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FECHA: 2018
PROFESOR GUÍA: DRA. DORIS SÁEZ HUEICHAPAN

HIERARCHICAL ENERGY MANAGEMENT SYSTEM BASED ON FUZZY
PREDICTION INTERVALS FOR OPERATION AND COORDINATION OF

MICROGRIDS

La integración de un gran número de Recursos Energéticos Distribuidos (DERS, por sus
siglas en inglés) en el sistema de distribución puede ocurrir mediante el refuerzo de los activos
existentes de la red, o con el manejo activo de los recursos flexibles en las distintas secciones de
la red de distribución. El diseño de estrategias de control es necesario para la administración
activa de la red de distribución y lograr una integración eficiente y confiable a gran escala
de los DERs. Además del beneficio de soportar el uso de fuentes de energía renovable, los
DERs juegan un papel importante en la mejora de la resiliencia y sostenibilidad del sistema
de distribución de energía, además en la generación de nuevas oportunidades de mercado.

En esta tesis, la administración activa de los DERs se propone utilizando un sistema de
administración energético (EMS, por sus siglas en inglés) jerárquico, y aplicado a Comu-
nidades Energéticas. Las comunidades energéticas corresponden a un concepto que permite
a diferentes usuarios finales cooperar en sus interacciones energéticas con el propósito de
maximizar su auto-consumo, minimizar los costos energéticos, reducir los niveles de picos
de potencia, o una combinación de estos y cumplir con otras metas beneficiosas. El EMS
jerárquico propuesto permite la incorporación de mecanismos que aseguran la realización del
balance de potencia en el corto tiempo, y el manejo a largo plazo de la energía, beneficiando
al propietario de la micro-red así como al operador de la red de distribución.

El EMS jerárquico se diseña en dos niveles: a nivel de red principal, y a nivel de micro-red.
A nivel de micro-red, se propone el uso de un controlador en tiempo real basado en reglas,
y en el alto nivel, un modelo de control predictivo robusto (MPC) basado en modelos de
intervalos de predicción difusos con el fin de ayudar al sistema a estar preparado para errores
en las predicciones que pueden ocasionar decisiones subóptimas.

Diferentes casos de estudio se utilizaron para evaluar el desempeño del EMS jerárquico
para la operación y coordinación de micro-redes. El EMS robusto basado en modelos de
intervalos de predicción difusos es comparado con un EMS determinístico y con un EMS
básico sin un sistema de almacenamiento de energía (ESS). Estos resultados muestran que el
EMS determinístico y el EMS robusto proveen mejoras con respecto al caso sin ESS, puesto
que ofrecen mecanismos para una administración eficiente de la energía. La incorporación de
un ESS en la comunidad energética beneficia tanto al usuario final al reducir los costos de la
energía, así como al operador de la red de distribución al limitar los niveles de picos de poten-
cia y permitiendo una mayor penetración de generación distribuida (DG). Adicionalmente,
el EMS jerárquico es capaz de mantener el flujo de potencia de la comunidad cerca de la
potencia de referencia definida por el controlador de alto nivel con el menor costo de energía,
dentro de otros beneficios. Finalmente, los usuarios finales que operan como comunidades de
energía pueden optimizar el uso de la DG y el tamaño del ESS requerido.
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Abstract

The integration of large numbers of Distributed Energy Resources (DERs) into the distri-
bution system could take place either by reinforcement of the existing network assets, or
the incorporation of active management of flexible resources into different sections of the
distribution network. For active management of a distribution network, the design of control
strategies is necessary for an efficient and reliable large-scale integration of DERs. Besides
the benefit of supporting the use of renewable energy sources, DERs play an important role
in improving the resilience and sustainability of the electricity distribution system and also
in the generation of new market opportunities.

In this thesis, the active management of DERs is proposed using a hierarchical energy
management system (EMS) applied to "Energy Communities". Energy communities are a
concept which allows different end users to cooperate in their energy interactions with the
aim of maximising their self-consumption, minimising energy costs, reducing peak power
levels or a combination of these and other beneficial goals as well. The hierarchical EMS
proposed allows incorporating mechanisms to ensure both the realisation of short-term power
balancing objectives and long-term energy management, benefiting the microgrid owner and
the distribution network operator.

The hierarchical EMS is designed in two levels: main grid level and microgrid level. At
the microgrid level, a real-time local rule-based controller is proposed and at the higher level,
a Robust model predictive control (MPC) is used to manage the uncertainty associated with
renewable distributed generation and electricity demand. The uncertainty is incorporated
into the Robust MPC controller based on fuzzy prediction interval models in order to help
the system to be prepared for errors in the predictions that might yield sub-optimal decisions.

Several case studies are used to test the performance of the hierarchical EMS for the oper-
ation and coordination of microgrids. Robust EMS based on fuzzy prediction interval models
is compared to the deterministic EMS and with a basic EMS without energy storage sys-
tem (ESS). The results show that the deterministic and Robust EMSs provide improvements
over the case without ESS, as they offer mechanisms for efficient energy management. The
incorporation of an ESS into the energy community benefits both the end user, by reducing
energy cost, and the distribution network operator, by limiting the peak power levels and
enabling increased penetration of distributed generation (DG). Additionally, the hierarchi-
cal EMS is able to keep the community power flow close to the reference power defined by
the higher level controller with minimum energy cost, among other benefits. Finally, end
users operating as Energy Communities can optimise the use of DG and the size of the ESS
required.
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Chapter 1

Introduction

1.1 Research Motivation

The distributed energy resources (DERs) are comprised of various forms of dispatchable or
nondispatchable resources, including distributed generation (DG) units and controllable loads
[3, 7, 8]. DGs span from typical fossil-fuelled engines to renewable energy (RE) sources such
as wind turbines (WT) and photovoltaic power (PV). RE sources are cleaner and more sus-
tainable than the traditional forms of energy and, therefore, their penetration has increased
into the electric power transmission and distribution systems to reduce gas emissions, and
enhance sustainable development. In addition, governments and societies are convinced that
the use of the RE can help to decrease global warming and climate change, and the introduc-
tion of a tariff policy has, in particular, encouraged the adoption of RE systems at domestic
level [7].

The integration of large numbers of DERs into the distribution system may play an impor-
tant role in improving the resilience and sustainability of the electricity distribution system
and in generating new market opportunities. However, when high penetrations of DG occur,
the management of local and national power flow may be compromised and power quality may
move outside allowed national standards [9, 10]. Therefore, the massive adoption of DERs
presents new technological challenges that must yet be overcome to ensure that the present
levels of grid performance as reliability, resilience and power quality are not significantly
affected, and the potential benefits of DG units are fully taken advantage [3].

At a microgrid workshop in 2012 sponsored by the U.S. Department of Energy, the concept
of microgrid was defined as: “a group of interconnected loads and distributed energy resources
within clearly defined electrical boundaries that acts as a single controllable entity with
respect to the grid. A microgrid can connect and disconnect from the grid to enable it to
operate in both grid-connected or island-mode” [11]. Based on this definition, microgrids
appear as an alternative for overcoming the challenges of integrating clusters of DERs and
load into power system, reducing the control burden on the main grid [12, 13, 14].

The concept of multiple microgrids is developed when the penetration level of microgrids
into the distribution network is increased. As explained in [15], this corresponds to a situa-
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tion in which most of the low voltage networks turn into active microgrids. Fig. 1.1 shows
an example of a smart distribution system and its division into multiple microgrids. In this
scheme, the coordination among different microgrids and the distributed network operator
(DNO) brings new challenges because the coordinated operation of multiple microgrids in-
creases the complexity and dimension of the system to be controlled. Currently, effort is
being put into the design of control strategies for overcoming these challenges. Therefore,
energy management systems (EMSs) are proposed in order to guarantee a reliable, secure
and economical operation of the whole electrical system composed of multiple microgrids.
Additionally, when the uncertainties introduced by the variability in end-user profiles and
the intermittency of renewable energy sources are included, the design of suitable EMS is
necessary.

Figure 1.1: Distribution System divided into Several Microgrids. Adapted from [1]

1.2 Problem Statement

This thesis presents a new strategy for employing active management of DERs within a
distribution network using an energy management system (EMS) applied to “Energy Com-
munities”. The concept of “Energy Communities” enables energy exchange between the DERs
of community members to maximise their self-consumption, minimise their energy costs, re-
duce peak power levels or a combination of these and other beneficial goals. An energy
community could be considered to be a microgrid if it is seen from the main distribution grid
as a single element responding to appropriate control signals within defined electrical bound-
aries [7, 16], and this could be applicable to a community that is geographically co-located
or to a community that exists as a virtual entity distributed around a much larger system,
with their capabilities “aggregated” by inter-communications via web-type services. For the
latter case, the option of “island” operation is not possible, but in most other aspects it can
be considered to be a microgrid capable of providing energy and fast power response.

2



The distribution system to be considered is illustrated in Fig. 1.2. It can be considered
as an “Energy Community” comprising separate microgrids, but it also could have other
loads (the “local loads” in the diagram, which may be factories, commercial parks or other
community loads) and larger generation (labelled “bulk generation” in the diagram and this
may be fossil fuel based, or PV/Wind “farms”).

The proposed EMS has been created as a hierarchical control approach for the microgrids,
which is designed specifically to address the stochastic nature of renewable energy generation
and load consumption. The EMS is split into two levels: main grid level and microgrid level,
as shown in Fig. 1.2. The Robust Model Predictive Control (Energy Profiler) at the higher
level allows the operation and coordination of multiple microgrids and must have the ability
to communicate with individual local controllers at the microgrid level.

At the microgrid level, a real-time control strategy is adopted to ensure the short-term ob-
jectives of the end-user and this controller operates based on the instantaneous and dynamic
variation of the power flow of DERs, and load consumption of each of the microgrids. Addi-
tionally, this real-time local controller follows a power reference (P i

mgref ) set by the Robust
MPC (Energy Profiler). The power reference should be calculated with an understanding of
what can be met by the microgrid energy resources (PV, storage system, load) so that there
will always be a high likelihood that the power target (P i

mgref ) can be followed reasonably
well.

The Robust MPC implements an optimization of the predicted performance of the energy
community dynamics and the electricity market prices over a prediction horizon while consid-
ering the uncertainty associated with predictions of the renewable generation and electrical

Figure 1.2: Hierarchical Control Structure Proposed

3



demand. In this thesis, the uncertainty is handled using fuzzy prediction interval models
tuned to a desired coverage probability. Finally, the outputs at this level are the power
references (P i

mgref ) to all the microgrids associated with the Robust MPC and are updated
each 30 min. This sample time is selected because energy markets tend to operate with a
half-hourly update rates.

1.3 Hypotheses

The hypotheses associated with this work are:

1. Energy management system based on a robust control strategy for the coordinated oper-
ation of multiple microgrids and distribution network system demands an accurate repre-
sentation of uncertainty of loading profiles and renewable generation profiles.

2. Energy storage used at distribution level can be of benefit to both the end user (reducing
energy costs) and the network operator (limiting peak power levels, enabling increased
penetration of DG) for electricity distribution systems.

3. End users trading as energy communities can reduce peak power flows and aid with asset
utilization at distribution system level – for example by exploiting complementary power
profiles such as schools with daytime consumption, households with peak morning and
evening consumption.

4. End users trading as energy communities can optimise the use of DG and the size of energy
storage required - by increasing the number of end users within a community, the load
profile reduces in variability and becomes much more predictable and this can then enable
the development of effective energy storage systems, which can be used at distribution
system level.

1.4 Objectives

1.4.1 General Objective

To design novel hierarchical energy management system for the operation and coordination of
microgrids, including the uncertainty associated with both renewable distributed generation
and load.

1.4.2 Specific Objectives

1. To propose a real-time control strategy that allows integration of the distributed energy
resources, ensuring the short-term power balancing objectives of each microgrid.
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2. To design new prediction interval models for characterising the uncertainties associated
with distributed energy resources and load included in the proposed framework.

3. To design novel robust predictive control strategy based on prediction interval models to
ensure the long-term energy management objectives, including constraints imposed by the
distribution network system.

4. To validate the proposed framework with the hierarchical control strategy developed by
simulation, taking into account various conditions and scenarios to determine the reliable
and efficient operation of the clusters of microgrids.

5. To demonstrate that the concept of Energy Communities can be beneficial to both end
users and network operators.

1.5 Contributions

This project considers the development of a suitable hierarchical energy management system
(EMS) for energy communities, which can work effectively in the presence of the variability in
end user profiles and the intermittency of renewable energy sources. Within each microgrid
a low level control is executed to control the net power flowing from the main grid to each
microgrid according to a reference sent from a central “Energy Profiler” which calculates these
microgrid power references. The research and development of this hierarchical EMS forms
the main objective of this project, thus, the main contributions of this work are:

• Development of a new modelling methodology for constructing prediction intervals based
on fuzzy numbers and its extension to fuzzy and neural network prediction interval models,
and the appropriate method for identifying the parameters of these prediction interval
models.

• Development of a novel two-stage Energy Management System (EMS) for the operation
and coordination of multiple microgrids. The EMS includes a real-time controller at the
microgrid level and a Robust Model Predictive Control at the main grid level.

• Formulation of Robust Model Predictive Control (MPC) using prediction interval models
to characterise the uncertainty of renewable resources and the load. Robust MPC can
be designed using uncertainty sets, such as the prediction interval models, combining the
worst-case analysis with a min–max formulation to obtain optimal solutions that are robust
against variations in the system parameters with respect to a nominal value (optimal worst-
case scenario).

• Incorporation at the real-time controller (lower level of the hierarchical EMS) of stochastic
filtering techniques to estimate the state of the charge (SoC) of the energy storage system
(ESS) and an estimator of the maximum available power from the ESS. The objective to
include these estimators is for guaranteeing safe operation of the ESS without violating
the operating limits for the current, voltage, and SoC.
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interval models of renewable resources. In 2016 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pages 336–343. https://doi.org/10.1109/FUZZ-IEEE.2016.7737706,
July 2016.

F. Veltman, L. G. Marín, D. Sáez, L. Guitierrez, and A. Núñez. Prediction interval
modeling tuned by an improved teaching learning algorithm applied to load forecasting in
microgrids. In 2015 IEEE Symposium Series on Computational Intelligence, pages 651–658.
https://doi.org/10.1109/SSCI.2015.100, Dec. 2015.

1.7 Thesis Outline

The rest of this thesis is structured as follows:

• Chapter 2 presents the state-of-the-art of the main topics related to this thesis: hierarchi-
cal control of microgrids, architectures and methodologies for EMS scheduling. Addition-
ally, prediction interval models are presented as an alternative to including the uncertainty
into the Robust EMS formulation. Finally, studies related to the coordination of microgrids
are discussed.

• Chapter 3 develops a new prediction interval modelling methodology based on fuzzy
numbers. Fuzzy and neural network prediction interval models are developed based on
this proposed methodology. The developed models are compared with a covariance-based
prediction interval method and these models are tested by forecasting up to two days ahead
of the load of the residential dwellings in the town of Loughborough, UK.

• Chapter 4 proposes a two-level hierarchical EMS which realises both short-term power
balancing and long-term energy management, benefiting both the energy community mem-
bers and the distribution network operator. The proposed EMS addresses both the un-
certainty of the renewable energy resources and the variability in end-user consumption
profiles by means of prediction intervals and has been evaluated using data from a typical
urban community made up 30 dwellings with a photovoltaic (PV) power level of up to 50%
penetration, and an energy storage system of up to 135kWh.

• Chapter 5 presents the design of an EMS for microgrid coordination, including the un-
certainty associated with renewable DG and load. The performance of the proposed hi-
erarchical EMS is tested with two case studies. The first case study corresponds to an
energy community made up of two microgrids with different numbers of dwellings, renew-
able energy (Photovoltaic and Wind Energy) and ESS based on lead-acid batteries. The
second case study corresponds to an energy community made up of three microgrids. For
this case, a microgrid with a school demand profile is included with the aim to exploiting
complementary power profiles.

• Chapter 6 gathers the main conclusions made from different stages of this thesis. Addi-
tionally, the recommended future work is presented.
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Chapter 2

Literature Review

This chapter presents the state-of-the-art of the main topics related to this thesis. First,
the effects that the integration of distributed generation (DG) could have on the distribution
network, regarding operational issues over the existing network are described. Next, different
hierarchical control approaches adopted to successfully integrate DERs into the distribution
system are detailed. These architectures of control can improve the power quality and reliabil-
ity of the electrical network and ensure that the potential benefits of DG are fully harnessed.
Then, the most reported architectures and methodologies for energy management system
(EMS) scheduling are discussed. Additionally, the common techniques for the formulation
of the EMS with the management of uncertainty are described. Later, prediction interval
models are presented as an alternative to including the uncertainty of nonconventional energy
sources and electrical demand into the Robust EMS formulation. Finally, studies related to
the coordination of microgrids are discussed.

2.1 Introduction

Integration of renewable generation (RG) at the transmission level and the high penetration
of DERs in the distribution system have to be economically efficient and reliable [17]. To
achieve this, a level of intelligence should be incorporated into the electric system through
active management technologies and communication systems. These intelligent electric power
systems are referred to as smart grids [18, 19, 20]. The concept of the smart grid includes
the technological developments on the current electrical grid that make it more flexible. The
information technologies are the key to the smart grid due to their allowing the monitoring
and control of the reliable operation of the power system in a economical manner [21].

One way to manage the smart grid is to split the distribution system into small clusters
or microgrids, considering control strategies for coordinating these multiple microgrids [19,
20]. Some objectives of the microgrids could be maintaining power balance, maximising
self-consumption from renewable energy (RE), guaranteeing power quality, minimising grid
energy during peak periods, minimising system losses, maximising the lifetime of energy
storage, minimising customer cost, and minimising CO2 emissions.
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The microgrids can operate either in grid-connected or islanded modes. In the grid-
connected mode, the microgrid is connected to the host power system on the distribution
level at a single point of connection, or point of common coupling (PCC). In this scenario, the
main grid can supply the power deficit of the microgrid, and the surplus power generated in
the microgrid can be traded with the distribution network operator (DNO) and can provide
ancillary services. The islanded mode of microgrid operation represents a more critical case,
in which the active and reactive power generated within the microgrid must be in balance
with the demand of local loads [22, 23].

Therefore, the microgrid concept is an alternative for overcoming the challenges of inte-
grating DER units, including RE sources, into power systems [3, 16]. The main issues to be
overcome in order to allow seamless deployment of microgrids, include [3]:

• Scheduling and dispatching of units with a high penetration level of DERs, and considering
the variability in the renewable generation and load.

• Designing appropriate Demand Side Management (DSM) schemes.

• Developing new voltage, frequency, and power control techniques to take the increase in
power-electronics-interfaced distributed generation into account.

• Designing new electrical market models that allow promoting green-energy technologies.

• Implementing new protection schemes and control system that ensure reliable, secure and
economical operation of microgrids in either grid-connected or stand-alone mode.

In the next section, the impact of the integration of distributed generation units (DG) on
a distribution system network will be presented.

2.2 Impact of the Integration of Distributed Generation
on a Distribution Network

DG is an electric power source connected directly to the distribution network, or to the
customer side of the meter [24]. DG is characterised by relatively small generated power, and
the possibility of choosing the location in the network area freely. The renewable energy (RE)
and energy storage system (ESS) are particular DG units [9, 25]. In [9], the authors report
that the main advantage of DG is that it is close to the consumer loads. The disadvantage
is that the distribution systems are designed such that the power flows in one direction, and
when the DG power is greater than the downstream load, it sends power upstream, reversing
the direction of the power flow. Because the interconnection of the DG to the distribution
system may have significant effects on the system, some of these effects are analysed below.

In [25] some benefits and issues of DG were explained based on a simulation for the IEEE
14 test system with a 3MW wind turbine. The authors explain that the greater benefit of DG
is that the electricity is generated near the place of consumption. The increase in the power
supply security related to the use of different energy sources, reduction of power losses in
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the network, competitive energy markets, reduced environmental impacts where RE sources
are used, and deferred investments for upgrading existing systems are the other benefits of
including DG. On the other hand, increases in short circuit level, voltage profile changes
along the network, and congestions in system branches could be some of the problems of
including DG. In general, the power quality and reliability may be affected, and the network
protections may not function properly.

In [26], the author says that the inclusion of DG in the distribution network can result in
several benefits for both the utility and the customers. The benefits for a simple case of a
radial distribution feeder with concentrated load and distributed generator were quantified.
The result shows that DG can reduce the electrical line losses, but this depends on the
dimension of DG with respect to the load, location, and operating power factor. In [45], the
results showed that with the inclusion of DG in the distribution network, the fault current
levels could increase, and the protection system schemes might need to be changed.

Summarizing, DG may play a significant role in improving the reliability of the grid,
improving the power quality, and providing voltage and frequency support in order to provide
in an efficient and stable operation of the whole electric system. Additionally, the DG can
reduce greenhouse gas emission by providing clean and efficient energy (see Fig. 2.1) [9,
10, 27]. However, when DG penetration occurs, the topics mentioned above can sometimes
become issues for the distribution system.

 Efficient and stable

operation

 Voltage and 

frequency support

 DG

Integration

Reduce greenhouse

gas emission
 Power qualityReliability

Figure 2.1: Benefits DG Integration into the Distribution System

The authors in [28, 29, 30, 31, 32] reported that active management of DG units and
controllable loads into different sections of the distribution network provides an acceptable
approach to increasing of the penetration of DG into a passive distribution network, in order
to avoid the costs of network reinforcement. Active management of a distribution network
requires the integration of control strategies at different levels in a smart grid framework and
communication technologies that allow the connection of DG units to the network. Next
section presents the approaches to control of microgrid reported in the literature in order to
successfully integrate DERs into the distribution system and that their potential benefits are
fully harnessed.
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2.3 Control of Microgrids

The design of control and protection systems are needed in order to successfully integrate
DERs into the distribution system, ensuring that the reliability of the system is not signif-
icantly affected and that the potential benefits of integrating DG are entirely exploited [3].
Hierarchical control structure is the most common architecture used in the power system’s
control because this approach achieves a compromise between the centralized and decentral-
ized control schemes [3, 7]. In the hierarchical architecture, the defined control levels differ
in their speed of response, in the time frame in which they operate, and in the infrastructure
requirements, for instance, the communication requirements. Next, an overview of different
hierarchical control structures is presented from the perspective of microgrids.

Three control levels are typically used in the hierarchical architecture for microgrids oper-
ation [14, 33, 34, 35, 36, 37, 38]. The first level is named primary control, and its function is
load sharing between converters, based on decentralized control. The performance and stabil-
ity of the system can be improved, adjusting both the frequency and output voltage, because
the active and reactive power are shared among DG units at this control level. The second
level (secondary control), is responsible for removing any steady-state error introduced by the
primary control level. When a load change is realized, the frequency and voltage values must
be restored to their nominal values by this control level. Finally, the decision of importing or
exporting energy for the microgrid is the responsibility of the third level (tertiary control),
named energy management system (EMS). The energy flows are optimised by adjusting the
set points of the microgrid inverters. This level is responsible for the economical and optimal
operation of the microgrid. In different studies, several control strategies (belonging to the
different control levels) have been designed for the operation of only one single microgrid,
adopting this hierarchical control structure (three layers).

In [2] a hierarchical control architecture is proposed for a smart grid that is comprised
of multiple microgrids. Three control levels are considered: a distribution network oper-
ator (DNO) and market operator (MO), a microgrid central controller (MCC), and local
controllers (LCs) associated with each DER unit and load, as is shown in Fig. 2.2.

In this approach, the DNO and MO operate in an area in which more than one microgrid
exists. These two entities can be considered as part of the main grid, but not the microgrid
itself. The MCC functionalities include maximising the use of locally generated power, and
coordinating the LCs. The MCC is the main interface between the DNO/MO and the micro-
grid. At the MCC level, the microgrid operation is optimised according to the open market
prices, the bids received by the DG units, and the forecasted loads. In general, the MCC
level is responsible for the reliable, secure, and economical operation of microgrids in either
grid-connected or stand alone mode. The LC is placed at the lowest level of the proposed
hierarchical structure, and controls the DGs and controllable loads. In a centralised aprroach,
each LC receives set points from a corresponding MCC, and in a decentralised approach, each
LC can communicate with the MCC and other LCs in order to share knowledge, request/offer
a service, and/or exchange any other information relevant to the operation of the microgrid,
but the decisions of each LC are made locally.
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Figure 2.2: A Microgrid Supervisory Control Architecture. Figure taken from [2]

A similar approach to the previous one is presented in [3] and [23] for microgrid opera-
tion. The hierarchical control structure adopted is presented in Fig. 2.3. The primary and
secondary control levels are associated with the operation of the microgrid itself, and the
tertiary level refers to the coordinated operation of the microgrids and the operator network.
In [2], short-term power balancing and long-term energy management objectives of the mi-
crogrid operation are distinguished, but the optimisation or control algorithms that could
provide power balancing and energy management are not mentioned. In [3] the state-of-the-
art of primary control and EMS levels is presented. Nevertheless, the control level related to
microgrid coordination is not discussed in detail. The authors explain that this level could
provide the set points to the EMS of each microgrid, based on the requirements of the main
grid, and that it operates in the order of several minutes.

In [4], another hierarchical control structure with three levels is proposed. In this case,
the hierarchical optimisation method optimises the operation of the system by scheduling
the operation of several resources with sufficient storage capability for maximising the bene-
fit to the utility and its customers. Fig. 2.4 shows the proposed approach, and the multiple
objectives at each level: distribution feeder optimisation, substation optimisation, and sys-
tem optimisation. At the feeder optimisation, the problem is formulated as a quadratic
optimisation problem. At the substation and the system optimisation levels, a stochastic
dynamic programming problem is formulated for capturing the uncertainty associated with
the integration of renewable energy.

The substation optimisation generates the target value that each feeder should achieve to
ensure optimal operating of the substation over the planning period (24 hours) and every 15
minutes the targets are updated. The feeder optimisation schedules the controllable resources
in order to attain these imposed targets. In that study, each feeder can be seen as a microgrid.
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Figure 2.3: Hierarchical Control Levels for Microgrids Operation. Figure taken from [3]

The aggregated model of all feeders fed from the same substation, and the targets received
from the system optimisation level are used at the substation optimisation to generate the
individual targets for every feeder (microgrid) at the lower level. The system optimisation
level generates the targets that each substation should achieve to guarantee optimal opera-
tion. At this level, the aggregate substation models and short-term forecasted data are used
as input to the optimisation process. The approach proposed in that study can be applied
to a distribution system independently of the size of the system because of the flexibility for
the scalability at each level. The interconnected operation of the different levels is driven
through the generated targets as reference for feeder and substation optimisation levels. In
that study is not clear how the uncertainty of renewable energy and load are characterised.
Additionally, at each level, only optimisation methods are proposed to solve the different
problems.

Figure 2.4: Hierarchical Optimisation Approach Proposed in [4]
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The authors in [39, 40] and [5] have adopted a hierarchical control framework for a smart
grid, similar to the approach explained previously (see Fig. 2.5). The lowest level corresponds
to the microgrids and is named community’s central control platform. The control aim at
this level is to ensure the realization of short-term power balancing through real time power
control, following targets set (PFT ) by the cluster’s central control platform, which is the next
level in this approach. The optimisation objective at the cluster’s central control platform
is to minimise distribution losses and avoid overloading the local network assets, considering
the constraints imposed by the distribution network operator. The optimisation objective
at the highest level is to maximise the use of renewable energy, and maintain stability of
the distribution network. The output at the distribution network level is the power flow set
point (PFTC) for each microgrid cluster associated with this distribution network operator
(see Fig. 2.5).

In these studies, the authors have suggested heuristic optimisation techniques at the dis-
tribution network operator and the cluster central control platform levels at different rates
of execution, since the accuracy of the load forecast could be different at each level. Unlike
[4] in which a quadratic optimisation problem at the lower level is suggested, in [39] and
[41] the authors proposed an algorithm with fast decision-making capabilities based on the
instantaneous and dynamic values of power. This algorithm is implemented because the de-
mand prediction at the lower level could be unreliable due to low aggregation, and because
the power flow is highly stochastic and variable.

Figure 2.5: A Hierarchical Multilevel Control Framework for a Smart Grid. Figure taken
from [5]
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The Community Power Flow Control (CPFC) deterministic algorithm proposed in [39] and
[41] runs in real time and manages the resources in the microgrid, determining the correct
number of microgrid devices to dispatch in a coordinated manner. The active power flow has
been chosen as the primary control parameter, and the voltage and current measurement at
the point of common coupling are used to calculate the microgrid power flow. The algorithm
is developed at the lower level, and the following targets are set by the cluster’s central control
platform.

Derived from the literature review of hierarchical control approaches to the operation of
smart grids, and in particular, for microgrids, the following observations can be highlighted:

The control at the lowest level in the hierarchical structure corresponds to the control
of the power electronic converter of the DG units that make up a microgrid. These control
strategies should ensure that voltage and frequency values are within the allowable limits,
and follow the reference values sent by adjacent levels, to guarantee the power quality and
stability of the microgrid. The control at the lowest level must be operated at the fastest
response. The models of the DG units that are adopted in this thesis assume that the control
strategies of the power electronic converter are working appropriately.

The next level in hierarchical structure is often called the Energy Management System
(EMS). The aims of the EMS consist of finding the optimal operation of the microgrid,
according to both short-term power and long-term energy objectives. The EMS tasks may be
constructed on one or more levels, as evidenced in the literature review concerning hierarchical
control structures. Finally, the highest level in all the approaches presented corresponds to
market and business models that can be made by the distribution network operator and
market operator. The objectives at this level could be to maximise the use of renewable
generation, and maintain stability of the distribution network.

In this thesis, a two level EMS (main grid and microgrid level) is developed to achieve the
objectives of operation and coordination of microgrids, which considers the uncertainty of
the renewable energy resources and the variability in end-user load profiles. The design of the
first level (microgrid level) is in accordance with short-term power balancing objectives. The
second level (main grid level) ensure the long-term energy management objectives. In the
next section, a review of the literature on the different approaches for the EMS scheduling is
presented.

2.4 Energy Management System

The microgrid scheduling problem can be reviewed from the point of view of the architecture
and scheduling methodology of the EMS [7]. The selection of architecture and scheduling
methodology of the EMS depend on technical, economical, and environmental aims to be
achieved in the microgrid operation. Fig. 2.6 shows the most frequently reported approaches
to microgrid scheduling, which are described below.
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Figure 2.6: Architecture and Methodology for EMS Scheduling

With respect to the architecture of the EMS: centralised, decentralised, and distributed
are the main approaches reported in the literature [3, 7, 42, 43]. The centralised architecture
is based on a central controller that determines the dispatch of the resources according
to established objectives, considering relevant information about the microgrid, as well as
information from forecasting systems. The fully centralised approach is difficult to implement
when a large number of DER units are included in the microgrid, because increase the
complexity of the problem and require a higher capacity of the communication network.

The decentralised architecture aims to achieve economical operation of a microgrid while
providing the highest possible autonomy to the different DERs by local controllers. This
approach can simplify the complexity of the problem by reducing it into subproblems and
solving them locally. Nevertheless, the fully decentralised approach is not always possible
due to the strong couplings among the operation of several units of the system, requiring a
minimum level of coordination that cannot be achieved by using only local controllers.

In the distributed architecture, each component of the microgrid is considered as an agent
with the ability of making decisions, and the optimal schedule is obtained using iterative
data transfer among the agents. The multi-agent systems are the approaches used most,
to implement distributed control. For more details about these architectures proposed for
EMSs, see [3, 7] and [42], which several works that use these approaches are reported.

Each architecture proposed offers its own benefits and drawbacks and therefore hierarchi-
cal schemes have been proposed to exploit the benefits of different approaches [2, 34, 44].
In a hierarchical structure, different levels can be defined to incorporate control strategies
that ensure the realisation of short-term power balancing objectives and long-term energy
management, benefiting the microgrid owner/members and the distribution network operator
[40].

The scheduling methodology of the EMS tends to be divided into two groups: one based
on non-optimal controllers and the other based on optimal controllers [45]. Most approaches
reported in the specialized literature with regard to the scheduling methodology of EMSs
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are based on optimal controllers, in which the behaviour of the load and energy resources
available must be predicted.

Optimal EMS based on a receding horizon control (RHC) strategy (also known as model
predictive control (MPC)) has been proposed. The principle behind of this approach is to
anticipate the expected behaviour of both the renewable resources and the load demand over
a prediction horizon, and, when this predicted behaviour is available, the commitment and
dispatch of the DER units is performed in accordance with the selected performance criteria
[46, 47]. For instance, an EMS based on a rolling horizon strategy for an isolated microgrid
composed of photovoltaic panels, two wind turbines, a diesel generator, and an energy storage
system is proposed in [48]. The EMS considers a two-day-ahead forecast of renewable sources
and demand. Finally, the optimisation problem is solved using mixed integer linear program-
ming, ensuring near-optimality. In [49] a novel double-layer coordinated control approach
for a microgrid EMS is proposed for both the grid-connected and stand-alone modes. Two
layers are proposed: the scheduling layer, and the dispatch layer. The scheduling layer has
an economical operation scheme based on forecasting data, while the dispatch layer provides
the power of controllable units based on real-time data. The results show that the revenues
are maximised according to DG bids and market price in the grid-connected mode, with total
load supplied, and total renewable sources used.

Other examples of EMSs based on MPC approaches are reported in [23, 50, 51, 52, 53].
In general, the goal of the EMS is to manage the DERs economically to meet certain power
quality standards. With the MPC approach, an optimisation problem is solved at each time
step to determine a plan of action over a future time horizon. However, only the command
for the next time-step is implemented.

The effectiveness of these control approaches depends mainly on the accuracy of the pre-
diction models, which in turn depends on the sampling time and aggregation level, as is
reported in [54]. Additionally, longer calculation times compared with non-optimal controls
are required, particularly when using nonlinear predictors. Therefore, when prediction mod-
els are not suitable for capturing the behaviour of the system or cannot be implemented in
real-time, an alternative approach is to use a control with real-time decision-making capa-
bilities based on the instantaneous power flow and the availability of the DERs and loads,
rather than prediction profiles. This “Community Power Flow” approach has been shown to
effectively schedule DERs in [41].

Additionally, mixed integer linear programming (MILP), continuous relaxation (CR), and
the fuzzy logic controller (FLC) were the control strategies used for optimal energy flow with
a home energy management system (HEMS) in [55]. The results showed that the three ap-
proaches can optimise the energy consumption. The MILP gave the lowest optimisation cost
but required the highest computational time. The CR reduced the computational complex-
ity but increased the cost compared with the MILP. The authors suggest that FLC is the
best approach for a real-life application, since it reduces the computational time, has good
performance in cost optimisation, and needs no forecast data.

The authors in [40, 41, 56, 57] and [58] presented several “rule-based” control approaches
for microgrid management, with [59, 60, 61] and [62] describing fuzzy rule approaches. In
[60], the electricity price is considered as an input parameter of the fuzzy controller. The
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authors in [59] suggests including the uncertainties of renewable energy in the design of the
fuzzy controller, by using, for instance, a type-2 fuzzy systems. In general, the proposed
objectives were to maximize the use of renewable energy in satisfying the local demand, and
optimising the use of the battery to benefit the consumer by reducing the energy cost, while
the maintaining the reliability of the whole electrical system.

The approaches discussed above are some examples of EMSs based on non-optimal con-
trollers with real-time decision-making, and the studies reported demonstrate their effec-
tiveness for microgrid management. These methods do not require a detailed model of the
system, and can have a fast response to changes in the system. However, they require design
and commissioning, and the creation of generalised procedures to support the application of
these types of EMS are not yet in place. For example, parameters such as the minimum re-
quired RES penetration level and the correct sizing of energy storage elements are necessary
so that the rule based algorithm can meet the demand in an optimal way.

In this thesis, a two level EMS is developed for microgrid management, which considers the
uncertainty of the renewable energy resources and the variability in end-user load profiles.
The aim is to incorporate the benefits of schemes based on both receding horizon control
and real-time decision-making. Therefore, the proposed EMS comprises a real-time control
strategy which uses a rule-based approach at the lower level, and a Robust MPC at the higher
level for operation and coordination of microgrids. In the next section, common techniques
for the formulation of the EMS with the management of uncertainty, particularly those based
on MPC are presented.

2.4.1 EMS with management of uncertainty

Common techniques for the formulation of the EMS with the management of uncertainty,
particularly those based on MPC, are Stochastic Optimisation (SO) and Robust Optimisation
(RO).

In the SO approach, an appropriate number of scenarios with their probabilities is required
to achieve a good representation of the uncertainty [63]. In [64, 65, 66, 67, 68] several studies
on stochastic-based management of microgrids with high penetration of renewable resources
were presented. The results of these approaches showed superior performance in terms of
energy cost compared to that of a deterministic EMS. Although SO EMS formulations appear
to be feasible solutions for addressing the uncertainty, the selection of the probability density
functions (PDFs) for modelling the uncertainty is difficult, and the computational burden
might increase.

RO has become popular since it can be applied using uncertainty sets rather than prob-
abilistic models, reducing the difficulties related to the identification of PDFs for renewable
resources and loads. The RO approach combines the worst-case analysis with a min–max
formulation to obtain optimal solutions that are robust against variations in the parameter
with respect to a nominal value (optimal worst-case scenario) [63]. The RO methods were
proposed in [63, 69, 70, 71, 72] for optimal scheduling of microgrids. Aspects associated with
economic and environmental performance, together with reliability were considered in the
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presence of high penetration levels of RES resources and distributed storage systems.

In this thesis, the proposed Robust EMS is based on MPC, thus it requires models to
predict the expected value and the variability of the demand and the energy available from
the renewable resources, over a prediction horizon. Clearly, the performance of the Robust
MPC depends on the quality of these models. Therefore, prediction intervals appear as an
alternative solution for providing not only the expected future resources, but also a measure
of their variability, and could be used as a solution for generating scenarios for Robust EMS
formulation. The Prediction interval quantifies the uncertainty associated with the difference
between the measured data and the predicted value, and it takes both the uncertainty in
model structure, and the noise in data into account. The region defined by the upper and
lower bounds of the prediction intervals is interpreted as the region to which the modelled
phenomenon belongs with certain coverage probability, and therefore, a reduced number of
scenarios can be obtained. In this work, the Robust MPC formulation uses prediction interval
models to characterise the uncertainty of renewable resources and the load. Next, prediction
interval modelling is presented and its use in Robust MPC formulation.

2.5 Prediction Interval Modelling

In recent decades, several methodologies have been proposed to solve nonlinear model iden-
tification problems that use a finite number of measured data and consider an optimality
criterion [73]. Many studies have examined methods for improving the accuracy of these
approaches to obtain higher precision in expected value prediction [74, 75]. Although these
methodologies exhibit adequate performance in estimation and prediction, uncertainty is not
typically quantified by these modelling approaches, and only expected value is obtained.
However, information on the dispersion of the output of the model provides more informa-
tion about the phenomena modelled with uncertainty and more useful information from a
decision-making point of view than the models with only expected value [76, 77].

Confidence intervals and prediction intervals have been proposed to model the uncertain-
ties of a system. Confidence intervals are used to capture uncertainties in the unknown
parameters of a model. Confidence intervals are usually associated with parameters rather
than with observations. Prediction intervals are used to capture uncertainties in random vari-
ables yet to be observed and provide a probability that the random variable will be within a
given interval [78, 79, 80, 81]. Prediction intervals consider more sources of uncertainty than
do confidence intervals; these additional sources of uncertainty include model error and noise
variance. The predicted outputs (black lines in Fig. 2.7) are intervals that represent (with a
given coverage probability) the most likely region defined by the upper and lower bounds of
the interval to which the output (targets) of the uncertain phenomena will belong, as shown
in Fig. 2.7. Point prediction (Fig. 2.7) gives a value close to mean or median and is unable
to predict that level of randomness or uncertainty [76]. In [82] and [76] a literature review
on methods for construction of prediction intervals is explored and summarised.
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Figure 2.7: Rough sketch for representing a Prediction Interval

In this thesis, prediction interval models are used to represent both nonlinear behaviour
and uncertainty derived from nonconventional energy sources and electrical demand. The
uncertainties associated with wind and photovoltaic power are due to the stochastic inter-
mittency of the primary input (wind speed and solar radiation), and the uncertainty of the
demand profiles in energy communities (microgrids) is due to minor load variations, which
can generate large changes in the total profile [7]. Moreover, for control of microgrids, the
uncertainty associated with intermittent power sources and load is typically handled using a
Robust MPC in the formulation of the EMS [83].

For instance, in the work of [84], a wind-based energy source was modelled by a fuzzy
prediction interval based on the method reported in the work of [85], and a Robust EMS was
achieved using the convex sum of the lower (worst case) and upper (best case) bounds of
the available wind energy. In a similar way, in the works of [86] and [87], prediction interval
models of the solar power, wind power, and electrical demand of a microgrid were generated
to formulate a scenario-based Robust EMS. In [86], the combination of all the lower and
upper bounds of the prediction intervals allowed the various scenarios for Robust EMS to
be defined, and the solution was obtained using a second-order cone optimization problem.
In [87], scenarios were generated via Taguchi’s orthogonal array testing method using the
prediction intervals of the uncertain variables modelled, and the optimization problem was
solved using a search strategy based on an orthogonal array. The results of the previous
studies showed that a more secure and reliable operation is achieved with Robust EMS than
with EMS without uncertainty. However, the performance of a Robust EMS depends on the
quality of the prediction interval models over the future time horizon; therefore, improved
prediction interval model designs are required [7, 83, 88].

In this thesis, a two level EMS is developed for microgrids management and the uncertainty
is explicitly incorporated in the formulation of the Robust MPC controller by means of
prediction intervals. Finally, an important topic in this thesis is the coordination of multiple
microgrids since the majority of the studies reported consider only a single microgrid. A
review of the importance and benefits of coordinated control in microgrids will be presented
in the next section.
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2.6 Coordination of Microgrids

Most studies related to microgrid scheduling have considered a single microgrid. When the
distribution system is composed of multiple microgrids, the coordination between microgrids
and distribution network operators can improve the operation and reliability of the whole
system. As explained in [15]: “The concept of multiple microgrids is related to a structure
formed at the medium voltage (MV) level, consisting of low voltage (LV) microgrids and
DER units connected on adjacent MV feeders. The main issue when dealing with control
strategies for multiple microgrid systems is the use of individual controllers, which should
have a certain degree of autonomy, and be able to communicate with each other in order to
implement specific control actions”.

A hierarchical control approach is justified by the increase in both the dimension and the
complexity of the system so that the management of a multiple microgrid system requires
the use of a more flexible control and management architecture. Recent studies show that
connecting multiple microgrids in a coordinated manner to a smart distribution system can
improve the operation and reliability of the electric system, particularly at the medium
voltage level [89].

For instance, in [6] a typical urban network with several microgrids and a total installed
capacity limited to 20% of the microgrid peak load was considered. Each microgrid had 25%
renewable energy, mainly PV, and 75% controllable units, such as micro-turbine. In Fig. 2.8
the area below the curve indicates the amount of energy needed to be bought from the utility.
The results show higher energy production by microgrids, and therefore, lower amounts of
energy that need to be bought. As can be seen in Fig. 2.9, a congestion level reduction
at the peak hour in the ten most congested lines, especially for periods of high electricity
prices, is achieved. The results show a 7.9% congestion level reduction in the most congested
line compared to a case without microgrids installed, with typical electricity prices, and a
reduction of 15.7% in the most congested line during a period of high electricity market
prices. Fig. 2.10 shows an active loss reduction, reaching a value of 23.7% at the peak hour,
for a period of high electricity prices compared to the case without microgrids.
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Figure 2.8: Total Active Load in a Period of High Electricity Market Price. Figure taken
from [6]

Figure 2.9: Congestion Level at the Ten most Congested Lines at the Year of Investment.
Figure taken from [6]

Figure 2.10: Total Active Losses in an MV Urban Network for a day of Typical and High
Electricity Market Prices. Figure taken from [6]
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There are several studies related to the coordination of different microgrids, and between
a distribution network operator and microgrids, in which the benefits of dividing the smart
grid into multiple microgrids are demonstrated. For instance, the authors in [90], present
a MPC for optimal power exchanges in a smart network of microgrids. The global benefits
are maximised with an innovative control strategy for a cluster of interconnected microgrids.
A MPC-based algorithm is used to determine the future scheduling of power exchanges
among microgrids, as well as the charging/discharging in each local energy storage system
for the future time horizon, based on information on power prices, power generation, and load
forecasts. The results demonstrated that the cooperation among microgrids has advantages
and benefits for each microgrid operation in terms of facing the deficiency or excess of power
production caused by uncontrollable renewable energy behaviour. Another conclusion is that
the uncertainties in predictions may have effects on the optimal control scheduling.

Other works related to coordination of multiple microgrids are presented in [1, 91, 92,
93, 94, 95]. In general, the results show that the coordination among different microgrids
decreases the distribution system total operating cost while maintaining the rated frequency
and voltage for each participating microgrid, the power quality and the reliability of the
electrical network and economically optimising the exchanged power.

In the studies presented above, the coordination between multiple microgrids, as well as
the stochastic nature of renewable energy and load, have not been considered simultane-
ously. Few studies have included uncertainty in the control strategies for multiple microgrids
operation. For instance, in [96] an optimisation problem for economical operation of mul-
tiple microgrids based on the power transaction between the microgrids and the main grid
is presented. The optimal power dispatch problem considers the uncertainties in load and
probabilistic modelling of generated power by renewable energy resources. In order to deal
with these uncertainties, the PDF associated with power generation and load is considered
as input to a probabilistic load flow problem. The problem is solved with a particle swarm
optimisation (PSO) algorithm. Results show that it is possible to regulate the power demand
and transaction between each microgrid and its neighbours, and between each microgrid and
the main grid. Additionally, it is indicated that the power sharing between microgrids with
main grid can reduce the total operation cost of the distribution network. The difficulties in
this study are related to the identification of PDFs of renewable units and load; and to the
lack of a guarantee that the optimal solution is achievable by the heuristic method used to
solve the problem.

In [97] a control strategy for the coordinated operation of networked microgrids in a
distribution system is proposed. The distribution network operator and each microgrid are
considered as different entities with individual objectives to minimise the operation cost. The
cost of a microgrid includes the operation costs of DGs, and the cost of buying electricity from
a utility. The incomes of a microgrid result from selling electricity to a utility. The costs of the
distribution network operator correspond to operation costs of DGs connected to the medium
voltage (MV) network, and the cost of buying electricity from microgrids and the connected
high voltage (HV) system. The revenues include selling electricity to the HV system, and to
consumers connected to the MV system and microgrids. A stochastic bi-level problem was
formulated for taking the uncertainties of DG into account, with the distribution network
operator at the upper level and microgrids at the lower level. The scenarios for characterising
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the uncertainties of renewable resources are generated from a Monte Carlo Simulation, and
the reduction scenario method is applied for increasing the calculation speed in the solution.
In this work, the uncertainty associated with the load is not considered, and the uncertainty
of renewable units is modelled by the beta function for representing the prediction error,
where the parameters for characterising this beta function are not easily obtained. Finally,
in the approaches already reported, only optimisation methods for EMS scheduling are used.

2.7 Discussion

A group of interconnected loads and distributed energy resources (DERs) that acts as a
single controllable entity with respect to the main grid is called a microgrid. The energy
management system (EMS) is responsible for reliable and economical microgrid operation,
managing the power and the energy between sources and loads.

When the distribution system is made up of several microgrids, and distributed generation
units and load are connected to adjacent medium voltage feeders, the design of new control
strategies and protection schemes is necessary for optimal operation. In this scenario, the
EMS is responsible for coordinating the operation between the distribution network operator
and the microgrids, or among different microgrids. The proposed objectives in the oper-
ation system must comply with technical, economical, and environmental requirements to
guarantee the power quality and the reliability of the electrical network. Moreover, the oper-
ational constraints, such as energy balance, load management, and DER limitations, should
be considered in multiple microgrids scheduling.

In this thesis, a hierarchical EMS is adopted, since allows incorporating a mechanism to
ensure both the realisation of short-term power balancing objectives, and long-term energy
management, benefiting both the microgrid owner and the distribution network operator.

Regarding the scheduling methodology of the EMS, two approaches are included: non-
optimal controllers and optimal controllers. Adopting an approach depends on the level
at which it is used in the hierarchical architecture, and the characteristics of the system
to be considered. Therefore, in this thesis, a two levels EMS is considered: the microgrid
(energy community) level and the main grid level. At the microgrid level, a real-time local
controller is proposed and at the higher level, Robust MPC controller is proposed to manage
the uncertainty by means of prediction interval models.
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Chapter 3

Prediction Interval Methodology Based
on Fuzzy Numbers

Prediction interval modelling has been proposed in the literature to characterize uncertain
phenomena and provide useful information from a decision-making point of view. In most of
the reported studies, assumptions about the data distribution are made and/or the models
are trained at one step ahead, which can decrease the quality of the interval in terms of the
information about the uncertainty modelled for a higher prediction horizon. In this chap-
ter, a new prediction interval modelling methodology based on fuzzy numbers is proposed
to solve the abovementioned drawbacks. Novel fuzzy and neural network prediction interval
models are developed based on this proposed methodology by minimizing a criterion that
includes the coverage probability and normalized average width. The fuzzy number concept
is considered because the affine combination of fuzzy numbers generates, by definition, pre-
diction intervals that can handle uncertainty without requiring assumptions about the data
distribution. The developed models are compared with a covariance-based prediction inter-
val method, and high-quality intervals are obtained, as determined by the narrower interval
width of the proposed method. Additionally, the proposed prediction intervals are tested
by forecasting up to two days ahead of the load of the residential dwellings in the town of
Loughborough, UK. The results show that the proposed models are suitable alternatives to
electrical consumption forecasting because they obtain the minimum interval widths that
characterize the uncertainty of this type of stochastic process. Furthermore, the informa-
tion provided by the obtained prediction interval could be used to develop robust energy
management systems that, for example, consider the worst-case scenario.

3.1 Introduction

In this chapter, prediction interval modelling based on fuzzy numbers provides a systematic
framework for representing uncertainty and nonlinear dynamics, which makes it useful for
forecasting the uncertainty associated with stochastic variables, such as renewable energy-
based generation variables. Next, the general interval modelling problem is detailed.
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The result of mapping an input vector Z(k) onto a nonlinear real continuous g function
can be written as follows:

y(k) = g(Z(k), w) + ε(k) k = 1, . . . , N (3.1)

where Z(k) = {z1(k), z2(k), . . . , zp(k)} represents the input vector of all measurements at
time k, y(k) is the output obtained from the set of measured data at time k, w is the true
parameter set, and random variable ε(k) is noise. The aim of the model is to find a real
function g ∈ G that belongs to the model class G, such that g is the best representation of
the system [77]. The condition for selecting the model is ‖y(k) − ŷ(k)‖ ≤ ε0 k = 1, . . . , N ,
where ŷ(k) = g(Z(k), ŵ) is the model output at time k, ŵ are the estimated parameters and
ε0 is the desired error model. The error may be due to unknown or unobserved variables that
affect the model output ŷ(k) [81, 79]. When the nonlinear real function g is an uncertain
function, it can be assumed that it is a member of the following family of functions [73, 85]:

G = {g : S → R1 |g (Z(k)) = gnom (Z(k)) + ∆g (Z(k))} (3.2)

where gnom represents the nominal function and ∆g models the uncertainty and satisfies
supZ∈S |∆g(Z)| ≤ c, c ∈ R. According to (3.2), the function g ∈ G can be used to predict a
new observation, and its uncertainty based on observed data. This type of function (g ∈ G)
is called a prediction interval model. The goal of prediction interval modelling is to find the
lower function ŷL and the upper function ŷU that satisfy:

ŷL(k) ≤ g(Z(k), w) ≤ ŷU(k) ∀Z(k) ∈ S (3.3)

In this respect, a function g from the class G can be found in the band defined by the
upper and lower functions. The prediction intervals are developed with a certain coverage
probability (1 − α)% that future observations of the uncertain phenomena belong to the
interval defined by the lower ŷL and upper ŷU [98]:

P {ŷL(k) ≤ y(k) ≤ ŷU(k)} ≥ (1− α) (3.4)

As in the works of Veltman et al. [99], Marín et al. [88], Shrivastava et al. [77], and
Khosravi et al. [100, 101, 102], in this work, the prediction interval coverage probability
(PICP) and the prediction interval normalized average width (PINAW) are the metrics to
be incorporated in the identification process of prediction intervals. PICP is used to quantify
the number of measured values that fall within the interval defined by the model, and PINAW
is used to measure the width of the interval.

In this chapter, new prediction interval models based on the concept of fuzzy numbers are
derived such that the width defined by the upper ŷU(k) and lower ŷL(k) values of the interval
is as narrow as possible while the interval contains a certain percentage of measured data y(k).
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This condition implies that, to generate prediction intervals, the average width measured by
PINAW must be minimized while considering a certain desired coverage probability measured
by PICP. In the next section, the proposed prediction interval models based on fuzzy and
neural network modelling are presented.

3.2 Prediction Interval Models Based on Fuzzy Numbers

In this section, a new approach to developing prediction intervals based on fuzzy and neu-
ral network models is derived. In general, the models consider a set of p inputs (z1(k) ∈
Z1, . . . , zp(k) ∈ Zp) that represent the input measurement data at time step k.

When an affine linear model is used, the model output ŷ(k) at time k is defined as follows:

ŷ(k) = θo + θ1z1(k) + · · ·+ θpzp(k), (3.5)

where θi (i = 0, 1, . . . , p) are the regression coefficients. In this approach, to include
uncertainty, the coefficients θi are defined as interval fuzzy numbers [103, 104]. Therefore,
the parameters are expressed as a fuzzy set that defines a fuzzy interval for representing the
value of θi.

Thus, the parameters θi (interval fuzzy numbers) are characterized by a mean (m) and
spread (s). The uncertainty distribution regarding the expected value is characterized using
various spread values, i.e., θi = [mi−si,mi+si]. The lower bound (ŷL) and upper bound (ŷU)
that define the prediction interval are defined based on the theorem of the affine combination
of type-1 interval fuzzy numbers (see Karnik and Mendel in [105] and Mendel in [103] for
details on this theorem):

ŷL(k) =

p∑
i=1

mizi(k) +m0 −
p∑

i=1

|zi(k)| si (3.6)

ŷU(k) =

p∑
i=1

mizi(k) +m0 +

p∑
i=1

|zi(k)| si (3.7)

Based on (3.6) and (3.7), the expected value is characterized by the mean (mi). The last
term in both equations is associated with the prediction interval, and it is characterized by
the parameters (si, si).

In this interval modelling approach, the parameters associated with spread (si, si) are ob-
tained to assure the desired coverage probability (1 − α)% with the smallest interval width
at the defined future prediction horizons. The proposed method for identifying these param-
eters (spreads) is described in Section 3.3. The models thus provide the values of the upper
(ŷU) and lower (ŷL) bounds given a coverage probability and the expected value ŷ(k).
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The proposed method is used to characterize uncertainty. Uncertainty corresponds to
the fitting error between the prediction ŷ(k) and the actual output y(k); thus, uncertainty
is defined by the interval [ŷL, ŷU ] to which the predicted value could belong. In the next
section, both fuzzy and neural network prediction interval models based on fuzzy numbers
are presented.

3.2.1 Fuzzy Prediction Interval Modelling

Mathematically, a fuzzy system is defined by a set of p inputs (z1(k) ∈ Z1, . . . , zp(k) ∈ Zp), a
set of rules, and an output ŷj(k) related to each rule at time k. The rules of the Takagi-Sugeno
models are expressed as follows:

Rj : if z1(k) is F j
1 and · · · and zp(k) is F j

p then

ŷj(k) = θjo + θj1z1(k) + · · ·+ θjpzp(k)
(3.8)

j = 1, . . . ,M , where M is the number of rules. Let F j (Z(k)) =
p∏

i=1

µF j
i

(zi(k)) be the

activation degree of each rule. Then, the normalized activation degree βj(Z(k)) is defined as
follows:

βj(Z(k)) =
F j(Z(k))
M∑
j=1

F j(Z(k))

(3.9)

In this work, singleton fuzzification, Gaussian membership functions (F j
i ), and the t-norm

product are used to provide the output of the fuzzy system:

ŷ(k) =
M∑
j=1

βj(Z(k))ŷj(k) (3.10)

Considering the proposed interval modelling framework, in the fuzzy prediction interval
models, the consequence parameters (θji ) of each rule (see (3.8)) can be considered as interval
fuzzy numbers with their corresponding means (mj

i ) and spreads (sji , s
j
i ). Thus, the local

interval output for each rule (j) is calculated as follows:

ŷjL(k) =

p∑
i=1

mj
i zi(k) +mj

0 −
p∑

i=1

|zi(k)| sji (3.11)

ŷjU(k) =

p∑
i=1

mj
i zi(k) +mj

0 +

p∑
i=1

|zi(k)| sji (3.12)
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Finally, the lower ŷL(k) and upper ŷU(k) bounds are calculated considering the activation
degrees (see (3.9)) and the local outputs of each rule (see (3.11)) and (3.12)) as follows:

ŷL(k) =
M∑
j=1

βj(Z(k))ŷjL(k) (3.13)

ŷU(k) =
M∑
j=1

βj(Z(k))ŷjU(k) (3.14)

In this study, a fuzzy clustering method is considered for defining the rule numbers and the
parameters (centre and standard deviation) of the Gaussian membership functions (F j

i ). The
means (mj

i ) of the consequences are estimated by the minimum least-squares optimization
method [106]. The method for tuning the spreads (sji , s

j
i ) is explained in Section 3.3.

The lower and upper bounds of the fuzzy prediction model for forecasting the output of
future steps are defined as follows:

ŷL(k + h) = f fuzzy(Z(k + h), βj(Z(k + h)),mj
i , s

j
i (k + h)) ∀h = 1, . . . , Np (3.15)

ŷU(k + h) = f fuzzy(Z(k + h), βj(Z(k + h)),mj
i , s

j
i (k + h)) ∀h = 1, . . . , Np (3.16)

where j = 1, . . . ,M is the rule number, i = 1, . . . , p is the input number, and Np is
the prediction horizon. Note that the parameters sji (k + h) and sji (k + h) are the spreads
tuned h̃ steps ahead, where h̃ ∈ {1, . . . , Np}, using experimental data with certain coverage
probability at the future steps. After the tuning process is completed and the prediction
interval is obtained, these parameters are held constant through horizon prediction, i.e.,
sji (k + h) = sji (k + h̃) and sji (k + h) = sji (k + h̃) for h = 1, . . . , Np. More details about the
tuning method are provided in Section 3.3.

3.2.2 Neural Network Prediction Interval Modelling

Mathematically, a neural network system is defined by a set of p inputs (z1(k) ∈ Z1, . . . , zp(k) ∈
Zp), a set of of weights (w) and biases (b) per layer, and an activation function per layer. If
the neural network uses a hyperbolic tangent activation function for the hidden layer and a
linear activation function for the output layer, the output of the neural network at time k is
defined as follows:

ŷl(k) =
L∑
j=1

w0
j,l

(
tanh

(
p∑

i=1

whj,izi(k) + bhj

))
+ b0l (3.17)

j = 1, . . . , L, where L is the number of hidden layer units and l is the number of output
units; in this study, l = 1. The hidden weights, hidden bias, output weights and output bias
are whj,i, bhj , w0

j,l and b0l respectively. The neural network in (3.17) can be written as follows:
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ŷ(k) =
L∑
j=1

w0
j Z̃j(k) + b0 (3.18)

where:

Z̃j(k) = tanh

(
p∑

i=1

whj,izi(k) + bhj

)
(3.19)

In this work, Bayesian regularization is used to train the neural network. Bayesian reg-
ularization consists of a paradigm designed to minimize overfitting of neural networks. The
method provides a Bayesian criterion for terminating training, thus generating better results
for the test dataset [107].

In this approach, the neural network prediction interval is developed such that the output
weights (w0

j ) are considered interval fuzzy numbers with their means (mj) and spreads (sj, sj).
The lower and upper bounds of the prediction interval can be calculated as follows:

ŷL(k) =
L∑
j=1

mjZ̃j(k) + b0 −
L∑
j=1

∣∣∣Z̃j(k)
∣∣∣ sj (3.20)

ŷU(k) =
L∑
j=1

mjZ̃j(k) + b0 +
L∑
j=1

∣∣∣Z̃j(k)
∣∣∣ sj (3.21)

The neural network can be defined as a neural network whose outputs are the upper and
lower bounds and the target prediction. As fuzzy prediction interval models, neural network
prediction interval models are used to forecast the output of future steps as follows:

ŷL(k + h) = fNN(Z̃j(k + h),mj, sj(k + h)) ∀h = 1, . . . , Np (3.22)

ŷU(k + h) = fNN(Z̃j(k + h),mj, sj(k + h)) ∀h = 1, . . . , Np (3.23)

where j = 1, . . . , L is the number of hidden layer units and Np is the prediction horizon.
Note that the parameters sji (k+h) and sji (k+h) are the spreads tuned h̃ steps ahead, where
h̃ ∈ {1, . . . , Np}, using experimental data with certain coverage probability at the future
steps. After the tuning process is completed and the prediction interval is obtained, these
parameters are held constant through horizon prediction.

Next, the method for identifying the parameters of the prediction interval based on fuzzy
systems and neural networks is explained.
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3.3 Method for Developing Prediction Interval based on
Fuzzy Numbers

The identification procedure for deriving the prediction interval models is shown in Fig. 3.1.
The first part of this procedure corresponds to the identification method of the fuzzy and
neural network models for obtaining the expected value, and the second part is the method
for prediction interval parameter (spreads) identification.

Figure 3.1: Methodology for Developing Prediction Intervals

Regarding model identification (Fig. 3.1), the first step involves data collection for train-
ing, validation and testing; sufficient information is collected to represent the various opera-
tional points of the process to be modelled. The training dataset is used to obtain the model
parameters. The validation dataset is not directly used in the training process; however, it
allows the model generalization capacity given by the model behaviour to be evaluated under
a new dataset. Finally, the test dataset is used to evaluate the performance of the obtained
model.

In this procedure, a structural optimization is made. The structural optimization of fuzzy
and neural network models consists of proposing several structures. Specifically, several fuzzy
models are obtained when the number of clusters (rules) is modified, and several neural
network models are obtained by modifying the hidden neuron number. Then, relevant input
variables are selected via sensitivity analysis, and a structural optimization is made. Finally,
the parameters necessary for obtaining the expected value are calculated using the relevant
input variables, the optimal structure and the training dataset. As proposed in [108], the best
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structure is defined when the validation error is either increased or stabilized in comparison
with the training error when the structure of the model increases in complexity.

For the fuzzy models, the Gustafson-Kessel clustering algorithm is used to obtain the
premise parameters, and the consequence parameters are estimated by the minimum least-
squares optimization method. Bayesian regularization is used to obtain the parameters of the
neural network models. Finally, the model is evaluated using a test dataset to verify model
performance. Then, if the performance of the model is not suitable, the model identification
procedure in previous steps must be reviewed; otherwise, this procedure is completed [108].

After the model identification procedure, the parameters associated with providing the
expected value are obtained. In fuzzy models, the standard deviation and centre of the
Gaussian functions (F j

i ) of the fuzzy model are found, where p (i = 0, 1, . . . , p) are the
relevant inputs identified and M (j = 1, . . . ,M) is the rules number. These parameters are
necessary for obtaining the normalized activation degree (βj(Z(k))) of the premises. The
identified consequence parameters (θji ) (see (3.8)) are assigned to the mean values (mj

i = θji )
required in (3.11) and (3.12), and the expected value (see (3.10)) can be obtained.

Regarding neural network models, hidden weights (whj,i) and hidden biases (bhj ) are found.
With these parameters, the term Z̃j(k) in (3.19) is calculated, where p (i = 1, . . . , p) are the
relevant inputs identified and L (j = 1, . . . , L) is the number of hidden layer units. Addition-
ally, the output weights (w0

j ) and output bias (b0) are identified. Finally, the output weights
are used to obtain the expected value, where mj = w0

j (used in (3.20) and (3.21)). After
the model identification stage, the spreads of the parameters for developing the prediction
interval at future steps must be identified (see Fig. 3.1). This method is described in the
following section.

3.3.1 Parameters Identification for Prediction Intervals

This identification method stage obtains the parameters (spreads) of the prediction interval
models such that the upper and lower values of the interval are as narrow as possible and
the interval contains a certain percentage of measured data. The prediction interval mod-
els derived in this work can include endogenous y(k) and exogenous variables u(k), where
Z(k) = [y(k − 1), . . . , y(k − q1), u(k − 1), u(k − 2), . . . , u(k − q2)]T is the vector of regressors
associated with the output and input variables. Then, the prediction interval is a function of
the real and/or prediction data, depending on the number of future steps [83]. In this study,
the spreads for developing the prediction interval are tuned according to the required steps
ahead. Then, based on the formulation described in the previous sections for developing
the prediction interval models and the metrics for evaluating the performance of the pre-
diction interval, the spread identification procedure consists of the solution to the following
optimization problem (3.24):

min
s(k+h̃),s(k+h̃)

PINAW

st. PICP = 1− α
(3.24)

32



where h̃ ∈ {1, . . . , Np} is the number of steps ahead and (1− α)% is the desired coverage
probability. The prediction interval normalized average width (PINAW) and the prediction
interval coverage probability (PICP) for Np steps ahead are defined as follows:

PICP =
1

N

N∑
k=1

δk+h × 100% (3.25)

PINAW =
1

N ·R

N∑
k=1

(ŷU(k + h)− ŷL(k + h))× 100% ∀h = 1, . . . , Np (3.26)

where δk+h = 1 if y(k + h) ∈ [ŷL(k + h), ŷU(k + h)]; otherwise, δk+h = 0. The param-
eters (s(k + h̃), s(k + h̃)) are the decision variables in the optimization problem, and the
dimensionalities of these parameters depend on the model selected. For fuzzy models, 2pM
parameters that correspond to the spreads (sji (k + h̃), sji (k + h̃)) and 2L parameters for the
neural network model that corresponds to the spreads (sj(k + h̃), sj(k + h̃)) should be iden-
tified. Then, the parameters (s(k + h̃), s(k + h̃)) (see (3.24)) must be computed such that i)
PICP is greater than or equal to the desired coverage probability (1−α)% and ii) PINAW is
as small as possible at future steps. The equality constraint PICP = (1−α)%) in (3.24) is a
hard constraint and is therefore included in the optimization problem as a barrier function to
relax this constraint. Therefore, the solution of the minimization problem (3.24) is computed
following the procedure for the unconstrained minimization problem:

min
s(k+h̃),s(k+h̃)

J = η1PINAW + exp−η2(PICP−(1−α)) (3.27)

In (3.27), η1 is a weighting factor and η2 is a penalty factor. These parameters are
chosen such that, if PICP is less than (1−α)%, the term exp−η2(PICP−(1−α)) is the dominant
term in the cost function; otherwise, PINAW is dominant. Finally, the solution to the
nonlinear optimization problem (3.27) is computed using particle swarm optimization (PSO),
as outlined in the next section.

3.3.2 Solution Method

To solve the nonlinear optimization problem in (3.27), traditional algorithms, such as gradient
descent methods, are not adequate. These methods entail a risk of falling into a local optimum
when solving non-convex optimization problems. Therefore, other optimization methods are
needed [109]. In this work, PSO is used to solve the problem because it generally outperforms
other algorithms in terms of success rate and solution quality, as reported in [110]. In PSO,
the generated solutions are called particles, and each particle has a position vector with an
associated velocity vector [111]. The first step in the algorithm consists of the initialization
of particle positions xi,j and velocities vi,j for the j − th dimension of the i− th particle. In
this study, the particle positions are all the spread parameters (s(k + h̃), s(k + h̃)) required
to develop the prediction interval model, as explained in Section 3.2.
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The velocity vi,j and position xi,j in the j − th dimension of every i − th particle are
updated according to the following relations:

vi,j(t+ 1) = Wvi,j(t) + c1rand()(Pbesti,j(t)− xi,j(t)) + c2rand()(gbestj(t)− xi,j(t))
xi,j(t+ 1) = xi,j(t) + vi,j(t+ 1)

(3.28)

i = 1, 2, . . . , NP , where NP is the number of particles, and j = 1, 2, . . . , N0 is the total
number of parameters to be identified, which depends on the type of model used (fuzzy or
neural). W is an inertia factor, Pbest is the best previous solution of the particle, and gbest
is the best solution of the swarm up to the current step. The terms c1 and c2 are called the
cognitive and social acceleration constants, and rand() is a random number between 0 and
1. The training termination criterion is set when a minimum error or a defined maximum
number of iterations is achieved. Once the training process terminates, the gbest value is
chosen as the spread parameter to generate the prediction interval model.

PINAW and PICP are used as metrics for the evaluation of the quality of the interval.
Additionally, the root mean square error (RMSE) and the mean absolute error (MAE) are
included as performance indices to evaluate the accuracy of the prediction model associated
with the expected value. All indices are evaluated for several prediction horizons with the
test dataset. In this study, the prediction interval models based on fuzzy systems and neural
networks are used to represent the nonlinear behaviour and uncertainty derived from elec-
tricity demand and renewable resources; however, the proposed methodology can be used to
describe a large family of uncertainty nonlinear functions.

3.4 Experiment and Results

A comparative analysis between the proposed prediction interval models based on interval
fuzzy numbers (PI-IFN) and covariance prediction interval models is presented following the
definition presented in [81, 73] and [83]. The prediction interval based on the covariance
establishes the interval based on the error between the observed data y(k) and the model
output ŷ(k). This method is based on the assumption that the noise is normally distributed
with a zero mean value and variance σ2 that is expressed as e = N(0, σ2) [73].

As indicated in (3.18), the neural network model is a linear model of the parameters.
Therefore, the lower and upper bounds of the neural network prediction interval based on
the covariance method can be developed using (3.29) and (3.30), following the definition
presented in [81]:

ŷL(k + h) = Z̃∗(k + h)
T
W 0 + b0 − αk+hINN (3.29)

ŷU(k + h) = Z̃∗(k + h)
T
W 0 + b0 + αk+hI

NN (3.30)

where:
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INN = σe

(
1 + Z̃∗T

(
Z̃T Z̃

)−1
Z̃∗
)1/2

(3.31)

where σe is the variance of the error, αk+h is the parameter related to the interval width
tuned h steps ahead, where h ∈ {1, . . . , Np}, Z̃∗ is the new datum used to predict the future
observation and Z̃ is the matrix that considers all data used in the training process in which
the output weights and output bias were determined.

On the other hand, the local fuzzy output for rule j at time k can written as [73]:

ŷj(k) = [1 Z(k)]θj, (3.32)

where θj is the coefficients vector of the consequence associated with each rule. Therefore,
the total output of the fuzzy model is defined by:

ŷ(k) =
M∑
j=1

βj(Z(k))[1 Z(k)]θj =
M∑
j=1

ψTj θj (3.33)

where ψTj = βj(Z(k))[1 ZT (k)], j = 1, . . . ,M . The expression (3.33) can also be written
in matrix form: ŷ(k) = ΨTΘ, where ΨT = [ψT1 , . . . , ψ

T
M ] is the fuzzy regression matrix and

ΘT = [θ1, . . . , θM ] is the matrix of the coefficients for all the rules. The lower and upper
bounds of the fuzzy prediction interval based on the covariance method [73] can be defined
by:

ŷL(k) = ŷ(k)− αITS(k) (3.34)
ŷU(k) = ŷ(k) + αITS(k) (3.35)

with the fuzzy interval given by:

ITS(k) =
M∑
j=1

βj(Z∗(k))ITSj (k), (3.36)

where ITSj (k) = σ̂j(1 + ψ∗Tj (ψjψ
T
j )
−1
ψ∗j )

1/2
is a component associated with the covariance

matrix and the current input ψ∗Tj associated to a new datum Z∗(k). The fuzzy prediction at
future steps ahead can be obtained as follows:

ŷ(k + h) =
M∑
j=1

βj(Z(k + h))ŷj(k + h) (3.37)
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It has been proposed in [83] that the expected covariance of the error between the observed
data and the local model output along with some tuning parameters αk+h can be used to
find the fuzzy prediction interval for a desired coverage probability at future steps ahead.
Therefore, the lower (ŷL) and upper (ŷU) bounds are given by:

ŷL(k + h) = ŷ(k + h)− αk+hITS(k + h) (3.38)
ŷU(k + h) = ŷ(k + h) + αk+hI

TS(k + h) (3.39)

Finally, the parameter αk+h defines the interval width and it is tuned using experimental
data to achieve the desired coverage probability at future steps ahead. In the next section,
the results of a benchmark and the load forecast with the proposed prediction interval models
are presented.

3.4.1 Benchmark

In this work, the original Chen series in [112] is modified and used to evaluate the prediction
interval models:

y(k) = (0.8− 0.5 exp(−y2(k − 1)))y(k − 1)− (0.3 + 0.9 exp(−y2(k − 1)))y(k − 2)+

u(k − 1) + 0.2u(k − 2) + 0.1u(k − 1)u(k − 2) + e(k)
(3.40)

where the system noise e(k) = 0.5 exp(−y2(k − 1))γ(k) depends on the previous state of
the output model and γ(k) is white noise. The system input u(k) is band-limited Gaussian
white noise. The system is simulated, and 10,000 data points are generated. The data are
divided into training, validation and testing sets accounting for 55%, 25% and 20% of the
total dataset, respectively. Fig. 3.2 shows the input, output and noise of the modified Chen
series simulation for 400 training data. As shown in Fig. 3.2, the noise level is high when
the output y(k) is close to zero.

The regressors u(k−1), u(k−2), y(k−1) and y(k−2) are defined as the inputs for deriving
the prediction interval models. Regarding the structure of the fuzzy model, five rules are
defined, whereas eight hidden layer units are defined for the neural network model. With these
structures defined, the parameters associated with providing the expected value are obtained
as explained in Section 3.3. The PSO algorithm is used to identify the spread parameters for
generating the prediction interval at future steps. The desired coverage probability (1−α) =
90%, the weighting factor η1 = 250 and the penalty factor η2 = 150 in (3.27) are defined. A
particle size of 50 and the parameters c1 = 2.5 and c2 = 1.5 are used. Finally, W runs from
0.9 to 0.3 during offline optimization. The number of iterations for PSO is set to 5,000, the
optimizations are executed several times, and the best solution is selected. The cost function
value (J) in (3.27) and the developed metrics are reported in Table 3.1 for the test dataset
using various numbers of steps ahead.
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Figure 3.2: Modified Chen Series for 400 Training Data

As shown in Table 3.1, the fuzzy and neural network models provide cost function values
(J) lower than those of the linear model, which is consistent with the nonlinear benchmark
structure. These results are expected because of the ability of the fuzzy and neural network
models to better fit the dynamics and nonlinearities of the systems, which are more notable
for longer future-step predictions. Additionally, it can be observed that the cost function
of the proposed method (see (3.27)) is lower than that of the covariance method for all
models (i.e., linear, fuzzy and neural network). The RMSE and MAE values are equal in the
proposed and covariance methods because the identification method is the same. However,
the prediction error increases for a larger horizon prediction because the accumulative error
of the model is larger when the steps of the horizon increase, as shown in Table 3.1.

Furthermore, it can be observed that the PICP term is close to 90% because the interval
models are trained to maintain PICP near the desired value for various steps ahead. In
terms of prediction intervals, the proposed method (PI-IFN) provides narrower intervals for
all step-ahead forecasts. While the covariance method maintains a constant width for the
interval (see Fig. 3.3(a), Fig. 3.4(a) and Fig. 3.5(a)), the proposed method achieves a
narrower interval in states with little noise and an interval with a width similar to that of
the covariance method in states with high noise.

Importantly, the information level delivered by a prediction interval is directly related to
its width [113, 88]; thus, the proposed method yields a better information level regarding the
covariance method (smaller widths). Wider intervals could produce a higher PICP, but these
intervals provide less useful information about the uncertainty of the modelled phenomena.
In this respect, the neural network models exhibit sharper prediction intervals than the linear
and fuzzy models.

Fig. 3.3, Fig. 3.5 and Fig. 3.4 show sixteen-step-ahead forecasts of the linear, fuzzy
and neural network prediction interval models. The figures show that nearly all the data
are included in the interval; only the outliers of the time series are left outside the region
constructed by the prediction interval. Additionally, the intervals produced by the proposed
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Table 3.1: Performance Indices for the Benchmark
Prediction Performance Linear Models Fuzzy Models Neural Models
Horizon Indices Covariance PI-IFN Covariance PI-IFN Covariance PI-IFN
One J 52.23 32.62 26.26 23.60 20.93 18.20
step RMSE 0.4312 0.4312 0.3517 0.3517 0.2372 0.2372
ahead MAE 0.2883 0.2883 0.2253 0.2253 0.1241 0.1241

PINAW (%) 20.89 12.40 10.09 9.37 7.90 6.85
PICP (%) 98.15 89.68 89.98 91.18 89.89 89.95

Four J 57.71 47.47 40.27 35.56 36.58 24.36
steps RMSE 0.6124 0.6124 0.5266 0.5266 0.4076 0.4076
ahead MAE 0.5010 0.5010 0.3765 0.3765 0.2446 0.2446

PINAW (%) 23.05 17.35 15.14 13.73 14.18 9.18
PICP (%) 91.62 89.06 89.41 89.86 89.92 89.77

Eight J 57.98 49.32 43.39 39.48 39.94 32.62
steps RMSE 0.6761 0.6761 0.5621 0.5621 0.5105 0.5105
ahead MAE 0.4647 0.4647 0.4015 0.4015 0.3127 0.3127

PINAW (%) 23.19 18.16 17.08 15.29 15.13 11.72
PICP (%) 93.26 89.09 90.25 89.85 89.50 89.20

Sixteen J 58.16 50.75 45.21 41.40 45.93 36.15
steps RMSE 0.6814 0.6814 0.5839 0.5839 0.5937 0.5937
ahead MAE 0.4717 0.4717 0.4167 0.4167 0.3685 0.3685

PINAW (%) 23.26 18.97 17.85 15.98 18.20 14.10
PICP (%) 93.19 89.20 90.36 89.75 90.57 90.07

method (PI-IFN) are narrower than those obtained by the method used for comparison, as
shown in the figures.
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Figure 3.3: Sixteen-step-ahead Linear Prediction Interval Model: (a) Covariance and (b)
Proposed Methods
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Figure 3.4: Sixteen-step-ahead Fuzzy Prediction Interval Model: (a) Covariance and (b)
Proposed Methods
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Figure 3.5: Sixteen-step-ahead Neural Network Prediction Interval Model: (a) Covariance
and (b) Proposed Methods

3.4.2 Application for Load Forecasting

In this section, both fuzzy and neural network prediction interval models based on the con-
cept of interval fuzzy numbers (PI-IFN) are used to develop the domestic load consumption
prediction interval models supported by the results obtained with the benchmark.

The load data from 20 dwellings in the town of Loughborough, UK [114], are used to
develop fuzzy and neural network prediction interval models using the proposed method (PI-
IFN). The available load data correspond to the year 2008; however, only summer data are
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used to develop the prediction interval. Therefore, a period of 94 days is used, which is divided
into 52 days for training, 23 days for validation and 19 days for test data, corresponding to
55%, 25% and 20% of the total dataset, respectively. The maximum electric load is 29.54
kW with a sample time of 15 minutes.

Equations (3.41) and (3.42) show the relevant regressors obtained during the model iden-
tification process for the fuzzy and neural network models, respectively:

p̂L(k) = f fuzzy(pL(k − 1), pL(k − 2), pL(k − 3), pL(k − 5), pL(k − 6), pL(k − 8), ...

pL(k − 90), pL(k − 91), pL(k − 92), pL(k − 93), pL(k − 94), ...

pL(k − 95), pL(k − 96), pL(k − 97), pL(k − 98))

(3.41)

p̂L(k) = fNN(pL(k − 1), pL(k − 2), pL(k − 3), pL(k − 4), pL(k − 5), pL(k − 91), ...

pL(k − 92), pL(k − 95), pL(k − 96), pL(k − 97), pL(k − 100))
(3.42)

Three rules and nine neurons in the hidden layer correspond to the optimal structure
for the fuzzy and neural network models, respectively. Note that exogenous variables are
not included in the models. Specifically, in this study, one-step-ahead (15 minutes), one-
hour-ahead, one-day-ahead, and two-day-ahead prediction horizons are considered. For both
models (fuzzy and neural network), the performance indices are computed based on the
method described in Section 3.3 for the prediction horizons considered.

As shown in Table 3.2, the fuzzy and neural models provide similar performances in terms
of RMSE and MAE for the test dataset. The maximum RMSE is 2.6054 kW for a peak load
of 29.54 kW, corresponding to the fuzzy model at two days ahead. The coverage probability
(PICP) for all prediction horizons with respect to the training data is in accordance with the
desired coverage probability.

These results suggest that the prediction interval is tuned appropriately to 90% of the
desired PICP. However, Table 3.2 shows that the PICP values for the test data are higher
than the desired coverage probability as the prediction horizon increases. For instance, the
PICP values are 93.86% and 94.06% at one-day-ahead for the fuzzy and neural network
models, respectively. These results are obtained because of the high variability of the data
used in this study case, as shown in Fig. 3.6.

As explained in Section 3.3, to calculate the spread parameters of all prediction interval
models, the coverage probability is fixed in the optimization problem (see (3.24)). The
interval width finding therefore corresponds to the minimum width at the step ahead defined
for characterizing the uncertainty of the modelled demand, given the desired PICP. The
interval width (PINAW) increases with the prediction horizon.

Fig. 3.6 shows the one-day-ahead prediction intervals of the fuzzy and neural network
models, with interval widths of 47.54% and 47.93%. Despite the widths of these intervals,
the relationship between the coverage probability and the interval width for this study case
provides sufficient information about the uncertainty modelled, and this information could
be useful, for instance, for the design of a robust energy management system.
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Table 3.2: Performance Indices for the Load Prediction Models

Prediction Performance Fuzzy Neural

Horizon Indices Model Network Model

One step J 93.07 92.33
ahead RMSE (kW) 20.678 20.613

MAE (kW) 15.225 15.147
PINAW (%) 36.68 36.44
PICP (%) 89.79 89.86

One hour J 110.64 110.17
ahead RMSE (kW) 22.942 22.910

MAE (kW) 17.269 17.139
PINAW (%) 44.25 44.05
PICP (%) 92.73 92.12

One day J 118.85 119.83
ahead RMSE (kW) 23.429 22.984

MAE (kW) 18.076 17.403
PINAW (%) 47.54 47.93
PICP (%) 93.86 94.06

Two days J 128.23 128.05
ahead RMSE (kW) 26.054 25.532

MAE (kW) 20.665 19.422
PINAW (%) 51.29 51.22
PICP (%) 94.63 94.22
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Figure 3.6: One-day-ahead Prediction Interval: (a) Fuzzy Model and (b) Neural Network
Model
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3.5 Discussion

In this chapter, a new prediction interval modelling framework based on the concept of inter-
val fuzzy numbers was proposed to represent nonlinear dynamics and uncertainties. These
models provide the upper and lower bounds of the predicted values given a coverage probabil-
ity with the minimum interval width at future prediction horizons. This prediction interval
modelling was extended to fuzzy systems and neural networks to describe a large family of
uncertain nonlinear functions. In this approach, the fuzzy number concept was used because
the affine combination of interval fuzzy numbers generates, by definition, interval models
that can address the uncertainty of the modelled phenomena without requiring assumptions
to be made about the data or the noise distribution. In this methodology, the spreads of
the prediction interval models were tuned at future steps based on a novel criterion that
minimizes the width of the interval given a desired coverage probability.

Prediction intervals models are capable of quantifying the uncertainty using just three
information points: expected value, lower and upper bounds, thus making them the most
understandable uncertainty quantification mechanism, when compared to other methods such
as: probability density function (PDF), cumulative probability density function (CDF) and
probabilistic forecast [76]. In the prediction interval model, the expected value provides
a solution where the statistical error is the lowest possible defined by error metrics, such
as the root mean square error (RMSE) and the mean absolute percentage error (MAPE).
Additionally, the lower and upper bounds of the interval can be derived probabilistically
and provide information on the dispersion of the output of the model. Furthermore, it
delivers more useful information from a decision-making point of view than the models where
only the expected value is considered. The prediction interval models can capture the non-
linearity, the temporal dynamics and the uncertainty of the modelled phenomena derived
from nonconventional energy sources and electrical demand.

Based on a benchmark problem, the proposed method was compared with a covariance
prediction interval method. The results show that the proposed prediction interval mod-
els generated a narrow interval width and retained the desired coverage probability. In this
sense, narrow width prediction intervals provide more information about the uncertainty phe-
nomena modelled. Furthermore, the proposed method was used to represent the future load
uncertainty of residential dwellings in the town of Loughborough, UK for several prediction
horizons. The results indicated that the proposed method for developing prediction intervals
is suitable for load forecasting in applications of energy communities. In this thesis, the pro-
posed Robust EMS is based on MPC, thus it requires models to predict the expected value
and the variability of the demand and the energy available from the renewable resources, over
a prediction horizon. Therefore, fuzzy prediction interval models are used in the formulation
of the optimization problem.
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Chapter 4

Hierarchical Energy Management
System for Microgrid Operation

The concept of “Energy Communities” enables energy exchange between community mem-
bers to maximise their self-consumption, minimise their energy costs, reduce peak power
levels or a combination of these and other beneficial goals. To achieve a stable, robust and
cost effective energy community, the system must use a suitable energy management system
(EMS). This chapter proposes a two level hierarchical EMS which realises both short-term
power balancing and long-term energy management, benefiting both the energy community
members and the distribution network operator (DNO). The two level structure addresses
both the uncertainty of the renewable energy resources and the variability in end-user con-
sumption profiles. At the lowest level, a real-time control strategy comprising a rule-based
decision system, is employed to control power with a sample rate of one-minute. For the
higher level, a Robust Model Predictive Control (MPC) is used with a sample period of 30
min to optimise energy usage. The hierarchical EMS proposed has been evaluated using data
from a typical urban community made up 30 dwellings with a photovoltaic (PV) power level
of up to 50% penetration, and an energy storage system of up to 135kWh. Simulation results
show that the proposed hierarchical EMS can accurately control power levels draw by the
community to follow references set by the Robust MPC and can also operate at minimum
energy cost. Additionally, the structure maintains safe operation of the battery bank as well
as reducing peak load levels drawn by the community. It is shown that the Robust EMS with
explicit uncertainty compensation creates a more uniform grid power draw (flatter) compared
to a deterministic EMS, which can provide benefit for the distribution network operator.

4.1 Introduction

This work considers a hierarchical energy management system (EMS) as proposed in [39].
This EMS comprises two levels: the microgrid (energy community) level and the main grid
level as is shown in Fig. 4.1. Within this framework, the proposed microgrid is composed of
domestic demand (non-controllable loads), photovoltaic arrays (PV), and an energy storage
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system (ESS) based on lead-acid batteries. The ESS is included as part of this approach since
it can benefit both the end user (reducing energy costs) and the distribution network operator
(DNO) (limiting peak power levels and enabling increased penetration of DG). Additionally,
the ESS is required to increase robustness to uncertainty.

Figure 4.1: Hierarchical EMS Structure

At the main grid level, a Robust MPC controller operates to provide realistic power
references (Pmgref ) for the microgrid: this is the “Energy Profiler”. The microgrid level
controller aims to track these references and so that the system works for example with
minimum energy costs. To achieve this goal, the Robust MPC implements an optimization
of the predicted performance cost of the microgrid over a prediction horizon, while considering
the uncertainty associated with predictions of the renewable generation and consumer load,
safe limit constraints for the ESS and power transfer to and from the main grid. In this study,
the uncertainty is handled using fuzzy prediction interval models tuned to a desired coverage
probability. A sample time of 30 min is considered, which defines the update frequency of
Pmgref . This sample time is selected because energy markets tend to operate with a half-
hourly update rates.

At the microgrid level, a real-time local controller is proposed with the objective of satis-
fying the demand whilst guaranteeing safe operation of the ESS. This controller is executed
with a sample time of one-minute to control the net power flowing from the main grid to the
microgrid (Pmg) or vice versa so that it tracks the power reference (Pmgref ) sent from the
central Energy Profiler at the main grid level. Therefore, Pmg corresponds to import/ ex-
port power from the main grid. The following sections present the details of the real-time
controller at microgrid level and the Robust MPC for the main grid level.
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4.2 Real-time Controller at Microgrid Level

The ESS is the only dispatchable DER in the proposed microgrid, and therefore the real-time
controller can only set the charging/discharging power profile (PB) of the ESS (as shown in
Fig. 4.2) in order to track the target (Pmgref ) provided by the Energy Profiler. Note that the
ESS consists of a power converter and battery packs, however in this framework, converter
losses are not considered.

ESS
Real-time 

Controller

PV

Load

Microgrid

mgrefP

LP

PVP

netP

mgP
BPmge

BP

Estimators

SoC max max,chg dischgP P

Figure 4.2: Block Diagram at the Microgrid Level

The active power of both the microgrid consumption (PL) and photovoltaic array (PPV )
are measured at the point of common coupling (PCC) with a sample rate of one minute to
calculate the net power (Pnet) of the microgrid (give by Pnet(k) = PL(k) − PPV (k)). The
error between the microgrid power target and the net power is given by:

emg(k) = Pmgref (k)− Pnet(k), (4.1)

which corresponds to a power surplus (positive error) or deficit (negative error) with
respect to Pmgref . Therefore, emg is the required power from the ESS so that the instantaneous
microgrid power Pmg tracks the target Pmgref provided by the Robust MPC in the Energy
Profiler.

For safe operation of the ESS, the maximum available power for charging (P chg
max) and

discharging (P dischg
max ) is calculated based on methods proposed in [115] and [116]. These

power values are obtained to prevent battery damage by over/under charge (SoC) or voltage,
or by exceeding the rated current or power limit (for details of this estimator see appendix
A3). The ESS power PB cannot exceed these values. Additionally, the SoC value is estimated
based on an Unscented Kalman Filter (UKF) [117], with outer feedback correction loops as
presented in [118] (for details of this estimator see appendix A2). This is because Bayesian
estimation algorithms have been demonstrated be a well-suited tool estimation for nonlinear
problems, such as SoC estimation, and they present several advantages such as real-time
implementation and use of empirical models that deal better with limited and noisy data
compared to methods such as ampere-hour counting, internal impedance measurement and
the open circuit voltage measurement (OCV), among others [119, 120].
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In this work, positive power from the ESS indicates the ESSs is discharging (generation)
and negative power indicates the ESS is charging (load). Finally, the controller output (ESS
power reference) PB is determined according to the following rules:

R1 : if emg(k) ≥ 0 and SoC(k) ≥ SoCmax then PB(k) = 0

R2 : if emg(k) ≥ 0 and SoC(k) < SoCmax then PB(k) = −min(emg(k), P chg
max(k))

R3 : if emg(k) < 0 and SoC(k) ≥ SoCmin then PB(k) = min(−emg(k), P dischg
max (k))

R4 : if emg(k) < 0 and SoC(k) < SoCmin then PB(k) = −min(PPV (k), P chg
max(k))

(4.2)

where SoCmin = 0.2 and SoCmax = 0.8 are the minimum and maximum defined values
range for the SoC with the aim to increase the lifespan, because capacity fade is typically
accelerated by operating profiles with high average SOC levels and deep discharges [121]. As
is shown in Fig. 4.2, the instantaneous microgrid power (Pmg) is calculated as:

Pmg(k) = Pnet(k)− PB(k) (4.3)

Thus, according to rules in (4.2), Pmg tracks Pmgref as long as the resulting values of PB
and SoC do not violate safety constraints.

4.3 Model Predictive Control for Microgrid Operation

The higher level controller aims to calculate the reference power (Pmgref ) which will minimize
the energy cost for the community, such that the low level real-time controller can follow this
power target reasonably well based on the available resources (PB and PPV ) and the load
(PL). In this way, the controller at the higher level is seen as a supervisory controller, as
shown in Fig 4.3.

Figure 4.3: Block Diagram at Main Grid Level

The Robust EMS chosen operates with receding horizon control, and it is necessary to
generate models that anticipate the behavior of the expected value over a prediction horizon,
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and the variability of both the demand and the energy available from the renewable resources.
Therefore, the performance of the Robust EMS depends on the accuracy of the prediction
system employed, and the method used for characterising the uncertainty.

4.3.1 Deterministic EMS

The role of the supervisory controller at the main grid level is to minimize the power delivered
to the microgrid (energy community) from the main grid. This is achieved by means of
an MPC controller, which uses a model of the energy community dynamics to predict its
behaviour one day ahead, with a sample time (Ts) of 30 min (thus using a prediction horizon
of N = 48 samples). At each discrete time instant k, an optimization problem uses this
model to find the optimal sequence of Pmgref (k + j), j = 0, . . . , N − 1 that minimizes the
energy consumption during the prediction horizon N . For this work, three energy price levels
C(k + j) have been used based on a time of use (ToU) tariff scheme.

The dynamical component of the system is given by a simplified linear model of the energy
evolution of the ESS (EB). These dynamics must be included in the MPC optimization, and
are described by:

EB(k + j + 1) = EB(k + j)− TsPB(k + j), (4.4)

where j = 0, . . . , N − 1 and PB(k + j) is positive if it injects power (discharging) into the
microgrid and negative for the charging process. The prediction of the future states requires
an estimation of the current state, particularly the SoC. Here, it is estimated by UKF (see
appendix A2) at the microgrid level which sends this information to the upper layer.

The power balance at microgrid level must also be imposed in the MPC optimization.
This constraint is invoked as:

Pmgref (k + j) = Pnet(k + j)− PB(k + j). (4.5)

where Pnet(k+ j) = PL(k+ j)−PPV (k+ j). In the deterministic approach, the net power
Pnet of the microgrid is characterised by its expected value P̂net. Note that predictions of
P̂net(k + j) are required to solve the optimization problem, and therefore the fuzzy model is
used to obtained these values. Other constraints that must be considered in the optimization
include the minimum and maximum limits of battery capacity:

Emin ≤ EB(k + j) ≤ Emax (4.6)

where minimum and maximum limits of use of the battery capacity are defined: Emin =
0.2Cn and Emax = 0.8Cn, and Cn is the nominal capacity.
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The limits for the maximum power for charging and discharging of the ESS are calculated
using the following linear equations:

P dischg
max (k + j) = αdP

max
B SoC(k + j) (4.7)

P chg
max(k + j) = αcP

max
B (1− SoC(k + j)) (4.8)

where Pmax
B is the maximum instantaneous power given by the manufacturer, αd and αc

are tuned parameters which avoid under/over SoC limits, respectively.

The overarching aims of the EMS are to maximise self-consumption (i.e. minimise energy
exported to the main grid) and to minimise the power drawn from the main grid during
peak periods. Therefore the minimum grid power is Pmin

grid = 0, and the maximum grid power
(Pmax

grid ) can be defined. With these considerations, the optimal control problem to be solved
at time k is given by:

J = min
Pmgref (k+j)

N−1∑
j=0

C(k + j)Pmgref (k + j)Ts (4.9)

Subject to:

Pmgref (k + j) = P̂net(k + j)− PB(k + j) (4.9a)
− Pmin

grid ≤ Pmgref (k + j) ≤ Pmax
grid (4.9b)

− P chg
max(k + j) ≤ PB(k + j) ≤ P dischg

max (k + j) (4.9c)
EB(k + j + 1) = EB(k + j)− TsPB(k + j) (4.9d)
Emin ≤ EB(k + j) ≤ Emax (4.9e)

Problem (4.9) is a linear program, whose solution can be found with any suitable solver.
Matlab is used to code the optimization problem and it is solved by an interior-point algo-
rithm. Finally, only the first element of the sequence, Pmgref (k + j), is actually sent as a
reference to the microgrid according to the RHC strategy, and the procedure is repeated at
the discrete time instant k + 1 (i.e. 30 min ahead).

4.3.2 Robust EMS with Explicit Uncertainty Compensation

The formulation of section 4.3.1 ignores the uncertainty of the predictions of the net power
(Pnet) drawn by the microgrid. While the closed-loop nature of the MPC controller provides
some robustness to uncertainty, this is not explicitly incorporated in the controller. Including
the uncertainty in the formulation may bring benefits in performance. This section deals with
the uncertainty handling in the controller formulation.

Fuzzy prediction interval models are used to define the uncertainty of Pnet predictions:
(∆P̂net(k + j)). Therefore, net power Pnet is characterised by the expected value P̂net with
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its variability: Pnet(k + j) = P̂net(k + j) + ∆P̂net(k + j). This variability (∆P̂net(k + j)) is
the deviation of the actual value from the prediction, therefore, is the uncertain component,
but satisfies:

∆P̂net(k + j) ∈ [∆P̂min
net (k + j),∆P̂max

net (k + j)],

where
∆P̂max

net (k + j) = P̂ net(k + j)− P̂net(k + j) (4.10)

∆P̂min
net (k + j) = P̂ net(k + j)− P̂net(k + j), (4.11)

for j = 1, . . . , N−1. P̂ net and P̂ net are the upper and lower bounds of the fuzzy prediction
interval model. In this work, the prediction interval is designed to have a minimum interval
width and to guarantee that the future real values are within the interval with a certain
coverage probability level.

The solution for deterministic optimal control problems, as the one in deterministic MPC,
is a sequence of control actions. This is not enough when there are uncertain components, as
this ignores that there will be a correction of the disturbances by the closed-loop operation. It
is shown in [122] that a computationally efficient alternative to acknowledge these corrections
in the optimization is to explicitly compensate the uncertain terms with linear gains L(k+j).
In this study, the Robust MPC formulation proposed follows this idea. The following control
laws for the predicted inputs of the optimization at time k, PB and Pmgref are proposed:

PB(k + j) = P̂B(k + j) + L(k + j)∆P̂net(k + j) (4.12)

Pmgref (k + j) = P̂mgref (k + j) + (1− L(k + j))∆P̂net(k + j), (4.13)

where P̂mgref (k + j), P̂B(k + j) and L(k + j) are the optimization variables, for j =

0, . . . , N−1. This can be interpreted as follows: if Pnet(k+j) = P̂net(k+j) (thus ∆P̂net(k+j) =
0), then PB(k+j) = P̂B(k+j). Otherwise, the predicted input to be applied to the system is
compensated by L(k+j)∆P̂net(k + j). Likewise, the compensation (1−L(k+j))∆P̂net(k + j)
is different for Pmgref (k+j) in order to satisfy the balance equation (see 4.5) with the expected
values of Pmgref , Pnet and PB:

P̂mgref (k + j) = P̂net(k + j)− P̂B(k + j) (4.14)

Note that the predicted control laws of (4.12) and (4.13) depend on the uncertain values
∆P̂net(k+j), and this dependence is reflected in the use of the ESS (only dispatchable DER).
However, the optimization problem as proposed in (4.9), cannot be solved with uncertain
values. A worst case approach is taken then, where ∆P̂net(k + j) are assigned to take the
worst possible values according to some criterion. In the Robust approach proposed, the
constraints associated with the limits for the power reference (Pmgref ) are equivalent to:
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P̂mgref (k + j) + (1− L(k + j))∆P̂net(k + j) ≤ Pmax
grd , (4.15)

−P̂mgref (k + j)− (1− L(k + j))∆P̂net(k + j) ≤ Pmin
grd . (4.16)

These inequalities depend on ∆P̂net(k + j), which is uncertain. Therefore they are imple-
mented by setting ∆P̂net(k+j) to take the values that are more constraining for P̂mgref (k+j)

in each of them: ∆P̂max
net (k + j) and P̂min

net (k + j), respectively. Thus, they are invoked in the
optimization as:

P̂mgref (k + j) + (1− L(k + j))∆P̂max
net (k + j) ≤ Pmax

grid (4.17)

−P̂mgref (k + j)− (1− L(k + j))∆P̂min
net (k + j) ≤ Pmin

grid (4.18)

Indeed, satisfying these constraints for the worst cases, as defined, will ensure that the
power reference sent does not instruct the lower level to sell energy to the grid and that the
power bought is greater than the upper limit.

Additionally, the proposed prediction interval provides several operating conditions of the
microgrid from the perspective of the net power. The uncertainty limits ∆P̂min

net and ∆P̂max
net are

interpreted as best and worst-case operating conditions, respectively, from the perspective of
the demand (PL) and available photovoltaic power (PPV ). Then, for all constraints associated
to the ESS, the worst case is considered to be that where Pnet is the largest; i.e. ∆Pnet(k+j) :=
∆P̂max

net (k + j). This is the case with the most deficit of renewables with respect to demand,
which is the instant where the ESS is the most needed to provide flexibility and reduce
the energy bought from the grid. Therefore, the constraints associated with the minimum
and maximum limits of use of the ESS and the limits of maximum power for charging and
discharging of the ESS are defined as:

−Ts
j∑

i=0

P̂B(k + i)− Ts
j∑

i=0

L(k + i)∆P̂max
net (k + i) ≤ Emax − EB(k) (4.19)

Ts

j∑
i=0

P̂B(k + i) + Ts

j∑
i=0

L(k + i)∆P̂max
net (k + i) ≤ −Emin + EB(k) (4.20)

P̂B(k + j) + L(k + j)∆P̂max
net (k + j) ≤ P dischg

max (k + j) (4.21)

−P̂B(k + j)− L(k + j)∆P̂max
net (k + j) ≤ P chg

max(k + j) (4.22)

where j = 0, . . . , N −1. Note that because the microgrid is generally not operating all the
time under the worst operating condition, a robust solution for the operation of the microgrid
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is achieved. Therefore, with these considerations, the optimization problem to be solved at
each time k is:

J = min
P̂mgref (k + j)

P̂B(k + j)
L(k + j)

N−1∑
j=0

C(k + j)P̂mgref (k + j) Ts (4.23)

Subject to:

Eqs. (4.14), (4.17), (4.18), (4.19), (4.20), (4.21), (4.22) (4.23a)
0 ≤ L(k + j) ≤ 1 (4.23b)

The Robust MPC formulation is linear and can be tackled with suitable solvers. In this
case, by an interior-point algorithm.

4.4 Case Study

In order to test the performance of the hierarchical EMS, a community connected to the
main grid made up of 30 dwellings with a 50% level of photovoltaic power penetration has
been considered (i.e. 15 dwellings have a photovoltaic array). The winter season data from
a town in the UK is used. Fig. 4.4 shows a typical day’s load profile (PLoad), photovoltaic
power (PPV ) and the energy tariff used with a sample time of one minute.

Figure 4.4: Profiles of Load, PV and Cost of a typical day

For this scenario, a three level ToU tariff (similar to [123]) has been considered for buying
energy from the grid (in pence of pound sterling per kWh) - see Table 4.1. The same profile
is used for each day of the simulation. For the scenario without an ESS, the surplus energy
is exported to the main grid, therefore, 5p/kWh (pence per KWh) is used to quantify the
financial benefit of this trade.
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Table 4.1: Energy price during the day

Hours Energy Cost

00:00 - 06:00 5 p/KWh

06:00 - 16:00 12 p/KWh

16:00 - 19:00 25 p/KWh

19:00 - 23:00 12 p/KWh

23:00 - 24:00 5 p/KWh

As was explained in Section 4.2, the ESS is the only dispatchable DER in the proposed
microgrid, therefore, the storage capacity provides operational flexibility of the microgrid in
order to achieve an optimal operation. Thereby, the ESS size is an important factor that
could determine the effectiveness of the proposed EMS. In this study, an appropriate battery
bank size is defined according to the community size and penetration level of renewable
energy. Next, the proposed method to define the battery size is presented.

4.4.1 Sizing of Energy Storage System

From the simulation analysis, it was found that there exists a trade-off between the battery
size and some performance indices that benefit the operation of the microgrid and the main
grid. Therefore, the ESS size is selected based on the battery technology used, the controller
proposed (which was explained in Section 4.2 and 4.3) and the specific operating conditions
that will be explained below. In this approach, investment and replace metrics of the ESS
are not included.

In this study, Trojan T-105 lead-acid batteries are considered, and the different sizes of
the ESS are obtained connecting these batteries in series. The operational characteristics of
the battery used are shown in Table 4.2.

For a community of 30 dwellings and 50% of the penetration level of photovoltaic power,
the simulation is carried for different ESS sizes. Each battery bank is modelled using the
Copetti model (For details of Copetti model, see appendix A1). Due that the majority of
individual users within a microgrid have a consistent and routine pattern of daily energy for
each season (winter for this case study), then, this simulation can give a suggestion of the
ESS size.

The real-time controller at microgrid level and deterministic EMS at main grid level is
executed in Matlab environment and the cost function (J) defined in (4.24) is evaluated for
selecting the smaller size that achieves in a better way the desired operational behaviour for
this case study:
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Table 4.2: Characteristics of Trojan T-105 Lead-Acid Battery

Nominal Voltage 6V
Minimum Operation Voltage 5.25V
Maximum Operation Voltage 6.75V
Maximum Current 165A
Maximum SoC 0.8
Minimum SoC 0.2
Nominal Capacity 165Ah
Maximum Instantaneous Power 1C

J = β1
RMSEw

RMSEw/o
+ β2

EnergywExport

Energy
w/o
Export

+ β3
(EFCdesired − EFC)2

EFCdesired

+ β4LPSP + β5(1− LF )2

(4.24)

RMSEw and RMSEw/o are the root mean square errors for a microgrid with ESS and
without ESS, respectively. This term in the cost function (J), represents the capability of the
microgrid for following the reference power (Pmgref ) sent by the higher level in the hierarchical
EMS proposed as is shown in (4.25):

RMSE =

√√√√√ T∑
k=1

(Pmgref (k)− Pgrid(k))2

T
(4.25)

EnergywExport and Energy
w/o
Export are the exported energy to the main grid (sold energy by

the microgrid) for a microgrid with ESS and without ESS, respectively. In this approach,
an ESS that avoids injecting energy surpluses into the main grid and promoted the self-
consumption is desired.

The Equivalent Full Cycles (EFC), given by (4.26), are the number of full discharges that
a battery bank performs throughout its time use [124]:

EFC =
Edis(Ah)

Cn
(4.26)

where Edis(Ah) is the discharge energy during the simulation time, and Cn is the nominal
battery capacity. The EFC is a metric associated with the life cycle of the ESS, therefore
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in this approach, one cycle per day is the desired EFC (EFCdesired) in the third term of the
cost function (J) in (4.24).

The loss of power supply probability (LPSP ) is the ratio between the energy deficiency
(ED) and the total energy demands for a period of time [125, 126]. In this approach, the
energy deficiency occurs when (Pnet(k) − Pmgref (k))Ts > 0, which means that the available
maximum power of the ESS (P dischg

max ) cannot fulfil the load, and therefore the energy deficiency
is supplied from the main grid. When this case happens, means that the microgrid cannot
follow the power reference (Pmgref ) in a perfect manner, and therefore Pgrid = Pmgref +ED.
A lower value of the LPSP indicates a higher probability that the load will be satisfied. For
domestic applications, the recommended LPSP value is less or equal to 10% [127]. As in the
work of [128], in this study, the LPSP is defined as:

LPSP =

T∑
k=1

Tk

T
, (4.27)

where Tk is the simulation time in which an energy deficiency occurs and T is the total
simulation time. Finally, as the work of [41], the Load Factor (LF ), given by (4.28), is a
measure used to quantify the ratio between the average grid power (PAV G

grid ) and peak grid
power (Pmax

grid ) during a given period. An improvement to the LF value indicates the peak
load reduction:

LF =
Avg(Pgrid)

max(Pgrid)
(4.28)

The terms βi(i = 1, . . . , 5) in the cost function are the weighting factors. For this study,
the weighting factor β1, associated with the RMSE, is a slightly bigger than the other ones
because one of the objectives is tried to follow the power reference (Pmgref ) sent by the higher
level. Table 4.3 shows the results of the terms used to compute the cost function in (4.24) for
ten different ESS sizes. The exported energy without ESS, Energy

w/o
Export is 40.54KWh, and

exported energy with ESS, EnergywExport is zero for all the ESS sizes used in the simulation,
therefore, this term does not affect the cost function. EFCdesired = 7 due that the results
shown in the Table 4.3 correspond to the simulation of typical one week of the winter season.
The results suggest that an ESS with 135KWh nominal capacity is the smaller battery bank
that achieves the desired operational behaviour, which corresponds to 4.5KWh per dwelling.
However, an ESS with 120KWh of capacity has a similar behaviour than the previous one,
as shown in Table 4.3. With this ESS size, 4kWh per dwelling is used.

Finally, it is important to remark that the results could change is another battery tech-
nology, different strategies control and/or different operational requirement for the microgrid
and main grid are considered. The fuzzy prediction interval model for obtaining the expected
value and quantifying the uncertainty of the net power Pnet of microgrid is presented in the
next section.
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Table 4.3: Performance Indices of Cost Function in (4.24)

Battery Capacity RMSE RMSEw/o EFC LPSP
LF J

(KWh) (KW) (KW) (Cycles) (%)

75 1.77 9.61 7.97 6.35 0.371 0.871
90 1.78 10.67 7.52 5.95 0.389 0.721
105 1.90 11.68 7.14 5.65 0.389 0.676
120 1.51 12.32 6.79 4.76 0.388 0.612
135 1.22 12.91 6.40 3.78 0.387 0.606
150 1.11 13.40 6.09 3.54 0.385 0.656
165 1.12 13.91 5.81 3.14 0.383 0.736
180 1.04 14.47 5.58 2.62 0.381 0.805
195 1.01 15.09 5.37 2.56 0.380 0.889
210 0.95 15.59 5.21 2.54 0.378 0.959

4.4.2 Fuzzy Prediction Interval for Net Power of Microgrid

The load (PL) and photovoltaic power (PPV ) from a town in the UK considered in this study
are used to develop the fuzzy prediction interval model. A period of 90 days correspond to the
winter season is used, which is divided into training, validation and test data. The training
data are obtained as the average value of the measured data with a one-minute resolution.
The maximum value of the net power (Pnet) is 67.57kW and the minimum value is -45.09kW
and a sample time of 30 minutes is used.

The relevant regressors obtained during the model identification process for the net power
of the microgrid, given by Pnet = PL − PPV are shown in (4.29):

P̂net(k) = f fuzzy(Pnet(k − 1), Pnet(k − 2), Pnet(k − 8), Pnet(k − 25), Pnet(k − 26), Pnet(k − 32),

Pnet(k − 38), Pnet(k − 42), Pnet(k − 43), Pnet(k − 44), Pnet(k − 46), Pnet(k − 48))

(4.29)

Four rules correspond to the optimal structure for the fuzzy model. Note that exogenous
variables are not included in the model. In this study, the prediction interval model is tuned
at a desired prediction interval coverage probability (PICP) of 90% for all prediction horizons.
The PICP is used to quantify the number of measured values that fall within the interval
defined by the model, and PINAW is used to measure the width of the interval. Additionally,
the RMSE and MAE are included as performance indices to evaluate the accuracy of the
prediction model associated with the expected value.

Table 4.4 shows the performance indices for three different prediction horizons used with
the test dataset. The results suggest that the fuzzy prediction interval was effectively tuned
to approximately 90% of the desired PICP, and the interval width (PINAW) increases with
the prediction horizon, however, this width corresponded to the minimum width for charac-
terizing the uncertainty of the net power of the microgrid (Pnet).
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Table 4.4: Performance Indices of Fuzzy Prediction Interval Model

Performance

Indices

Prediction Horizon

One-hour ahead Six-hours ahead One-day ahead

RMSE (kW) 4.5136 5.0471 5.1974
MAE (kW) 3.2995 3.7316 3.7530
PINAW (%) 22.73 27.62 28.02
PICP (%) 88.22 89.79 89.83

Fig. 4.5 shows one-day ahead prediction intervals, tuned with 90% coverage probability,
using a rolling horizon strategy. In this figure, three days of the test dataset are presented.
Furthermore, the expected value (P̂net) and lower (P̂ net) and upper (P̂ net) bounds provided
by the prediction interval have been used to develop both the deterministic and robust EMS
as was explained in previous section.

Figure 4.5: One-day ahead Prediction Interval for Power Net tuned at PICP = 90%

4.4.3 Hierarchical EMS Results

In this case study, an ESS based on lead-acid batteries with 135KWh capacity is selected,
based on the results obtained from the methodology presented in Section 4.4.1. Simulation
results from the deterministic EMS (Section 4.3.1) and robust EMS (Section 4.3.2) for the
higher level management of the microgrid are presented next, and they are compared with
a basic EMS without ESS, where the energy required to satisfy the energy balance in the
microgrid is either bought or sold from the main grid.

Fig. 4.6 shows the behaviour of the hierarchical EMS algorithms (Deterministic and Ro-
bust EMS) for operation over two days. The green line shows the original load demand of the
community, the red line shows the power reference (Pmgref ) obtained during the optimization
process from the higher level (MPC controller), and the blue line shows the actual main grid
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(a) (b)

Figure 4.6: Performance of Hierarchical EMS Proposed a) Deterministic Approach; b) Robust
Approach

power when the EMS is used. The results show that both approaches have the capacity
to follow the power reference reasonably well and reduce the peak load power drawn from
the main grid. The tracking errors occur when the available maximum battery power for
charging or discharging are less than the ESS power required by the microgrid (see rules in
Section 4.2). This, in turn, could happen due to prediction errors and/or the errors by the
linearization of the SoC and the available maximum power of ESS made in the higher level
Energy Profiler.

From Fig. 4.6, it can see that the Robust EMS has a flatter power reference than the
deterministic EMS, which is better for the distribution network operator. Results are con-
sistent with the energy prices (see Table 4.1). For instance, the time block of 16:00 to 19:00
hours is the most expensive time to draw power from the main grid, but using the EMS the
actual power drawn from the main grid is close to zero. During this time period, the peak
load reduction occurs through the use of the ESS. The opposite behaviour occurs during
morning hours (0:00-06:00 and 23:00-24:00) where the energy price is much cheaper.

Table 4.5 shows the energy costs, the tracking error of the power reference (Pmgref ) mea-
sured by the RMSE, the equivalent full cycles (EFC), and the loss of power supply probability
(LPSP) of one-week simulation using the deterministic and robust EMS approaches.

Table 4.5: Performance Indices during a simulation of one week duration

EMS Strategy
Cost RMSE EFC LPSP

(£) (kW) Cycles (%)

Deterministic EMS 168.01 1.22 6.40 3.780
Robust EMS 165.28 1.14 6.07 2.927
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The energy cost of the microgrid for one week without the ESS is £255.43. Note that the
energy required to satisfy the energy balance in the microgrid is only bought or sold from
the main grid. Therefore, a reduction of £87.42 corresponding to 34.22% is achieved using
the deterministic EMS, and a reduction of £90.15 (35.29%) is achieved by the Robust EMS.
Assuming this reduction is the average saving during each winter week a total of £1123.9
and £1159.1 are saved during this season with respect to the case without the ESS, with the
deterministic EMS and Robust EMS, respectively.

Although the energy cost with the deterministic and robust approaches are similar, other
metrics are also improved with the robust EMS, as shown in Table 4.5. The lower RMSE
with the Robust EMS means that this approach follows in a better way the power reference
(Pmgref ) sent by the higher level to the microgrid (see Fig. 4.6). In addition, the lower EFC
of the Robust EMS demonstrates fewer cycles of the ESS required for the same microgrid
behavior which directly improves the state-of-the-health (SoH) and lifetime of the ESS. As
battery ageing (measured by SoH ) is a function of the elapsed time from the manufacture
date, as well as the usage by consecutive charge and discharge actions, a lower EFC can
improve the battery life time, and therefore, the replacement time of the battery bank could
be longer with the Robust EMS compared to the deterministic EMS. Finally, the LPSP of
3.780% for the deterministic EMS corresponds to the percentage time which the microgrid
cannot fulfil the load requirements using the reference power (Pmgref ) defined by the higher
level and the available resources of the microgrid (PV and ESS). The Robust EMS reduces
this performance index to 2.927%. This is achieved because the robust approach compensates
for the uncertainty into the ESS power and the power reference by means of the L gains (see
Section 4.3.2). Therefore, this approach results in a better use of the ESS, as shown in the
SoC behaviour (see Fig. 4.7).

The periods highlighted by the rectangles in Fig.4.7 show that the Robust EMS achieves
a charge close to the maximum SoC before starting the discharging process which reduces
the probability of loss of power supply. Additionally, Fig. 4.7 shows that the ESS works in
the safe operation ranges. At all times the SoC is between 20% and 80% and the voltage is

(a) (b)

Figure 4.7: Microgrid ESS SOC and Voltage Behaviour a) Deterministic EMS; b) Robust
EMS
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between the minimum and maximum values given by the manufacturer (dotted lines on the
bottom figures).

Table 4.6 shows the amount of the energy bought by the community from the main grid
during the different time periods associated with different tariff prices shown in Table 4.1. C1
correspond to the time with the cheaper price and C3 to the expensive price. As mentioned
above, the operation of the hierarchical EMS’s (deterministic and robust) is consistent with
these price bands: more energy is bought at the cheaper price (C1) and less energy is bought
at the expensive price (C3) compared to the scenario without the ESS strategy. The amount
of the energy bought at the C2 price is similar for all EMS’s strategies reported in Table
4.6. Additionally, deterministic and robust approaches avoid exporting energy to the main
grid which is a required condition in this study and it is included in the constraints in the
optimization.

Table 4.6: Energy Distribution at different Prices

EMS Strategy
Export C1 C2 C3

(kWh) (kWh) (kWh) (kWh)

Without ESS 40.546 357.097 1087.877 436.215
Deterministic EMS 0.000 990.361 934.338 25.483
Robust EMS 0.000 994.081 931.231 15.321

Finally, with the purpose of quantifying the power profile of the main grid for the different
controllers, several indexes of operation are presented in Table 4.7. These are the load
factor (LF ), the load loss factor (LLF ), positive power peak (P+), negative power peak
(P−), power variation range (PV R), maximum power derivative (MPD) and average power
derivate (APD) are used and the results are shown in Table 4.7.

An improvement to the LF value indicates the reduction of peak load (see definition in
Eq. 4.28). LLF , given by (4.30), is a measure of losses incurred as a result of peak power
[41]:

LLF =
Avg(P 2

grid)

max(P 2
grid)

(4.30)

Table 4.7: Quality Indices for Quantifying of the Power Profile of the Main Grid

EMS Strategy LF LLF
P+ P− PVR MPD APD

(kW) (kW) (%) (kW/min) (kW/min)

Without ESS 0.2119 0.0717 51.71 -14.86 100 19.67 1.1659
Deterministic EMS 0.3869 0.2452 30.00 0 45.06 29.63 0.1889
Robust EMS 0.4459 0.2880 25.90 0 38.91 22.48 0.1318
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The power variation range (PV R) quantifies the ratio between the difference of the maxi-
mum (Pw

grid,max) and minimum (Pw
grid,min) grid power values when the deterministic or robust

EMS are used and those maximum (P
w/o
grid,max) and minimum (P

w/o
grid,min) grid power values

obtained without the ESS [129]:

PV R =
Pw
grid,max − Pw

grid,min

P
w/o
grid,max − P

w/o
grid,min

(4.31)

The maximum power derivative (MPD) is the maximum value of the rate of change
between two consecutive points of the main grid power in its absolute value [62, 130]:

MPD = max(|∆Pgrid(k)|) (4.32)

where ∆Pgrid(k) = Pgrid(k) − Pgrid(k − 1). Finally, the average power derivate (APD) is
the average of the absolute value of the rate of change of the main grid power:

APD =
1

T

T∑
k=1

|∆Pgrid(k)| (4.33)

The LF increases from 0.2119 to 0.3869 when deterministic EMS is implemented compared
to when there is no ESS. This LF value rises to 0.4459 with Robust EMS, therefore this EMS
approach results in better peak power reduction. In a similar way, the LLF rises from 0.0717
to 0.2452 when the deterministic EMS is compared to the scenario with no ESS. The LLF
value is 0.2880 for Robust EMS which means that this strategy has a significant reduction
of losses incurred as a result of peak power.

The positive power peak (P+) and negative power peak (P−) for the hierarchical EMS
proposed is limited by the constraints associated with the minimum and maximum power
from the main grid as explained in the formulation of the optimization problem. Therefore,
constraints in the EMS guarantee that no energy is exported to the main grid. On the other
hand, the maximummain grid power (Pmax

grid ), in the optimization problem, is defined as 30kW.
The Robust EMS works in a more conservative manner for the upper limit. It attempts to
avoid sub-optimal operation due to worst case realizations: thus it allows smaller peaks
(P+ = 25.9kW ) than the deterministic EMS (30kW ) (see also Fig. 4.8).

As can be seen in Table 4.7, the last three metrics are significantly improved using the
hierarchical EMS proposed. The PV R is reduced to 45.06% and 38.91% compared to the case
without the ESS when deterministic EMS and robust EMS respectively are used. Finally, the
APD criterion has a significant reduction which corresponds to a flatter main grid power (see
Fig. 4.8), although the maximum value of the ramp-rate of the power (measured by MPD)
is low for the strategy without the ESS. It should be noted that the analyses presented in
this section are representative of the specific microgrid described, with the given operational
characteristics and limitations of the DG and ESS of this specific system. Therefore, changing
the characteristics or penetration levels of these components could affect the results to some
degree.
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Figure 4.8: Main Grid Power Profiles

4.5 Discussion

In this chapter, a hierarchical two-level EMS was developed for energy community (micro-
grid) operation, considering the uncertainty of the renewable energy resources and electrical
load consumption. At the lower (microgrid) level, a rule-based controller was implemented,
whereas at the higher (main grid) level, a Robust MPC was used – the Energy Profiler. The
aim was to incorporate the benefits of both non-optimal controllers and optimal controllers.

The hierarchical EMS proposed was tested using an energy community connected to the
main grid made up of 30 dwellings with 50% photovoltaic power penetration level and as
ESS of 135kWh. Results showed that the hierarchical EMS can benefit both the end user
and the operator of the distribution network: the EMS is able to keep the community power
flow close to the reference power defined by Robust MPC and provide minimum energy cost.
Additionally, safe operation of the ESS and a peak load reduction were achieved.
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Chapter 5

Hierarchical Energy Management
System for Microgrid Coordination

This chapter proposes a hierarchical scheme based on two-level EMS for microgrid coordina-
tion which realises both short-term power balancing and long-term energy management, ben-
efiting both the energy community members and the distribution network operator (DNO).
The hierarchical two-level structure addresses both the uncertainty of the renewable energy
resources and the variability in end-user consumption profiles. The performance of the pro-
posed hierarchical EMS is tested with two case studies. The first case study corresponds
to an energy community made up of two microgrids with different numbers of dwellings,
renewable energy (Photovoltaic and Wind Energy) and ESS based on lead-acid batteries.
The second case study corresponds to an energy community made up of three microgrids.
For this latter case, a microgrid with a school demand profile is included with the aim to
exploiting complementary power profiles.

5.1 Introduction

This chapter concerns the design of a hierarchical EMS for microgrid coordination, includ-
ing the characterization of uncertainty associated with renewable DG and load. As it was
explained in the previous chapter, in this thesis a two-level EMS is developed. The aim is
to incorporate the benefits of schemes based on both receding horizon control and real-time
decision-making. Therefore, the proposed EMS for microgrid coordination comprises a real-
time control strategy which uses a rule-based approach at the lower level (for each microgrid)
and a Robust MPC at the higher level as shown in Fig. 5.1.

In this framework, each microgrid has its own energy generation provided from a renewable
energy sources (RES), non-controllable load and an ESS. The overarching aims of the EMS
for the coordination of microgrids are to maximise self-consumption of the energy community
(i.e. share energy between microgrids and minimise energy exported to the main grid) and
to minimise the power drawn from the main grid during peak periods.
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Figure 5.1: Hierarchical Control Structure for Microgrid Coordination

A centralized controller – the Energy Profiler – sets the power references P i
mgref i =

0, . . . ,M for each i− th microgrid that make up the energy community. This Energy Profiler
optimises the energy cost for the community over a prediction horizon, while considering safe
limit constraints for each ESS at the microgrid level and power transfer to and from the main
grid. A sample time of 30 min is considered, which defines the update frequency of P i

mgref .
A centralized controller – the Energy Profiler – sets the power references P i

mgref i = 0, . . . ,M
for each i− th microgrid that make up the energy community. This Energy Profiler optimises
the energy cost for the community over a prediction horizon, while considering safe limit
constraints for each ESS at the microgrid level and power transfer to and from the main grid.
A sample time of 30 min is considered, which defines the update frequency of P i

mgref .

The local real-time controller (at the microgrid level) used for every microgrid is the same
that was explained in Section 4.2. In this framework, this controller controls the net power
flowing from the point of common coupling (PCC) to the microgrid (P i

mg) or vice versa so
that it tracks the power reference (P i

mgref ) sent from the central Energy Profiler at the main
grid level. The following sections present the details of the deterministic and Robust MPC
strategies at the higher level: the Energy Profiler for microgrid coordination.

5.2 Model Predictive Control for Microgrid Coordination

At the main grid level, the power references (P i
mgref ) i = 0, . . . ,M are calculated taking

into consideration the operation restriction of the microgrid level so that the local controller
can follow the reference with a minimum tracking error, as well as the system works with
minimum energy costs.
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In this framework, the fuzzy prediction intervals models are used to anticipate the be-
haviour of the expected value over a prediction horizon, and the variability of both the
demand and the energy available from the renewable resources. This information is used in
the Energy Profiler design which uses the receding horizon control strategy. Finally, the same
Time of Use (ToU) tariff showed in Table 4.1 (chapter 4) is used for buying energy from the
main grid. In this scheme, three price levels are used called off-peak, mid-peak and peak (see
Fig. 4.4). For the scenario without an ESS, 5p/kWh (pence of pound sterling per KWh) is
used to quantify the financial benefit of the trade surplus energy exported to the main grid.

5.2.1 Deterministic Coordination of Microgrids

This section presents an extension of the deterministic EMS presented in Section 4.3.1 to
energy communities that are made up of multiples microgrids (see Fig. 5.1). Therefore, at
each discrete time instant k an optimization problem is solved to find the optimal sequence of
P i
mgref (k+ j) with i = 1, . . . ,M and j = 0, . . . , N−1 that minimizes the energy consumption

of multiples microgrids during the prediction horizon N . C(k + j) is the energy price and
PDNO(k + j) is the total power bought from the main grid and therefore, it should meet the
power balance with the sum of reference powers (P i

mgref ) of all the microgrids (i = 1, . . . ,M)
that make up the Energy Community:

PDNO(k + j) =
M∑
i=1

P i
mgref (k + j). (5.1)

The above means that the microgrids can share energy between the members of the Energy
Community, guaranteeing that the constraints imposed by the distribution network operator
be achieved. Therefore, other constraints that must be considered in the optimization include
the minimum and maximum main grid powers:

−Pmin
DNO ≤ PDNO(k + j) ≤ Pmax

DNO. (5.2)

Because the aims of the EMS are to maximise self-consumption (i.e. minimise energy
exported to the main grid) and to minimise the power drawn from the main grid during
peak periods, the minimum limit is Pmin

DNO = 0 and the maximum power Pmax
DNO can be

defined in order to reduce the peak load, for example during peak periods. However, in
the microgrid coordination approach, the reference power (P i

mgref ) of each microgrid can
take negative values (sharing energy into the community) to achieve the defined aims of the
energy community in a collaborative way. Additionally, that condition enlarges the feasible
set of the optimization problem compared to the operation of energy community made up of
an only microgrid, as was presented in chapter 4.

For this approach, the net power (P i
net = P i

L − P i
RES) of the i-th microgrid (i = 1, . . . ,M)

is given by its expected values P̂ i
net(k + j) which are obtained by the fuzzy prediction inter-

val models,where P i
L is the demand of each microgrid and P i

RES are the renewable energy
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resources (PV and Wind) available in each microgrid. Therefore, the constraints associated
to power balance for each microgrid are invoked in the optimization problem as:

P i
mgref (k + j) = P̂ i

net(k + j)− P i
B(k + j) for i = 1, . . . ,M. (5.3)

where P i
B is the power profile of each ESS. The last constraints in the MPC optimization

are associated to the ESS of each microgrid, and correspond to the evolution of the energy
in the ESS (Ei

B) (see Eq. 5.4d), the minimum (Ei
min) and maximum (Ei

max) limits of battery
capacity (see Eq. 5.4e) and the limits for charging (P chg,i

max ) and discharging (P dischg,i
max ) of the

ESS (see Eq. 5.4f). These constraints are invoked in the optimization problem using the same
simplified models used in chapter 4 for the ESS of the i-th microgrid. Therefore, with these
considerations, and the fact the the EMS also aims to minimise costs, the optimal control
problem to be solved at time k for all j = 0, . . . , N − 1 is given by:

J = min
P 1
mgref (k), · · · , P 1

mgref (k +N − 1)
...

PM
mgref (k), · · · , PM

mgref (k +N − 1)

N−1∑
j=0

C(k + j)PDNO(k + j) Ts (5.4)

Subject to:

PDNO(k + j) =
M∑
i=1

P i
mgref (k + j) (5.4a)

− Pmin
DNO ≤ PDNO(k + j) ≤ Pmax

DNO (5.4b)

P i
mgref (k + j) = P̂ i

net(k + j)− P i
B(k + j) (5.4c)

Ei
B(k + j + 1) = Ei

B(k + j)− TsP i
B(k + j) (5.4d)

Ei
min ≤ Ei

B(k + j) ≤ Ei
max (5.4e)

− P chg,i
max (k + j) ≤ P i

B(k + j) ≤ P dischg,i
max (k + j) (5.4f)

Finally, only the first element of the sequence, P i
mgref (k), is sent as a reference to each

microgrid (i = 1, . . . ,M) according to the RHC strategy, and the procedure is repeated at
the next time instant k + 1 (i.e. 30 min ahead).

5.2.2 Robust Coordination of Microgrids with Explicit Uncertainty
Compensation

This section presents an extension of the Robust EMS presented in Section 4.3.2 to energy
communities that are made up of multiples microgrids. In this approach, the uncertainty
of the net power (P i

net) of the microgrids is included explicitly in the formulation of the
optimization problem using the uncertainty prediction given by the fuzzy prediction interval
models.
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The real values of the net power (P i
net(k + j)) for the i-th microgrid satisfy:

P i
net(k + j) = P̂ i

net(k + j) + ∆P̂ i
net(k + j) for i = 1, . . . ,M (5.5)

where P̂ i
net is the expected value of the prediction and ∆P̂ i

net(k + j) is the deviation of the
actual value from the prediction. The deviations are uncertain, but satisfies:

∆P̂ i
net(k + j) ∈ [∆P̂min,i

net (k + j),∆P̂max,i
net (k + j)] (5.6)

where
∆P̂max,i

net (k + j) = P̂
i

net(k + h)− P̂ i
net(k + h) (5.7)

∆P̂min,i
net (k + j) = P̂

i

net(k + h)− P̂ i
net(k + h), (5.8)

where P̂
i

net(k + j) and P̂
i

net(k + j) are the upper and lower bounds of the prediction
interval, respectively, and P̂ i

net(k + j) the expected value given by the prediction models.
In this approach, these prediction interval models are designed to have a minimum interval
width and guarantee that the future real values fall within the interval with a certain coverage
probability.

As was presented in section 4.3.2, in this approach, the Robust MPC formulation includes
the uncertainty explicitly in the optimization problem with linear gains L(k+j) to compensate
the uncertain terms. Then, following the same idea for microgrid coordination, the following
control law (for each i-th microgrid) for the predicted inputs of the optimization at time k is
proposed:

P i
B(k + j) = P̂ i

B(k + j) + Li(k + j)∆P̂ i
net(k + j) (5.9)

P i
mgref (k + j) = P̂ i

mgref (k + j) + (1− Li(k + j))∆P̂ i
net(k + j) (5.10)

where P̂ i
mgref (k+j), P̂ i

B(k+j) and Li(k+j) are the optimization variables, for i = 1, . . . ,M
and j = 0, . . . , N − 1, and the gains Li(k + j) satisfy:

0 ≤ Li(k + j) ≤ 1, (5.11)

which indicates that the deviation of the real value from the prediction is compensated
by P i

B(k + j) and P i
mgref (k + j) in a proportion defined by Li(k + j) for i = 1, . . . ,M . It is

important to remark that with this control law (see Eqs 5.9 and 5.10), the power balance for
each microgrid is satisfied with the expected values of P i

B, P i
net and P i

mgref :

P̂ i
mgref (k + j) = P̂ i

net(k + j)− P̂ i
B(k + j). (5.12)
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Due that the optimization problem cannot be solved with uncertain values, the uncertain
component ∆P̂ i

net(k + j) is considered in the constraints using the same criteria that was
explained in section 4.3.2, and therefore the constraint which imposes the limits for PDNO is
invoked in the optimization problem as:

M∑
i=1

[P̂ i
mgref (k + j)− Li(k + j)∆P̂max,i

net (k + j)] ≤ Pmax
DNO −

M∑
i=1

∆P̂max,i
net (k + j) (5.13)

−
M∑
i=1

[P̂ i
mgref (k + j) + Li(k + j)∆P̂min,i

net (k + j)] ≤
M∑
i=1

∆P̂min,i
net (k + j)− Pmin

DNO (5.14)

The constraints associated with the ESS of each microgrid (Eqs. 5.4d, 5.4e, 5.4f) are
reformulated as:

−Ts
j∑

n=0

P̂ i
B(k + n)− Ts

j∑
n=0

Li(k + n)∆P̂max,i
net (k + n) ≤ Ei

max − Ei
B(k) (5.15)

Ts

j∑
n=0

P̂ i
B(k + n) + Ts

j∑
n=0

Li(k + n)∆P̂max,i
net (k + n) ≤ −Ei

min + Ei
B(k) (5.16)

P̂ i
B(k + j) + Li(k + j)∆P̂max,i

net (k + j) ≤ P dischg,i
max (k + j) (5.17)

−P̂ i
B(k + j)− Li(k + j)∆P̂max,i

net (k + j) ≤ P chg,i
max (k + j) (5.18)

Finally, with all these considerations, the optimization problem to be solved at each time
k is:

J = min
x1(k), . . . , x1(k +N − 1)

...
xM(k), . . . , xM(k +N − 1)

N−1∑
j=0

C(k + j)PDNO(k + j) Ts (5.19)

subject to (5.11)-(5.18) all for j = 0, . . . , N − 1.

where xi = {P̂ i
mgref , P̂

i
B, L

i} for i = 1, . . . ,M . This optimization problem is linear and can
be tackled with suitable solvers. In this case, by an interior-point algorithm. Among the
benefits of this algorithm are its fast processing time and the low computational cost and
the capability to traverse through the feasible region during its execution. Thus, the RHC
strategy at the higher level MPC controller includes the following steps:
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1. Get the initial condition at the initial discrete time k. The current states of the SoC i

for i = 1, . . . ,M are estimated by the UKF filter at the microgrid level which sends this
information to the higher level.

2. The linear optimization problem finds the optimal sequences of the power reference (P i
mgref )

of each microgrid that minimizes the energy consumption during the prediction horizon,
using the interior-point algorithm and considering all the constraints described in Eq. 5.19
and the initial conditions of the ESS of each microgrid. The expected value and the upper
and lower bounds of the net power (P i

net) of each microgrid are inputs variables of the
MPC controller. These values are obtained by the fuzzy prediction interval models. In
this case, the prediction horizon is one day, 48 steps with a sampling time of 30 minutes.

3. The first element of the sequence of the power reference (P i
mgref ) is sent to the real-time

controller of each microgrid at the lower level of the EMS. The real-time controller set the
charging/discharging power profile (P i

B) of the ESS of each microgrid in order to track
P i
mgref sent by the Energy Profiler, based on the measurements (with a sample rate of

one minute) of the power of both the microgrid consumption (P i
L) and renewable energy

resources (P i
RES). Additionally, the real-time controller considers the safe operation limits

of the each ESS obtained by the estimators of SoC and the maximum available power for
charging and discharging.

4. The procedure for updating the power reference of each microgrid is repeated at time k+1
(i.e. 30 minutes ahead). Therefore, return to step 1.

Finally, when a high uncertainty level is considered in the robust optimization problem,
the solution might be too conservative [63, 131]. In this approach, a possible alternative to
ensure that the solution remains feasible with a high uncertainty level is to use bigger ESS
compare with the deterministic approach, or to modify the limits associated with the power
drawn from the main grid (see Eq. 5.4b) or the limits of the ESS capacity (see Eq. 5.4e).
However, in this work, in order to avoid modify of the energy community characteristics
described above, a trade-off between conservatism and uncertainty level is considered. Next,
the uncertainty policy proposed for this purpose is described.

5.2.3 Uncertainty Policy

In this work, the uncertainty is handled by the fuzzy prediction interval models. As was
explained in Chapter 3, the prediction interval aims to achieve the upper and lower bounds
of the interval as narrow as possible and that the interval contains a certain percentage of
measured data. Results in chapter 3 showed that given the desired coverage probability
(e.g. 90%) the interval width increase as the prediction horizon increase and therefore, the
uncertainty level is higher.

Based on the above results and to handle the level of conservatism of the robust solution
a decreasing desired prediction interval coverage probability (PICP) is proposed in function
of the prediction horizon, as follow:
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PICP (j) =

(
PICP f

PICP 0

) j
N−1

PICP 0 (5.20)

where j = 0, . . . , N − 1 is the prediction horizon, PICP 0 and PICP f are the initial
and final desired PICP over the prediction horizon, and N = 48 that corresponds one day
ahead for this study. Fig. 5.2 shows an example of the proposed approach (Eq. 5.20), where
PICP 0 = 90% and PICP f = 10% are the initial and final desired PICP over prediction
horizon, respectively. Therefore, the upper and lower bounds of the fuzzy prediction in-
terval models are tuned according to these desired PICPs to avoid intervals too width for
higher prediction horizon. Finally, the performance of the hierarchical EMS for microgrid
coordination is tested based on two case studies which are detailed next.

Figure 5.2: Desired PICP as function of Prediction Horizon

5.3 Case Studies

This section presents the results of the hierarchical EMS for the coordination of clusters of
microgrids, which include the caracterization of uncertainty of renewable resources and load
profiles. Two case studies are presented. The first case study corresponds to an Energy
community made up of two microgrids with different numbers of dwellings, renewable energy
(Photovoltaic andWind Energy) and ESS based on lead-acid batteries. The second case study
corresponds to an Energy community made up of three microgrids. For this latter case, a
microgrid with a school demand profile is included with the aim to exploiting complementary
power profiles such as daytime consumption profiles (like schools) and peak morning and
evening consumption profiles (like households).

The data used for simulation correspond to winter season for all the case studies. The
demand and photovoltaic power come from a town in the UK and wind power comes from
Chile. Energy price used is the same as was explained in chapter 4 section 4.4 (see table 4.1).
Fuzzy prediction interval models are used to predict the expected value and the uncertainty
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of the net power of each microgrid of the energy community, and they are tuned according to
the uncertainty policy described in the previous section. Simulation results for the microgrid
coordination with the deterministic (Section 5.2.1) and the robust EMS (Section 5.2.2) are
presented next, and they are compared with a basic EMS without ESS.

5.3.1 Case 1: Two Microgrids with Photovoltaic and Wind Energy

This case study corresponds to an energy community made up of two microgrids. The
microgrid described in chapter 4 is used as the first microgrid for this energy community, and
the second microgrid is composed of domestic demand, wind turbines and an ESS based on
lead-acid batteries. Table 5.1 shows the characteristics of the energy community used to test
the performance of the proposed EMSs.

Table 5.1: Energy Community Characteristics: Case Study 1

Energy Consumption Rated Power of Rated Power of ESS

Community Profiles PV Generator Wind Generator Capacity

Microgrid 1 30 Dwellings 60KW 0KW 136KWh
Microgrid 2 60 Dwellings 0KW 35KW 180KWh

In this framework, the demand from the dwellings corresponds to non-controllable loads.
The peak value of the load is 68KW and 120KW for the microgrid 1 and 2, respectively.
With the ESS capacity chosen for the energy community, 3.5KWh capacity per dwelling is
used. Therefore, the ESS capacity per dwelling is reduced compares with the case study
reported in chapter 4, where 4.5KWh capacity per dwelling was used. Fig. 5.3 and Fig. 5.4
show both the load and renewable energy profiles (PV and Wind power) over 4 days for the
microgrid 1 and 2, respectively.

Figure 5.3: Profiles of Load and Photovoltaic Power over four days
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Figure 5.4: Profiles of Load and Wind Power over four days

For this case study, the desired PICP used for developing the fuzzy prediction interval
models (for each microgrid) are 90% over the prediction horizon, which means that PICP 0 =
PICP f in Eq. 5.20. Fig. 5.5 shows the responses obtained with the hierarchical EMSs
(Deterministic and Robust) for an operation over two days of the energy community. It can
also be seen that in both approaches the power reference (P i

mgref ), as sent by the higher level
MPC controller to each microgrid (in red), can be tracked reasonably well by each lower
level controller (P i

mg, in blue). The tracking errors can happen due to errors associated to
predictions of P i

net, the linearization of the SoC, and/or the estimation of available maximum
power of each ESS, all made in the higher level Energy Profiler.

Table 5.2 reports the RMSE of the tracking error of the power reference (P i
mgref ), the

equivalent full cycles (EFC), the loss of power supply probability (LPSP), and the energy
export for each microgrid of one-week simulation using the deterministic and robust EMSs
(see chapter 4 for definition of EFC and LPSP). The lower RMSE with the Robust EMS
means that there is a better tracking of the power reference (P i

mgref ) sent by the higher level
to each microgrid of the energy community. The lower EFC of the Robust EMS means that
fewer cycles which directly improves the state-of-the-health (SoH) and lifetime of the ESS.

The LPSP, which is the fraction of the time where each microgrid cannot fulfil the electrical
demand requirements using the reference power (P i

mgref ) defined by the coordinator level
and the available resources of each microgrid (Renewable Resources and ESS) of the energy
community, is lower for the Robust EMS than the deterministic EMS. Additionally, as can
be seen in Table 5.2, when the microgrids work in coordination manner, they can share
energy between members of the community to maximise self-consumption and minimise the
energy bought from the main grid. Finally, the behaviour obtained for the microgrid with
30 dwellings when it works in a coordinated way is similar than the behaviour reported in
chapter 4 even with the reduction of ESS capacity per dwelling, as was mentioned above.
This means that the microgrids that trading as energy communities can optimise the use of
DG and the size of energy storage required.
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(a) (b)

(c) (d)

Figure 5.5: Performance of Hierarchical EMS for Microgrid Coordination a) Determinis-
tic EMS: Microgrid 1; b) Robust EMS: Microgrid 1; c) Deterministic EMS: Microgrid 2;
d)Robust EMS: Microgrid 2

Table 5.2: Performance Indices during a simulation of one Week duration: Case Study 1

EMS RMSE EFC LPSP Shared

Strategy (KW) Cycles (%) Energy (KWh)

Deterministic:

Microgrid 1 1.601 6.362 4.772 60.344
Microgrid 2 2.031 6.495 4.643 47.248

Robust:

Microgrid 1 1.067 6.136 2.778 48.544
Microgrid 2 1.736 6.243 4.058 28.845

Table 5.3 shows the energy bought by the energy community from the main grid during
the time periods associated with different tariff prices. As was explained in chapter 4, C1
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identifies the time with the cheaper price and C3 that with the expensive price. The operation
of both hierarchical EMSs is consistent with these price bands: more energy is bought at the
cheaper price (C1) and less energy is bought at the expensive price (C3) compared to the
case without ESS. The amount of the energy bought at the C2 price is similar for all EMSs
strategies, as reported in Table 5.3. Additionally, deterministic and robust approaches do
not export energy to the main grid since this requirement is added as a constraint in the
optimization. Therefore, similar results were obtained regarding the energy distribution at
different prices blocks compared with the operation of one microgrid reported in chapter 4.

Table 5.3: Energy Distribution at different Prices

EMS Strategy
Export C1 (5p/kWh) C2 (12p/kWh) C3 (25p/kWh)

(KWh) (KWh) (KWh) (KWh)

Without ESS 35.655 903.144 3133.138 1115.879
Deterministic 0.000 2306.259 2844.228 150.248
Robust 0.000 2342.289 2791.394 162.823

Finally, for further evaluation of the EMSs, several indexes of operation are presented in
Table 5.4. These are the energy cost of the energy community, the load factor (LF ), the load
loss factor (LLF ), positive power peak (P+), negative power peak (P−), power variation
range (PV R), maximum power derivative (MPD) and average power derivate (APD) (See
chapter 4 for detailed definitions).

The LF describes the flatness of the power response: values close to 1 are associated to
flat responses while values close to 0 indicate the presence of large peaks. The LLF quantifies
the losses incurred as a result of peak power: values close to 1 describe flat responses with
small losses, while values close to 0 indicate large losses due to large peaks [41]. The PV R
quantifies the ratio between the difference of the maximum and minimum power drawn from
the main grid, for each EMS, and the same difference but for the case without ESS. The
MPD is the maximum value of the rate of change between two consecutive points of the
main grid power in its absolute value [62, 130]. And the APD is the average of the absolute
value of the rate of change of the main grid power.

Table 5.4: Quality Indixes for the Power Profile of the Main Grid: Case Study 1

EMS Strategy
Cost

LF LLF
P+ P− PVR MPD APD

(£) (KW) (KW) (%) (KW/min) (KW/min)

Without Battery 698.32 0.2664 0.1028 114.31 -19.21 100 29.54 2.6841
Deterministic 494.18 0.4207 0.2673 75.00 0.00 56.17 71.48 0.5073
Robust 492.79 0.5043 0.3386 62.52 0.00 47.40 53.55 0.3897

The energy cost for the energy community without the ESS is £698.32. Therefore, a re-
duction of £204.14 is achieved using the deterministic EMS, and a reduction of £205.53 is

73



achieved by the Robust EMS. Even though the energy cost is similar for both EMSs (De-
terministic and Robust), the quality indexes described above (see table 5.4) are significantly
improved using the proposed hierarchical EMS compare with the case without ESS.

The positive power peak (P+) and negative power peak (P−) for the hierarchical EMS
is limited by constraints as explained in Section 5.2. The limits are Pmin

DNO = 0kW , which
guarantees that no energy is exported to the main grid, and Pmax

DNO = 75kW . The Robust EMS
works in a more conservative manner for the upper limit. It attempts to avoid sub-optimal
operation due to worst case realizations: thus it allows smaller peaks (P+ = 62.52kW ) than
the deterministic EMS (75kW ) (see also Fig. 5.6). Additionally, as discussed above, the
operation of both hierarchical EMSs is consistent with energy prices bands, since energy
from the main grid is the most expensive in the 16:00-19:00 hr time-block, therefore, the
EMS makes this power draw be close to zero. Finally, Fig. 5.6 shows that the Robust EMS
finds a flatter PDNO than the deterministic EMS, which is good for the distribution network
operator.

Overall, it can be seen that the deterministic and robust hierarchical EMSs provide im-
provements over the case without ESS, as they provide mechanisms for efficient energy man-
agement. Additionally, the Robust EMS provides small improvements over the deterministic
EMS. These can be explained because the uncertainty management in the Robust EMS helps
the system to be prepared for errors in the predictions that might yield sub-optimal decisions.

Figure 5.6: Main Grid Power Profiles: Case study 1

5.3.2 Case 2: Three Microgrids with Photovoltaic and Wind Gen-
eration including a School Load Profile

This case study corresponds to an energy community made up of three microgrids. The
microgrids 1 and 2 of this energy community correspond to the microgrids described in the
previous section (section 5.3.1). The third microgrid is a school with both photovoltaic and
wind power, and an ESS based on lead-acid batteries. Table 5.5 shows the characteristics
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of this energy community and Fig. 5.7 shows both the demand profile of the school and
the aggregate demand of the microgrid 1 and 2 over four days. These days are Thursday to
Sunday of a typical week, and as shown in Fig. 5.7 the load profile of the school decreases
during the evening and changes significantly during the weekend. The peak value of the load
from the school is 131.12KW. The electrical demand profile from Monday to Wednesday has
a similar behaviour than shows in Fig. 5.7 for weekdays. Additionally, the holiday periods
has a similar behaviour than weekend profiles.

Table 5.5: Energy Community Characteristics: Case Study 2

Energy Consumption Rated Power of Rated Power of ESS

Community Profiles PV Generator Wind Generator Capacity

Microgrid 1 30 Dwellings 60KW 0KW 136KWh
Microgrid 2 60 Dwellings 0KW 35KW 180KWh
Microgrid 3 School 120KW 17.5KW 240KWh

Figure 5.7: Demand Profiles of the School and Dwellings over four days

In this case study, fuzzy prediction interval models used to obtain the expected value and
the uncertainty of the net power (P i

net) of each microgrid are tuned using different initial
(PICP 0) and final (PICP f ) desired PICP. Therefore, a PICP 0 = 90% and PICP f = 70%
are choisen in Eq. 5.20 in order to reduce the interval width for higher prediction horizon.

For this case study, similar results have been obtained compare with the case studies
reported in previous sections (sections 4.4.3 and 5.3.1). In general, the proposed hierarchical
EMS provides realistic power references (P i

mgref ) for each microgrid, minimizing the energy
cost delivered to the community from the main grid. In consequence, each microgrid level
controller tracks these references reasonably well, as shown in Fig. 5.8. Additionally, in this
approach, the safe limit constraints for the ESS and power transfer to and from the main
grid are considered.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Performance of Hierarchical EMS for Microgrid Coordination a) Deterministic
EMS: Microgrid 1; b) Robust EMS: Microgrid 1; c) Deterministic EMS: Microgrid 2; d)
Robust EMS: Microgrid 2; e) Deterministic EMS: Microgrid 3; f) Robust EMS: Microgrid 3

The benefit of using complementary power profiles such as schools with daytime consump-
tion and households with peak morning and evening consumption are presented in this case
study. The above, it can see in results shown in Table 5.6. For instance, a better tracking of
the power reference (P i

mgref ) sent by the higher level to each microgrid is achieved with the
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Table 5.6: Performance Indices during a simulation of one Week duration: Case Study 2

EMS RMSE EFC LPSP Shared

Strategy (KW) Cycles (%) Energy (KWh)

Deterministic:

Microgrid 1 1.578 6.413 4.494 85.085
Microgrid 2 1.860 6.491 4.395 102.099
Microgrid 3 2.947 6.478 4.514 138.728

Robust:

Microgrid 1 1.003 5.618 0.942 81.773
Microgrid 2 1.740 5.788 1.151 84.198
Microgrid 3 1.420 5.801 1.677 142.614

Robust EMS. This tracking error reduction is more significant for microgrid 1 and 3 when
Robust EMS is compared to deterministic EMS. In a similar way, the state-of-the-health
(SoH) and the lifetime of the ESS is improved when the Robust EMS is used. In general,
regarding this metric (EFC ) all the case studies reported in this work have obtained simi-
lar results, the Robust EMS achieves lower EFC when is compared to deterministic EMS.
Therefore, this approach results in a better usage of the ESS which reduces the loss of power
supply probability (LPSP), as seen in table 5.6. The LPSP is reduced of 4.494% to 0.942%
for microgrid 1, of 4.395% to 1.151% for microgrid 2, and of 4.514% to 1.677% for micro-
grid 3 when the Robust EMS is compare to deterministic EMS respectively. Overall, all the
case studies reported in this thesis have obtained similar behaviour regarding this metric, and
this happens because the robust approach compensates for the uncertainty of both renewable
generation and electrical demand and can avoid the scenarios measured by the LPSP.

Additionally, Fig. 5.9 shows SoC behaviour of the microgrid 3 over two days. The results
show that the ESS operates at all times in the safe operation ranges (SoC between 20% and
80% of the capacity of the ESS) for both deterministic and Robust EMSs. However, as it can
seen in Fig 5.9, the Robust EMS results in a better usage of the ESS due that right before
the discharging process, the Robust EMS achieves a charge closer to the maximum SoC, and
try not to discharge ESS until the minimun SoC (20% of the capacity of the ESS). The above
is a protection against of uncertainty and therefore, the Robust EMS are prepared for errors
in the predictions, providing flexibility to ESS. Then, the energy community can improve the
behaviour and reduce the energy bought from the grid. Finally, the microgrid 1 and 2 of this
energy community have a similar SoC behaviour to that described previously.

The results show that the cooperation among microgrids has advantages for each microgrid
of the energy community in terms of facing the deficiency or excess of energy production
given by renewable energy behaviour. The above is another benefit of trading as energy
communities, which optimise the use of DG and the size of ESS required. Table 5.6 reports
the shared energy between members of the Energy Community (microgrids). This shared
energy is used for the community in order to maximise self-consumption and minimise the
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Figure 5.9: Microgrid 3 ESS SoC Behaviour a) Deterministic EMS; b) Robust EMS

energy bought from the main grid. Microgrid 3 with daytime profiles, try to share more
energy during the evening that corresponds to periods when the dwellings (microgrid 1 and
2) have one peak demand. In contrast, the microgrids 1 and 2 try to share more energy during
peak demand of the school (during the day). Due to the chosen configuration for this energy
community (i.e., penetration level of renewable energy, and size of ESS and load profiles of
the microgrids), the electrical demand of the school during evening periods is similar to the
demand of the microgrids made up of dwellings (with peak morning and evening load) at
the same evening periods, despite that the school has peak day consumption (see Fig. 5.7).
Therefore, for this case study, the benefits of using complementary power profiles is more
significant (i.e., the microgrid 3 can share more energy) during the weekend and holidays,
as shown in Fig. 5.10, compared to weekdays. In conclusion, for exploiting complementary
power profiles, the planning of the energy community is an important aspect (planning is
not on the scope of this work) because allows determining the optimal combination of DERs
that made up of energy community to achieve the proposed goals. However, the proposed
hierarchical EMS optimises the behaviour of the energy community based on available DERs
and imposed constraints in the optimization problem.

Finally, Table 5.7 reports the energy cost of the energy community and several quality
indices for quantifying of the power profile of the main grid. In general, in all the case
studies reported, the energy cost is lower when the hierarchical EMSs (deterministic and
Robust) are used compared to the case without ESS, therefore, this is one of the benefits
achieved for using ESS at the distribution level. Additionally, energy cost is very similar
for the both deterministic and Robust EMSs in all case studies. However, the load factor
(LF ), the load loss factor (LLF ) and power variation range (PV R) metrics have improved
significantly using the proposed hierarchical EMSs compare to the case without ESS and the
Robust EMS has also improved these metrics compared to deterministic EMS, as shown in
Table 5.7. The improvement of these metrics benefits directly to the network operator for
electricity distribution systems, enabling increased penetration of DG.

As has been explained in previous sections, the positive power peak (P+) and negative
power peak (P−) for the hierarchical EMS is limited by the constraints in the optimization
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Figure 5.10: Performance of Hierarchical EMS for Microgrid 3 during Weekend a) Determin-
istic EMS; b) Robust EMS

Table 5.7: Quality Indixes for the Power Profile of the Main Grid: Case Study 2

EMS Strategy
Cost

LF LLF
P+ P− PVR MPD APD

(£) (KW) (KW) (%) (KW/min) (KW/min)

Without ESS 1472.23 0.3928 0.1840 172.34 0.00 100 33.87 4.6453
Deterministic EMS 1100.14 0.5737 0.4281 120.00 0,00 73.07 119.25 0.8071
Robust EMS 1105.65 0.6539 0.5225 104.43 0.00 63.59 97.50 0.6180

problem. For this work, the negative limit is Pmin
DNO = 0kW , which guarantees that no energy

is exported to the main grid, and the positive limit (Pmax
DNO) is defined for limiting peak power

levels. Therefore, the Robust EMS works in a more conservative manner due that it takes the
values that are more constraining for the upper limit, and thus smaller peaks are obtained
than the deterministic EMS, as shown in Table 5.7 and Fig. 5.11. Finally, the average power
derivate (APD) has a significant reduction, corresponding to a flatter main grid power (see
Fig. 5.11), although the maximum value of the ramp-rate of the power (measured by MPD)
is lower for the case without the ESS (see Table 5.7).

5.4 Assumed Model Simplifications

The next paragraphs are intended to present all the considerations and simplifications as-
sumed for the simulations of the study cases developed in this work, with the intention that
these experiments can be replicated and/or adapted for future research works.

1. The microgrids that conform the Energy Community presented in this work only con-
sider renewable distribution generation units (RESs), which are classified as DG non-
dispatchable and energy storage systems (ESSs) based on batteries that are only dis-
patchable units in this scheme. The reason is that these types of microgrids could be
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Figure 5.11: Main Grid Power Profiles: Case study 2

dwellings on a street or in a village, and they mainly incorporate renewable resources
such as PV and wind generators. However, if thermal generation units are considered,
then in the formulation of the Hierarchical EMS, binary on/off variables that solve unit
commitment problems, where ramps between the generation units, on and off times, must
be included. If this is the case, in the proposed Hierarchical EMS it becomes necessary
to include the associated cost to the corresponding dispatchable DG so that the energy
community can operate with the minimum cost and the technical constraints associated
to these generation units.

2. For this study case, the operation of the energy community in island mode was not con-
sidered, and the main grid assumes the energy deficit that the microgrids might have in
order to satisfy the power balance.

3. The used demand and renewable generation data (PV and wind) in all the study cases,
both for operation and coordination, were measured data with one minute resolution.
However, it the behavior of different microgrids want to be studied, for example including
different profiles such as: factories, hospitals, etc, simulators that generate this type of
data might be used. Examples of this are reported in [132] and [133]. In case of using
of the data generated by the models, it is recommended to analyze the results with the
support of Monte Carlo simulations in order to capture the stochasticity of the processes.

4. The data used for the simulations correspond to the winter season and the prediction
interval models that capture the non-linearity and the uncertainty of the demand and
renewable resources are trained for this winter data. However, in order to analyze the
behavior of the operation and coordination of the energy community (microgrids) in other
seasons, different prediction interval models can be used (for example, one per season) or
if enough data is available to train the prediction interval model, a unique model can be
developed using as a reference the Fuzzy or Neural Network models. Finally, the expected
values and the upper and lower bounds of the prediction interval models are used in the
formulation of the Robust EMS.
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5. The renewable penetration levels and number of dwellings that conform each microgrid
in the energy community were selected arbitrarily in order to evaluate the performance of
the proposed Hierarchical EMS. However, a planning stage to determine the optimal size
and topology of the microgrid can be done to guarantee and optimal future operation.
The addition of more dwellings in each microgrid can reduce the variability of the demand
allowing to predict in a better way by enabling the effective use of ESS at the distribution
level.

6. In this work it is assumed a high flexibility on the grid. This means that energy can be
transferred between the microgrids and the main grid without congestion issues, or voltage
regulation problems, for example. Moreover, the power flows are not modelled since the
grid is considered high flexible, it has the required capacity to deliver energy from and to
the microgrids.

7. The main grid’s power lower limit for this study case was set to zero with the purpose of
not exporting energy to the main grid. Also, the main grid’s maximum power limit was
defined arbitrarily with the intention of reducing power peaks that are purchased to the
main grid. Additionally, a Time of Use (ToU) tariff is used to buy energy from the main
grid. In this scheme, three price levels are used: off-peak, mid-peak and peak. However,
a real time price (RTP) for the energy price scheme can be used as these schemes tend
to use hourly or half-hourly price differences to reflect the price on the wholesale market.
Furthermore, a market scheme that allows to sell energy to the main grid with the intention
to export the excess energy of the microgrid can be considered.

8. Regarding the ESS, lead-acid batteries were considered in this study. However, different
technologies such as Li-ion, hydrogen of flywheels can be included. As mentioned before,
this study considers state of charge (SoC) and maximum available power estimators for
the charging and discharging process in order to operate the ESS within its safety limits.
However, the degradation of the ESS was not considered since the simulation time (weeks)
used to assess the performance of the Herarchical EMS is not enough to quantify the
degradation suffered by the ESS. Although, if the degradation is considered in this scheme,
its effect on the Hierarchical EMS can be neglected since the main grid would supply the
necessary energy to balance the power equation but the energy cost will increase.

Although the scale demonstrated in this study is for small communities, it can potentially
find value at the much larger scale which is currently being proposed for system “Aggregators”
as part of a Smart Grid scenario operated by Distribution System Operatators (DSOs).
Finally, this study also looks to determine how generalised design rules can be created for the
design of the hierarchical control structure and incorporate, highest levels in the hierarchical
approaches reported in the literature following the “Transferrable Design Rules” presented in
this thesis.
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5.5 Discussion

In this chapter, a hierarchical two-level EMS was developed for the coordination of multi-
ple microgrids, considering both the uncertainty of the renewable energy resources and the
variability in electrical load consumption. Two case studies were tested. The first commu-
nity was made up of households profiles, renewable energy and ESS. The second community
included an electrical demand of a school with daytime profiles. Results showed that this
approach can benefit to both the end user, by reducing energy costs, and the distribution
network operator, by limiting peak power levels and enabling increased penetration of DG.

A coordination between multiples microgrids improves the performance of the energy
community because it allows to share the generated power and reduce the amount of energy
bought from the main grid in the higher pricing hours and it also enlarges the feasible set of
the optimization problem which allows lowering the ESS size guaranteeing optimal operation.

82



Chapter 6

Conclusions

From the literature review has been demonstrated that the active management of DERs pro-
vides an acceptable approach to integrate of large numbers of DERs within a distribution
network, in order to exploit their potential benefits and avoid the costs of network rein-
forcement. Active management of a distribution network requires the integration of control
strategies at different levels in a smart grid framework and communication technologies. In
this thesis, the active management of DERs has been proposed using an EMS applied to "En-
ergy Communities". The concept of energy communities enables energy exchange between
the DERs of community members to maximise their self-consumption, minimise their energy
costs, reduce peak power levels or a combination of these and other beneficial goals. An
energy community could be considered to be a microgrid or cluster of microgrids if it is seen
from the main distribution grid as a single element responding to appropriate control signals
within defined electrical boundaries. The energy management system (EMS) is responsible
for reliable, secure and economical operation of the energy communities, managing the power
and the energy between generation sources and loads.

Therefore, the focus of this thesis has been on the design of hierarchical energy manage-
ment system (EMS) for the operation and coordination of microgrids, including the uncer-
tainty associated with both renewable distributed generation and electrical demand. The
hierarchical EMS was designed in two levels: main grid level and microgrid level. At the
microgrid level, a real-time local controller based on rules was proposed and at the higher
level, Robust MPC controller was proposed to manage the uncertainty by means of fuzzy
prediction interval models. The idea behind of use a hierarchal EMS was to exploit the ben-
efit of both non-optimal controllers and optimal controllers which were adopted on different
levels.

The role of the Robust MPC controller at the main grid level is to minimize the energy cost
delivered to the energy community from the main grid. To achieve this goal, Robust MPC
controller provides realistic power references for each community member (microgrids), such
that the lower level controller can be tracked the power reference reasonably well based on
the available resources and load of each microgrid. Therefore, the Robust MPC implements
an optimization of the predicted performance cost of the energy community over a prediction
horizon, while considering the uncertainty associated with predictions of the renewable gen-
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eration and consumer load, safe limit constraints for the ESS and power transfer to and from
the main grid. The uncertainty was included explicitly in the optimization problem using an
alternative that compensates the uncertain terms with linear gains. Additionally, the lower
level controller incorporates real-time estimators associated with the operation of the ESS:
the maximum available power estimator and the SoC estimator in order to work in a safe
operating area. This area is determined by current, voltage, and SoC limits.

Several case studies were used to test the performance of the hierarchical EMS for opera-
tion and coordination of microgrids. Robust EMS based on fuzzy prediction interval models
was compared to the deterministic EMS and with a basic EMS without ESS, where the energy
required to satisfy the energy balance in the energy community is either bought or sold from
the main grid. The main conclusions obtained from these case studies can be summarized as
follows:

• Prediction interval models provide a systematic framework for the representation of un-
certainty and, therefore, they are suitable for loads and renewable energy forecasting in
applications of energy communities. The proposed prediction interval models provide the
upper and lower bounds of the predicted values given a coverage probability with the min-
imum interval width at future prediction horizons, providing more accurate information
about the uncertainty modelled.

• The deterministic and Robust hierarchical EMSs provide improvements over the case with-
out ESS, as they provide mechanisms for efficient energy management. The results show
that incorporating ESS into the energy community benefit both end user, by reducing en-
ergy cost, and distribution network operator, by limiting peak power levels and enabling
increased penetration of distributed generation.

• The hierarchical EMS is able to keep the community power flow close to the reference
power defined by the higher level controller and provide minimum energy cost, among other
benefits. Additionally, the benefits of Robust MPC are greater than those of deterministic
MPC due to the uncertainty compensation, which helps the system to be prepared for
errors in the predictions that might yield sub-optimal decisions.

• A coordination between multiples microgrids improves the performance of the energy com-
munity because it allows to share the generated energy and reduce the amount of energy
bought from the main grid in the higher pricing hours and can optimise the size of ESS
required for the community.

6.1 Future Work

From the development of this thesis, further research may be pursued on the following sub-
jects:

• Regarding prediction interval models, other evaluation metrics for the prediction interval
could be included in the optimization problem, and a Pareto analysis could be included in
the multi-objective cost function to obtain the best compromise solution.
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• Incorporate into the proposed hierarchical EMS, the degradation process of the ESS by
means of an estimator of the state of health (SoH), as well as considering to incorporate
demand side management strategies.

• Use a real time price (RTP) for the energy price scheme as these schemes tend to use
hourly or half-hourly price differences to reflect the price on the wholesale market.

• Consider other energy communities such as factories, hospitals, commercial parks or other
community loads as well as other types of distributed generation, for example, biomass-
based generation or renewable generation could be included in the energy community to
be controlled by the hierarchical EMS proposed.

• Employ other energy storage technologies e.g. hydrogen or flywheels, as well as considering
other network asset limitations.
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A1 Battery Model

Copetti model is adopted for modelling the ESS based on lead-acid battery. The model con-
siders an equivalent circuit that contains a constant voltage source and a variable polarisation
resistance Rint(I, SoC, T ). The voltage source represents the relationship between Voc and
SoC, while Rint represents the battery electrochemical effects that oppose the current flow,
as is shown in Fig. 1. As explained in [134], the Copetti model describes four operation
modes for the battery system: charging zone, discharging zone, overcharging zone, and an
intermediate zone that represents a soft transition between the charging/discharging modes.

Figure 1: Circuital Representation of Battery for the Copetti Model

In this work, three operation zones are included: the discharging, charging and inter-
mediate zones. The analytical expressions for the output voltage (VB) in these zones are
represented by equations (1), (2) and (3), respectively:

Discharge zone (V dc
B ): In this zone of work, the battery will give energy to the electrical

system. The discharging and charging zones are the best zones for the work of the batteries:

V dc
B (k) = (Vb0dc −Kb0dc(1− SoCk))−

|Ik|
C10

(
P1dc

1 + |Ik|P2dc
+

P3dc

SoCP4dc
k

+ P5dc

)
(1− αrdc∆Tk),

(1)

where Pidc (i = 1, . . . , 5) are unknown coefficients associated with the polarisation re-
sistance. C10 corresponds to the battery capacity (in AH) for 10h, and αrdc relates the
model with the temperature variation (∆T ). The term (Vb0dc−Kb0dc(1−SoCk)) models the
relationship of Voc − SoC. In this work, the temperature effects are neglected.

Charge zone (V c
B): In this operation zone, the battery takes energy to the electrical

system. The efficiency of this zone decreases:

V c
B(k) = (Vb0c +Kb0dcSoCk) +

Ik
C10

(
P1c

1 + Ik
P2c

+
P3c

(1− SoCk)P4c
+ P5c

)
(1− αrc∆Tk), (2)
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where Pic (i = 1, . . . , 5) are unknown coefficients associated with the polarisation re-
sistance. αrc relates the model with the temperature variation (∆T ). The term (Vb0c +
Kb0dcSoCk) models the relationship of Voc − SoC.

Transition zone (V cdc
B ): when the transition occurs between the discharging zone and

the charging zone, the model used is shown as in (3), where Iδ is the current threshold for
the transition:

V cdc
B (k) =

V c
B(Iδ)− V dc

B (Iδ)

2Iδ
Ik +

V c
B(Iδ) + V dc

B (Iδ)

2
. (3)

Finally, the unknown coefficients associated with the polarisation resistance were identified
based on an optimisation method with a data training set.

On the other hand, the relationship between the open-circuit voltage (Voc) and the state-
of-charge (SoC) is obtained using an experimental test known as “voltage relaxation”: a
procedure that basically applies a known discharge profile to the battery for a given period,
then forces a null discharge current (open circuit) for an appropriate “rest” time (usually an
hour), and then measures the (Voc) output voltage. In particular, the Voc − SoC curve in
lead-acid batteries can be modelled using a linear-in-the-parameters structure (4):

VOC(k) = anSoC
n(k) + an−1SoC

n−1(k) + · · ·+ a1SoC(k) + a0, (4)

where ai (i = 1, . . . , n) are model parameters. In this model, the SoC is calculated
empirically as the integral of the instantaneous current. The discrete model of SoC is given
by (5):

SoC(k) = SoC(k − 1)− ηTs
Cn

I(k − 1), (5)

where Cn is the nominal capacity, Ts is the sampling time, and I(k−1) is the instantaneous
discharge current. In the work presented in [119] an experimental system was designed and
implemented in order to obtain experimental data by discharging a lead-acid battery bank,
which is constructed with three batteries in series connection. The same system is used to
charge the batteries according to the charging profile recommended by the manufacturers.
With this experimental system, the SoC vs Voc curve was estimated experimentally. This
relationship can be written mathematically as (6):

VOC(k) = 3.755 · SoC3(k)− 5.059 · SoC2(k) + 3.959 · SoC(k) + 17.064 (6)
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A2 SoC Estimator

The state of charge (SoC) is defined as the amount of energy contained in an energy storage
system (ESS). It is critical to the implementation of optimal control strategies for charg-
ing/discharging of the ESS to have information about the SoC of the battery. For this
reason, it is important to have a method that is able to estimate the SOC, and according
to a future-use profile, the online prediction of the SoC of the ESS that delivers results with
appropriate accuracy and precision.

Several methods for SoC estimation are reported in the literature, such as electrochemi-
cal impedance spectroscopy, open-circuit voltage, and integral of the instantaneous current.
However, these methods are only suitable for off-line studies. Long battery resting peri-
ods, and acquisition of costly equipment and/or high-precision sensors are some of the other
disadvantages. In recent years, there has been growing interest in the use of stochastic filter-
ing techniques (for instance, the Unscented Kalman Filter) to estimate the SoC of an ESS.
In fact, experience has demonstrated that Bayesian estimators are well suited for real-time
estimation problems that incorporate dynamic state transition models [117].

Due to the nonlinearity of the models for SoC, one of the most widely estimated use of
it corresponds to the sub-optimal Bayesian methods of the Extended Kalman Filter (EKF)
technique. The disadvantage of this method arises from errors in the linearization approxima-
tion. Another alternative presented is the Unscented Kalman Filter (UKF). It is outstanding
for its good performance against problems with nonlinear equations, and its efficient compu-
tational ability. In this work, the implementation of UKF for estimating the SoC is presented
[117].

In this approach, three state variables are considered: SoC, and the resistances of charging
(Rchg) and discharging (Rdischg). The equation that describes the SoC is defined for the
integral of the instantaneous current (see Eq. 7), and the states corresponding to resistances
are variables that evolve artificially, with only noise added to the process, as is shown in (8)
and (9):

SoCk\k−1 = SoCk−1 −
η · Ts
Cn

· Ik−1 + w1
k−1 (7)

Rdischg
k\k−1 = Rdischg

k−1 + w2
k−1 (8)

Rchg
k\k−1 = Rchg

k−1 + w3
k−1, (9)

where Ts is the sampling time; Cn is the nominal capacity of the battery; η is the efficient;
Ik−1 is the current; and w1

k−1, w2
k−1 and w3

k−1 are the process noise. The observation equation
is defined as the battery voltage, and it is based on a simple model as is shown in Fig. 2 and
equation (10):
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VB(k) = V ock(SoC) + δRdischgI(k) + (1− δ)RchgI(k) + vk, (10)

Figure 2: Simple Model for the Battery Voltage

where I(k) is the current in the time instant k, and vk is the observation noise. The
relationship between the open-circuit voltage (Voc) and the state-of-charge (SoC) is obtained
using an experimental test known as “voltage relaxation” (for more details see Appendix A1).
In this work, negative current is defined for discharging, and positive current for charging.
Thus, the δ term indicates the operation mode of the battery, as shows in (11):

δ =

{
1 if I(k) ≤ 0
0 if I(k) > 0

(11)

Additionally, the Outer Feedback Correction Loops (OFCL) is included as a method to
ensure accuracy and precision of the estimates. The OFCLs, typically measure the model
quality, and improve the performance of the algorithm, either modifying the structure of the
model, or updating the hyper-parameters that define the noises of the process or observation.
In this case, the noise of the process is modified as shown below:

if : t > tmin,

then :

eacum = eacum + |eobs|
if : eacum ≤ eTh

std(w1(t)) = max(p1std(w1(t)), std1)

std(w2(t)) = max(p2std(w2(t)), std2)

std(w3(t)) = max(p3std(w3(t)), std3)

else :

eacum = 0

std(w1(t)) = q1std(w1(t))

std(w2(t)) = q2std(w2(t))

std(w3(t)) = q3std(w3(t)),
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where tmin is the time during which the OFCL starts to work; eobs is the observation error,
given by the difference between the output measurement and the output estimate; eacum is
the accumulative observation error; eth is the decision threshold where the noise process begin
to change. If the accumulative error is less than the threshold, the standard deviations of
the noise decrease; in the opposite case the noise standard deviation increases. pi (i = 1, 2, 3)
are constant values between 0 and 1. qi (i = 1, 2, 3) are constant values greater than 1.
Finally, std1, std2 and std3 are lower bounds, under which standard deviations they cannot
be reduced.
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A3 Maximum Available Power Estimator

The method adopted for estimating the maximum available power that may be sourced by
the battery bank, and the maximum power for the charging process, is presented in this
appendix. These values must be calculated carefully in such a way that the battery bank will
not be damaged by over/under charge (SoC), or voltage, or by exceeding a design current or
power limit [115, 116, 135].

The first method for calculating the maximum discharging and charging current lim-
its (Idis,SoCk /Ichg,SoCk ) includes the maximum and minimum values of the SoC permitted in
the operation of the battery bank, and the second method calculates the current limits
(Idis,voltk /Ichg,voltk ) considers operation voltage limits.

In the first adopted method (maximum and minimum values of the SoC permitted), given
a constant current Ik, the SoC recurrent relationship is given by (12):

SoC(k + L) = SoC(k)− ηLTs
Cn

Ik, (12)

where L is the time horizon where the power for charging or discharging may be maintained
constant without violating present operational design limits, for this case the SoC [135].
SoC(k + L) is the predicted SoC L seconds into the future, SoC(k) is the present SoC, Cn
is the capacity in ampere-seconds and η is the Coulombic efficiency factor. If the SoC is
limited by the minimum and maximum values (SoCmin ≤ SoC(k) ≤ SoCmax), then the Ik
can be calculated such that these limits are not exceeded by (13) and (14):

Idis,SoCk =
SoC(k)− SoCmin

ηLTs
Cn

(13)

Ichg,SoCk =
SoC(k)− SoCmax

ηLTs
Cn

(14)

where Idis,SoCk is the maximum discharge current and Ichg,SoCk is maximum charge current
based on SoC limits method of the battery bank. This method is safe and reasonable when
the actual SoC is close to its limits avoiding over-discharged or over-charged.

The second adopted method for calculating the maximum discharge and charge current
includes voltage limits [115]. The Eq. 15 presents correct prediction when the simple model
(see Fig. 2 in appendix A2) of the battery bank and the time horizon L are considered.
In this method, L is the time horizon where the power for charging or discharging may be
maintained constant without violating voltage limits (Vmin ≤ VB(k) ≤ Vmax). In Eq. (15),
the current (Ik) is assumed constants between the k − th sampling time tk and (k + L)− th
sampling time tk+L:

VB(k + L) = V oc(SoC(k + L))−RI(k), (15)
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For solving Eq. (15) a Taylor-series expansion to linearize the equation is used, which
gives the results shown in Eq. 16 (for more details see [135]):

VB(k + L) ≈ V oc(SoC(k))− I(k)
ηLTs
Cn

∂V oc(SoC(k))

∂SoC(k)
−RI(k), (16)

Finally, the maximum discharge current (Idis,voltk ) and charge current (Ichg,voltk ) obtained
by voltage limits method are given by (17) and (18):

Idis,voltk =
V oc(SoC(k))− Vmin

ηLTs
Cn

∂V oc(SoC(k))
∂SoC(k)

+Rdischg
, (17)

Ichg,voltk =
V oc(SoC(k))− Vmax

ηLTs
Cn

∂V oc(SoC(k))
∂SoC(k)

+Rchg
, (18)

The voltage limits method cannot be accurate over the entire SoC range, particularly
near extreme values of the SoC [115]. Once the current limits based on the SoC and volt-
age methods have been calculated, the maximum discharge (Idischgk (k)) and charge (Ichgk (k))
currents with all limits enforced are computed by (19) and (20):

Idischgk (k) = min(Imax, I
dis,SoC
k , Idis,voltk ), (19)

Ichgk (k) = max(Imin, I
chg,SoC
k , Ichg,voltk ), (20)

where Imax and Imin are design limits for the maximum discharge and minimum charge
currents respectively, given by the manufacturer. The maximum discharging (P dischg

max,k ) and
charging (P chg

max,k) powers are calculated as the product of the maximum current (discharge
or charge) and the predicted future voltage (see the Eq. 16) over the horizon time (L) by
(21) and (22):

P dischg
max,k = Idischgk VB(k + L) (21)

P chg
max,k = Ichgk VB(k + L) (22)

The accuracy of both methods (SoC and voltage) in calculating the maximum discharging
and charging currents depends on the precision of the estimation of the SoC. In this work,
the estimations of the SoC is obtained based on UKF, as was explained in appendix A2.
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