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Abstract We study problems that integrate buy-at-bulk network design into the classi-
cal (connected) facility location problem. In such problems, we need to open facilities,
build a routing network, and route every client demand to an open facility. Further-
more, capacities of the edges can be purchased in discrete units from K different cable
types with costs that satisfy economies of scale. We extend the linear programming
framework of Talwar (IPCO 2002) for the single-source buy-at-bulk problem to these
variants and prove integrality gap upper bounds for both facility location and con-
nected facility location buy-at-bulk problems. For the unconnected variant we prove
an integrality gap bound of O(K), and for the connected version, we get the first
LP-based bound of O(1).
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1 Introduction

We study problems that integrate buy-at-bulk network design into the classical (con-
nected) facility location problem. We are interested in applications with trade-offs
between facility opening and network design costs. Problems of this type arise in the
planning of optical access networks in telecommunications, for example. An operator
must decide on which nodes to install routing and switching devices (these are called
central offices, and represented by facilities) and on which edges to install transmission
technologies (represented by so-called cable types) to route traffic demands. In these
networks, the traffic originating from each client is sent via tree-like access networks,
to its respective facility. A combination of different cable types may be installed on the
edges of these access trees to support the traffic flow. This allows for multiple fibers
emanating from different clients to share a single, larger cable and the same trunk on
their common path towards their common central office. The facilities are connected
amongst each other or to some higher network level via a core network of (almost)
unlimited capacity, which is required to route the traffic further towards its destination;
e.g., see Fig. 1.

Designing such a network involves selecting the facilities, connecting them via high-
bandwidth links, and dimensioning the access links that are used to route the traffic
from the clients to facilities. This can be modeled as a connected facility location
with buy-at-bulk edge costs problem, denoted by BBCFL. Formally, we are given a
complete graph G = (V, E) withnonnegative edge lengths ¢, € Z>¢,e € E satisfying
triangle inequality; a set F' C V of facilities with opening costs u; € Zx¢,i € F;
and a set of clients D C V with demands d; € Z.o, j € D. We are also given K
types of access cables that may be used to connect clients to open facilities. A cable
of type i has capacity u; € Z-o and cost (per unit length) o; € Zx>¢. Furthermore,
we are given an extra type of cable, called core cable, having a cost (per unit length)
of M > ok and infinite capacity, which may be used to connect the open facilities
with each other. We assume that access cable types obey economies of scale. That is,
01 <03 <--- <ogand - > 5—2 > ... ZK A feasible solution (see Fig. 2) for
BBCFL consists of (1) A subset Fo C F of facﬂltles to open; (2) a Steiner tree of G
(core network) connecting all open facilities via core cables; and (3) a forest (access
network) connecting all clients to the open facilities. Furthermore, on each edge of this
forest we have to specify a list of possibly multiple copies and types of access cables
to install, in such a way that the entire demand of each client can be routed along a
single path to an open facility. Note that we allow the demand crossing a single edge
to use different access cables, but the collection of edges trasversed must be a path
in G. The objective of BBCFL is to minimize the total cost of opening facilities, and
constructing core and access networks; where the cost for using edge e in the core
network is Mc,, and the cost for installing a single copy of access cable of type i on
an edge e is gjce.
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Fig. 1 An example of the fiber optic network, where red lines represent the (national) core network and
blue lines represent the (local) access networks (Color figure online)

It is worth noting that we are allowed to install core cables on edges incident to
closed facilities, to clients, or even to nodes in V\ (F U D). Nevertheless, the demand
from a client to its facility is not allowed to use core cables. The rationality for this
constraint is that in real-life situations core and access networks are run independently.
The only way to access from the access network to the core network is via an open
facility.

There are various interesting variants of BBCFL that differ with respect to the
structure of the access or core network. For example, the planning of water and energy
supply networks occur in settings where the consideration of different connection types
on the edges of the access network is not motivated by the different capacities but by the
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Fig. 2 A feasible solution for BBCFL, where square nodes (in orange) represent (open) facilities, circle
nodes in green represent clients, red lines represent core cables, and blue lines (of different thicknesses)
represent access cables (of different capacities) (Color figure online)

L]
@)
Fig. 3 A feasible solution for BBFL

different per unit shipping cost of alternative technologies or operational modes. This
naturally leads to another interesting variant of the BBCFL problem called connected
facility location with deep-discount edge costs problem, denoted by DDCFL. In this
problem, instead of capacitated access cables, we are given K discount cable types,
where cable type i has a fixed cost (setup cost) of o;, a flow dependent incremental
cost of §;, and unbounded capacity. We assume that §; > § > --- > §; (i.e discount
cables obey economies of scale). The cost for installing one copy of discount type i
on edge e and transporting R flow units on e is (0; + Rd;)c,.. Yet another interesting
variant of BBCFL occurs in logistic networks where the connectivity among facilities
is not required, see [14] for more details. This is called facility location with buy-
at-bulk edge costs problem, denoted by BBFL; see Fig. 3. As with BBCFL, we also
consider the deep-discount variant of BBFL, denoted by DDFL, in which we replace
the capacitated access cables by discount cable types.

Previous Work

The BBFL problem was first considered by [13]. They show that BBFL can be seen as
a special case of the Cost-Distance problem, and thereby provide the first randomized
approximation algorithm with approximation guarantee O (log(| D|)) for this problem.
Their algorithm works for the more general version of single-sink non-uniform buy-
at-bulk network design where one has a different set of cable types for each edge.
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The algorithm of [13] was then derandomized by [2] who show that the integrality
gap of the Cost-Distance problem is O (log(|D])). To the best of our knowledge,
this is the only LP-based approximation algorithm that works for BBFL. Later, an
O (K) approximation for BBFL was developed by [14] (where K is the number of
cable types), who extended the combinatorial approximation algorithm of [9] that was
devised for the single-sink (uniform) buy-at-bulk network design problem.

The BBCFL problem was recently considered by Bley and Rezapour [1] who
designed an approximation algorithm based on the random sampling techniques,
achieving a 192-approximation for BBCFL. They also obtained a 384-approximation
to DDCFL via a simple factor 2 reduction between DDCFL and BBCFL. We note that
one can show that an p-approximation to BBCFL gives a (1 4 €) p-approximation to
DDCFL; see Lemma 2.2 in [8] for more details. This together with the result of Bley
and Rezapour [1] yields a (192 + €)-approximation to DDCFL.

The unsplittable Single-Sink (uniform) Buy-at-Bulk network design problem
(uSSBB), also known as the single sink problem, can be seen as a further simplifica-
tion of BBCFL in which the set of interconnected open facilities are given in advance.
Several approximation algorithms for uSSBB have been proposed in the literature.
Using LP rounding techniques, Garg et al. [5] developed an O(K) approximation.
The first constant factor approximation for this problem is due to Guha et al. [9].
Talwar [17] showed that an LP formulation of this problem has a constant integrality
gap and provided a 216 approximation. Using sampling techniques, this factor was
reduced to 145.6 by [11], and later to 40.82 by [6].

The Connected facility location problem (ConFL) is the special case of BBCFL
with only one access cable type of unit capacity. Gupta et al. [10] obtained a 10.66-
approximation for this problem, based on LP rounding. Swamy and Kumar [16]
improved the approximation ratio to 8.55, using a primal-dual algorithm. Using sam-
pling techniques, the guarantee was later reduced to 4 by [3], and to 3.19 by [7].

Our Results

The focus of our work in this paper is on LP-based techniques. We extend the LP-based
approximation for uSSBB by [17] to both buy-at-bulk facility location and buy-at-bulk
connected facility location problems and prove integrality gap upper bounds for these
problems.

Similar to previous work, one can show that a p-approximation algorithm for
DDCFL gives a 2 p-approximation algorithm for BBCFL. For going in the other direc-
tion, however, there is only a factor of (1 + €) lost: p-approximation to BBCFL gives
a (1 + €) p-approximation to DDCFL; see [8] for more details.

Since the integrality gap of the natural flow-based formulation for BBCFL can be
arbitrarily large, we focus on the DDCFL problem. In Sect. 2, we present a strong flow-
based IP, namely (IP-DDCFL), model for DDCFL. Our main result is the following.

Theorem 1 The integrality gap of IP-DDCFL) is at most 234.

Thus, we obtain the first LP based (deterministic) algorithm for DDCFL and thereby
for BBCFL.
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Using similar techniques, we finally obtain a new LP-based approximation algo-
rithm for the buy-at-bulk facility location problem in Sect. 3. We propose a flow-based
IP, namely (IP-DDFL), formulation for DDFL and obtain the following result.

Theorem 2 The integrality gap of IP-DDFL) is at most O (K).

This matches the approximation guarantee of the combinatorial algorithm of [14],
improving the LP-based O(log(| D|))-approximation obtained by [2].

The reason why we get a better guarantee for BBCFL, even though it may seem
more difficult than BBFL, is that the extra constraints in (IP-DDCFL) that ensure
connectivity among open facilities are helpful in bounding the integrality gap.

2 Buy-at-Bulk Connected Facility Location

Recall that the only difference between BBCFL and DDCFL is due to the access cable
models considered for each variant: In BBCFL, an access cable of type k has a fixed
capacity uy € Z-o and fixed setup costoy € Zxo; whereas, in DDCFL, an access cable
of type k has a setup cost oy € Z=(, a flow dependent cost of §; € Zx¢, and unbounded
capacity. As has been observed in the earlier works, one can transform between buy-
at-bulk and deep-discount variants of the problem with factor 2 loss: given an instance
of BBCFL, one can consider a corresponding DDCFL instance by omitting the cable

capacity uy of each access cable k and setting its flow dependent cost to §; := Z_]Z

It is not hard to see that (f—kg—‘ orce < (or + DeZ—:> Ce <2 {5—;—‘ oy, holds for any
edge e, where D, is the total demand carried by edge e. Hence the total cost of the
access cable installation of any solution of BBCFL is always within a factor of two
of the cost of the same access cable installation as the solution to the corresponding
modified instance of DDCFL, implying that an p-approximation to DDCFL gives a
2 p-approximation to BBCFL.

It is not hard to show that the natural flow-based integer linear program for BBCFL
has unbounded integrality gap, using the fact that an IP formulation of BBCFL has
to purchase capacities in discrete unites to support the demand carried by each edge,
while the LP relaxation can pay much less for supporting that demand by only using
the last cable type, with the lowest cost per capacity ratio, fractionally.

Hence in this section we focus on the DDCFL problem and get an Integrality gap
of O(1) for the underlying LP of the problem, thereby obtaining a new LP-based
O (1)-approximation algorithm for the BBCFL problem.

2.1 IP Modeling of DDCFL

We write a flow-based IP formulation for DDCFL. We assume w.l.0.g. that a particular
facility r is open and thus it belongs to the core network in the optimal solution and
that D N F = . Also, to simplify the description of our algorithm it will be useful to
add an artificial root client r* with unit demand, connected to r by an edge of 0 length.
For each edge we create a pair of anti-parallel directed arcs, with same length as the
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original one. Let E be the set of these arcs. The undirected version of an arc e € E is
denoted by e.

For every e € E, cable type k € [K] = {1, ..., K} and client j € D, the variable
f ej « indicates if flow from client j uses cable type k on arc e; fore € E and k € [K],
x§ indicates if cable type k is installed on edge e; zz indicates if the core cable is
installed on edge e; and y; indicates if facility i is opened.

The opening cost C°P, the core cost C°™, the fixed cost cfixed 3nd the routing cost
C™U® of a solution are defined as

CP — Z Wi Vi ceore — A Z €375 Cﬁxed — XK: C{Ixed; croute _ XK: C]zoute’
ieF ecE k=1 k=1
where Clixed — Z c;xk, and  CU° =5 Z dj Z Cgfej:k, (1)
ecE jebD ecE ’

represent the fixed cost and routing cost of the cables of type k, respectively.

We use the notation §7(S) = {(u,v) e E:u € S,v ¢ S}, 87(S) = 6§7(V\S),
§5(8) ={uv € E:u e S,v ¢ S}foreach S € V and §*(v) = §*({v}) for each
v € V. Given a set of cables I € [K] and a client j € D, we define the access flow
one € E with respect to I and j as f, = Yy, f.; and the net in-flow on a vertex

v € V with respect to I and j, as g{(v) =D ees—() fe]:, = D eest ) fejil. We also

define hlj = max{g[j K](i), 0} for j € D and i € F. Formally, this quantity indicates
whether facility i is serving client j.
With all the notation above, our integer program formulation is as follows.

min C 4 Ceoreqlixed 4 croute (IP-DDCFL)

gl () = -1 VjeD @)

gl () =0 VjeD, veV\(FU{j) 3)

gl @) < b VjieD,ieF @)

h! <y VieD,ieF 5)

By + 1 < x5, VjeD, kelK], uvekE ©6)

Yonl- Y <0 VieD, SCV\{rl: SNF£9¢ (7
ieSNF e€d(S)

=1 ®)

gl k() <0 VieD,veV\F,1<g<K (9

gl k@ — Y 2220 VieD,ieF\[rl,1<q<K (10)
e€d(i)

x5 L yviize k] € 0.1} (11)
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Constraints (2) impose that at least one unit of flow leaves the clients. Constraints (3)
are flow conservation constraints at non-facility nodes. Constraints (4) and (5) state
that the flow only terminates at open facilities. Constraints (6) ensure that we install
access links to support the flow. Finally, Constraints (7) state that if i is the facility
serving demand j (the only i for which hlj = 1) then for each set S containing i and
not containing the root there is a core link connecting S with its complement. In other
words, all open facilities are connected to the root via core links, where Constraint (8)
defines the root facility. Constraints (9) and (10), called path monotonicity constraints,
strengthen the linear relaxation of (IP-DDCFL). They ensure that the cable types along
any path used to connect clients to facilities are nondecreasing from each client to its
facility. We address the validity of these constraints below. Similar to that in [5], we
can assume that the flow aggregated on an edge (in the optimum solution) never splits:
once the flow from two clients share an edge they share the same set of edges on
their paths to their facility. Consider any routing path connecting client j to some
facility i. As the flow never splits, the flow aggregated on edges of the path from j to
i is nondecreasing. Therefore, as the access cable types obey economies of scale, we
can conclude that the cable types along any routing path (in the optimal solution) are
nondecreasing from each client to its facility.

The introduction of variables hl] may seem artificial, however, in the Appendix we
show that they are needed to achieve a constant integrality gap IP.

We remark that the interesting variables of this IP formulation are (f, x, y,z) =

f ej o) (xéf), (¥i), (zz)). All the other quantities are written in terms of these variables.
2.2 Proof of Theorem 1

Let (LP-DDCFL) be the linear program relaxation of (IP-DDCFL) and (f, x, y, z) be
an optimal solution to (LP-DDCFL). It is not hard to show that (LP-DDCFL) can be

solved in polynomial time using, for example, the ellipsoid method. We show how to
round this LP solution to an integer one at constant factor loss.

2.2.1 Rounding Algorithm

We extend the rounding approach of [17] for the single-source buy-at-bulk problem
to devise a rounding algorithm for DDCFL. Our algorithm has four phases.

Preprocessing Phase
Pruning We prune the set of access cable types such that all cables are considerably

different. Similar to [17], this can be done without increasing the cost of the optimal
solution too much.

Theorem 3 Giveneq, €3 € (0, 1), we can prune the set of access cables so that for any
i, 0,41 > 0i/€1 and §;+1 < €2 - 8; hold, increasing the installation and routing costs
of the optimal fractional solution by a factor of at most 1/€1 and 1/ ¢, respectively.
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For the sake of notation, let [ K] be the set of cables left and let (f, x, y, z) be the
new solution of (LP-DDCFL) after the pruning stage. For each client j and positive
radius R, define B(j, R) = {v € V: cj, < R} to be the moat centered at j. We say
that two moats B = B(]l, R1) and By = B(jo2, R2) overlap if cjj, < R1 + Ry.

Define also L] = )" ,.g fc «Cz Which represents the estimated dlstance that the flow
of client j travels on cables of type k. Note that C;°"¢ = §; 3~ jendj L i

Flow path decomposition Every client j sends (at least) one unit of flow from itself
to open facilities, specified by the f é/, (k) Variables. We decompose this fractional flow
into a set of paths P;, with path p € P; starting from j and ending at some facility.
Let ¢ (p) denote the amount of flow of path p.

Filtering For a predefined constant 6 € (0, 1) and for all j € D, choose a subset of
paths P~ C Pj such that ¢; := Zpeﬁ ¢(p) = 0, by selecting paths in increasing
order of their lengths until their total ¢ (p)-value is at least 6. For each j € D, let §;
be the length of the longest path in P Define a new solution (f, X, ¥, 7) as follows.
For each client j € D, scale the amount of flow sent across each P € P by 1/¢;
and set the flow sent across each P € P; — Pj to 0. The new flow f (and hence h) is
derived naturally from this new path decomposition. For each cable k € [K] and edge
e € E, define )Eif as xé—‘/@ if there exists some j with fe]’;k > 0, where ¢’ € E is one of
the two arcs associated to e; and O otherwise. For each i, set y; = min{y; /6, 1}. And
finally for each e € E, set z; = min{z;/6, 1}. It is easy to show that this solution is
feasible for (LP-1).

Two important points: first, the solution ( f , X, ¥, z) is such that the entire demand
of client j is satisfied by open facilities on the moat B(j, B;). The second property
is the following bound which is useful for the analysis. Let P; C P; be the set of
paths with lengths at least ;. Then, P includes all paths in P \P and at least one
path, say p* (the longest) of P We conclude that ZPEP ¢>(p) > Zpepj o(p) —

Zper\{p y#(p) = 1—06,andso

K
YLL=3"Y b= Y d(p) Y ce= Bl —0). (12)
k=1

pEP; e€p pEFj eep

Facility Selection Phase

Moat selection For a predefined constant > 1, we consider the set of moats B, =
{B(j,nB;): j € D} around clients. We choose a maximal set B’ C B3, of moats which
do not overlap. We do this by processing the moats in 5, in increasing order of their
radii, and greedily adding them to B’ so that for each pair of selected moats in B’ with
centers j, j' € D, B(j,npB;) and B(j’, nB;:) do not overlap. Let Score be the set of
clients with moats in 3’. Observe that for the artificial root client r*, we have 8, = 0
and so r* € Score.
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() (b)

Fig. 4 An illustration of the core network installation phase on a simple instance where Score =
{r*, j1. j2, ja}

Facility opening Foreach j € Score, let Fj = {i: l_z{ > 0} be the facilities fractionally
serving demand from j with respect to solution ( f, X, ¥, Z). By the first property noted
at the end of the preprocessing phase, F; C B(j, nf;), hence {F; : j € Score} consist
of disjoint sets. On each F; we open the facility i; with lowest opening cost. In
particular, the root r is opened since F,+ = {r}. Let I be the set of facilities opened
on this stage. The basic idea of this part of the algorithm is inspired by [15].

For the purpose of analysis, associate each client with a special facility denoted
as its (K + 1)-st proxy. Formally, for each j € Score We set proxyg . (j) = ij.
For the remaining clients j € D\Score, We set proxy g (j) = proxyg_;(j’), where
J' € Score is the center of the smallest moat in B’ that overlapped with B(j, np 7).
Since the moats in B’ were added in increasing radii and (12), we get

K

1+2 ;
c(j,proxyg1(j)) = (1 +2n)B; < ﬁ Z L] Vj e D. (13)
q=1

Core Network Phase Consider the graph GX*! obtained from G by contracting the
nodes of each F; into single nodes, for j € Score. We construct an approximately
optimal Steiner tree 77 in GX*+! having the contracted nodes as terminals. To do this,
we find an approximate Steiner tree whose cost is within a factor 2 of the cut-based
relaxation. The edges of T’ form a forest in G which touches a subset of the facilities in
Fj,called F j» which may notinclude the open facility i ;; see Fig. 4a. In order to connect
all the open facilities together, we augment 7’ with the stars Q; = {ji: i € F Ui,
J € Score; see Fig. 4b. Let T°°"¢ be the resulting tree, after possibly canceling some
cycles. To conclude this stage, we install core cables on 7",

Access Network Phase We construct the access network in a top-down manner,
installing cables progressively in stages numbered from i = K to 1. Let Tx 4 be
a minimum spanning tree on the graph induced by the set I of open facilities, and
connect them using an artificial cable type K + 1. This tree won’t appear in the end, as
it will be replaced by the core network. In stage i, we augment the current tree 7;4 1,
which uses only cables of type i + 1 or higher, by installing cables of type i. Define
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(a) (b)

Fig. 5 An illustration of the access network phase where i = K

Z‘,{ tobe ) ,cg fej « - Ce- This estimates the distance that flow from j goes on cable
type k. Let R = 2;11 I:,i be the estimated distance beyond which the flow from j

uses cable type [ or higher in the new fractional solution. Intuitively, EIJ tells us how
far from j to go before the LP solution installs access cable types [ or higher. Stage i
consists of two steps:

Step 1. Moat selection: For predefined y > ¢ > 1, we construct the set of moats

B;'/ = {B(/, yéii): Jj € D} around all clients. We define §,~ to be the set of clients
whose moats intersect 7;41. Foreach j € 3',- remove moat B(j, yléij ) from B;'/. Similar
to what we did for the core network, we choose a maximal set 3" C B;, of moats which
do not overlap by selecting moats from B;/ in increasing order of their radii. Let S; be

the set of clients whose moats are selected in round i. .
Step 2. Cable type i installation: We construct the set B’{ = {B(j, {Ri]) 1 j e Si}of

moats around clients in S;. We obtain a graph G’ from G by contracting each moat in
B’( into a super-node, and the current tree 7;1 into a super-node called r; 1. We then

construct an approximately optimal Steiner tree in G’ (with integrality gap bound 2),
where the terminals are all the super-nodes. By decontracting the supernodes, we get
a forest in G touching at least one node in 7;41 and one node from each moat (see
Fig. 5a). To get a tree, called Ti, from the resulting forest, we add direct edges from
each client j € §; to each node of B(j, ¢ Iéij ) that is incident on the forest and then we
cancel cycles (see Fig. 5b); we remark that this crucial step of adding direct edges is
missing from the uSSBB-approximation in [17], even though it seems necessary for
both that algorithm and ours to work.

Using Khuller et al.’s technique [12], we then convert tree ﬁ rooted at ;4 1, into an
(o, B)-Light Approximate Shortest-path Tree (LAST), for parameters § = % and
a > 1 to be chosen later. Let LAST; be the resulting tree. The LAST algorithm [12]
transforms tree 7; into LAST; with ¢(LAST;) < B ¢(T;) such that the path length of
any vertex v to root r;4+1 in LAST; is at most « times the length of a shortest v-r;
path in G'. We decontract the moats and install cables of type i on the edges of LAST;.
Let 7; = T;4+1 U LAST;.

For the purpose of analysis, for each j € S;, we call an arbitrary node in its moat
which is connected to LAST; as the proxy, denoted by proxy;(j). For the clients

j € S;, we define proxy; (j) to be an arbitrary node in B(j, yléi]) N T;+1. For the

@ Springer



1086 Algorithmica (2019) 81:1075-1095

remaining clients j/ € D\S; U S;, we define proxy; (j') to be proxy; (j), where j € S;
is the center of the smallest moat in 3’ that overlapped with B(j’, ¥ Rij ). Itis easy to
verify that c(J, proxyi(j)) 5 3)/1?{ < 371/ Z;(_:l] L,{. If we set A = max{%, ‘%y},
then by the previous inequality and (13), we get

i
c(j, proxy; 1 () < A YLy, VieD, 1<i<Kk (14
q=1

which will be useful in bounding the routing cost.

Finally, note that R{ = 0 for all j. This means that in the first step of the last stage,
S1 consists of all clients that have not been connected to the current tree. Therefore, at
the end of the last stage, T is a tree spanning all clients and open facilities. The access
network we return consists of the forest obtained by removing the artificial tree Tg 41
from Tj.

2.3 Analysis

Let C*op c*eore cxfixed 554 CHroute e the opening cost, core installation cost, fixed
installation cost, and routing cost paid by the LP optimum, respectively [see (1)].
And let CoP, Ce°re, Cfixed and C™U€ be the ones paid by our algorithm. Let gapgr
denote the upper bound on the integrality gap of the cut based formulation of Steiner
tree problem, which is 2. Let OPT be the cost of LP optimum. The following lemma
bounds the opening cost.

Lemma 1 The opening cost of the returned solution is at most éC op,

Proof The cost of facility i ; can be bounded by using (2)—(5), and the fact that i ; was
chosen as the cheapest facility of F; € B(j, 8;), as follows

1 1 ; 1
Kij = Hij - & Z ¢(p) = . > wih! < 7 > wivi.
pEPj

ieF; ieF;

As sets Fj, j € Score are disjoint, the total opening cost is at most é . ZieF Vilki =
1cwop, 0

. . . . n+1 *core
Lemma 2 The cost of core link installation is at most 70=1) " 89PsT " C .

Proof By (7), one can verify that ZE€5+( sy Z¢ = 1 holds for any arbitrary set § C V
that contains all facilities in F; (for some j) and it does not contain r. This means
that z is a feasible fractional solution to the cut based LP relaxation of the Steiner tree
problem on the graph GX+1 (see the core network phase) whose terminals are all the
contracted sets F; (recall that F,+ = {r}). In particular, the Steiner tree 7’ found in the
core network phase has cost at most gapgy - > 5. ¢zZz. The cost of the extra edges
included in the final tree T7°°"¢ (i.e., the union of all stars Q ;) can be charged to the
cost of T’ as follows.
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For each facility fj in F ' let p(fj) be any path in 7’ connecting j (which is inside
B(j, B;)) to a node v outside B(j, nB;), we note that the length of p(fj) is at least
(n — 1)B;. By a similar argument, if p(fj) = p(fk) where z~'j € I:“j and z~'k € Fk, then
we can use the fact that B(j, n8;) and B(k, nB) do not overlap to conclude that the

length of the path connecting i jto fk in T’ is at least (n — 1)(B ;i + Bi). Therefore, the
total cost of the union of all Q; is at most

Z c(]l])—i—Zc(]z]) <2 Z 2'3152 c(e)

J €Score J€Score 7 ij eF eET/

Summing up, the cost of 7¢°"¢ is at most 1 + ( 0 times the cost of 77, and therefore

it is at most 0(1;—1) - APST * D pef Cile- i

In the following, extending the ideas from [17] for uSSBB, we bound the fixed cost
and routing cost of the cables installed at stage i of the access network phase of our
algorithm, denoted by C iﬁ"ed and C°"¢, respectively.

K
Jfixed YB& 1 fived L core
Lemma3 C/** <o, - gaps7 - —————— —Cc;"+ —C
i ' (y — (¢ — Do Zaq 1 M

: : - WA
Proof Let S be an arbitrary subset of V\{r} that contains B(j, ¢ R;) and let bq; g =

D eest(s) f! 4 denote the amount of flow from j that crosses the boundary of S via
cables of type g. We note that the flow we are considering may travel from j to the
boundary of § using any cables of type g or less than g (due to the path monotonicity
constraints) but it must use cables of type g while crossmg the boundary of S.

In the following we first show that Zlq 11 b; s < 7. Consider some g < i.As bJ

travels a distance of at least ;ﬁ{ (on cables of type q or less than gq), it contrlbutes at
least 5; g ¢ R unitsto R = i~} L]. As the contributions from each g are disjoint,

we have Iéij > Z; 11 b; s¢ Iéij , which implies that Z; 11 b; s < 7. This together

with the LP constraints guarantee that Zf:l st D ecst(s) Te = 1 = and hence

K =g, > 1 iJ ;
Zeea+(3) (Zq:i Xe + ze) >1- 7 by the definition of bq;S and constralnts (6). This
means that the vector 7 + Zg(zi x4, scaled by a factor g%’ is a feasible fractional
solution to the LP relaxation of the Steiner tree connecting balls B(j, ¢ Iéij ) to Tiyq.
Therefore, the cost of the Steiner tree computed in step 2 of the access network phase
can be bounded by

K
gapSTg gaPSTC 1 *fixed 1 *core
ZZCeXe +ZCeZe S—(é‘—l)e ;gcq +MC

eckE g=i ecE

@ Springer



1088 Algorithmica (2019) 81:1075-1095

Similar to Lemma 2, one can show that the cost of extra edges of f}, added after un-

contracting the moats, is at most )}Tg times the cost of the current forest. Altogether,
the cost of the LAST; tree is at most

K
¢ gapSTé‘ 1 *fixed 1 *core
LAST;) < B(1 : S —c —cC
c( i) < B( +V_§) Y. q:io.q q +M

Byt Ko 1
— . Frs o C*ﬁxed __(xeore
TG o -8 §oq ¢ Ty

L
i—g 1
Lemmad C[™* < Asia ) (1 + @)/~ S Cy
q=1

Proof LetT = Ule | LAST; be the access network (forest) constructed by our algo-
rithm and let V; be the set of nodes via which flow routing from clients toward facilities
enters the LAST; tree; we assume Vi = D. Also, let d7 (u, v) be the distance between
uandvonT.

The proof of the lemma is by induction on i. Since we install cables of type 1 on
the LAST] tree, and also proxy, (j) lies in T2, we have dr (j, T2) < ac(j, proxy,(j)).
Hence by using (14), we get

; 1
Ci™ =681 dj-dr(j,T2) < Adie Yy d;L] < A(Slaa—CTm“te,
: ; 1
jeb jeD

which concludes the case i = 1. Assume now, that the claim holds for all / < i. Then
the total cost of routing along cables of type i can be bounded as the following.

i—1 croute i
ClU = 5; Y Dy -dr (v, Tix1) < Sia | Y g’ +Y diAY Lyl (5)
veV; p=1 P jebD q=1

where D, is the amount of demand routed through LAST; via node v. The above
inequality holds because the cost of of routing the demand from v to 7;4+; on T can
be bounded by the cost of routing the demand back (via forest defined by the edges
of T that have cables of types 1,...,i — 1) to its source (sources), say j, and then
from there (directly) to proxy, (j), which lies in T; 1, using the triangle inequality
and (14). Note that this is true because we install cables on the LAST; trees. Recall
C;O‘"e =68 jendj L,]]. Therefore by (15) and induction hypothesis we get
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i—1 )4 *route i (*route
CPe < Adiar | D o) (4l i—t—q 3 L
| p=1 g=1 q g=1 q
i1 te i—1 i—1 xroute
C#tou C (C*route
_ , q P—q q i
= ASia g |:oe2(1+a) :|+Z TG
[g=1 1 p=q g=1 4
[i-1 C*route ‘ *route i (Croute )
= ASia (1 +a) 1+ L =ASia Yy —L—(1+a).
3y &; 3y
| g=1 q=1

m}

By Lemma 3, Theorem 3, and by summing over all cable types, the fixed cost paid
by the algorithm can be bounded as follows.

K K
ixe B¢ *fixe Oi x*core oj
s v POl el DO Rt (Zﬁ)

s=1 i<s i=1
1449
(y =9 —1Do1 —e)

< gapgr - [C*ﬁxed 4 C*core] ) (16)

Similarly, by using Lemma (4), we bound the routing cost as follows.

K i K i
8 -
Croute < Aa § : 2 :(1 + a)l sS_:C;kroute < Aa 2 : z :((1 + a) -Gz)l sc;kroute

i=1s=1 i=1s=1

K
< AO[ZC:muteZ((l +a) _Ez)z—s Aa

< . C*route. (17)
s=1 i>s I—al+a)

Using (16), (17), Lemmas 1 and 2, the total cost of our solution is at most

lc*op + (77 + 1)gapST c¥eore + Vﬂ; " 84PsT (C*ﬁxed + C*core)
0 O —1) (y =@ =D —€1)
A sroute
+ l—e(l+4+a)

Finally, using Theorem 3, we can bound the cost of our solution by

e (y-0C-Do(—e) -1 @ l-el+a)

1 . 1 1 A
< max < vB¢ - gapgr (n+ Dgapsy 1 o ) OPT.

(18)
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This completes the proof of Theorem 1. Setting « = 1.47, y = 4.10, ¢ = 0.50,
€2 =0.20,0 = 0.78, n = 1.27 and ¢ = 2 and recalling gapgt = 2, inequality (18)
implies that the integrality gap of (IP-DDCFL) is no more than 234. Thus, we obtain
the first LP based (deterministic) algorithm for DDCFL and thereby for BBCFL.

3 Buy-at-Bulk Facility Location

In this section we study the integrality gap of an LP formulation for the buy-at-bulk
facility location problem. As with BBCFL, we consider the deep-discount variant of
BBFL, namely DDFL. Note that similar to the relation between BBCFL and DDCFL,
one can transform between BBFL and DDFL with a factor 2 loss.

3.1 IP Formulation

Similar to Section 2.1, DDFL can be formulated as follows:

min C°P 4 Cfixed 4 croute (IP-DDFL)
(2), (3),(6), (9)

8l (D) < yi VjeD, ieF (19)
gl k() — i <0 VjieD ieFl<g<K (20
b fl i€ 10.1) 1)

We do not need the z and hl’ variables anymore, as they were used to model the con-
nectivity requirements among facilities. Constraints (19) state that the flow only ends
at open facilities, and constraints (9) and (20) force the path monotonicity discussed
in Section 2.1.

3.2 Proof of Theorem 2

Let (f, x, y) be the optimal solution to the LP relaxation of (IP-DDFL). We shall show
that this fractional solution can be rounded to an integer solution increasing the total
cost by a factor of O(K).

3.2.1 Rounding Algorithm

Our rounding algorithm will follow the same general ideas of that for DDCFL, but we
replace the core network and access network phases by a single one denoted network
phase. Another key difference is that we may open facilities at any stage of the net-
work phase. Ultimately, this is why our integrality gap bound is O (K) as we have to
overestimate and bound the opening cost in each of the K stages by the total opening
cost paid by the LP.
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Preprocessing Phase Apply the preprocessing phase (pruning, flow path decomposi-
tion and filtering) of Sect. 2.2.1, disregarding variables z. Let (f, x, y) be the solution
after this phase.

Initial Facility Selection Phase Perform the facility selection phase of Sect. 2.2.1 but
fixing n = 1. Let I’ be the set of facilities opened in this phase.

Network Phase We construct a solution in a top-down manner, installing cables and
possibly opening more facilities in stages, which we number from i = K to 1. We start
with solution (Ix 11, Tx+1) = (I', #). At stage i we augment the current solution by
(1) opening some extra facilities and (2) installing cables of type i. We do this while
keeping the invariant that 7; is a forest in G such that each connected component
contains an open facility of /;.

Stage i of this phase of our algorithm is similar to the i-th stage of the access
network phase in Sect. 2.2.1 and works as follows:

1. For a predefined constant y > ¢ > 1, construct the set of moats B(j, yI?j.)
around clients j € D. Remove the moats which intersect 7; and select from the
rest a maximal subset B of non-overlapping moats in increasing order of their
radii. Let S; be the set of selected clients associated to B’ and construct the set

| = {B(j, ;Rij): j € S;} of moats around clients in S;.

2. Add a dummy node 7 and connect it to every facility v fractionally opened by the
LP (with y, > 0). Set the cost of each dummy edge ¢ = rv to be zero if facility
v € [;11; otherwise set it to be f,. To simplify the analysis, associate each edge
e = rv with a variable x; equal to y,.

3. Contract each moat in Bé, and each component of 7; 1 into super-nodes. Call the
contracted graph G.

4. Construct an approximately optimal Steiner tree T on G, where the terminals are
7 and all the super-nodes. Without loss of generality we assume that T includes a
dummy edge of cost O from 7 to every super-node associated to a component of
T;+1 (or, more precisely, to each facility v € I;41).

5. Foreach v € F\I;41, if edge 7v is in T then open facility v and putitin /;.

Set; = I; U lj4.

7. Contract all the dummy edges that are contained in T, and decontract the super-
nodes associated to the moats. The edges from T form a forest in the resulting
graph. To get a tree, add for each moat direct edges from its center to all nodes in
the moat that are incident to 7. Let T be the resulting tree.

8. Using the LAST algorithm for appropriate parameters, transform T rooted at the
contracted node containing 7 into a tree called LAST;.

9. Install cables of type i along LAST; and let T; = T;+; U LAST;.

o

3.2.2 Analysis

Let C*°P, C*fixed and C*10U€ pe the opening cost, fixed installation cost and routing
cost paid by the optimum to the LP relaxation of (IP-DDFL), respectively.
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Similar to Lemma 1, the cost of facilities opened in the facility selection phase can
be bounded as follows.

Lemma 5 The cost of facilities opened in the facility selection phase is O(1) - C*P,

In the next lemma, we bound the fixed installation and opening cost incurred in the
network phase of the algorithm.

Lemma 6 The total fixed cost and facility cost of the network phase is O (1) - C*fixed
O(K) - C*oP,

Proof Consider Stage i of this phase. Let S be an arbitrary subset of V\{r} that

contains B(J, ;Rij ). Similar to Lemma 3, one can show that Z'q 11 b; s <7 where
15; g = Zeea+(3) f! ¢ indicates the amount of flow from j crossing the boundary

of S thorough cables of type g. This together with the LP constraints guarantee that
K 7j - K -q, = :
Y gmi b s+ pesnp v = 1 l and hence Y°, s+ (s) ( Xgmi ¥e +Xe) = 1— % This
means that the vector X + Z xq scaled by a factor gg Ts
fractional solution to the LP relaxatlon the Steiner tree problem on G connecting balls

can be viewed as a feasible

B(j, ¢ Iéij ) to T;+1. Therefore, the cost of this Steiner tree (including edge cost of Step
4 and opening cost of Step 5) can be bounded by

K

a aj 1

g PSTE chexe " Z,U«vxru ~ _8apst? Zo_cj;ﬁxed L Cop
— Oq
q=i

eckE g=i veF B (§ - 1)9

Similar to Lemma 3, the cost of the LAST; tree can be bounded by

v B [y 1
_C*ﬁxed C*op
Bt T e | G

Summing over all stages 1 < i < K, we see the total fixed cost and facility cost of
this phase is at most

,BQ' K K o
L ~xfixed *0)
gap —C + C*P
g (g—l)ez ;aq ’
Which is 0(1) - C*i*d 1 O (K) - C*°P by Theorem 3. O

Similar to Lemma 4, we can bound the routing cost of each stage, and then the routing
cost of the entire solution.

Lemma 7 The total routing cost of the solution is O (1) - C*¥"o%e,

Using Lemmas 5, 6, and 7, the total cost of the solution is at most
0(1)(C*route + C*ﬁxed) + O(K) . C*Op.

This completes the proof of Theorem 2.
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4 Conclusions

We have shown that the LP rounding framework for uSSBB given by [17] extends to
facility location buy-at-bulk problems. Our integrality gap analysis roughly matches
the known approximation ratios of combinatorial algorithms for BBCFL and BBFL,
so the obvious open problem is to improve this analysis to derive better approximation
algorithms. In particular, can we get an O (1)-approximation for BBFL? We were able
to bound the gap by O(1) for BBCFL by exploiting the fact that the facility core
network is fractionally connected by the LP. However, in BBFL we do not have this
property so we have to pay for the facility opening costs with a copy of the y-values
in each stage.

A potentially easier problem is to get an «-approximation for BBFL with running
time n/® for some function f where « is a constant that does not depend on k.

Acknowledgements A special thank to Babak Behsaz for helpful discussions.

Appendix: A Naive Model for DDCFL

In this section, we show that an alternative, but perhaps more natural IP formulation for
DDCFL has unbounded integrality gap. Consider the following integer programming
formulation:

min C° + Ccore+cﬁxed + croute (IP-DDCFL-2)
gl () < —1 VjeD 2)
glk () =0 VjeD, veV\(FU{j} 3)
£kt I < x5 VjieD, kelKl,uveE )
yr=1 8)
OEL VjeD veV\F, 1<q<K ©)
gl k=Y <0 VieD,ieF\ir), 1<g<K (10)
zes (i)
g[jK](i) =V VjeD,icF (22)
vi— Y %<0 VSCV\r}: SNF#£0,ieS
e€d(S)
x§5 ej;ka yla ZE E {07 1} (23)
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Fig. 6 An instance of DDCFL
with ¢ clients of unit demands

and (p + 2) potential facilities

with facility r as the root node L

The difference between this formulation and (IP-DDCFL) is that (IP-DDCFL-2) does
not have variables 4. We replace constraints (4) and (7) by (22) and (23) respectively.

Theorem 4 The integrality gap of (IP-DDCFL-2) can be arbitrarily large.

Proof Consider the instance described in Fig. 6, where the square nodes represent
facilities and the circle nodes represent clients. In this instance, K = 1, i.e. we have
a unique access cable type, and we set 0 = § = 1. The core cable has a cost (per
unit length) equal to M with 1 < M < q. For every facility i € {1, --- p}, we set
an opening cost of u; = 1. We also set u,, = 0o. The root facility r, which must be
opened, has an opening cost of 0. The distances are given by the metric completion of
the edge costs depicted in the figure, where L > 1 is a constant larger than any other
finite parameter of the instance.

The optimal integral solution to this instance can connect all the clients to a fixed
facility i* € {1, ... p} via access links; note that facilities {1, ... p} are (almost)
collocated. Then this open facility is connected to the root node via (unopened) facility
n using core links.

However, the LP relaxation of (IP-DDCFL-2) can cheat and open all facilities
i € {1,... p} tothe extends of 1/p to serve clients demands. Then it can install core
links to the extends of 1/ p on the edges connecting them (via node r) to the root node.
This means that LP only pays M - L/p for the core link along edge nr, while the
integral solution pays a cost of M - L on that for the same edge. Since L was chosen
as an arbitrarily large constant, this is the only relevant value to compare. Hence, the
integrality gap is proportional to p and thus it can be made arbitrarily large. O
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