 × 0.5 + 4 × 0.09 × 0.5

× 0.8 + 4 × 0.10 × 0.5 × 0.2 = 0.3040,
v

4
4

⎜

⎟

⎛
⎝

⎞
⎠

BON − IHWA

= 1
4

× ((0.5 × 0. 7808) + (0.8 × 0. 3120)

+ (0.2 × 0. 8736) + (0.9 × 0. 3040))

= 0.5216.

0.5
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5 | BM WITH INDUCED GENERALIZED AGGREGATION
OPERATORS

Using generalized and quasi‐arithmetic means can also further extend the BON‐IOWA
operator.37,38 Thus, the Bonferroni induced generalized ordered weighted averaging (BON‐
IGOWA) operator allows presenting particular cases from its general formulation. It is defined
as follows:

The BON‐IGOWA operator is a generalized mean‐type continuous aggregation operator that
can be defined as follows:

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟
∑ ∑

≠

BON IGOWA u a u a
n

b
n

b− ( , , …,   , ) = 1
( )

1
−1 ( ) ,n n

i
i
r λ

j
j i

n

j
q δ

1 1
=1

r q λ1
+

1

(26)

where bi is the ai value of the BON‐IGOWA pair u a< , >i i having the jth largest ui, λ δand are

the parameters such that ∈ ∞ ∞λ (− , ) and ∑
≠

b( ( ) )n j
j i

n
j
q δ1

− 1 =1 can be expressed as IGOWA V( )W
i

where V( )i is the vector of all bj except bi and w being an n − 1 vector Wi associated with αi

whose components wij are the OWA weights. Let W be an OWA weighing vector of dimension

n − 1 with components ∈w [0, 1]i when ∑ w = 1i i , where the weights are associated according

to the largest value of ui, and ui is the order‐inducing variable.
Also, by using quasi‐arithmetic means, we can further extend the BON‐IOWA operator. So,

we obtain the quasi‐arithmetic BON‐IOWA. It is defined as follows:

Definition 7 The quasi‐arithmetic Bonferroni induced ordered weighted
averaging (QBON‐IOWA) operator is a quasi‐arithmetic mean‐type continuous
aggregation operator that can be defined as follows:

TABLE 1 Particular cases of the BON‐IGOWA and QBON‐IOWA operators

Particular cases BON‐IGOWA QBON‐IOWA

BON‐IOWA λ = 1, δ = 1 g b= ( )i
r , h b= ( )j

q

Harmonic BON‐IOWA λ = −1, δ = −1 g b= ( )i
r −1, h b= ( )j

q −1

Quadratic BON‐IOWA λ = 2, δ = 2 g b= ( )i
r 2, h b= ( )j

q 2

Cubic BON‐IOWA λ = 3, δ = 3 g b=( )i
r 3, h b=( )j

q 3

Geometric BON‐IOWA →λ 0, →δ 0 g b= ( )i
r 0, h b= ( )j

q 0

BON‐Max ∞λ = , ∞δ = ∞g b= ( )i
r , ∞h b= ( )j

q

BON‐Min ∞λ = − , ∞δ = − ∞g b= ( )i
r − , ∞h b= ( )j

q −

Abbreviations: BON‐IGOWA, Bonferroni induced generalized ordered weighted averaging; QBON‐IOWA, Quasi‐arithmetic
Bonferroni induced ordered weighted averaging.

BLANCO‐MESA ET AL. | 15



⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟
∑ ∑

≠

QBON IOWA u a u a g h
n

g b
n

h b− ( , , …,   , ) = ( ) 1 ( ) 1
−1

( )n n
i

i
r

j
j i

n

j
q

1 1
−1 −1

=1

r q
1
+

(27)

where bi is the ai value of the QBON‐IOWA pair u a< , >i i having the jth largest ui,

g hand are strictly continuous monotonic functions and ∑
≠

( hb )n j
j i

n
j
q1

− 1 =1 can be

expressed as QIOWA V( )W
i where V( )i is the vector of all bj except bi and w being an

n − 1 vector Wi associated with αi whose components wij are the OWA weights. Let W be

an OWA weighing vector of dimension n − 1 with components ∈w [0, 1]i when

∑ w = 1i i , where the weights are associated according to the largest value of ui, and ui is

the order‐inducing variable. Furthermore, it includes the BON‐IGOWA operator as a

particular case when g b= ( )i
r λ and h b= ( )j

q λ. Moreover, in Table 1 shows particular cases

that it is important to mentioning.

6 | APPLICATION IN GDM SALES FORECASTING

The environment in business has change drastically in the recent years, within the factors it is
possible to identify globalization, technology, e‐business, competition, product proliferation,
and so on.39-41 With this situation, one of the main effects within the organizations it is in sales,
that is why sales manager has been focusing in forecasting research to develop better objectives
and strategies to achieve them.42,43 Among the problems to select adequate sales forecasting

TABLE 2 Historical sales of the company

Year January February March April May June

2010 145 123 135 138 162 178

2011 160 136 149 152 179 197

2012 147 125 137 140 165 181

2013 187 159 174 178 209 230

2014 154 131 143 146 172 189

2015 169 144 157 161 189 208

2016 174 148 162 165 195 214

Year July August September October November December

2010 168 148 144 128 132 139

2011 186 163 158 141 146 154

2012 171 150 146 129 134 141

2013 217 191 185 165 170 180

2014 179 157 152 136 140 148

2015 196 172 167 149 154 162

2016 202 177 172 153 158 167
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method is the vast amount of methods that exist, but more important is the need of the model to
be accurate and to measure the complexity of the market conditions.44,45 In this sense, some
new methodologies have been developed for sales forecasting treatment that allow measuring
the complexity and uncertainty of the environment.8,46

6.1 | Group decision‐making approach

In this paper, the objective is to use the BON‐IOWA operator as a new sales forecasting method,
that help the decision‐maker to include his experience, knowledge, and expectations of the
market conditions for the following year in combination with the historical data. The steps to
use this new method are as follows:

Step 1. Determine the number of years that will be considered in the analysis based on
the impact that will have in future results (eg, 12 months, 5 years, and 10 years).

Step 2. Determine the weights that will apply to each month or year according to the
importance that they will have in the forecasting.

Step 3. An order‐inducing vector has to be done according to the expectation of the
decision‐maker.

Step 4. In this step is necessary to include the information that is needed to do the BM,
that is, the α and r .

Step 5. Once all the information is obtained, it is possible to forecast the sales with
different aggregation operators such as moving average (MA), BM, OWA, IOWA,
BON‐OWA, and BON‐IOWA.

Step 6. With the information provided by the different operators, it is possible to analyze
different scenarios that will help the decision‐maker in doing objectives and
strategies for the following years.

TABLE 3 Sales forecasting for 2017 according to expert 1

Operator January February March April May June

MA 162 138 151 154 182 200

BM 130 110 121 139 164 180

IOWA 181 154 168 172 203 223

OWA 183 156 170 174 205 225

BON‐OWA 147 125 136 157 185 203

BON‐IOWA 145 123 135 155 182 200

Operator July August September October November December

MA 188 166 161 143 148 156

BM 207 182 177 114 118 125

IOWA 210 185 179 159 165 174

OWA 213 187 181 161 167 176

BON‐OWA 234 206 200 129 133 141

BON‐IOWA 231 203 197 143 148 156

Abbreviations: BM, Bonferroni means; BON, Bonferroni; IOWA, induced ordered weighted average; MA, moving average;
OWA, ordered weighted average.
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6.2 | Numerical example

In this section, a real situation for a Mexican enterprise is developed. The sales manager wants
to forecast the sales of the enterprise to make a plan that can be achieved and that takes into
account different information like the expectations and market conditions. To do this, the steps
defined in section 6 are used.

TABLE 4 Sales forecasting for 2017 according to expert 2

Operator January February March April May June

MA 162 138 151 154 182 200

BM 130 110 121 139 164 180

IOWA 188 159 174 178 210 231

OWA 183 156 170 174 205 225

BON‐OWA 147 125 136 157 185 203

BON‐IOWA 150 128 140 160 189 208

Operator July August September October November December

MA 188 166 161 143 148 156

BM 207 182 177 114 118 125

IOWA 218 191 186 165 171 180

OWA 213 187 181 161 167 176

BON‐OWA 234 206 200 129 133 141

BON‐IOWA 239 210 204 149 154 162

Abbreviations: BM, Bonferroni means; BON, Bonferroni; IOWA, induced ordered weighted average; MA, moving average;
OWA, ordered weighted average.

TABLE 5 Sales forecasting for 2017 according to expert 3

Operator January February March April May June

MA 162 138 151 154 182 200

BM 130 110 121 139 164 180

IOWA 181 154 168 172 202 222

OWA 183 156 170 174 205 225

BON‐OWA 147 125 136 157 185 203

BON‐IOWA 145 123 134 154 182 200

Operator July August September October November December

MA 188 166 161 143 148 156

BM 207 182 177 114 118 125

IOWA 210 184 179 159 164 173

OWA 213 187 181 161 167 176

BON‐OWA 234 206 200 129 133 141

BON‐IOWA 231 203 197 143 148 156

Abbreviations: BM, Bonferroni means; BON, Bonferroni; IOWA, induced ordered weighted average; MA, moving average;
OWA, ordered weighted average.
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Step 1. The company provides us with the monthly sales from 2010 to 2016; the
information is presented in thousands of pesos (see Table 2)

Step 2. In this case we have three different decision‐makers, each one proposed a
different weighting vector, and these are as follows:

TABLE 6 Sales forecasting for 2017 according to unification 1

Operator January February March April May June

MA 162 138 151 154 182 200

BM 130 110 121 139 164 180

IOWA 183 156 170 174 205 225

OWA 183 156 170 174 205 225

BON‐OWA 147 125 136 157 185 203

BON‐IOWA 147 125 136 156 184 203

Operator July August September October November December

MA 188 166 161 143 148 156

BM 207 182 177 114 118 125

IOWA 213 187 181 161 167 176

OWA 213 187 181 161 167 176

BON‐OWA 234 206 200 129 133 141

BON‐IOWA 234 205 199 145 150 158

Abbreviations: BM, Bonferroni means; BON, Bonferroni; IOWA, induced ordered weighted average; MA, moving average;
OWA, ordered weighted average.

TABLE 7 Sales forecasting for 2017 according to unification 2

Operator January February March April May June

MA 162 138 151 154 182 200

BM 130 110 121 139 164 180

IOWA 184 156 170 174 206 226

OWA 183 156 170 174 205 225

BON‐OWA 147 125 136 157 185 203

BON‐IOWA 147 125 137 157 185 203

Operator July August September October November December

MA 188 166 161 143 148 156

BM 207 182 177 114 118 125

IOWA 213 187 182 161 167 176

OWA 213 187 181 161 167 176

BON‐OWA 234 206 200 129 133 141

BON‐IOWA 234 206 200 145 150 158

Abbreviations: BM, Bonferroni means; BON, Bonferroni; IOWA, induced ordered weighted average; MA, moving average;
OWA, ordered weighted average.
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WThe expert1  = 0.10, 0.10, 0.15, 0.15, 0.15, 0.20, 0.251

WThe expert2  = 0.15, 0.15, 0.15, 0.15, 0.15, 0.20, 0.202

WThe expert3  = 0.10, 0.10, 0.10, 0.10, 0.15, 0.25, 0.303

as it can be seen the latest year is higher because it is the nearest scenario to the future
market conditions.

Step 3. The proposed inducing vector is U = 5,10, 20,15, 30, 35, 25
Step 4. The α data will be divided quarterly as follows α α α α= 0.8, = 0.9, = 1.1, = 0.81 2 3 4 ,

respectively, and r q= = 0.5.
Step 5. With the information provided by the decision‐maker, the results using MA, BM,

OWA, IOWA, BON‐OWA, and BON‐IOWA operators (see Tables 3-5) are as
follows:

With the information from Tables 3-5, we can observe that different sales scenarios that will
help the decision‐maker to understand better the market and the future of the company. It is
noteworthy that the BON‐IOWA is the operator that includes more information and the MA the
one that includes the less. We can use different operators according to the information that is
available or if the problem is an easy one or a very important one that has to include all the
information available. Analyzing the results, it is possible to observe that in most of the cases
the BM forecast the lowest sales and the BON‐OWA the one with the highest sales, and this will
help the decision‐maker to make better strategies and policies according to the market
information.

Also, it is possible to unify the results taking into account the information provided
individually by the decision‐makers. In this sense, two different unifications will be presented:
(a) taking into account that all the information provided by each decision‐maker is equally
important and (b) considering that the importance is 0.3, 0.4, and 0.3, respectively. The results
are presented in Tables 6 and 7.

Using these techniques, it is possible to not only generate different scenarios based in the
individual knowledge of the decision‐makers but also is possible to unify them and prioritize
which information is more relevant based on the expertise, knowledge, and impact that the
decision‐maker has in the final decision.

7 | CONCLUSIONS

In this paper, we have studied the operators related to aggregation theory, such as, the OWA
and IOWA operators and BM. We have presented a new aggregation operator combining
IOWA operators and BM, which is called BON‐IOWA operator. This new operator allows
reordering the information by using order‐inducing variables to obtain the maximum and
minimum operators in a comparison and continuous interrelationship of each one of the
arguments. Likewise, we have introduced some new operators, which are called BON‐
IOWAWA, BON‐IIWOWA, and BON‐IHWA operators. The main advantage of these
approaches is that they can combine classical Bonferroni aggregation, OWAWA, IW, and
HWA operators in the same formulation, which allows considering the attitudinal character
characteristic of the decision‐maker. Thus, we have proposed a set of operators that form a

20 | BLANCO‐MESA ET AL.



new family of aggregation operators that allows combining classical operators in the same
formulation to analyze multiple comparison, interrelationship, and reorder of the present
information. Furthermore, the work also presents some generalizations by using general-
ized and quasi‐arithmetic means.

We have developed a mathematical application, which is focused on the sales forecasting
problem. An important aspect in sales is to select the adequate sales forecasting method since it
is necessary that the model to be accurate and measure the complexity of the market. In this
sense, we have used the BON‐IOWA operator as a new sales forecasting method. This method
allows us to aggregate experience, knowledge, and expectations of the market conditions for the
following year of the decision‐maker in combination with the historical data. To develop this
application, we have considered data set of the monthly sales from 2010 to 2016 for a Mexican
enterprise. Also, to observe the feasibility and versatility of the operator, we have compared
with other aggregation operators to generate more scenarios. Results have shown two main
features. First, the BON‐IOWA operator includes more information and attitudes of the
decision‐maker. Second, this information can help the decision‐maker to understand the
environment and market information to make a better strategic planning and information
policies.47

In future research, we expect to develop further the operator by using new aggregations
functions, such as heavy weights,48 heavy MAs,49,50 and group decision‐making problems.51

Note also that this operator can be extended to uncertain environments with intervals, fuzzy
numbers, linguistic information, and extension with distance measures and norms.
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