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A CAPSULE NEURAL NETWORK BASED MODEL FOR 

STRUCTURAL DAMAGE LOCALIZATION AND 

QUANTIFICATION USING TRANSMISSIBILITY DATA 

Dentro de la ingeniería estructural, el monitoreo de condición usando diferentes 

tipos de sensores ha sido importante en la prevención de fallas y diagnóstico del estado de 

salud. El desafío actual es aprovechar al máximo las grandes cantidades de datos para 

entregar mediciones y predicciones precisas. Los algoritmos de aprendizaje profundo 

abordan estos problemas mediante el uso de datos para encontrar relaciones complejas 

entre ellos. 

Entre estos algoritmos, las redes neuronales convolucionales (CNN) han logrado 

resultados de vanguardia, especialmente cuando se trabaja con imágenes. Sin embargo, 

existen dos problemas principales: la incapacidad de reconocer imágenes rotadas como 

tales, y la inexistencia de jerarquías dentro de las imágenes. Para resolver estos problemas, 

se desarrollaron las redes de cápsulas (Capsule Networks), logrando resultados 

prometedores en problemas de tipo benchmark. 

En esta tesis, las Capsule Networks se modifican para localizar y cuantificar daños 

estructurales. Esto implica una tarea doble de clasificación y regresión, lo que no se ha 

realizado anteriormente. El objetivo es generar modelos para dos casos de estudio 

diferentes, utilizando dos algoritmos de routing diferentes. Se analizan y comparan los 

resultados entre ellos y con el estado del arte. 

Los resultados muestran que las Capsule Networks con Dynamic routing logran 

mejores resultados que las CNN, especialmente cuando se trata de valores falsos positivos. 

No se observa sobreajuste en el conjunto de validación sino en el conjunto de prueba. Para 

resolver esto, se implementa la técnica de dropout, mejorando los resultados obtenidos 

en este último conjunto. 
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A CAPSULE NEURAL NETWORK BASED MODEL FOR 

STRUCTURAL DAMAGE LOCALIZATION AND 

QUANTIFICATION USING TRANSMISSIBILITY DATA 

 

In the field of structural engineering, health monitoring using different kinds of 

sensors has taken an important place in failure prevention and health assessment. The 

current challenge is to take the most advantage of large amounts of data, to deliver 

accurate measurements and predictions. Deep Learning algorithms tackle these problems 

by using data to find complex relations between them. 

Amongst these algorithms, Convolutional Neural Networks (CNN) have achieved 

state-of-the-art results, especially when working with images. However, there are two 

main issues with them: the incapability of recognizing rotated images as such (instead, the 

algorithm recognizes them as two different images), and the inexistence of hierarchies 

within images. To solve these problems, Capsule Networks were developed, achieving 

promising results in benchmark problems, like MNIST. 

In this thesis, Capsule Networks are used to locate and quantify structural damage, 

which means a dual classification (localization) and regression (quantification) task.  Until 

now, this has not been done with vanilla Capsule Networks. The objective is to generate 

models for two different case studies, using two different routing algorithms. Results are 

analyzed and compared between them, and with the state-of-the-art.  

Results show that Capsule Networks with Dynamic Routing achieve better results 

than CNN, especially when it comes to false positive values. Overfitting was observed not 

in the validation set but in the test set. To solve this, dropout was implemented, improving 

the results obtained in the test set.
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1. Introduction 

1.1 General Background 

 

In every engineered system safety is crucial, and as technological progresses are 

made constantly, more complex systems are built. This sometimes leads to more 

dangerous tasks, which is why nowadays safety is taking a more relevant role in 

engineering.  

 Safety also plays a relevant role in structural engineering. When designing any kind 

of structure, the first question to be asked is: will the structure be able to support the 

common loads this kind of structures suffer? The main goal is to prevent accidents, and it 

is achieved by constantly monitoring the structure and its damage state. Structures 

undeniably suffer damage through their operational life, and the mission is to study it and 

to be able to anticipate the point where this damage surpasses a certain threshold that 

leads to an accident.  

Structural damage assessment is a subject in which studies are made to take 

preventive actions against some possible disastrous outcome regarding structures. 

Through the studies of their behavior at different operating conditions, there are two main 

objectives: obtain the diagnostic of the structure’s health at a certain period of time (or 

another quantity used to measure the structure’s life) and perform an accurate prediction 

for the structure’s future health state. To do this, the concepts of health and damage must 

be defined.  

Different kinds of analysis can be done to achieve any of these two goals. Vibration 

analysis is one of the most popular, because vibrations are strongly related to damage [1]–

[3]. It has been studied that, through vibration analysis, properties of a structure can be 

determined. The use of this properties facilitates the damage analysis. 

One of the main challenges in vibration-based damage assessment is how to 

measure data in a way of successfully sensing damage. Using the raw measure of a series 

of accelerometers could be the most straightforward way, but there may be information 

about the structure that cannot be identified clearly through this method. The idea of 

directly using the transmissibility functions (TF) has attracted many researchers [4]–[18]. 
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TF relate the responses between two points of the structure. Among all dynamic 

responses, transmissibility functions are the easiest to obtain in real-time because the in-

situ measurement is straightforward. The advantage is that no modal extraction is needed, 

thus contamination of the data with modal extraction errors is avoided and they are 

identified from response only data. Therefore, it does not involve the measurement of 

excitation forces. In [5], [12]–[14], the use of transmissibility for fault detection is 

introduced and validated in a series of papers from the same research group. The first 

work uses TFs to detect damage in a simple simulated lumped-parameter mechanical 

system. It is the first use of TFs as a tool to detect damage. The rest of the aforementioned 

works validate the approach through experimental procedures on simplified model of a 

metallic aircraft wingbox (i.e., a plate incorporating stiffening elements), and a Folland 

Gnat training aircraft wing.  

Up to date, the most common way to use vibration data to perform structural 

damage analysis is through complex models built over theoretical concepts about 

vibrations, sometimes aided by Finite Element (FE) models. These models are updated by 

optimization algorithms [19]–[21]. For example, in [22] authors detect cracks in a beam 

using a genetic algorithm, first defining a new beam element with a number of embedded 

transverse edge cracks for computing natural frequencies, and then solving an 

optimization problem to search for the solution. In [6], Meruane uses a linear 

approximation method along with antiresonant frequencies that are identified from 

transmissibility functions, which leads to the solving of multiple nonlinear equations. 

As an alternative to model-based algorithms in vibration analysis, machine 

learning algorithms have been proposed in a data-driven approach. The main reason is 

how slow these model-based algorithms are, making them not useful for real time 

applications. Researchers have used neural networks along with feature extraction to 

learn from data and perform different actions [23]–[26]. In [27], authors use neural 

networks for damage detection in truss and frame structures, being this one of the first 

applications of neural networks in the field. Meruane [28] uses an online sequential 

extreme learning machine (OS-ELM) to improve neural networks’ learning speed and 

reduce the number of parameters. The neural network is used to identify and quantify 

damage in two experimental cases: an 8 DOF spring-mass system and a beam under 

different damage scenarios.  
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In all of the aforementioned works, feature extraction is key. Generally, this process 

is performed by experts in the matter, but there is no consensus to a “correct” feature 

extraction process. To solve this issue, and with a general motivation towards automation, 

deep learning techniques have proven useful. This also applies to fault diagnosis [29]–

[34]. In [30], authors use deep neural networks (DNN) for fault diagnosis in rolling 

element bearings and planetary gearboxes, achieving better results than those achieved 

with artificial neural networks (ANN). Data is fed as frequency spectra and it is used to 

train a model capable of classifying among a number of health conditions, showing that 

the model successfully mines fault characteristics from the signals. In [31], Gan introduces 

hierarchical belief networks for fault diagnosis, by stacking two deep belief networks 

(DBN), the first one for identifying fault types, and the second one for recognizing fault 

severity rankings, taking as input the information from the first DBN. This is applied on a 

defective bearing dataset. 

Among deep learning techniques, Convolutional Neural Networks (CNN) stand out 

in reliability problems for their automatic feature extraction process. Since CNNs were 

built to be worked on images, the most common application is image recognition [32], 

[35]–[40] . In [32], authors use CNNs for fault diagnosis from scalograms obtained from 

vibration signals.  

Although CNNs have been used for years, achieving state-of-the-art results in 

various fields, there are some problems with their construction. CNNs are not capable of 

recognizing hierarchies within an image, as all neurons in a low-level layer are sent to a 

high-level layer. Instead, neurons should be distributed into higher level capsules 

according to their output, as neurons specify themselves during training. 

There has been some research to solve the existing drawbacks within CNNs. In [41], 

Hinton realizes that, while machine learning community is using (at that time) scalar 

output neurons, the computer vision community uses complex vectors as outputs and tries 

to address this with an auspicious idea of neurons giving an output vector containing 

instantiation parameters. The most recent approach has shown promising results. In [42], 

Sabour presents a capsule system in which each capsule is a set of neurons arranged into 

a vector whose length represents its activation value. Capsules are organized into layers, 

just like a neural network, and the activation of a next-level capsule layer depends on a 
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novel routing algorithm. In each routing iteration, capsules predict the output of the next 

layer’s capsules. Agreement between predictions is measured and determines the 

activation values. This model has surpassed state-of-the-art results in MNIST dataset of 

handwritten number images [43]. In [44] Hinton presents a different view on capsules. 

Instead of vectors, capsules are represented by a pose matrix containing information 

about position and orientation for a particular feature, and an activation unit. This is 

inspired in computer graphics, were pose matrices are used to define viewpoints with 

respect to an observer (a camera, for example) and to establish hierarchies between 

different parts of a whole. This architecture has shown particularly promising results in 

smallNORB, which is a dataset containing images of 3D objects, taken from different 

angles and with different lightning configurations.  

Although CapsNets have been presented recently, they have been applied in various 

fields. In [45], Afshar uses Magnetic Resonance Imaging (MRI) images to classify types 

of brain tumors with CapsNets, achieving better results than those obtained using CNNs. 

In [46], Upadhyay uses capsule networks in Generative Adversarial Networks (GANs) as 

a replacement to CNN discriminators, resulting in an improvement of the generator’s 

performance. Xi [47] analyses capsule networks’ performance on CIFAR10 dataset, which 

contains images of different classes of objects. The highlight for this research is that 

CIFAR10 is known to be more complex than MNIST, in terms of features. This means the 

classification task more challenging than with MNIST. In [48] LaLonde adapts capsule 

networks to object segmentation. This is applied to pathological lung segmentation using 

Computed Tomography (CT) scans. In [49], Andersen uses capsule networks in deep 

Reinforcement Learning (RL) in game environments achieving viability but lack of 

scalability. In [50], authors modify EM routing algorithm by measuring agreement by the 

amount of alignment in a linear subspace, instead of agreement in clusters. Successful 

experiments are performed on MIMIC-III public dataset [51]. In [52], authors train sparse 

latent capsules using only reconstruction loss, thus performing unsupervised training, 

achieving better generalization on benchmark datasets MNIST and affNIST. It can be 

noticed that, of all the aforementioned applications of capsule networks, none relate to 

structural damage assessment. Actually, most of them are based on benchmark studies, 

revealing that CapsNets are still in an early stage of development. Also, Capsule Networks 
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have not been used for regression tasks, only classification or clustering tasks. There is 

still an important research area within Capsule Networks which hasn’t been studied yet. 

In this thesis, Capsule Networks will be used to locate and quantify structural 

damage. Two different routing algorithms (Dynamic Routing and EM Routing) will be 

used to simultaneously perform classification (damage localization) and regression 

(damage quantification). Two different datasets will be available: one corresponding to a 

spring-mass system and another corresponding to a beam under different damage 

scenarios. Each of them will be studied in different cases according to the number of 

damaged elements. 

 

1.2 Objectives and Statement  

 

1.2.1 General Objective 

 

Develop a new Capsule Network for structural damage localization and quantification 

based on transmissibility functions data. 

 

1.2.2 Specific Objectives 

 

• Developing a Deep Learning architecture capable of extracting relevant features 
from transmissibility functions. 

• Create a model for damage localization and quantification using Capsule Networks 
and dynamic routing between capsules (DR). 

• Create a model for damage localization and quantification using Capsule Networks 
and EM routing between capsules (EMR). 

• Apply and validate the DR model’s performance on two experimental cases: an 
eight degree-of-freedom (DOF) mass-spring system and a beam under multiple 
damage scenarios.  

• Apply and validate the EMR model’s performance on two experimental cases: an 
eight degree-of-freedom (DOF) mass-spring system and a beam under multiple 
damage scenarios.  

• Compare results with the state-of-the-art 
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1.2.3 Statement and Thesis Scope 

 

In this thesis, a novel Deep Learning algorithm called Capsule Networks will be 

used to analyze two case studies: A mass spring system and a beam under different 

damage conditions. According to its properties, Capsule Networks should be an upgrade 

to CNN, which is why the direct comparison will be with that model.  

 There are two types of Capsule Network models, according to the routing 

algorithm: Dynamic Routing, and EM Routing. Both algorithms will be used, following 

the steps the respective papers used.  
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2. Theoretical Background 

This chapter describes the most relevant theoretical aspects necessary for this thesis’ 

development. 

 

2.1 Structural Damage 

 

As seen in chapter 1, structural damage can be represented in more than one way.  

In this thesis, damage is represented by a reduction in stiffness, as expressed in equation 

2.1: 

 

 𝑲𝒊
𝒅 = (1 − 𝑦𝑖)𝑲𝑖 (2.1) 

 

 

, were 𝑲𝒊
𝒅 is the damaged stiffness of the i-th element, 𝑲𝑖 is the undamaged stiffness, and 

𝑦𝑖 is the stiffness reduction of the i-th element. This has shown good results in damage 

detection algorithms [53].  

 

2.2 Transmissibility Functions 

 

In vibrations analysis, transmissibility is a concept for measuring the response to 

a certain stimulus at a specific location in a structural element. It describes numerically 

how vibrations propagate through an element. This is very useful for isolation purposes. 

It is a common objective to reduce the level of vibrations on a certain system. To do this, 

isolators are installed to damp the propagation of vibrations. Clearly transmissibility 

measures are relevant to achieve this purpose. 

There are two ratios that apply the concept of transmissibility. They are force 

transmissibility and displacement transmissibility. Force transmissibility is the ratio 
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between the response and the stimulus in terms of force, and displacement 

transmissibility is equivalent to the first one but measuring displacement amplitude. 

Typically, both are presented in the frequency domain. 

Transmissibility can be measured in complex systems using accelerometers. The 

concept of transmissibility is not only useful when measuring the ratio between response 

and stimulus, but also between two different responses to the same stimulus, this is, 

responses in different positions. This being said, accelerometers can be installed at various 

locations of an element, thus generating many transmissibility functions. Experimental 

transmissibility functions are calculated by: 

 

 
𝑇𝑖𝑟
𝑘(𝜔) =

𝑋𝑖𝑘(𝜔)

𝑋𝑟𝑘(𝜔)
 

(2.2) 

 

, were 𝑇𝑖𝑟
𝑘(𝜔) is the transmissibility function between points i and r subject to an excitation 

at k, and 𝑋𝑟𝑘(𝜔) is the response of point r due to an excitation force at k. As it can be seen, 

only the location of the exciting force is needed, not its magnitude, which is an advantage. 

Sometimes it may be useful to use an alternative method: 

 

 
𝑇𝑖𝑟
𝑘(𝜔) =

𝑋𝑖𝑘(𝜔)𝑋
∗
𝑟𝑘(𝜔)

𝑋𝑟𝑘(𝜔)𝑋∗
𝑟𝑘(𝜔)

 
(2.3) 

 

, were 𝑋∗
𝑟𝑘(𝜔) is the complex conjugated of 𝑋𝑟𝑘(𝜔).  This is done to reduce uncorrelated 

noise. 

 To build a dataset, each data point should correspond to one experiment submitted 

to different conditions. This process would take long time to be completed. Numerical 

methods have been used as a replacement. This can be done because a well calibrated 

model can describe accurately the structural element or system and generate a large 

amount of data, each with a different scenario, to work with. In the case of a linear 

structure, its motion is described by: 
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 𝑴�̈� + 𝑪�̇� + 𝑲𝑥 = 𝒇(𝑡) (2.4) 
 

, where  𝑴, 𝑪, and 𝑲 are mass, damping and stiffness matrices, 𝒇(𝑡) is the external force 

vector, and  𝑥 represents displacement, with its derivatives. Since transmissibility 

functions are presented in the frequency domain, equation 2.4 is transformed via Fourier 

Transform: 

 

 (−𝜔2𝑴+ 𝑗𝜔𝑪 + 𝑲)𝑿(𝜔) = 𝑭(𝜔) (2.5) 
 

, were 𝜔 is the frequency and 𝑗 = √−1. From equation 2.5, the Frequency Response 

Function 𝑯(𝜔) is defined: 

 

 𝑿(𝜔) = (−𝜔2𝑴+ 𝑗𝜔𝑪 + 𝑲)−1𝑭(𝜔) = 𝑯(𝜔)𝑭(𝜔) (2.6) 
 

 

 𝑯(𝜔) = (−𝜔2𝑴+ 𝑗𝜔𝑪 + 𝑲)−1 (2.7) 
 

 

𝑯(𝜔) can be redefined in terms of 𝑿(𝜔) and 𝑭(𝜔): 

 

 
𝑯(𝜔) =

𝑿(𝜔)

𝑭(𝜔)
 

(2.8) 

 

 

Thus, the experimental transmissibilities can be obtained through the definition: 

 

 

 
𝑇𝑖𝑟
𝑘(𝜔) =

𝑿𝑖𝑘(𝜔)

𝑿𝑟𝑘(𝜔)
=
𝑯𝑖𝑘(𝜔)

𝑯𝑟𝑘(𝜔)
 

(2.9) 
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2.3 Machine Learning and Deep Learning 

 

Machine learning is a categorization for many algorithms in which there is a 

“learning” process. The algorithm is fed with data, and this data is used to adjust the model 

so that a specific task is performed.  

There are two main tasks in machine learning. These are: supervised and 

unsupervised learning, and they differ in the existence of feedback. In supervised learning, 

when the model is adjusting itself (from now on, this process will be called training), it 

receives the “correct answer”. For example, recognizing hand-written number images is a 

supervised learning task, if during training the model “sees” the correct label for each 

image, and training is based on the difference between the answer delivered by the model, 

and the correct one. By contrast, unsupervised learning tasks do not count with a “correct 

answer”, and separate data using only the properties of the data itself, and not a label. 

Most of the supervised learning tasks applicable to reliability engineering are 

regression and classification. In regression, the task is to determine a mapping function 

from an input variable to a continuous output variable, in order to use this function to 

predict new outputs when new input is fed. Classification is just like regression, with the 

difference that the output is a discrete class label.  The model learns the mapping function 

between the input data and its corresponding labels. 

In unsupervised learning, the most common task is clustering, in which the model 

tries to divide data by creating different groups (or clusters) and assigning data to one of 

this groups. There is no label, meaning the algorithm determines the criteria for both 

division and assignment. 

Deep learning corresponds to a series of novel and advanced algorithms in machine 

learning. There is no official definition for what deep learning is, but there is some 

consensus that it involves the extraction of complex features and the use of complex 

nonlinearities. Many of these algorithms use stacking of layers, in which every layer learns 

representation about data at different levels of abstraction. This presents the main 

difference with normal machine learning algorithms. Because deep learning models are 
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built with more layers, there are more sources on nonlinearities. This makes the features 

more complex. 

 

2.4 Feed Forward Neural Networks (FFN) 

 

In machine learning, a Feedforward Neural Network (FNN) is a model in which a 

function is approximated through a series of operations and function compositions to 

perform regression or classification. It is called like that because of its resemblance with 

neural activity on humans and other animals. The motivation behind is to imitate the way 

some animals (including humans) perform cognitive activities. In the nervous system of 

most mammals there are neurons. These are the basic unit for the system, and they are 

responsible for receiving, processing and transmitting information through electrical and 

chemical signals. Neurons have an input region, an output region, and an activation state. 

It will be seen later that all of these properties are relevant parts of a FFN. 

The basic unit of a FNN is a neuron. A neuron takes the output of predecessor 

neurons and performs a weighted sum, plus a bias. This result is taken as an input for 

another neuron. 

 

 𝑦 =∑𝑓((𝑊𝑖 ∗ 𝑥𝑖) + 𝑏)

𝑖

 (2.10) 

 

Neurons are organized into layers, as it is shown in figure 2.1. Inputs and outputs 

define an input layer and an output layer, respectively. Layers connecting input and 

output layers are called hidden layers. 
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Figure 2.1 Neural Network diagram 

 

 In a FNN, a certain function is applied to neurons in one layer before taking that 

output to the next layer. This function is called activation function, and acts as a source 

for nonlinearity in the model. The activation functions between layers allow the network 

to learn more complex characteristics. There are several activation functions applied in 

neural networks, the most used being: Tanh, RELU and Sigmoid. 

 

• Linear 

• Tanh 

• RELU 

• Sigmoid 

 

In this thesis, the RELU function is used. This function turns to 0 every negative 

number and keeps the positive ones. 

 

 𝑓(𝑥) = max(0, 𝑥) (2.11) 
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 Basically, a FNN establishes a relationship between input and output information, 

by performing weighted sums and applying activation functions. The neural network 

adjusts the different values of weights in order to learn the most suitable relationship 

between input and output. The process of learning consists on optimizing cost function. 

Part of building a neural network is choosing an appropriate cost function. This depends 

mainly on the task (regression or classification), but also on the type of data. For 

regression, some common cost functions are: 

 

• Mean Squared Error 

• Root Mean Squared Error 

• Cross-Entropy 

• Exponential Cost 

• Kullback-Leibler divergence 

 

In this thesis, the following cost function is used: 

 

 
𝐶𝑜𝑠𝑡 = 

1

𝑁𝑂
∑(𝑦𝑖 − 𝑜𝑖)

2 
(2.12) 

 

 

To evaluate how good the model solves the specific task, a performance metric is 

defined. There are various kinds of performance metrics mainly depending on the task to 

be performed (regression or classification). For classification, some typical performance 

metrics are: 

 

• Accuracy 

• Confusion Matrix 

• Precision 
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• Sensitivity 

• Specificity 

• F1 Score 

 

On the other hand, for regression, some performance metrics are: 

 

• Accuracy 

• R2 Score 

• Mean Squared Error 

 

Other metrics can be constructed, depending entirely on the specific problem to be solved 

 

2.5 Backpropagation 

 

The process in which the different weights and biases in a NN are modified for the 

model to “learn” some relation is called training. Training is the process in which a set of 

parameters 𝜃 is to be found to minimize a cost function 𝐽(𝜃). Intrinsically this means 

obtaining 𝜃 such that 𝐽′(𝜃) = 0. For simple models (like a linear regression, for example), 

this optimization problem presents no major difficulties, for the computation of 𝐽′(𝜃) is 

straightforward. In deep learning models, this calculation cannot be done by conventional 

methods. Backpropagation is a way of calculating the gradient for the cost function, 𝐽′(𝜃), 

to then optimize the network, most probably using stochastic gradient descent. The goal 

is to calculate the partial derivate with respect to any weight and bias in the network. To 

do this, backpropagation calculates the error at the end of the network and propagates it 

to the its beginning.  

First, the output is computed through forward propagation. Then, the error 

according to the last hidden layer is calculated: 
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 𝛿𝐿 = 𝑎𝐿 − 𝑦 (2.13) 
 

 

, were 𝑎𝐿 is the output generated by the last layer 𝐿, and 𝑦 corresponds to the network’s 

correct output. Using this value, the error for the previous layers is calculated: 

 

 𝛿𝑙−1 = 𝚯𝑙−1𝛿𝑙𝑔′(𝑧𝑙−1) (2.14) 
 

 

, were 𝚯𝑙−1 is a set of hyperparameters, and  𝑔′(𝑧𝑙−1) is the derivative for the activation 

function. After each error calculation, a Δ coefficient (originally initialized as  Δ = 0) is 

updated: 

 

 Δ𝑙 = Δ𝑙 + 𝑎𝑙𝛿𝑙+1 (2.15) 
 

 

This process is repeated with each neuron of each layer in the network, and with every 

element in the dataset. Finally, 𝐷𝑖𝑗
𝑙  is calculated as: 

 

 

𝐷𝑖𝑗
𝑙 ={

1

𝑚
Δ𝑖𝑗
𝑙 + 𝜆Θ𝑖𝑗

𝑙 𝑖𝑓𝑗 ≠ 0

1

𝑚
Δ𝑖𝑗
𝑙 𝑖𝑓𝑗 = 0

 (2.16) 

 

 

, where 𝜆 corresponds to a regularization term, and  𝑗 = 0 means the hyperparameter is a 

bias. The 𝑖 index indicates the elements in the dataset. 𝐷𝑖𝑗
𝑙  is calculated because it is proven 

that 𝐷𝑖𝑗
𝑙 =

𝜕

𝜕Θ𝑖𝑗
𝑙 𝐽(Θ), which is the objective of backpropagation. 
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2.6 Minibatch Gradient Descent 

 

After computing the gradient using backpropagation, the optimization problem can 

be solved. In machine learning, and especially deep learning, lots of data are used to train 

models. This makes the gradient computation very expensive.  

 To solve this issue, the training set is divided into minibatches. The gradient is 

computed using one minibatch, and weights and biases are updated through: 

 

 Θ → Θ − ϵ𝐠 (2.17) 
 

, where Θ represents the weights and biases, 𝐠 is the gradient, and ϵ is a hyperparameter 

called learning rate. After Θ is updated, the process is repeated with the next minibatch, 

and so on until the whole training set is covered. Each update process is called step. The 

whole training set is covered a certain number of times. This number is called epoch. It is 

said that each time the whole training set is used, an epoch has passed. 

 

2.7 Overfitting and Dropout 

 

The process of training depends of a dataset. The model learns properties or 

features from this dataset with the objective of applying these properties to predict an 

output when a new unknown input is fed.  To perform a correct prediction, the model must 

learn properly the features from the training set and must be capable of generalizing. The 

lack of generalization is called overfitting and occurs when the model fails to predict 

additional data because it is too adjusted to the training set. Most of the times this happens 

because the model interprets the data’s noise as a variation due to the data’s structure. 

To prevent overfitting, there are some techniques that have proven useful, such as 

cross-validation, regularization, or early stopping. In the context of neural networks, 

dropout has shown great results. In [54], authors present and explain the technique, in 

which some neurons are “turned off” during training, with some propability 1-p, which is 

independent for every neuron. This is done with every neuron of a layer in the forward 
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and backwards pass and can be done in every layer. With this, the network reduces its size, 

not using all of its “tools” to perform learning, though in testing, all the neurons are used.  

 

 

2.8 Convolutional Neural Networks (CNN) 

 

A Convolutional Neural Network (CNN) is a kind of NN specially orientated to 

image recognition tasks. It is just like a NN, with neurons, layers, weights and activation 

functions, but the input images are submitted to mathematical operations for feature 

extraction. These are convolutions and pooling. 

 Mathematically, a convolution is represented by equation 2.18, where 𝑆(𝑖, 𝑗) is the 

output of the convolution, and 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛) is the input. It is an “inspection” though the 

image with a filter or kernel 𝐾(𝑚, 𝑛). This kernel goes through an image in an ordered way 

making operations over the images values with weights. These weights are updated during 

training to extract features. A visual representation of a convolution is shown in figure  

2.2. 

 

 𝑆(𝑖, 𝑗) =∑∑𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 (2.18) 
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Figure 2.2 Convolution operation [55]   

 

In the figure, it can be seen how the kernel operates. It takes a subset of the input with its 

same size and performs a matrix operation between that subset and the weights of the 

kernel. Then it moves to the right (the amount of positions that the kernel moves is called 

stride. In this case, its value is 1 in both axis) and performs the same operation. The 

process described before can be repeated many times, each repetition generating a 

different set of weights. These different set of weights learn different features of the input 

image. These features are presented in feature maps. After a convolution, a bias is added, 

which is also learned through training. An activation function is then applied, just like a 

NN. 

 Generally, the number of parameters used to construct a CNN can be very large. 

This makes the computation process very expensive. Pooling is basically an operation to 

address this issue. In a way that’s similar to the convolution’s kernel, a small “window” 

inspects the image and summarizes the information in each subset of the image. Typically, 

this is done by taking the maximum value in the subset (max-pooling) or the average 

(average pooling). In image data, it can be seen that max-pooling extracts more 

significant features than average pooling, whereas average pooling extracts features more 

smoothly. Figure 2.3 shows an example where both max pooling and average pooling are 

applied to some values. 
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Figure 2.3 Difference between max pooling and average pooling [55] 

 

 

2.9 Capsule Neural Networks (CapsNets) 

 

Most deep learning algorithms are born as an effort to imitate the way the human 

brain uses different information and makes the associative processes that lead to learning. 

Neural Networks is the clearest example. Each “neuron” in the network is called like that 

because its properties are vaguely similar to actual neurons in the human nervous system. 

While artificial neurons have a number of input channels, a stage in which input is 

processed, and an output which can serve as input to another neuron, biological neurons 

have dendrites that act as input channels, a body that processes information, and an axon 

that connects the output to another neuron. 

In the case of CNNs, the original task is to imitate the way the human brain 

recognizes images. The convolution operation in CNNs performs operations in small 

windows of an image, just like the visual cortex analyzes a small region of the visual field. 

To cover the whole image, there is overlap between different regions, while in CNNs there 

is also an overlap measure which can be tuned (strides).  

Over the years, CNNs have proven to be useful and accurate, reaching state-of-the-

art results in many fields. However, there is one aspect that makes researchers believe 

CNNs “work” although they shouldn’t, or that they could work in a better way. The pooling 

operation that comes after a convolution, used to reduce the number of parameters in the 

network and therefore reducing training time, produces positional and translational 
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invariance. Pooling acts as a summary of features in a region of the image, meaning some 

information is lost. Because all of the features in that region are represented by one value 

(that normally is the maximum or the average), changes in that region are not perceived 

by the next layer. For the network to recognize a translation or rotation on a particular 

image, it is necessary to feed it with many images at different locations and rotations, and 

even then, it may not perform successfully, because pooling makes CNNs tolerant to small 

changes, but it doesn’t really understand those changes. This is called invariance.  

To tackle the problem of invariance, a novel architecture has been built. This is, in 

a way, inspired by cortical microcolumns [56]. Microcolumns are sets of neurons 

organized in vertical columns. In [57], the authors state that a microcolumn plays an 

important role in object recognition through senses and explain the way it is done. 

Although it is explained with recognition only through touching, the same explanation can 

be applied to vision. 

According to the article, a single microcolumn being paired to a sensor (a fingertip, 

for example) generates a location signal as the sensor approaches to an object. This 

location signal activates the neurons in the microcolumn that can decode the signal to 

recognize a feature according to the signal. This represents a prediction to what feature is 

to be sensed. When the object is sensed, some sets of neurons are activated. Neurons that 

were also activated due to the location signal are propagated to an output layer. These 

neurons represent all objects containing the sensed feature at the sensed location. This 

action is repeated at multiple locations to discard possible elements and to identify 

accurately the correct object. Multiple microcolumns are interconnected to accelerate this 

process. In the case of touching an object with fingertips, touching it at different locations 

with just one fingertip may take some time, but touching with two or more fingertips 

certainly helps recognize the object much faster and accurately. With vision, the process 

is similar. To recognize an object, the eye inspects it at different locations. A trained brain 

would activate neurons according to the agreement between them on what the object 

should be. This is done very quickly because the eye has lots of sensors, meaning the 

process is done simultaneously with many microcolumns. 

Inspired by the process explained above, Capsule Networks are created. A Capsule 

Network (CapsNet) is a type of neural network in which, instead of applying a function to 



 

- 21 - 

 

each neuron in a layer to define its activation state, a routing algorithm is applied to a 

whole set of neurons, now referred to as capsules. A capsule’s non-scalar output 

represents both the probability of existence of an entity and certain properties of it. As 

mentioned before, between two adjacent layers of capsules, a routing algorithm decides 

which capsules activate, according to an inner iterative process.  

These sets of neurons called capsules are inspired on microcolumns. Each capsule 

contains neurons with features that are extracted using convolutions (these features could 

come from a lower-level capsule layer also). These neurons evaluate the most possible 

output for the next layer’s capsules. The “final” output is decided based on a measure of 

agreement between all the predictions. This last step is called routing by agreement and 

is an iterative process. The predictions are used to compute the actual output, and the 

agreement between this two determines the predictions done by capsules in the next 

iteration, which are used to update the output. This is done a few times (typically, 3 to 5). 

Capsule Networks have been presented in two papers. In one [42] capsules are 

represented by vectors (very similar to a microcolumn), in which every unit is a neuron 

and represents a feature value. The routing algorithm is called Dynamic Routing and is 

similar to a clustering algorithm using Euclidean distance. Predictions within this cluster 

will have greater activation value, meaning their predictions will have more importance. 

In the second paper [44] capsules are no longer seen as one entity, but two: a pose 

matrix and an activation unit. Also, the routing algorithm is modified with respect to the 

first paper and is called EM Routing. It is also similar to a clustering algorithm, but each 

cluster is governed by a gaussian distribution. 

In the following subsections, capsules and routing are explained according to both 

publications. 

 

2.9.1 Capsules and Routing according to “Dynamic Routing Between Capsules” 

 

A capsule in the work of Sabour [42] is a set of neurons represented as a vector. The 

individual values are to capture features of an object, while the length of the vector shows 
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the capsule’s activation probability. For the vector to represent a probability, its length 

value must be between 0 and 1, which is why a “squashing” function is introduced: 

 

 
𝑣𝑗 =

‖𝑠𝑗‖
2

1 + ‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
2 

(2.19) 

 

, where 𝑣𝑗  is the “squashed” value of the capsule’s output 𝑠𝑗. 

 

The first layer of capsules comes from the output of an already known convolution. 

This output is rearranged into vectors with a previously specified dimension (and shrunk 

using the squashing function), which are used to compute the output of a next layer set of 

capsules. 

The algorithm with which the next layer’s capsules are computed, using the current 

layer of capsules’ outputs is called dynamic routing. It takes predictions from the current 

level capsules about the output of the next layer capsules and computes the actual output 

according to an agreement measure between predictions.  

The predictions about the next layer’s capsules are calculated by a multiplication 

with a matrix of weights: 

 

 �̂�𝑗|𝑖 = 𝑾𝑖𝑗𝒖𝑖 (2.20) 

 

, where 𝒖𝑖 is the output of capsule i in the current layer, 𝑾𝑖𝑗 is the weights matrix between 

capsule i in layer l and capsule j in the layer l+1, and �̂�𝑗|𝑖is the predicted output of capsule 

j given the output of capsule i. The output of capsules in layer l+1 𝑠𝑗 corresponds to a 

weighted sum over all �̂�𝑗|𝑖 (and shrunk using the squashing function): 

 

 𝑠𝑗 =∑𝑐𝑖𝑗�̂�𝑗|𝑖
𝑖

 (2.21) 
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𝑣𝑗 =

‖𝑠𝑗‖
2

1 + ‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
2 

(2.22) 

 

, where 𝑐𝑖𝑗 are called coupling coefficients, and are calculated by: 

 

 
𝑐𝑖𝑗 =

exp(𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝𝑘 (𝑏𝑖𝑘)
 

(2.23) 

 

This coupling coefficients change iteratively because the 𝑏𝑖𝑗 logits are updated through the 

following: 

 

 𝑏𝑖𝑗 ←  𝑏𝑖𝑗 + �̂�𝑗|𝑖 ∙ 𝑣𝑗 (2.24) 

 

The expression �̂�𝑗|𝑖 ∙ 𝑣𝑗  measures the agreement between the actual output in layer l+1 and 

the prediction done by a capsule in layer l. 

 

To summarize, dynamic routing computes the output 𝑣𝑗  of a capsule in layer l+1 by 

performing a weighted sum over the predictions of capsules in layer l and “squashing” that 

vector. Those weights are refined in each inner iteration according to the agreement 

between the previous 𝑣𝑗  and the prediction done by capsules in layer l. The number of 

iterations must be defined beforehand, being 3, 4 and 5 the recommended ones. The 

coupling coefficients are refined during the computation of 𝑣𝑗  and have no incidence in 

the training process (i.e, training doesn’t take into account the tuning of coupling 

coefficients), while the weights associated to the prediction calculation vary during 

training. Figure 2.4 shows a pseudo-code of the algorithm. 
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Figure 2.4 Dynamic routing algorithm 

      

 

After this procedure, the output of capsules in layer l+1 may serve for two main purposes: 

input to a NN or for another routing procedure to compute the output for capsules in a 

l+2 layer.  

 

2.9.2 Capsules and Routing according to “Matrix Capsules with EM Routing” 

 

A matrix capsule, like seen in figure 2.5 is composed of two entities: a pose matrix 

and an activation unit. Like it says, the pose matrix captures the pose of the image in 

space. This is done in order for the algorithm to recognize rotated images one image 

rotated in different angles and not different objects, thus requiring less data to train and 

achieve desirable results. The activation unit, similar to the length of the vector in a vector-

like capsule, represents the probability of existence of a feature. 

 

 

Figure 2.5 Matrix capsule representation 
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Similar to the previous work on capsule networks, the first instance capsules appear 

is after a convolution. In this case though, not only a rearrangement (reshape operation) 

is necessary. To get the pose matrix, another convolution is done to the values obtained 

through previous convolutions, with a ReLU activation function. The result is rearranged 

to a matrix shape. To get the activation value, another parallel convolution is performed 

to get a single value output.  

To get the votes (predictions done by the capsules in layer l about capsules in layer 

l+1), the capsules are multiplied by a weights matrix which is modified during training 

process. These votes are used to compute the output for capsules on layer l+1, using a 

novel algorithm called EM Routing, where EM stands for Expectation-Maximization. 

This algorithm assigns capsules in layer l to clusters. Each cluster represents a capsule in 

layer l+1, and follows a Gaussian distribution. The mean of each gaussian distribution 𝜇 is 

the output of each capsule in layer l+1. 

The algorithm alternates between the E-step (Expectation) and the M-step 

(Maximization). During the E-step, assignment probabilities 𝑹𝑖𝑗 are calculated, which are 

the probabilities that capsule i in layer l is assigned to cluster (or capsule) j in layer l+1. 

This is done through the following equations: 

 

 
𝒑𝑗 =

1

√∏ 2𝜋(𝜎𝑗
ℎ)

2𝐻
ℎ

exp (−∑
(𝑉𝑖𝑗

ℎ − 𝝁𝑗
ℎ)

2

2(𝜎𝑗
ℎ)

2

𝐻

ℎ

) 
(2.25) 

 

 
𝑹𝑖𝑗 =

𝒂𝑗𝒑𝑗
∑ 𝒂𝑘𝒑𝑘𝑘

 
(2.26) 

 

In the expression for 𝒑𝑗, 𝑉𝑖𝑗
ℎ is the h-th dimension of the vote from capsule i to capsule j, 

𝝁𝑗
ℎ and 𝜎𝑗

ℎ are the h-th dimension for the mean and variance of capsule j. For 𝑹𝑖𝑗, 𝒂𝑗 is the 

activation value for capsule j (the sum appearing in the denominator uses all capsules in 

layer l+1). This value is calculated in the M-step. In this step, the clusters’ 

characterizations are modified by updating 𝝁𝑗
ℎ and 𝜎𝑗

ℎ. Also,  𝑹𝑖𝑗 is updated: 
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 𝑹𝑖𝑗 = 𝑹𝑖𝑗 ∗ 𝒂𝑖 (2.27) 

 

 
𝝁𝑗
ℎ =

∑ 𝑹𝑖𝑗 ∗ 𝑉𝑖𝑗
ℎ

𝑖

∑ 𝑹𝑖𝑗𝑖
 

(2.28) 

 

 
(𝜎𝑗

ℎ)
2
=
∑ 𝑹𝑖𝑗 ∗ (𝑉𝑖𝑗

ℎ − 𝝁𝑗
ℎ)

2
𝑖

∑ 𝑹𝑖𝑗𝑖
 

(2.29) 

 

 

The clusters are redefined in order to minimize a cost function that takes into account the 

probabilities that each cluster generates the values shown by the capsules in layer l. That 

cost function is used to update the activation value for each capsule in layer l+1: 

 

 𝑐𝑜𝑠𝑡ℎ = (𝛽𝑢 + log(𝜎ℎ
ℎ))∑𝑹𝑖𝑗

𝑖

 (2.30) 

 

 

𝒂𝑗 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝜆 (𝛽𝑎 −∑𝑐𝑜𝑠𝑡ℎ

ℎ

)) 

(2.31) 

 

 

, where the values 𝛽𝑢, 𝛽𝑎, are learned to minimize the cost function, and 𝜆 decreases with 

each iteration according to a fixed rate. 

 To summarize, EM Routing is used to calculate the capsules’ output 𝝁𝑗 and its’ 

activation values 𝒂𝑗. The E-step is used to calculate (or update) the assignment 

probabilities, which are then used to calculate/update the mean and variance for each 

capsule in layer l+1 during the M-step. With this information, the activations are 

calculated. Figure  2.6 shows the procedure: 
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Figure 2.6 EM Routing algorithm 

 

2.10 Performance Metrics 

 

To evaluate the models’ performance, proper metrics must be defined. Since the 

tasks are to locate and quantify damage, performance must be measured in terms of how 

the different models quantify damage and locate it.  

To measure the models’ capacity to quantify damage, Mean Sizing Error (MSE) is 

used: 

 

 
𝑀𝑆𝐸 = 

1

𝑁𝑂
∑|𝑦𝑖 − 𝑜𝑖| 

(2.32) 

 

, where 𝑁𝑂 is the number of output nodes,  𝑦𝑖 is the estimated output for node 𝑖, and 𝑜𝑖 is 

the real output for node 𝑖. For localization performance measurement, Damage Missing 

Error (DME) and False Alarm Error (FAE) measure the fraction of damaged elements 

unnoticed and undamaged elements tagged as damaged, respectively. DME is given by: 
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𝐷𝑀𝐸 =

1

𝑁𝑇
∑𝜖𝑖

𝑙 
(2.33) 

 

, where 𝑁𝑇 is the number of true damaged elements and 𝜖𝑖
𝑙 is defined by: 

 

 
𝜖𝑖
𝑙 = {

1, 𝑦𝑖 ≤ 𝛼𝑐, 𝑜𝑖 ≥ 0
0, ~

 
(2.34) 

 

To consider a damaged element as detected, 𝑦𝑖 must be greater than a limit value 𝛼𝑐, 

which is considered as 𝛼𝑐 = 𝑀𝑆𝐸. FAE is given by: 

 

 
𝐹𝐴𝐸 =

1

𝑁𝐹
∑𝜖𝑖

𝑢 
(2.35) 

 

, where 𝑁𝐹 is the number of predicted damage locations and 𝜖𝑖
𝑢 is given by: 

 

  
𝜖𝑖
𝑢 = {

1, 𝑦𝑖 ≥ 𝛼𝑐, 𝑜𝑖 = 0
0, ~

 
(2.36) 
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3. Working Methodology 

  In order to achieve the objectives stated in the Introduction chapter, a working 

methodology must be followed. This chapter presents that methodology.  

To understand the problem and techniques to solve it, an extensive literature 

review is necessary, beginning with machine learning topics, neural networks, 

convolutional neural networks, and finally capsule networks.  

To properly train the models, the datasets must be available. Transmissibility 

images are generated through Finite Element (FE) models that are calibrated with 

experimental images. In this way, the generated images represent the experimental setups 

and are seen as an extension of possible cases that, due to time and costs, cannot be 

generated.  

 After both datasets are defined, an adequate architecture is proposed. This is done 

based on prior knowledge of the problem, the datasets, and CapsNets.  

With the proposed architecture defined, the most suitable hyperparameters for the 

architecture are found using prior knowledge and inspection. The obtained results are 

compared with CNN, trying to keep the architecture close to the one defined for CapsNets, 

for a proper comparison. 

The working methodology is summarized in the following figure: 

 

Figure 3.1 Working methodology
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4. Proposed Capsule Networks for Damage 

Localization and Quantification 

 

As exposed in the Introduction chapter, the objective of this thesis is to develop a 

framework that is suitable not only for structural damage localization, but also 

quantification. To do this, it is necessary to adapt Capsule Networks for classification and 

regression.  

Vanilla Capsule Networks have been used only for classification. The architecture 

has two main parts: convolutions and routing. (in [42], a multilayer perceptron is added 

for reconstruction, with the purpose of avoiding overfitting). After a determined number 

of convolutions, capsules go through a routing process to calculate next level capsules, 

both their properties and activations. The capsules in the last level represent the network’s 

output, which are classes. The capsule with the highest activation value represents the 

predicted class (multiple classes could be accepted also. In that case, the loss function 

should be modified). This works for structural damage localization, because each capsule 

would represent an element within the structure. If the capsule’s activation value is near 

to 1, the element presents damage. The method described before doesn’t work for 

regression purposes, because the capsules’ activations represent the probability of 

existence of a property, in this case, structural damage. There is no output value that could 

represent the amount of damage each value. To fix this, the proposed Capsule Networks 

includes a MLP that uses the last level capsules’ output as input. The MLP’s output 

describes the amount of damage in every element in the structure. The network is used for 

supervised learning tasks, therefore the loss function to be optimized during learning 

compares the output of the MLP after the capsules with the labels. 

In the figure below, the proposed model for damage localization and quantification 

is shown. The input image is submitted to two convolution processes. Then, primary 

capsules are obtained. The method for this depends on the type of capsules (matrix or 

vector). Then, through a routing process (which can be Dynamic routing or EM routing), 
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the secondary capsules are obtained. The number of secondary capsules depends on what 

they are meant to represent. Finally, information from the secondary capsules is used as 

input for a MLP, which calculates the amount of damage per element in the structure.    

 

Figure 4.1 Proposed Capsule Networks model 

  

In this thesis, both routing algorithms are studied, each of them through one 

corresponding architecture. Since there are two case studies, there is a total of four 

models. 

For CapsNets with dynamic routing, the following architecture is proposed: 

 

 

Figure 4.2 Capsule Networks with Dynamic routing, proposed architecture 

 

The input image is convoluted using 32 filters, thus generating 32 feature maps. To 

capture all of the transmissibility functions’ information in one filter, each of them has a 

size of 10x1 pixels, and a stride of 1. After the first convolution, another convolution is 

performed, this time generating 64 feature maps. The filters’ size is 1x5, with a stride of 1. 
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After both convolutions, a ReLU activation function is applied, to inject nonlinearity to 

the model.  

From the 64 feature maps obtained by the last convolution to the primary capsules, 

a reshape operation is done, which turns the 1x91x64 neurons with a scalar output each 

into 1x91x8 8-dimensional vectors. Squashing function is applied to all capsules to ensure 

their lengths represent activation probabilities, and routing is done to compute the 

secondary capsules’ values.  

The number of secondary capsules depends on the model. For model 1, there are 

only two types of images: no damaged elements and one damage element. Therefore, there 

are only two secondary capsules. Using the same logic, model 2 has three secondary 

capsules, and model 3 has four. The objective is for capsules to detect damage.  

With the secondary capsules’ output, the one with larger length is fed to a neural 

network with two hidden layers, the first with 1024 hidden units and the second one with 

512. The final output is a N-dimensional vector, with N being the number of nodes in the 

system (7 or 18). The cost function to be minimized during training is: 

 

 
𝐶 =

1

𝑁
∑(𝑦𝑖 − 𝑜𝑖)

2 
(3.1) 

   
 

 

, where 𝑦𝑖 is the estimated output, and 𝑜𝑖 is the real one. 

  

In the case of EM routing, the architecture used is the one shown in figure  4.3. The 

first convolution is equal to the one used for dynamic routing. The second convolution is 

done with 32 1x6 filters, with a stride of 3. 

To get the activations and pose matrices for all primary capsules in the next layer, 

two convolutions are performed simultaneously. The first one doesn’t have an activation 

function, so it is only a linear combination of the Conv2 layer. It outputs a 4x4 matrix for 

each capsule. The second one outputs the activation logits for each capsule, and to achieve 
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this, a sigmoid activation function is set after the convolution. In this way, the outputs are 

set to be between 0 and 1.   

 

 

Figure 4.3 Capsule Networks with EM routing, proposed architecture 

 

At first, no dropout is used in any layer of the network, neither convolutions nor 

fully connected layers. A second model is trained using dropout in the first hidden layer 

of the neural network for regression, with 𝑝 = 0,5. This is done only with the dynamic 

routing type architecture.   
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5. Results 

 

5.1 Case Study 1: Spring-mass system 

The first case study corresponds to a spring-mass system, which consists of eight 

aluminum disk masses separated by seven springs. The excitation force comes from a 

shaker connected to the first mass. One accelerometer is connected to each mass. These 

accelerometers measure horizontal acceleration data and are used to calculate 

transmissibility functions. Data is acquired with frequency resolution of 0.125 [Hz], in the 

range of 10-110 [Hz]. Figure 5.1 shows a representation of the system.  

 The system is adequate for this kind of analysis because damage can easily (and 

accurately) be represented by a spring having less stiffness than the others. Damage 

quantification will correspond to the stiffness reduction rate, and the localization will be 

the position of the “damaged” element, being one element for each spring. For example, a 

stiffness reduction of 10% in the third spring means the third element is damaged with 

𝑦3 = 0.1.  

After training, models are tested with one experimental image, in which the 5th 

element suffers a stiffness reduction of 55% in its spring.   
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Figure 5.1 8 DOF spring-mass system 

 

For this case study, four types of images are generated, according to the number of 

damaged elements.  

 

Table 5.1 Types of training images 

Damaged Elements Number of Images 
0 10,000 
1 30,000 
2 30,000 
3 30,000 

 

With these images, three models are proposed: 

Table 5.2 Model configurations 

Model Dataset Number of Images 
Model 1 0 and 1 damaged elements 40,000 
Model 2 0, 1, and 2 damaged elements 70,000 
Model 3 0, 1, 2, and 3 damaged elements 100,000 

 



 

- 36 - 

 

5.1.1 Training Results, Dynamic Routing 

 

For the first case study, performance metrics and training time are shown in table 5.3: 

 

Table 5.3 Training performance metrics for capsule networks models with dynamic routing, first case study 

Model MSE DME FAE Time per 
epoch [s] 

1_DR 0,045 % 0,37 % 22,8 % 22,6 
2_DR 0,091 % 0,94 % 16,2 % 49,0 
3_DR 0,209 % 1,58 % 9,77 % 101,4 

 

5.1.2 Experimental Results: Dynamic Routing 

Model 1 

 

Figure 5.2 Experimental test with model 1, dynamic routing 

Model 2: 
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Figure 5.3 Experimental test with model 2, dynamic routing 

 

Model 3: 

 

Figure 5.4 Experimental test with model 3, dynamic routing 

 

5.1.3 Training Results: EM Routing 
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Table 5.4 Training performance metrics for capsule networks models with EM routing, first case study 

Model MSE DME FAE Time per 
epoch [s] 

1_EM 0,067 % 0,33 % 48,92 % 46,1 
2_EM 0,17 % 1,36 % 18,83 % 81,7 
3_EM 0,25 % 1,46 % 16,45 % 116,8 

 

5.1.4 Experimental Results: EM Routing 

 

 

 

Model 1: 

 

Figure 5.5 Experimental test with model 1, EM routing 

 

Model 2: 
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Figure 5.6 Experimental test with model 2, EM routing 

Model 3: 

 

 

Figure 5.7 Experimental test with model 3, EM routing 
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5.1.5 Comparison Between Models 

 

In figures 5.8 to 5.10, a comparison between DR, EM and CNN is shown. 

 

Model 1: 

 

 

Figure 5.8 Comparison between architectures, model 1 

 

 

Model 2 
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Figure 5.9 Comparison between architectures, model 2 

 

Model 3: 

 

 

 

Figure 5.10 Comparison between architectures, model 3 

 

5.2 Case Study 2: Structural Beam 
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The second case is a beam with damaged elements. Damage is generated by saw 

cuts at different locations of the beam. Just like the first case, a shaker is connected to one 

end of the beam to generate the excitation force, and the structure is suspended with two 

springs holding it. These springs have low stiffness to simulate a “free-free” scenario. 

Eleven accelerometers are connected to the beam to measure vibrations and calculate 

transmissibilities. Data is acquired with frequency resolution of 1 [Hz], in the range of 1-

2000 [Hz]. To build the FE model, unidimensional beam elements are used, with two 

nodes per element and two degrees of freedom per node. The beam is divided into 20 

elements of 5 [cm] each. Figures 5.11, 5.12 and 5.13 show the setup, a diagram of the 

beam’s elements, and cut examples for the beam. 

 

 

 

 

Figure 5.11 Beam setup 
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Figure 5.12 Beam element numbering 

 

 

 

Figure 5.13 Beam cut examples 

 

After training, models are tested with four experimental cases, which are described in 

table 5.5: 

 

Table 5.5 Damage scenarios for beam experimental cases 

Damage 
Scenario 

Number 
of cuts 

Distance from the 
left side [mm] 

Damaged 
Element 

Cut depth 
[mm] 

1 1 313 7 7 
2 1 637 13 9 

3 2 
361 8 8 
812 17 15 

4 3 
363 8 13 
574 12 8 
696 14-15 6 

 

While in the first case study, a stiffness reduction of a spring implies a damage in 

the same amount of the reduction, in this case the saw cuts inflict stiffness reduction and 

therefore damage, but this damage’s value is unknown. For example, a cut depth of 15 
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[mm] (of a total depth of 25 [mm]) doesn’t necessarily mean the element suffers a 60% 

stiffness reduction. 

For this case study, the configuration in terms of images and models is the same 

as the one used for the first case study (see tables 5.1 and 5.2) 

 

 

5.2.1 Training Results, Dynamic Routing 

 

For the structural beam case, performance metrics are presented in table 5.6: 

 

Table 5.6 Training performance metrics for capsule networks models with dynamic routing, second case study 

Model MSE DME FAE Time per 
epoch [s] 

1_DR 0,038% 1,17% 65,30% 22,3 
2_DR 0,415% 5,33% 55,28% 30,1 
3_DR 0,783% 6,17% 44,70% 132,2 

 

 

In figures 5.14, 5.15, and 5.16,  DME and FAE results are shown, for each of the 3 trained 

models. 
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Figure 5.14 DME and FAE versus damage level for structural damage using model 1  

 

 

 

Figure 5.15 DME and FAE versus damage level for structural damage using model  2 
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Figure 5.16 DME and FAE versus damage level for structural damage using model 3 

 

 

 

5.2.2 Experimental Results: Dynamic Routing 

 

Trained models are tested on experimental images. The results are shown in the following 

images: 

 

Model 1: 
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Figure 5.17 Experimental test 1 with model 1, dynamic routing 

 

Figure 5.18 Experimental test 2 with model 1, dynamic routing 
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Figure 5.19 Experimental test 3 with model 1, dynamic routing 

 

 

Figure 5.20 Experimental test 4 with model 1, dynamic routing 

 

 

Model 2: 
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Figure 5.21 Experimental test 1 with model 2, dynamic routing 

 

 

Figure 5.22 Experimental test 2 with model 2, dynamic routing 
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Figure 5.23 Experimental test 3 with model 2, dynamic routing 

 

 

Figure 5.24Experimental test 4 with model 2, dynamic routing 

 

 

 

 

Model 3: 
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Figure 5.25 Experimental test 1 with model 3, dynamic routing 

 

 

Figure 5.26 Experimental test 2 with model 3, dynamic routing 
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Figure 5.27 Experimental test 3 with model 3, dynamic routing 

 

 

Figure 5.28 Experimental test 4 with model 3, dynamic routing 

 

 

5.2.3 Training Results: EM Routing 
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Table 5.7 Training performance metrics for capsule networks models with EM routing, second case study 

Model MSE DME FAE Time per 
epoch [s] 

1_EM 0.132% 1.59% 77.43% 153.8 
2_EM 0.464% 4.36% 52.08% 260.1 
3_EM 0.948% 6.14% 45.24% 375.9 

 

In figures 5.29, 5.30 and 5.31, DME and FAE results are shown, for each of the 3 trained 

models. 

 

 

Figure 5.29 DME and FAE versus damage level for structural damage using model 1 
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Figure 5.30 DME and FAE versus damage level for structural damage using model 2 

 

 

 

Figure 5.31 DME and FAE versus damage level for structural damage using model 3 
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5.2.4 Experimental Results: EM Routing 

 

Trained models using CapsNets with EM routing are tested with experimental cases. 

Results are shown in the figures below. 

 

Model 1: 

 

Figure 5.32 Experimental test 1 with model 1, EM routing 
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Figure 5.33 Experimental test 2 with model 1, EM routing 

 

 

Figure 5.34 Experimental test 3 with model 1, EM routing 
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Figure 5.35 Experimental test 4 with model 1, EM routing 

 

Model 2: 

 

 

 

Figure 5.36  Experimental test 1 with model 2, EM routing 
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Figure 5.37 Experimental test 2 with model 2, EM routing 

 

 

Figure 5.38 Experimental test 3 with model 2, EM routing 
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Figure 5.39 Experimental test 4 with model 2, EM routing 

 

Model 3: 

 

 

 

Figure 5.40 Experimental test 1 with model 3, EM routing 



 

- 60 - 

 

 

Figure 5.41 Experimental test 2 with model 3, EM routing 

 

 

Figure 5.42 Experimental test 3 with model 3, EM routing 
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Figure 5.43 Experimental test 4 with model 3, EM routing 

 

 

5.2.5 Comparison Between Models 

 

In figures 5.44 to 5.55, a comparison between DR, EM and CNN is shown. 

 

 

Model 1: 
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Figure 5.44 Comparison between models, test 1, model 1 

 

Figure 5.45 Comparison between models, test 2, model 1 
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Figure 5.46 Comparison between models, test 3, model 1 

 

 

Figure 5.47 Comparison between models, test 4, model 1 

Model 2: 
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Figure 5.48 Comparison between models, test 1, model 2 

 

Figure 5.49 Comparison between models, test 2, model 2 
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Figure 5.50 Comparison between models, test 3, model 2 

 

 

Figure 5.51 Comparison between models, test 4, model 2 
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Model 3: 

 

Figure 5.52 Comparison between models, test 1, model 3 

 

 

Figure 5.53 Comparison between models, test 2, model 3 
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Figure 5.54 Comparison between models, test 3, model 3 

 

 

Figure 5.55 Comparison between models, test 4, model 3 

 

5.2.6 Influence of dropout, dynamic routing 
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With the purpose of achieving better generalization between the training sets (which are 

generated through a FE model) and the experimental cases, dropout with 𝑝 = 0.5 is added 

in the first hidden layer, for dynamic routing models only. Training results are shown in 

table 5.8: 

 

Table 5.8 Comparison between models with and without dropout, training phase 

Model Dropout MSE [%] DME [%] FAE [%] 
Time per 
epoch [s] 

1 
No 0.038 1.17 65.30 22.3 
Yes 0.138 3.79 51.67 22.5 

2 
No 0.415 5.33 55.20 30.1 
Yes 0.610 9.96 47.96 48.11 

3 
No 0.783 6.17 44.70 132.2 
Yes 0.949 10.53 46.99 137.4 

 

Each model is tested using the experimental cases. The results are shown in the following 

figures: 

 

Model 1: 
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Figure 5.56 Experimental test 1 with model 1, dynamic routing with dropout 

 

Figure 5.57 Experimental test 2 with model 1, dynamic routing with dropout 
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Figure 5.58 Experimental test 3 with model 1, dynamic routing with dropout 

 

Figure 5.59 Experimental test 4 with model 1, dynamic routing with dropout 

 

 

Model 2: 
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Figure 5.60 Experimental test 1 with model 2, dynamic routing with dropout 

 

Figure 5.61 Experimental test 2 with model 2, dynamic routing with dropout 
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Figure 5.62Experimental test 3 with model 2 , dynamic routing with dropout 

 

Figure 5.63 Experimental test 4 with model 2, dynamic routing with dropout 

 

Model 3: 
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Figure 5.64 Experimental test 1 with model 3, dynamic routing with dropout 

 

Figure 5.65Experimental test 2 with model 3, dynamic routing with dropout 
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Figure 5.66Experimental test 3 with model 3, dynamic routing with dropout 

 

Figure 5.67 Experimental test 4 with model 3, dynamic routing with dropout 

 

 

Every model is compared with the better result previously achieved, which is dynamic 

routing without dropout. 

 

Model 1: 
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Figure 5.68 Effects of dropout on test 1, model 1 

 

Figure 5.69 Effects of dropout on test 2, model 1 
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Figure 5.70 Effects of dropout on test 3, model 1 

 

Figure 5.71 Effects of dropout on test 4, model 1 

 

 

Model 2: 
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Figure 5.72 Effects of dropout on test 1, model 2 

 

Figure 5.73 Effects of dropout on test 2, model 2 
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Figure 5.74 Effects of dropout on test 3, model 2 

 

Figure 5.75 Effects of dropout on test 4, model 2 

 

 

Model 3: 
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Figure 5.76 Effects of dropout on test 1, model 3 

 

Figure 5.77 Effects of dropout on test 2, model 3 
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Figure 5.78 Effects of dropout on test 3, model 3 

 

Figure 5.79 Effects of dropout on test 4, model 3 
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6. Discussion and Analysis 

 

In the previous chapter, results for both case studies are shown. For each case, 

CapsNets type architectures are tested with two routing algorithms: dynamic routing and 

EM routing. These two are compared with the (next) best result, which is achieved using 

a CNN based architecture. In this chapter, results are discussed and analyzed by cases. 

 

6.1 Case Study 1: Spring-mass system 

 

During training, tables 5.3 and 5.4 show that capsule networks achieve great 

training results with both routing alternatives. Particularly, it can be seen that the MSE 

metric reaches the top value of 0.25%, which is promising. This is explained by the fact 

that the cost function (shown in equation 3.1) and the MSE metric are very similar. In the 

first, the squared difference between each prediction and the real output is used, while in 

the latter, the absolute value of the same difference is used.  

DME and FAE metrics are strongly related to the capability of the model to locate 

damaged elements. DME is particularly important. It measures the false negatives given 

by the model. It is highly expected that every model presents a small number of false 

negatives, for a false negative can lead to serious consequences. In this system, each of the 

6 models show DME values under 1.6%. This shows that the model considers localization 

of damage during the optimization stage, even though the cost function’s nature is 

primarily related to quantification. The minimum value the cost function can achieve is 

when not only the quantity of damage in the system is well identified, but also when it is 

located in the correct spots, because it evaluates the difference between the real and 

predicted outputs in every node.   

On the other hand, the FAE metric measures the amount of false positives, and in 

the 6 models, the maximum value reaches 49%. As models get more complex (in terms of 
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the kind of images used for training), FAE values decrease. This is explained by the fact 

that in those models there are images with more damaged elements, in which case it is 

less likely for them to give a false negative. A data point with 3 damaged elements can only 

have 4 false positives, whereas one with 1 damaged element can have 6 false positives.  

Comparing capsule networks with dynamic routing and with EM routing, tables 5.3 

and 5.4 show that training results are very similar in terms of performance metrics, except 

for FAE. Capsule networks with dynamic routing show, for all models, less false positives 

than those with EM routing, with a mean value of 36% less. Training time also establishes 

a difference. Models with dynamic routing take much less time in training that those with 

EM routing. 

When analyzing experimental results, it can be noticed that capsule networks 

models with the two kinds of routing successfully identify and quantify the 5th damaged 

element (see figures 5.2 to 5.7), however, as models are trained with more kinds of images, 

more relevant false positive values appear. It seems that the FAE value increases, although 

training results show the opposite. This is explained by the fact that false positive values 

increase in their magnitude, not in their quantity. Is not that there are more false positive 

values, it is that those fewer values are more perceptible.  

When comparing capsule networks-based models with CNN, it can be noted that 

all three models achieve similar results. The three are able to quantify correctly (within a 

range of ±7%) the damaged element, with no false negatives. False positive values appear 

mainly adjacent to the damaged element. Even though the system is not a continuous one, 

each spring is connected to two masses, this meaning that a stiffness reduction in one 

spring will affect the vibrations of two masses. The model may interpret this as a stiffness 

reduction in the adjacent element, showing then a false positive. Other false positive 

values that are not near the area correspond to a defect of the model (although every kind 

of false positive is a deficiency of the model, the latter kind is associated to a deficiency 

only in the algorithm, not explained by physical reasons). CNN based models present 

more false negatives than the capsule network based ones. In models 2 and 3 (figures 5.9 

and 5.10) the total percentages of false negatives in CNN add up to 16% and 21% 

respectively, while in capsule networks with dynamic routing they add 7% and 8%, and 

using EM routing, 7% and 7%. Apart from summing larger quantities, false positives 
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coming from CNN based models are more distributed along the spring-mass system than 

those using capsule networks. As mentioned above, this is not a good result and shows a 

poorer performance from CNN. For example, in figure 5.10, a 4% false positive is shown 

in the first element of the system. The two capsule network based models don’t show any 

amount of damage in that element.  

In terms of generalization, neither CNN nor capsule networks based models suffer 

from overfitting, or at least not in a relevant way. All models are capable of identifying the 

correct damaged element and to measure it accurately. All models present false negative 

values, but since they are mainly in the range of 0-10% damage, they are not too relevant. 

In this way, experimental results match with training results. 

Although the analyzed system exists merely for research purposes, this outcome 

shows that localization and quantification of structural damage can be done through 

capsule networks and aim for promising results.  

 

6.2 Case Study 2: Beam 

 

In this case, tables 5.6 and 5.7 show promising results for all models, especially in 

case 1. MSE values increase as models get more complex, regardless the routing algorithm. 

In the case of dynamic routing, the minimum MSE reaches a value of 0,038% and the 

maximum, a value of 0,783%. In the case of EM routing, the minimum and maximum are 

0,132% and 0,948%, respectively.  This occurs because, as more kinds of images are fed 

to an algorithm, the total damage in an individual image has a high probability of 

increasing, and there are more damaged elements. The model must hold more 

information from the images in its weights and biases. Thus, the task of recognizing 

exactly the same amount of damage and assigning it to the correct positions in the beam 

is harder than in, for example, model 1. This also explains the increase in DME. As with 

the first case study, FAE values decrease because, as images contain more damaged 

elements, there are less possibilities for false alarms. 

In figures 5.14, 5.15, 5.16, 5.29, 5.30 and 5.31, FAE and DME values are presented 

in detail, according to their damage percentage. This is important considering that it is 
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not the same to have, for example, a 70% damage false negative than a 3% one. The same 

happens for false alarms. Results show that, for models 1, false alarms and false negatives 

only accumulate in the range of 0-10%. For models 2 and 3, those values accumulate in 

the 0-10%, 10-20%, and 20-30%. This means that, for any model, training results suggest 

that any element with more than a 30% damage is properly identified (meaning that it is 

not a false positive), and that any element with more than a 30% damage will certainly be 

identified as such (the proper amount of damage depends on the MSE metric). It is also 

noted that false negatives are far more scarce than false positives, without the need of 

punishing a false negative more than a false positive in the cost function. This indicates 

that the approach is conservative, which is a concept to aim at in structural damage 

assessment. Perfect precision is something no model can achieve. Thus, it is better to 

overestimate damage than to underestimate it. 

Comparing both routing algorithms, it can be observed that dynamic routing clearly 

outperforms EM routing in model 1. All of the three metrics present better results than 

those with EM routing. That difference is not so clear in models 2 and 3. In model 2, 

dynamic routing is better at quantifying damage (i.e better MSE), but less accurately when 

localizing damage (i.e, lower DME and FAE) than EM routing. In model 3, both routing 

algorithms present virtually the same results. This is explained by the types of 

architectures used for each routing algorithm. The architecture used along with the 

dynamic routing algorithm has 2, 3 or 4 secondary capsules, depending on the model. 

Those capsules are used to identify the kind of image, in terms of damaged elements. 

Model 1 has 2 secondary capsules, for there are only two kinds of images (undamaged 

beam and 1 damaged element). The classification task is easier than in the other models, 

because there are only two options. From a routing point of view, results show that the 

two clusters formed by the routing algorithm are very separated, unlike those in the other 

models. The algorithm can isolate undamaged images with relative ease, however, 

segregation between damaged images results a harder task for the algorithms. In the case 

of capsule networks using EM routing, there are 18 secondary capsules, one for each 

element in the beam. The activation of each capsule indicates the probability of existence 

of a damaged element in the beam. This means the secondary capsules’ layer comprises 

the task of locating damage, and not only identifying the number of damaged elements 

like capsules in dynamic routing. The number of secondary capsules doesn’t change from 
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model to model, so the architecture is the same for all. This is why results, although they 

change from model to model, they don’t vary as much as with dynamic routing models.  

All six models are evaluated on the experimental cases. Each of the 4 cases is tested 

in each of the 6 models. For models 1, experimental cases 1 and 2 present the best results. 

This is an expected result, since models 1 are trained to detect up to 1 damaged element. 

Cases 3 and 4 show that the algorithms do not present great capability of generalization. 

This is also an awaited result, mainly because models do not see this kind of images during 

training. In the case of dynamic routing, model 1 is intrinsically built to recognize only 0 

or 1 damaged elements due to its secondary capsules. This affects its facility at 

generalizing. 

In figure 5.17, it is shown that, even though the model can correctly identify the 

damaged element, it clearly doesn’t quantify it correctly (see table 5.5) and displays an 

important false negative at the right end of the beam. That particular false negative is 

presented several times in all models.  

Testing shows different results than those obtained by training process. According 

to figures 5.14, 5.15, 5.16, 5.29, 5.30 and 5.31, false negative values should be much smaller 

(in terms of damage size) than they are. Taking as an example figure 5.17 again, that false 

negative at the right end of the beam is incoherent with the information conveyed by figure 

5.14. There should be no false positives with damage size over 10%. This discrepancy is far 

more substantial in those results achieved by EM routing than those with dynamic 

routing. Figures 5.37 and 5.38 show false positives with damage size over the 40%, which 

again, is inconsistent with the fact that, according to figure 5.30, there should be no false 

positives with that damage size.  

Although experimental results yield a count for false positives that could be 

reduced, from a safety point of view, it is better to have false positives than false negatives. 

In this sense, all models perform almost impeccably. Figure 5.19 shows a false negative 

value, but it is explained by the fact that the case presents two damaged elements, whereas 

that particular model is trained to recognize beams with up to one damaged element. This 

also occurs at figures 5.20, 5.34, and 5.35. All four images correspond to cases 3 and 4, 

and in all of them, the element that isn’t recognized is the one with the least damage 

percentage. When the model is trained to recognize (for example) up to one damaged 
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element, the maximum amount of damaged distributed along the beam is 100%. In the 

case of figures 5.19 and 5.34, since there is already a damaged element with a considerable 

size (cut depth: 15/25 [mm]), the model “concludes” that there is no other damaged 

element because the limit amount of damage is to be reached. Something similar occurs 

with figures 5.20 and 5.35, where the maximum total damage is 200%. The rest of the 

cases present no false negative, neither using dynamic routing nor EM routing. 

All experimental results are compared to the (previously) best result, which is 

obtained using CNN. From figures 5.44 to 5.55, the first and main conclusion is that 

capsule networks with dynamic routing present better results that CNN and capsules with 

EM routing. With exception of figure 5.44, where it presents the worst result (by wrongly 

assigning the damage amount to the end of the beam instead of the 7th element), all the 

experimental cases are best represented by DR. Most accurate cases are shown by figures 

5.45, 5.50 and 5.55, where DR correctly measures damaged elements and exhibits the least 

amount of false positives. Furthermore, most of these values are located next to the actual 

damaged elements. This is related to the fact that, unlike the spring-mass system, a beam 

is a continuous structure where elements are not clearly delimited, and divisions are set 

arbitrarily.  

As established before, DR shows acceptable performance, surpassing CNN 

obtained results for training and test sets. On the other hand, EM routing has the problem 

of computing too many false positives. Examples of this are figures 5.36 and 5.37, where 

false positives are considerable and have an important size. For diagnostics purposes, 

these values can generate confusion in analysis, acting as distractors and thus making the 

model inaccurate and unreliable. This occurs because models using EM routing are too 

complex and this affects generalization ability. The fact of using 18 secondary capsules, 

one for each element in the beam, builds a complexity for the models that proves to be 

unnecessary. Since the model is more complex than the dataset, its capacity is used to 

overanalyze the dataset and then adjust itself in a way that loses generalization. Even 

though the same models are used with the spring-mass system, in that case overfitting 

doesn’t occur because of two main reasons. The first one is mentioned before and relates 

to the fact that each element of the spring-mass system is independent, and the system 

itself is a discrete one, unlike the beam which is continuous. The second is that only 7 

capsules are used and not 18, meaning the model is less complex.   
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To detect overfitting, a data subset is used only to compute the loss function (or 

accuracy) value. This subset is not used for training purposes. This validation loss function 

is compared to the training set loss function to detect overfitting. In this case, no signs of 

overfitting where detected. There is no overfitting between training and validation sets, 

but there are clear signs of overfitting between the training set and the experimental cases. 

This occurs because, unlike experimental cases, training and validation sets are built from 

a FE model and are presented as TF images. Thus, overfitting signs uncover the capacity 

of the algorithms to recognize the mathematical model behind the generation of images. 

They focus on describing the underlying equations. These equations achieve only a 

simplified representation of the real phenomenon, which is why experimental cases show 

poorer results than expected.  

To tackle the aforementioned issue, dropout technique was used in the last layer of 

the fully connected neural network. Even though overfitting is more relevant in EM 

routing than in dynamic routing, dropout was applied only on the results obtained 

through the latter, because they were the best results and had greater potential to achieve 

even better results. By using dropout, the network lowers its results but has a greater 

generalization capability. Table 5.8 shows a comparison between results obtained with 

dropout and without it. It is clearly noted that training results lower their quality, 

particularly with MSE and DME. However, these results are very similar to what it is 

shown in the experimental results from figures 5.56 to 5.67.  Model 1 achieves to correctly 

locate damage for images with one damaged element and shows no false alarms, which is 

very important because it shows the model can isolate damaged elements in a very reliable 

way. For cases 3 and 4, the model cannot recognize the element with the less amount of 

damage. However, figure 5.71 shows that the model with dropout can assign a greater 

amount of damage to the image than without dropout, and even though it presents a larger 

false positive in the 7th element, it corresponds to the fact that the 8th element is greatly 

damaged (cut depth: 13 [cm]).  

For model 2, experimental results also improve with the use of dropout. The model 

still performs well on cases 1 and 2, showing only small percentage false positives. On case 

3 the model is capable of recognizing the element with the small amount of damage as well 

as the one with great amount, showing only a 6% of false positive value located in the 18th 

element, next to the truly damaged element. On case 4, despite the model being trained 
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with up to 2 damaged elements images (thus allowing some mistakes), the algorithm 

detects correctly the three damaged elements, with the drawback of showing an important 

number of false negatives. This shows that the algorithms achieve a better capacity for 

generalization when using dropout, and from two points of view. The first one refers to 

the capacity of the model to learn generalizable features from the FEM images to the 

experimental cases. The second one (which is more complex and difficult to achieve) refers 

to the capacity of the models to locate and quantify more damaged elements than those 

with which the algorithm learned the task, per beam.  

For model 3, in general terms the algorithm correctly assesses damage, better than 

without using dropout. Particularly, figures 5.76 and 5.77 show that the use of dropout 

affects directly on the quantity of false positive values. Figure 5.78 shows that the use of 

dropout takes away the false positive from element 11 but misallocates the less damaged 

element. Instead of allocating it to the 8th element, it is allocated to the 7th. For damage 

assessment purposes though, this isn’t a highly relevant mistake, because the element is 

displaced only one element, but its quantity is correctly assigned. Finally, figure 5.79 

shows that the model recognizes there are 3 damaged elements, it locates them correctly, 

and assigns the correct amount of damage to each damaged element. Also, the most 

relevant false positive value has a damage of 2% and is located next to the element with 

the most damage percentage. Comparing with the same model but without using dropout, 

there is a big difference in terms of false positives. A 25% false positive, located at element 

7, and a 16% one located at element 11 act as big distractors in terms of assessment, which 

are not present when using dropout.  
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7. Conclusion and Comments  

 

7.1 Conclusions 

 

In the present work, a Capsule Network based model was developed, with the 

objective of locating and quantifying damage in structural elements. The idea is to study 

the application of Capsule Networks to this task and to evaluate and compare its 

performance with the state-of-the-art. Two types of routing algorithms within Capsule 

Networks are studied: Dynamic Routing (DR) and EM Routing (EMR). Both architectures 

are analyzed with two case studies: a spring-mass system and an experimental beam. In 

both cases, models are trained using images containing 10 transmissibility functions, each 

image representing various damage scenarios. Images are created using a FE model tuned 

to represent the experimental cases. Trained models are validated using experimental 

cases and compared with CNNs, which are the state-of-the-art in that kind of problems. 

Results show that during training, Capsule Networks outperform CNN, with no 

signs of overfitting. During testing there were difference between the case studies. In the 

first one (spring-mass system), training results match with experimental results, there are 

no false negative values and few false positives. In the second case study, training results 

differ from experimental results, leading to the conclusion that overfitting is occurring, 

although there were no signs when observing the validation set. For this reason, dropout 

is applied to the network with DR, obtaining worse results during training but better 

generalization capacity, which is seen in experimental results. These final results clearly 

outperform CNN, notably reducing false positive values, while maintaining a correct 

damage estimation at the correct locations. 

 

 

7.2 Comments and Future Work 
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The present work shows that Capsule Networks, a new Deep Learning algorithm, 

can be used to locate and estimate structural damage. The Dynamic Routing algorithm is 

best suited for this task, whilst the EM Routing algorithm, even though it presents similar 

results to DR, clearly overfits due to its complexity. 

Although it is out of this work’s scope, a way to improve the way of visualizing 

results and measuring performance is to give the “real” damage percentage at 

experimental images, to the beam case study, to compare results. Although the cut depth 

gives a first estimate and serves for comparison, that estimation is very broad and lacks 

precision. This can be performed simulating the real beam with a FE model and 

comparing its natural frequencies and vibration modes with those obtained through a 

simplified model with a stiffness reduction in the desired element or elements. 

Capsule Networks have been a major upgrade to CNNs, and this work shows they 

can be used in damage detection tasks. With the application of dropout, the model 

overcomes overfitting which arises from the fact that the model integrally learns the 

equation that generates the FEM data images. That equation cannot represent 

authentically what occurs in reality, and that discrepancy makes it necessary to include 

dropout.  The routing algorithm still needs to be improved, to compete with CNNs in terms 

of computational time. That is the great drawback of Capsule Networks, and it is why still 

there are no major applications of the algorithm, unlike CNNs. 
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