

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE INGENIERÍA MECÁNICA

A CAPSULE NEURAL NETWORK BASED MODEL FOR

STRUCTURAL DAMAGE LOCALIZATION AND

QUANTIFICATION USING TRANSMISSIBILITY DATA

TESIS PARA OPTAR AL GRADO DE

MAGISTER EN CIENCIAS DE LA INGENIERÍA MENCIÓN MECÁNICA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECÁNICO

JOAQUÍN EDUARDO FIGUEROA BARRAZA

PROFESOR GUÍA

ENRIQUE LÓPEZ DROGUETT

MIEMBROS DE LA COMISIÓN

VIVIANA MERUANE NARANJO

RUBÉN BOROSCHEK KRAUSKOPF

SANTIAGO DE CHILE

2019

RESUMEN DE LA TESIS PARA OPTAR

AL TÍTULO DE: Ingeniero Civil Mecánico y grado
de Magister en Ingeniería Mecánica

POR: Joaquín Eduardo Figueroa Barraza

FECHA: Enero de 2019

PROF. GUÍA: Enrique López Droguett

ii

A CAPSULE NEURAL NETWORK BASED MODEL FOR

STRUCTURAL DAMAGE LOCALIZATION AND

QUANTIFICATION USING TRANSMISSIBILITY DATA

Dentro de la ingeniería estructural, el monitoreo de condición usando diferentes

tipos de sensores ha sido importante en la prevención de fallas y diagnóstico del estado de

salud. El desafío actual es aprovechar al máximo las grandes cantidades de datos para

entregar mediciones y predicciones precisas. Los algoritmos de aprendizaje profundo

abordan estos problemas mediante el uso de datos para encontrar relaciones complejas

entre ellos.

Entre estos algoritmos, las redes neuronales convolucionales (CNN) han logrado

resultados de vanguardia, especialmente cuando se trabaja con imágenes. Sin embargo,

existen dos problemas principales: la incapacidad de reconocer imágenes rotadas como

tales, y la inexistencia de jerarquías dentro de las imágenes. Para resolver estos problemas,

se desarrollaron las redes de cápsulas (Capsule Networks), logrando resultados

prometedores en problemas de tipo benchmark.

En esta tesis, las Capsule Networks se modifican para localizar y cuantificar daños

estructurales. Esto implica una tarea doble de clasificación y regresión, lo que no se ha

realizado anteriormente. El objetivo es generar modelos para dos casos de estudio

diferentes, utilizando dos algoritmos de routing diferentes. Se analizan y comparan los

resultados entre ellos y con el estado del arte.

Los resultados muestran que las Capsule Networks con Dynamic routing logran

mejores resultados que las CNN, especialmente cuando se trata de valores falsos positivos.

No se observa sobreajuste en el conjunto de validación sino en el conjunto de prueba. Para

resolver esto, se implementa la técnica de dropout, mejorando los resultados obtenidos

en este último conjunto.

RESUMEN DE LA TESIS PARA OPTAR

AL TÍTULO DE: Ingeniero Civil Mecánico y grado
de Magister en Ingeniería Mecánica

POR: Joaquín Eduardo Figueroa Barraza

FECHA: Enero de 2019

PROF. GUÍA: Enrique López Droguett

iii

A CAPSULE NEURAL NETWORK BASED MODEL FOR

STRUCTURAL DAMAGE LOCALIZATION AND

QUANTIFICATION USING TRANSMISSIBILITY DATA

In the field of structural engineering, health monitoring using different kinds of

sensors has taken an important place in failure prevention and health assessment. The

current challenge is to take the most advantage of large amounts of data, to deliver

accurate measurements and predictions. Deep Learning algorithms tackle these problems

by using data to find complex relations between them.

Amongst these algorithms, Convolutional Neural Networks (CNN) have achieved

state-of-the-art results, especially when working with images. However, there are two

main issues with them: the incapability of recognizing rotated images as such (instead, the

algorithm recognizes them as two different images), and the inexistence of hierarchies

within images. To solve these problems, Capsule Networks were developed, achieving

promising results in benchmark problems, like MNIST.

In this thesis, Capsule Networks are used to locate and quantify structural damage,

which means a dual classification (localization) and regression (quantification) task. Until

now, this has not been done with vanilla Capsule Networks. The objective is to generate

models for two different case studies, using two different routing algorithms. Results are

analyzed and compared between them, and with the state-of-the-art.

Results show that Capsule Networks with Dynamic Routing achieve better results

than CNN, especially when it comes to false positive values. Overfitting was observed not

in the validation set but in the test set. To solve this, dropout was implemented, improving

the results obtained in the test set.

iv

Acknowledgment

Siento que soy una persona que tiene mucha suerte, porque toda la vida me he

rodeado y he conocido personas maravillosas, las que me han enseñado mucho. A esas

personas quiero agradecer.

A mis padres, por ser un permanente ejemplo de lo que es el amor incondicional, el

esfuerzo, la bondad y la importancia de la familia. Todo lo que soy es gracias a ustedes. A

mis hermanos, los cuales día a día me enseñan de persistencia y a nunca rendirse ante las

dificultades de la vida, cada uno a su manera.

A mis padrinos, porque toda mi vida he sentido su cercanía, preocupación, y

sentido de enseñanza.

A mis amigos de infancia, con quienes aún comparto después de muchos años de

amistad. Gracias por las conversaciones, las risas (muchas) y el cariño. Aquí quisiera

mencionar a Pedro, Paulina y Javiera.

A mis amigos de mecánica. Tuve el placer de no solo conocer personas

tremendamente inteligentes de las que aprendí mucho, sino que también personas nobles

y de buen corazón. En particular, quisiera mencionar a Matías, Gastón, Ignacio y Sergio.

Al profesor Enrique López, quien ha sido muy importante en estos últimos años

para mi formación académica. Agradezco las oportunidades que me ha dado, la

comprensión, la ayuda, y la paciencia. Parte importante de lo que estoy haciendo ahora es

gracias a él.

Quisiera agradecer a la vida por poner en mi camino a todas esas personas.

Se agradece al programa “Geometallurgical Modeling and Mine Planning” del

proyecto “CSIRO Chile International Centre of Excellence in Mining and Mineral

Processing" Codigo 10CEII-9007.

v

TABLE OF CONTENT

1. Introduction ... - 1 -

1.1 General Background ... - 1 -

1.2 Objectives and Statement .. - 5 -

1.2.1 General Objective ... - 5 -

1.2.2 Specific Objectives ... - 5 -

1.2.3 Statement and Thesis Scope .. - 6 -

2. Theoretical Background .. - 7 -

2.1 Structural Damage ... - 7 -

2.2 Transmissibility Functions .. - 7 -

2.3 Machine Learning and Deep Learning .. - 10 -

2.4 Feed Forward Neural Networks (FFN) ... - 11 -

2.5 Backpropagation .. - 14 -

2.6 Minibatch Gradient Descent.. - 16 -

2.7 Overfitting and Dropout .. - 16 -

2.8 Convolutional Neural Networks (CNN) .. - 17 -

2.9 Capsule Neural Networks (CapsNets) ... - 19 -

2.9.1 Capsules and Routing according to “Dynamic Routing Between Capsules” . - 21 -

2.9.2 Capsules and Routing according to “Matrix Capsules with EM Routing” ... - 24 -

2.10 Performance Metrics ..- 27 -

3. Working Methodology .. - 29 -

4. Proposed Capsule Networks for Damage Localization and Quantification - 30 -

5. Results .. - 34 -

5.1 Case Study 1: Spring-mass system .. - 34 -

5.1.1 Training Results, Dynamic Routing ... - 36 -

vi

5.1.2 Experimental Results: Dynamic Routing .. - 36 -

5.1.3 Training Results: EM Routing ... - 37 -

5.1.4 Experimental Results: EM Routing ... - 38 -

5.1.5 Comparison Between Models .. - 40 -

5.2 Case Study 2: Structural Beam .. - 41 -

5.2.1 Training Results, Dynamic Routing .. - 44 -

5.2.2 Experimental Results: Dynamic Routing ... - 46 -

5.2.3 Training Results: EM Routing .. - 52 -

5.2.4 Experimental Results: EM Routing .. - 55 -

5.2.5 Comparison Between Models ...- 61 -

5.2.6 Influence of dropout, dynamic routing ... - 67 -

6. Discussion and Analysis .. - 81 -

6.1 Case Study 1: Spring-mass system ... - 81 -

6.2 Case Study 2: Beam .. - 83 -

7. Conclusion and Comments .. - 89 -

7.1 Conclusions .. - 89 -

7.2 Comments and Future Work .. - 89 -

Bibliography .. - 91 -

LIST OF TABLES

Table 5.1 Types of training images .. - 35 -

Table 5.2 Model configurations .. - 35 -

Table 5.3 Training performance metrics for capsule networks models with dynamic

routing, first case study ... - 36 -

vii

Table 5.4 Training performance metrics for capsule networks models with EM routing,

first case study ... - 38 -

Table 5.5 Damage scenarios for beam experimental cases .. - 43 -

Table 5.6 Training performance metrics for capsule networks models with dynamic

routing, second case study .. - 44 -

Table 5.7 Training performance metrics for capsule networks models with EM routing,

second case study .. - 53 -

Table 5.8 Comparison between models with and without dropout, training phase - 68 -

LIST OF FIGURES

Figure 2.1 Neural Network diagram .. - 12 -

Figure 2.2 Convolution operation [55] ... - 18 -

Figure 2.3 Difference between max pooling and average pooling [55]- 19 -

Figure 2.4 Dynamic routing algorithm ... - 24 -

Figure 2.5 Matrix capsule representation ... - 24 -

Figure 2.6 EM Routing algorithm ... - 27 -

Figure 3.1 Working methodology .. - 29 -

Figure 4.1 Proposed Capsule Networks model .. - 31 -

Figure 4.2 Capsule Networks with Dynamic routing, proposed architecture - 31 -

Figure 4.3 Capsule Networks with EM routing, proposed architecture - 33 -

Figure 5.1 8 DOF spring-mass system .. - 35 -

Figure 5.2 Experimental test with model 1, dynamic routing - 36 -

Figure 5.3 Experimental test with model 2, dynamic routing - 37 -

Figure 5.4 Experimental test with model 3, dynamic routing - 37 -

viii

Figure 5.5 Experimental test with model 1, EM routing .. - 38 -

Figure 5.6 Experimental test with model 2, EM routing .. - 39 -

Figure 5.7 Experimental test with model 3, EM routing .. - 39 -

Figure 5.8 Comparison between architectures, model 1 .. - 40 -

Figure 5.9 Comparison between architectures, model 2 ...- 41 -

Figure 5.10 Comparison between architectures, model 3 ...- 41 -

Figure 5.11 Beam setup .. - 42 -

Figure 5.12 Beam element numbering .. - 43 -

Figure 5.13 Beam cut examples ... - 43 -

Figure 5.14 DME and FAE versus damage level for structural damage using model 1 - 45 -

Figure 5.15 DME and FAE versus damage level for structural damage using model 2- 45

-

Figure 5.16 DME and FAE versus damage level for structural damage using model 3- 46 -

Figure 5.17 Experimental test 1 with model 1, dynamic routing - 47 -

Figure 5.18 Experimental test 2 with model 1, dynamic routing - 47 -

Figure 5.19 Experimental test 3 with model 1, dynamic routing.................................. - 48 -

Figure 5.20 Experimental test 4 with model 1, dynamic routing - 48 -

Figure 5.21 Experimental test 1 with model 2, dynamic routing.................................. - 49 -

Figure 5.22 Experimental test 2 with model 2, dynamic routing - 49 -

Figure 5.23 Experimental test 3 with model 2, dynamic routing - 50 -

Figure 5.24Experimental test 4 with model 2, dynamic routing - 50 -

Figure 5.25 Experimental test 1 with model 3, dynamic routing - 51 -

Figure 5.26 Experimental test 2 with model 3, dynamic routing - 51 -

Figure 5.27 Experimental test 3 with model 3, dynamic routing - 52 -

Figure 5.28 Experimental test 4 with model 3, dynamic routing - 52 -

ix

Figure 5.29 DME and FAE versus damage level for structural damage using model 1- 53 -

Figure 5.30 DME and FAE versus damage level for structural damage using model 2- 54

-

Figure 5.31 DME and FAE versus damage level for structural damage using model 3 - 54 -

Figure 5.32 Experimental test 1 with model 1, EM routing .. - 55 -

Figure 5.33 Experimental test 2 with model 1, EM routing ... - 56 -

Figure 5.34 Experimental test 3 with model 1, EM routing ... - 56 -

Figure 5.35 Experimental test 4 with model 1, EM routing ... - 57 -

Figure 5.36 Experimental test 1 with model 2, EM routing .. - 57 -

Figure 5.37 Experimental test 2 with model 2, EM routing ... - 58 -

Figure 5.38 Experimental test 3 with model 2, EM routing ... - 58 -

Figure 5.39 Experimental test 4 with model 2, EM routing ... - 59 -

Figure 5.40 Experimental test 1 with model 3, EM routing ... - 59 -

Figure 5.41 Experimental test 2 with model 3, EM routing ... - 60 -

Figure 5.42 Experimental test 3 with model 3, EM routing ... - 60 -

Figure 5.43 Experimental test 4 with model 3, EM routing ..- 61 -

Figure 5.44 Comparison between models, test 1, model 1 ... - 62 -

Figure 5.45 Comparison between models, test 2, model 1 ... - 62 -

Figure 5.46 Comparison between models, test 3, model 1 ... - 63 -

Figure 5.47 Comparison between models, test 4, model 1 ... - 63 -

Figure 5.48 Comparison between models, test 1, model 2 ... - 64 -

Figure 5.49 Comparison between models, test 2, model 2 ... - 64 -

Figure 5.50 Comparison between models, test 3, model 2... - 65 -

Figure 5.51 Comparison between models, test 4, model 2 ... - 65 -

Figure 5.52 Comparison between models, test 1, model 3 ... - 66 -

x

Figure 5.53 Comparison between models, test 2, model 3 ... - 66 -

Figure 5.54 Comparison between models, test 3, model 3 ... - 67 -

Figure 5.55 Comparison between models, test 4, model 3 ... - 67 -

Figure 5.56 Experimental test 1 with model 1, dynamic routing with dropout - 69 -

Figure 5.57 Experimental test 2 with model 1, dynamic routing with dropout - 69 -

Figure 5.58 Experimental test 3 with model 1, dynamic routing with dropout - 70 -

Figure 5.59 Experimental test 4 with model 1, dynamic routing with dropout - 70 -

Figure 5.60 Experimental test 1 with model 2, dynamic routing with dropout - 71 -

Figure 5.61 Experimental test 2 with model 2, dynamic routing with dropout - 71 -

Figure 5.62Experimental test 3 with model 2 , dynamic routing with dropout - 72 -

Figure 5.63 Experimental test 4 with model 2, dynamic routing with dropout - 72 -

Figure 5.64 Experimental test 1 with model 3, dynamic routing with dropout - 73 -

Figure 5.65Experimental test 2 with model 3, dynamic routing with dropout - 73 -

Figure 5.66Experimental test 3 with model 3, dynamic routing with dropout - 74 -

Figure 5.67 Experimental test 4 with model 3, dynamic routing with dropout - 74 -

Figure 5.68 Effects of dropout on test 1, model 1 ... - 75 -

Figure 5.69 Effects of dropout on test 2, model 1 ... - 75 -

Figure 5.70 Effects of dropout on test 3, model 1 ... - 76 -

Figure 5.71 Effects of dropout on test 4, model 1 .. - 76 -

Figure 5.72 Effects of dropout on test 1, model 2 ... - 77 -

Figure 5.73 Effects of dropout on test 2, model 2 ... - 77 -

Figure 5.74 Effects of dropout on test 3, model 2 ... - 78 -

Figure 5.75 Effects of dropout on test 4, model 2 ... - 78 -

Figure 5.76 Effects of dropout on test 1, model 3 ... - 79 -

Figure 5.77 Effects of dropout on test 2, model 3 ... - 79 -

xi

Figure 5.78 Effects of dropout on test 3, model 3 ... - 80 -

Figure 5.79 Effects of dropout on test 4, model 3 ... - 80 -

- 1 -

1. Introduction

1.1 General Background

In every engineered system safety is crucial, and as technological progresses are

made constantly, more complex systems are built. This sometimes leads to more

dangerous tasks, which is why nowadays safety is taking a more relevant role in

engineering.

 Safety also plays a relevant role in structural engineering. When designing any kind

of structure, the first question to be asked is: will the structure be able to support the

common loads this kind of structures suffer? The main goal is to prevent accidents, and it

is achieved by constantly monitoring the structure and its damage state. Structures

undeniably suffer damage through their operational life, and the mission is to study it and

to be able to anticipate the point where this damage surpasses a certain threshold that

leads to an accident.

Structural damage assessment is a subject in which studies are made to take

preventive actions against some possible disastrous outcome regarding structures.

Through the studies of their behavior at different operating conditions, there are two main

objectives: obtain the diagnostic of the structure’s health at a certain period of time (or

another quantity used to measure the structure’s life) and perform an accurate prediction

for the structure’s future health state. To do this, the concepts of health and damage must

be defined.

Different kinds of analysis can be done to achieve any of these two goals. Vibration

analysis is one of the most popular, because vibrations are strongly related to damage [1]–

[3]. It has been studied that, through vibration analysis, properties of a structure can be

determined. The use of this properties facilitates the damage analysis.

One of the main challenges in vibration-based damage assessment is how to

measure data in a way of successfully sensing damage. Using the raw measure of a series

of accelerometers could be the most straightforward way, but there may be information

about the structure that cannot be identified clearly through this method. The idea of

directly using the transmissibility functions (TF) has attracted many researchers [4]–[18].

- 2 -

TF relate the responses between two points of the structure. Among all dynamic

responses, transmissibility functions are the easiest to obtain in real-time because the in-

situ measurement is straightforward. The advantage is that no modal extraction is needed,

thus contamination of the data with modal extraction errors is avoided and they are

identified from response only data. Therefore, it does not involve the measurement of

excitation forces. In [5], [12]–[14], the use of transmissibility for fault detection is

introduced and validated in a series of papers from the same research group. The first

work uses TFs to detect damage in a simple simulated lumped-parameter mechanical

system. It is the first use of TFs as a tool to detect damage. The rest of the aforementioned

works validate the approach through experimental procedures on simplified model of a

metallic aircraft wingbox (i.e., a plate incorporating stiffening elements), and a Folland

Gnat training aircraft wing.

Up to date, the most common way to use vibration data to perform structural

damage analysis is through complex models built over theoretical concepts about

vibrations, sometimes aided by Finite Element (FE) models. These models are updated by

optimization algorithms [19]–[21]. For example, in [22] authors detect cracks in a beam

using a genetic algorithm, first defining a new beam element with a number of embedded

transverse edge cracks for computing natural frequencies, and then solving an

optimization problem to search for the solution. In [6], Meruane uses a linear

approximation method along with antiresonant frequencies that are identified from

transmissibility functions, which leads to the solving of multiple nonlinear equations.

As an alternative to model-based algorithms in vibration analysis, machine

learning algorithms have been proposed in a data-driven approach. The main reason is

how slow these model-based algorithms are, making them not useful for real time

applications. Researchers have used neural networks along with feature extraction to

learn from data and perform different actions [23]–[26]. In [27], authors use neural

networks for damage detection in truss and frame structures, being this one of the first

applications of neural networks in the field. Meruane [28] uses an online sequential

extreme learning machine (OS-ELM) to improve neural networks’ learning speed and

reduce the number of parameters. The neural network is used to identify and quantify

damage in two experimental cases: an 8 DOF spring-mass system and a beam under

different damage scenarios.

- 3 -

In all of the aforementioned works, feature extraction is key. Generally, this process

is performed by experts in the matter, but there is no consensus to a “correct” feature

extraction process. To solve this issue, and with a general motivation towards automation,

deep learning techniques have proven useful. This also applies to fault diagnosis [29]–

[34]. In [30], authors use deep neural networks (DNN) for fault diagnosis in rolling

element bearings and planetary gearboxes, achieving better results than those achieved

with artificial neural networks (ANN). Data is fed as frequency spectra and it is used to

train a model capable of classifying among a number of health conditions, showing that

the model successfully mines fault characteristics from the signals. In [31], Gan introduces

hierarchical belief networks for fault diagnosis, by stacking two deep belief networks

(DBN), the first one for identifying fault types, and the second one for recognizing fault

severity rankings, taking as input the information from the first DBN. This is applied on a

defective bearing dataset.

Among deep learning techniques, Convolutional Neural Networks (CNN) stand out

in reliability problems for their automatic feature extraction process. Since CNNs were

built to be worked on images, the most common application is image recognition [32],

[35]–[40] . In [32], authors use CNNs for fault diagnosis from scalograms obtained from

vibration signals.

Although CNNs have been used for years, achieving state-of-the-art results in

various fields, there are some problems with their construction. CNNs are not capable of

recognizing hierarchies within an image, as all neurons in a low-level layer are sent to a

high-level layer. Instead, neurons should be distributed into higher level capsules

according to their output, as neurons specify themselves during training.

There has been some research to solve the existing drawbacks within CNNs. In [41],

Hinton realizes that, while machine learning community is using (at that time) scalar

output neurons, the computer vision community uses complex vectors as outputs and tries

to address this with an auspicious idea of neurons giving an output vector containing

instantiation parameters. The most recent approach has shown promising results. In [42],

Sabour presents a capsule system in which each capsule is a set of neurons arranged into

a vector whose length represents its activation value. Capsules are organized into layers,

just like a neural network, and the activation of a next-level capsule layer depends on a

- 4 -

novel routing algorithm. In each routing iteration, capsules predict the output of the next

layer’s capsules. Agreement between predictions is measured and determines the

activation values. This model has surpassed state-of-the-art results in MNIST dataset of

handwritten number images [43]. In [44] Hinton presents a different view on capsules.

Instead of vectors, capsules are represented by a pose matrix containing information

about position and orientation for a particular feature, and an activation unit. This is

inspired in computer graphics, were pose matrices are used to define viewpoints with

respect to an observer (a camera, for example) and to establish hierarchies between

different parts of a whole. This architecture has shown particularly promising results in

smallNORB, which is a dataset containing images of 3D objects, taken from different

angles and with different lightning configurations.

Although CapsNets have been presented recently, they have been applied in various

fields. In [45], Afshar uses Magnetic Resonance Imaging (MRI) images to classify types

of brain tumors with CapsNets, achieving better results than those obtained using CNNs.

In [46], Upadhyay uses capsule networks in Generative Adversarial Networks (GANs) as

a replacement to CNN discriminators, resulting in an improvement of the generator’s

performance. Xi [47] analyses capsule networks’ performance on CIFAR10 dataset, which

contains images of different classes of objects. The highlight for this research is that

CIFAR10 is known to be more complex than MNIST, in terms of features. This means the

classification task more challenging than with MNIST. In [48] LaLonde adapts capsule

networks to object segmentation. This is applied to pathological lung segmentation using

Computed Tomography (CT) scans. In [49], Andersen uses capsule networks in deep

Reinforcement Learning (RL) in game environments achieving viability but lack of

scalability. In [50], authors modify EM routing algorithm by measuring agreement by the

amount of alignment in a linear subspace, instead of agreement in clusters. Successful

experiments are performed on MIMIC-III public dataset [51]. In [52], authors train sparse

latent capsules using only reconstruction loss, thus performing unsupervised training,

achieving better generalization on benchmark datasets MNIST and affNIST. It can be

noticed that, of all the aforementioned applications of capsule networks, none relate to

structural damage assessment. Actually, most of them are based on benchmark studies,

revealing that CapsNets are still in an early stage of development. Also, Capsule Networks

- 5 -

have not been used for regression tasks, only classification or clustering tasks. There is

still an important research area within Capsule Networks which hasn’t been studied yet.

In this thesis, Capsule Networks will be used to locate and quantify structural

damage. Two different routing algorithms (Dynamic Routing and EM Routing) will be

used to simultaneously perform classification (damage localization) and regression

(damage quantification). Two different datasets will be available: one corresponding to a

spring-mass system and another corresponding to a beam under different damage

scenarios. Each of them will be studied in different cases according to the number of

damaged elements.

1.2 Objectives and Statement

1.2.1 General Objective

Develop a new Capsule Network for structural damage localization and quantification

based on transmissibility functions data.

1.2.2 Specific Objectives

• Developing a Deep Learning architecture capable of extracting relevant features
from transmissibility functions.

• Create a model for damage localization and quantification using Capsule Networks
and dynamic routing between capsules (DR).

• Create a model for damage localization and quantification using Capsule Networks
and EM routing between capsules (EMR).

• Apply and validate the DR model’s performance on two experimental cases: an
eight degree-of-freedom (DOF) mass-spring system and a beam under multiple
damage scenarios.

• Apply and validate the EMR model’s performance on two experimental cases: an
eight degree-of-freedom (DOF) mass-spring system and a beam under multiple
damage scenarios.

• Compare results with the state-of-the-art

- 6 -

1.2.3 Statement and Thesis Scope

In this thesis, a novel Deep Learning algorithm called Capsule Networks will be

used to analyze two case studies: A mass spring system and a beam under different

damage conditions. According to its properties, Capsule Networks should be an upgrade

to CNN, which is why the direct comparison will be with that model.

 There are two types of Capsule Network models, according to the routing

algorithm: Dynamic Routing, and EM Routing. Both algorithms will be used, following

the steps the respective papers used.

- 7 -

2. Theoretical Background

This chapter describes the most relevant theoretical aspects necessary for this thesis’

development.

2.1 Structural Damage

As seen in chapter 1, structural damage can be represented in more than one way.

In this thesis, damage is represented by a reduction in stiffness, as expressed in equation

2.1:

 𝑲𝒊
𝒅 = (1 − 𝑦𝑖)𝑲𝑖 (2.1)

, were 𝑲𝒊
𝒅 is the damaged stiffness of the i-th element, 𝑲𝑖 is the undamaged stiffness, and

𝑦𝑖 is the stiffness reduction of the i-th element. This has shown good results in damage

detection algorithms [53].

2.2 Transmissibility Functions

In vibrations analysis, transmissibility is a concept for measuring the response to

a certain stimulus at a specific location in a structural element. It describes numerically

how vibrations propagate through an element. This is very useful for isolation purposes.

It is a common objective to reduce the level of vibrations on a certain system. To do this,

isolators are installed to damp the propagation of vibrations. Clearly transmissibility

measures are relevant to achieve this purpose.

There are two ratios that apply the concept of transmissibility. They are force

transmissibility and displacement transmissibility. Force transmissibility is the ratio

- 8 -

between the response and the stimulus in terms of force, and displacement

transmissibility is equivalent to the first one but measuring displacement amplitude.

Typically, both are presented in the frequency domain.

Transmissibility can be measured in complex systems using accelerometers. The

concept of transmissibility is not only useful when measuring the ratio between response

and stimulus, but also between two different responses to the same stimulus, this is,

responses in different positions. This being said, accelerometers can be installed at various

locations of an element, thus generating many transmissibility functions. Experimental

transmissibility functions are calculated by:

𝑇𝑖𝑟
𝑘(𝜔) =

𝑋𝑖𝑘(𝜔)

𝑋𝑟𝑘(𝜔)

(2.2)

, were 𝑇𝑖𝑟
𝑘(𝜔) is the transmissibility function between points i and r subject to an excitation

at k, and 𝑋𝑟𝑘(𝜔) is the response of point r due to an excitation force at k. As it can be seen,

only the location of the exciting force is needed, not its magnitude, which is an advantage.

Sometimes it may be useful to use an alternative method:

𝑇𝑖𝑟
𝑘(𝜔) =

𝑋𝑖𝑘(𝜔)𝑋
∗
𝑟𝑘(𝜔)

𝑋𝑟𝑘(𝜔)𝑋∗
𝑟𝑘(𝜔)

(2.3)

, were 𝑋∗
𝑟𝑘(𝜔) is the complex conjugated of 𝑋𝑟𝑘(𝜔). This is done to reduce uncorrelated

noise.

 To build a dataset, each data point should correspond to one experiment submitted

to different conditions. This process would take long time to be completed. Numerical

methods have been used as a replacement. This can be done because a well calibrated

model can describe accurately the structural element or system and generate a large

amount of data, each with a different scenario, to work with. In the case of a linear

structure, its motion is described by:

- 9 -

 𝑴�̈� + 𝑪�̇� + 𝑲𝑥 = 𝒇(𝑡) (2.4)

, where 𝑴, 𝑪, and 𝑲 are mass, damping and stiffness matrices, 𝒇(𝑡) is the external force

vector, and 𝑥 represents displacement, with its derivatives. Since transmissibility

functions are presented in the frequency domain, equation 2.4 is transformed via Fourier

Transform:

 (−𝜔2𝑴+ 𝑗𝜔𝑪 + 𝑲)𝑿(𝜔) = 𝑭(𝜔) (2.5)

, were 𝜔 is the frequency and 𝑗 = √−1. From equation 2.5, the Frequency Response

Function 𝑯(𝜔) is defined:

 𝑿(𝜔) = (−𝜔2𝑴+ 𝑗𝜔𝑪 + 𝑲)−1𝑭(𝜔) = 𝑯(𝜔)𝑭(𝜔) (2.6)

 𝑯(𝜔) = (−𝜔2𝑴+ 𝑗𝜔𝑪 + 𝑲)−1 (2.7)

𝑯(𝜔) can be redefined in terms of 𝑿(𝜔) and 𝑭(𝜔):

𝑯(𝜔) =

𝑿(𝜔)

𝑭(𝜔)

(2.8)

Thus, the experimental transmissibilities can be obtained through the definition:

𝑇𝑖𝑟
𝑘(𝜔) =

𝑿𝑖𝑘(𝜔)

𝑿𝑟𝑘(𝜔)
=
𝑯𝑖𝑘(𝜔)

𝑯𝑟𝑘(𝜔)

(2.9)

- 10 -

2.3 Machine Learning and Deep Learning

Machine learning is a categorization for many algorithms in which there is a

“learning” process. The algorithm is fed with data, and this data is used to adjust the model

so that a specific task is performed.

There are two main tasks in machine learning. These are: supervised and

unsupervised learning, and they differ in the existence of feedback. In supervised learning,

when the model is adjusting itself (from now on, this process will be called training), it

receives the “correct answer”. For example, recognizing hand-written number images is a

supervised learning task, if during training the model “sees” the correct label for each

image, and training is based on the difference between the answer delivered by the model,

and the correct one. By contrast, unsupervised learning tasks do not count with a “correct

answer”, and separate data using only the properties of the data itself, and not a label.

Most of the supervised learning tasks applicable to reliability engineering are

regression and classification. In regression, the task is to determine a mapping function

from an input variable to a continuous output variable, in order to use this function to

predict new outputs when new input is fed. Classification is just like regression, with the

difference that the output is a discrete class label. The model learns the mapping function

between the input data and its corresponding labels.

In unsupervised learning, the most common task is clustering, in which the model

tries to divide data by creating different groups (or clusters) and assigning data to one of

this groups. There is no label, meaning the algorithm determines the criteria for both

division and assignment.

Deep learning corresponds to a series of novel and advanced algorithms in machine

learning. There is no official definition for what deep learning is, but there is some

consensus that it involves the extraction of complex features and the use of complex

nonlinearities. Many of these algorithms use stacking of layers, in which every layer learns

representation about data at different levels of abstraction. This presents the main

difference with normal machine learning algorithms. Because deep learning models are

- 11 -

built with more layers, there are more sources on nonlinearities. This makes the features

more complex.

2.4 Feed Forward Neural Networks (FFN)

In machine learning, a Feedforward Neural Network (FNN) is a model in which a

function is approximated through a series of operations and function compositions to

perform regression or classification. It is called like that because of its resemblance with

neural activity on humans and other animals. The motivation behind is to imitate the way

some animals (including humans) perform cognitive activities. In the nervous system of

most mammals there are neurons. These are the basic unit for the system, and they are

responsible for receiving, processing and transmitting information through electrical and

chemical signals. Neurons have an input region, an output region, and an activation state.

It will be seen later that all of these properties are relevant parts of a FFN.

The basic unit of a FNN is a neuron. A neuron takes the output of predecessor

neurons and performs a weighted sum, plus a bias. This result is taken as an input for

another neuron.

 𝑦 =∑𝑓((𝑊𝑖 ∗ 𝑥𝑖) + 𝑏)

𝑖

 (2.10)

Neurons are organized into layers, as it is shown in figure 2.1. Inputs and outputs

define an input layer and an output layer, respectively. Layers connecting input and

output layers are called hidden layers.

- 12 -

Figure 2.1 Neural Network diagram

 In a FNN, a certain function is applied to neurons in one layer before taking that

output to the next layer. This function is called activation function, and acts as a source

for nonlinearity in the model. The activation functions between layers allow the network

to learn more complex characteristics. There are several activation functions applied in

neural networks, the most used being: Tanh, RELU and Sigmoid.

• Linear

• Tanh

• RELU

• Sigmoid

In this thesis, the RELU function is used. This function turns to 0 every negative

number and keeps the positive ones.

 𝑓(𝑥) = max(0, 𝑥) (2.11)

- 13 -

 Basically, a FNN establishes a relationship between input and output information,

by performing weighted sums and applying activation functions. The neural network

adjusts the different values of weights in order to learn the most suitable relationship

between input and output. The process of learning consists on optimizing cost function.

Part of building a neural network is choosing an appropriate cost function. This depends

mainly on the task (regression or classification), but also on the type of data. For

regression, some common cost functions are:

• Mean Squared Error

• Root Mean Squared Error

• Cross-Entropy

• Exponential Cost

• Kullback-Leibler divergence

In this thesis, the following cost function is used:

𝐶𝑜𝑠𝑡 =

1

𝑁𝑂
∑(𝑦𝑖 − 𝑜𝑖)

2
(2.12)

To evaluate how good the model solves the specific task, a performance metric is

defined. There are various kinds of performance metrics mainly depending on the task to

be performed (regression or classification). For classification, some typical performance

metrics are:

• Accuracy

• Confusion Matrix

• Precision

- 14 -

• Sensitivity

• Specificity

• F1 Score

On the other hand, for regression, some performance metrics are:

• Accuracy

• R2 Score

• Mean Squared Error

Other metrics can be constructed, depending entirely on the specific problem to be solved

2.5 Backpropagation

The process in which the different weights and biases in a NN are modified for the

model to “learn” some relation is called training. Training is the process in which a set of

parameters 𝜃 is to be found to minimize a cost function 𝐽(𝜃). Intrinsically this means

obtaining 𝜃 such that 𝐽′(𝜃) = 0. For simple models (like a linear regression, for example),

this optimization problem presents no major difficulties, for the computation of 𝐽′(𝜃) is

straightforward. In deep learning models, this calculation cannot be done by conventional

methods. Backpropagation is a way of calculating the gradient for the cost function, 𝐽′(𝜃),

to then optimize the network, most probably using stochastic gradient descent. The goal

is to calculate the partial derivate with respect to any weight and bias in the network. To

do this, backpropagation calculates the error at the end of the network and propagates it

to the its beginning.

First, the output is computed through forward propagation. Then, the error

according to the last hidden layer is calculated:

- 15 -

 𝛿𝐿 = 𝑎𝐿 − 𝑦 (2.13)

, were 𝑎𝐿 is the output generated by the last layer 𝐿, and 𝑦 corresponds to the network’s

correct output. Using this value, the error for the previous layers is calculated:

 𝛿𝑙−1 = 𝚯𝑙−1𝛿𝑙𝑔′(𝑧𝑙−1) (2.14)

, were 𝚯𝑙−1 is a set of hyperparameters, and 𝑔′(𝑧𝑙−1) is the derivative for the activation

function. After each error calculation, a Δ coefficient (originally initialized as Δ = 0) is

updated:

 Δ𝑙 = Δ𝑙 + 𝑎𝑙𝛿𝑙+1 (2.15)

This process is repeated with each neuron of each layer in the network, and with every

element in the dataset. Finally, 𝐷𝑖𝑗
𝑙 is calculated as:

𝐷𝑖𝑗
𝑙 ={

1

𝑚
Δ𝑖𝑗
𝑙 + 𝜆Θ𝑖𝑗

𝑙 𝑖𝑓𝑗 ≠ 0

1

𝑚
Δ𝑖𝑗
𝑙 𝑖𝑓𝑗 = 0

 (2.16)

, where 𝜆 corresponds to a regularization term, and 𝑗 = 0 means the hyperparameter is a

bias. The 𝑖 index indicates the elements in the dataset. 𝐷𝑖𝑗
𝑙 is calculated because it is proven

that 𝐷𝑖𝑗
𝑙 =

𝜕

𝜕Θ𝑖𝑗
𝑙 𝐽(Θ), which is the objective of backpropagation.

- 16 -

2.6 Minibatch Gradient Descent

After computing the gradient using backpropagation, the optimization problem can

be solved. In machine learning, and especially deep learning, lots of data are used to train

models. This makes the gradient computation very expensive.

 To solve this issue, the training set is divided into minibatches. The gradient is

computed using one minibatch, and weights and biases are updated through:

 Θ → Θ − ϵ𝐠 (2.17)

, where Θ represents the weights and biases, 𝐠 is the gradient, and ϵ is a hyperparameter

called learning rate. After Θ is updated, the process is repeated with the next minibatch,

and so on until the whole training set is covered. Each update process is called step. The

whole training set is covered a certain number of times. This number is called epoch. It is

said that each time the whole training set is used, an epoch has passed.

2.7 Overfitting and Dropout

The process of training depends of a dataset. The model learns properties or

features from this dataset with the objective of applying these properties to predict an

output when a new unknown input is fed. To perform a correct prediction, the model must

learn properly the features from the training set and must be capable of generalizing. The

lack of generalization is called overfitting and occurs when the model fails to predict

additional data because it is too adjusted to the training set. Most of the times this happens

because the model interprets the data’s noise as a variation due to the data’s structure.

To prevent overfitting, there are some techniques that have proven useful, such as

cross-validation, regularization, or early stopping. In the context of neural networks,

dropout has shown great results. In [54], authors present and explain the technique, in

which some neurons are “turned off” during training, with some propability 1-p, which is

independent for every neuron. This is done with every neuron of a layer in the forward

- 17 -

and backwards pass and can be done in every layer. With this, the network reduces its size,

not using all of its “tools” to perform learning, though in testing, all the neurons are used.

2.8 Convolutional Neural Networks (CNN)

A Convolutional Neural Network (CNN) is a kind of NN specially orientated to

image recognition tasks. It is just like a NN, with neurons, layers, weights and activation

functions, but the input images are submitted to mathematical operations for feature

extraction. These are convolutions and pooling.

 Mathematically, a convolution is represented by equation 2.18, where 𝑆(𝑖, 𝑗) is the

output of the convolution, and 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛) is the input. It is an “inspection” though the

image with a filter or kernel 𝐾(𝑚, 𝑛). This kernel goes through an image in an ordered way

making operations over the images values with weights. These weights are updated during

training to extract features. A visual representation of a convolution is shown in figure

2.2.

 𝑆(𝑖, 𝑗) =∑∑𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛)

𝑛𝑚

 (2.18)

- 18 -

Figure 2.2 Convolution operation [55]

In the figure, it can be seen how the kernel operates. It takes a subset of the input with its

same size and performs a matrix operation between that subset and the weights of the

kernel. Then it moves to the right (the amount of positions that the kernel moves is called

stride. In this case, its value is 1 in both axis) and performs the same operation. The

process described before can be repeated many times, each repetition generating a

different set of weights. These different set of weights learn different features of the input

image. These features are presented in feature maps. After a convolution, a bias is added,

which is also learned through training. An activation function is then applied, just like a

NN.

 Generally, the number of parameters used to construct a CNN can be very large.

This makes the computation process very expensive. Pooling is basically an operation to

address this issue. In a way that’s similar to the convolution’s kernel, a small “window”

inspects the image and summarizes the information in each subset of the image. Typically,

this is done by taking the maximum value in the subset (max-pooling) or the average

(average pooling). In image data, it can be seen that max-pooling extracts more

significant features than average pooling, whereas average pooling extracts features more

smoothly. Figure 2.3 shows an example where both max pooling and average pooling are

applied to some values.

- 19 -

Figure 2.3 Difference between max pooling and average pooling [55]

2.9 Capsule Neural Networks (CapsNets)

Most deep learning algorithms are born as an effort to imitate the way the human

brain uses different information and makes the associative processes that lead to learning.

Neural Networks is the clearest example. Each “neuron” in the network is called like that

because its properties are vaguely similar to actual neurons in the human nervous system.

While artificial neurons have a number of input channels, a stage in which input is

processed, and an output which can serve as input to another neuron, biological neurons

have dendrites that act as input channels, a body that processes information, and an axon

that connects the output to another neuron.

In the case of CNNs, the original task is to imitate the way the human brain

recognizes images. The convolution operation in CNNs performs operations in small

windows of an image, just like the visual cortex analyzes a small region of the visual field.

To cover the whole image, there is overlap between different regions, while in CNNs there

is also an overlap measure which can be tuned (strides).

Over the years, CNNs have proven to be useful and accurate, reaching state-of-the-

art results in many fields. However, there is one aspect that makes researchers believe

CNNs “work” although they shouldn’t, or that they could work in a better way. The pooling

operation that comes after a convolution, used to reduce the number of parameters in the

network and therefore reducing training time, produces positional and translational

- 20 -

invariance. Pooling acts as a summary of features in a region of the image, meaning some

information is lost. Because all of the features in that region are represented by one value

(that normally is the maximum or the average), changes in that region are not perceived

by the next layer. For the network to recognize a translation or rotation on a particular

image, it is necessary to feed it with many images at different locations and rotations, and

even then, it may not perform successfully, because pooling makes CNNs tolerant to small

changes, but it doesn’t really understand those changes. This is called invariance.

To tackle the problem of invariance, a novel architecture has been built. This is, in

a way, inspired by cortical microcolumns [56]. Microcolumns are sets of neurons

organized in vertical columns. In [57], the authors state that a microcolumn plays an

important role in object recognition through senses and explain the way it is done.

Although it is explained with recognition only through touching, the same explanation can

be applied to vision.

According to the article, a single microcolumn being paired to a sensor (a fingertip,

for example) generates a location signal as the sensor approaches to an object. This

location signal activates the neurons in the microcolumn that can decode the signal to

recognize a feature according to the signal. This represents a prediction to what feature is

to be sensed. When the object is sensed, some sets of neurons are activated. Neurons that

were also activated due to the location signal are propagated to an output layer. These

neurons represent all objects containing the sensed feature at the sensed location. This

action is repeated at multiple locations to discard possible elements and to identify

accurately the correct object. Multiple microcolumns are interconnected to accelerate this

process. In the case of touching an object with fingertips, touching it at different locations

with just one fingertip may take some time, but touching with two or more fingertips

certainly helps recognize the object much faster and accurately. With vision, the process

is similar. To recognize an object, the eye inspects it at different locations. A trained brain

would activate neurons according to the agreement between them on what the object

should be. This is done very quickly because the eye has lots of sensors, meaning the

process is done simultaneously with many microcolumns.

Inspired by the process explained above, Capsule Networks are created. A Capsule

Network (CapsNet) is a type of neural network in which, instead of applying a function to

- 21 -

each neuron in a layer to define its activation state, a routing algorithm is applied to a

whole set of neurons, now referred to as capsules. A capsule’s non-scalar output

represents both the probability of existence of an entity and certain properties of it. As

mentioned before, between two adjacent layers of capsules, a routing algorithm decides

which capsules activate, according to an inner iterative process.

These sets of neurons called capsules are inspired on microcolumns. Each capsule

contains neurons with features that are extracted using convolutions (these features could

come from a lower-level capsule layer also). These neurons evaluate the most possible

output for the next layer’s capsules. The “final” output is decided based on a measure of

agreement between all the predictions. This last step is called routing by agreement and

is an iterative process. The predictions are used to compute the actual output, and the

agreement between this two determines the predictions done by capsules in the next

iteration, which are used to update the output. This is done a few times (typically, 3 to 5).

Capsule Networks have been presented in two papers. In one [42] capsules are

represented by vectors (very similar to a microcolumn), in which every unit is a neuron

and represents a feature value. The routing algorithm is called Dynamic Routing and is

similar to a clustering algorithm using Euclidean distance. Predictions within this cluster

will have greater activation value, meaning their predictions will have more importance.

In the second paper [44] capsules are no longer seen as one entity, but two: a pose

matrix and an activation unit. Also, the routing algorithm is modified with respect to the

first paper and is called EM Routing. It is also similar to a clustering algorithm, but each

cluster is governed by a gaussian distribution.

In the following subsections, capsules and routing are explained according to both

publications.

2.9.1 Capsules and Routing according to “Dynamic Routing Between Capsules”

A capsule in the work of Sabour [42] is a set of neurons represented as a vector. The

individual values are to capture features of an object, while the length of the vector shows

- 22 -

the capsule’s activation probability. For the vector to represent a probability, its length

value must be between 0 and 1, which is why a “squashing” function is introduced:

𝑣𝑗 =

‖𝑠𝑗‖
2

1 + ‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
2

(2.19)

, where 𝑣𝑗 is the “squashed” value of the capsule’s output 𝑠𝑗.

The first layer of capsules comes from the output of an already known convolution.

This output is rearranged into vectors with a previously specified dimension (and shrunk

using the squashing function), which are used to compute the output of a next layer set of

capsules.

The algorithm with which the next layer’s capsules are computed, using the current

layer of capsules’ outputs is called dynamic routing. It takes predictions from the current

level capsules about the output of the next layer capsules and computes the actual output

according to an agreement measure between predictions.

The predictions about the next layer’s capsules are calculated by a multiplication

with a matrix of weights:

 �̂�𝑗|𝑖 = 𝑾𝑖𝑗𝒖𝑖 (2.20)

, where 𝒖𝑖 is the output of capsule i in the current layer, 𝑾𝑖𝑗 is the weights matrix between

capsule i in layer l and capsule j in the layer l+1, and �̂�𝑗|𝑖is the predicted output of capsule

j given the output of capsule i. The output of capsules in layer l+1 𝑠𝑗 corresponds to a

weighted sum over all �̂�𝑗|𝑖 (and shrunk using the squashing function):

 𝑠𝑗 =∑𝑐𝑖𝑗�̂�𝑗|𝑖
𝑖

 (2.21)

- 23 -

𝑣𝑗 =

‖𝑠𝑗‖
2

1 + ‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
2

(2.22)

, where 𝑐𝑖𝑗 are called coupling coefficients, and are calculated by:

𝑐𝑖𝑗 =

exp(𝑏𝑖𝑗)

∑ 𝑒𝑥𝑝𝑘 (𝑏𝑖𝑘)

(2.23)

This coupling coefficients change iteratively because the 𝑏𝑖𝑗 logits are updated through the

following:

 𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖 ∙ 𝑣𝑗 (2.24)

The expression �̂�𝑗|𝑖 ∙ 𝑣𝑗 measures the agreement between the actual output in layer l+1 and

the prediction done by a capsule in layer l.

To summarize, dynamic routing computes the output 𝑣𝑗 of a capsule in layer l+1 by

performing a weighted sum over the predictions of capsules in layer l and “squashing” that

vector. Those weights are refined in each inner iteration according to the agreement

between the previous 𝑣𝑗 and the prediction done by capsules in layer l. The number of

iterations must be defined beforehand, being 3, 4 and 5 the recommended ones. The

coupling coefficients are refined during the computation of 𝑣𝑗 and have no incidence in

the training process (i.e, training doesn’t take into account the tuning of coupling

coefficients), while the weights associated to the prediction calculation vary during

training. Figure 2.4 shows a pseudo-code of the algorithm.

- 24 -

Figure 2.4 Dynamic routing algorithm

After this procedure, the output of capsules in layer l+1 may serve for two main purposes:

input to a NN or for another routing procedure to compute the output for capsules in a

l+2 layer.

2.9.2 Capsules and Routing according to “Matrix Capsules with EM Routing”

A matrix capsule, like seen in figure 2.5 is composed of two entities: a pose matrix

and an activation unit. Like it says, the pose matrix captures the pose of the image in

space. This is done in order for the algorithm to recognize rotated images one image

rotated in different angles and not different objects, thus requiring less data to train and

achieve desirable results. The activation unit, similar to the length of the vector in a vector-

like capsule, represents the probability of existence of a feature.

Figure 2.5 Matrix capsule representation

- 25 -

Similar to the previous work on capsule networks, the first instance capsules appear

is after a convolution. In this case though, not only a rearrangement (reshape operation)

is necessary. To get the pose matrix, another convolution is done to the values obtained

through previous convolutions, with a ReLU activation function. The result is rearranged

to a matrix shape. To get the activation value, another parallel convolution is performed

to get a single value output.

To get the votes (predictions done by the capsules in layer l about capsules in layer

l+1), the capsules are multiplied by a weights matrix which is modified during training

process. These votes are used to compute the output for capsules on layer l+1, using a

novel algorithm called EM Routing, where EM stands for Expectation-Maximization.

This algorithm assigns capsules in layer l to clusters. Each cluster represents a capsule in

layer l+1, and follows a Gaussian distribution. The mean of each gaussian distribution 𝜇 is

the output of each capsule in layer l+1.

The algorithm alternates between the E-step (Expectation) and the M-step

(Maximization). During the E-step, assignment probabilities 𝑹𝑖𝑗 are calculated, which are

the probabilities that capsule i in layer l is assigned to cluster (or capsule) j in layer l+1.

This is done through the following equations:

𝒑𝑗 =

1

√∏ 2𝜋(𝜎𝑗
ℎ)

2𝐻
ℎ

exp (−∑
(𝑉𝑖𝑗

ℎ − 𝝁𝑗
ℎ)

2

2(𝜎𝑗
ℎ)

2

𝐻

ℎ

)
(2.25)

𝑹𝑖𝑗 =

𝒂𝑗𝒑𝑗
∑ 𝒂𝑘𝒑𝑘𝑘

(2.26)

In the expression for 𝒑𝑗, 𝑉𝑖𝑗
ℎ is the h-th dimension of the vote from capsule i to capsule j,

𝝁𝑗
ℎ and 𝜎𝑗

ℎ are the h-th dimension for the mean and variance of capsule j. For 𝑹𝑖𝑗, 𝒂𝑗 is the

activation value for capsule j (the sum appearing in the denominator uses all capsules in

layer l+1). This value is calculated in the M-step. In this step, the clusters’

characterizations are modified by updating 𝝁𝑗
ℎ and 𝜎𝑗

ℎ. Also, 𝑹𝑖𝑗 is updated:

- 26 -

 𝑹𝑖𝑗 = 𝑹𝑖𝑗 ∗ 𝒂𝑖 (2.27)

𝝁𝑗
ℎ =

∑ 𝑹𝑖𝑗 ∗ 𝑉𝑖𝑗
ℎ

𝑖

∑ 𝑹𝑖𝑗𝑖

(2.28)

(𝜎𝑗

ℎ)
2
=
∑ 𝑹𝑖𝑗 ∗ (𝑉𝑖𝑗

ℎ − 𝝁𝑗
ℎ)

2
𝑖

∑ 𝑹𝑖𝑗𝑖

(2.29)

The clusters are redefined in order to minimize a cost function that takes into account the

probabilities that each cluster generates the values shown by the capsules in layer l. That

cost function is used to update the activation value for each capsule in layer l+1:

 𝑐𝑜𝑠𝑡ℎ = (𝛽𝑢 + log(𝜎ℎ
ℎ))∑𝑹𝑖𝑗

𝑖

 (2.30)

𝒂𝑗 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝜆 (𝛽𝑎 −∑𝑐𝑜𝑠𝑡ℎ

ℎ

))

(2.31)

, where the values 𝛽𝑢, 𝛽𝑎, are learned to minimize the cost function, and 𝜆 decreases with

each iteration according to a fixed rate.

 To summarize, EM Routing is used to calculate the capsules’ output 𝝁𝑗 and its’

activation values 𝒂𝑗. The E-step is used to calculate (or update) the assignment

probabilities, which are then used to calculate/update the mean and variance for each

capsule in layer l+1 during the M-step. With this information, the activations are

calculated. Figure 2.6 shows the procedure:

- 27 -

Figure 2.6 EM Routing algorithm

2.10 Performance Metrics

To evaluate the models’ performance, proper metrics must be defined. Since the

tasks are to locate and quantify damage, performance must be measured in terms of how

the different models quantify damage and locate it.

To measure the models’ capacity to quantify damage, Mean Sizing Error (MSE) is

used:

𝑀𝑆𝐸 =

1

𝑁𝑂
∑|𝑦𝑖 − 𝑜𝑖|

(2.32)

, where 𝑁𝑂 is the number of output nodes, 𝑦𝑖 is the estimated output for node 𝑖, and 𝑜𝑖 is

the real output for node 𝑖. For localization performance measurement, Damage Missing

Error (DME) and False Alarm Error (FAE) measure the fraction of damaged elements

unnoticed and undamaged elements tagged as damaged, respectively. DME is given by:

- 28 -

𝐷𝑀𝐸 =

1

𝑁𝑇
∑𝜖𝑖

𝑙
(2.33)

, where 𝑁𝑇 is the number of true damaged elements and 𝜖𝑖
𝑙 is defined by:

𝜖𝑖
𝑙 = {

1, 𝑦𝑖 ≤ 𝛼𝑐, 𝑜𝑖 ≥ 0
0, ~

(2.34)

To consider a damaged element as detected, 𝑦𝑖 must be greater than a limit value 𝛼𝑐,

which is considered as 𝛼𝑐 = 𝑀𝑆𝐸. FAE is given by:

𝐹𝐴𝐸 =

1

𝑁𝐹
∑𝜖𝑖

𝑢
(2.35)

, where 𝑁𝐹 is the number of predicted damage locations and 𝜖𝑖
𝑢 is given by:

𝜖𝑖
𝑢 = {

1, 𝑦𝑖 ≥ 𝛼𝑐, 𝑜𝑖 = 0
0, ~

(2.36)

- 29 -

3. Working Methodology

 In order to achieve the objectives stated in the Introduction chapter, a working

methodology must be followed. This chapter presents that methodology.

To understand the problem and techniques to solve it, an extensive literature

review is necessary, beginning with machine learning topics, neural networks,

convolutional neural networks, and finally capsule networks.

To properly train the models, the datasets must be available. Transmissibility

images are generated through Finite Element (FE) models that are calibrated with

experimental images. In this way, the generated images represent the experimental setups

and are seen as an extension of possible cases that, due to time and costs, cannot be

generated.

 After both datasets are defined, an adequate architecture is proposed. This is done

based on prior knowledge of the problem, the datasets, and CapsNets.

With the proposed architecture defined, the most suitable hyperparameters for the

architecture are found using prior knowledge and inspection. The obtained results are

compared with CNN, trying to keep the architecture close to the one defined for CapsNets,

for a proper comparison.

The working methodology is summarized in the following figure:

Figure 3.1 Working methodology

- 30 -

4. Proposed Capsule Networks for Damage

Localization and Quantification

As exposed in the Introduction chapter, the objective of this thesis is to develop a

framework that is suitable not only for structural damage localization, but also

quantification. To do this, it is necessary to adapt Capsule Networks for classification and

regression.

Vanilla Capsule Networks have been used only for classification. The architecture

has two main parts: convolutions and routing. (in [42], a multilayer perceptron is added

for reconstruction, with the purpose of avoiding overfitting). After a determined number

of convolutions, capsules go through a routing process to calculate next level capsules,

both their properties and activations. The capsules in the last level represent the network’s

output, which are classes. The capsule with the highest activation value represents the

predicted class (multiple classes could be accepted also. In that case, the loss function

should be modified). This works for structural damage localization, because each capsule

would represent an element within the structure. If the capsule’s activation value is near

to 1, the element presents damage. The method described before doesn’t work for

regression purposes, because the capsules’ activations represent the probability of

existence of a property, in this case, structural damage. There is no output value that could

represent the amount of damage each value. To fix this, the proposed Capsule Networks

includes a MLP that uses the last level capsules’ output as input. The MLP’s output

describes the amount of damage in every element in the structure. The network is used for

supervised learning tasks, therefore the loss function to be optimized during learning

compares the output of the MLP after the capsules with the labels.

In the figure below, the proposed model for damage localization and quantification

is shown. The input image is submitted to two convolution processes. Then, primary

capsules are obtained. The method for this depends on the type of capsules (matrix or

vector). Then, through a routing process (which can be Dynamic routing or EM routing),

- 31 -

the secondary capsules are obtained. The number of secondary capsules depends on what

they are meant to represent. Finally, information from the secondary capsules is used as

input for a MLP, which calculates the amount of damage per element in the structure.

Figure 4.1 Proposed Capsule Networks model

In this thesis, both routing algorithms are studied, each of them through one

corresponding architecture. Since there are two case studies, there is a total of four

models.

For CapsNets with dynamic routing, the following architecture is proposed:

Figure 4.2 Capsule Networks with Dynamic routing, proposed architecture

The input image is convoluted using 32 filters, thus generating 32 feature maps. To

capture all of the transmissibility functions’ information in one filter, each of them has a

size of 10x1 pixels, and a stride of 1. After the first convolution, another convolution is

performed, this time generating 64 feature maps. The filters’ size is 1x5, with a stride of 1.

- 32 -

After both convolutions, a ReLU activation function is applied, to inject nonlinearity to

the model.

From the 64 feature maps obtained by the last convolution to the primary capsules,

a reshape operation is done, which turns the 1x91x64 neurons with a scalar output each

into 1x91x8 8-dimensional vectors. Squashing function is applied to all capsules to ensure

their lengths represent activation probabilities, and routing is done to compute the

secondary capsules’ values.

The number of secondary capsules depends on the model. For model 1, there are

only two types of images: no damaged elements and one damage element. Therefore, there

are only two secondary capsules. Using the same logic, model 2 has three secondary

capsules, and model 3 has four. The objective is for capsules to detect damage.

With the secondary capsules’ output, the one with larger length is fed to a neural

network with two hidden layers, the first with 1024 hidden units and the second one with

512. The final output is a N-dimensional vector, with N being the number of nodes in the

system (7 or 18). The cost function to be minimized during training is:

𝐶 =

1

𝑁
∑(𝑦𝑖 − 𝑜𝑖)

2
(3.1)

, where 𝑦𝑖 is the estimated output, and 𝑜𝑖 is the real one.

In the case of EM routing, the architecture used is the one shown in figure 4.3. The

first convolution is equal to the one used for dynamic routing. The second convolution is

done with 32 1x6 filters, with a stride of 3.

To get the activations and pose matrices for all primary capsules in the next layer,

two convolutions are performed simultaneously. The first one doesn’t have an activation

function, so it is only a linear combination of the Conv2 layer. It outputs a 4x4 matrix for

each capsule. The second one outputs the activation logits for each capsule, and to achieve

- 33 -

this, a sigmoid activation function is set after the convolution. In this way, the outputs are

set to be between 0 and 1.

Figure 4.3 Capsule Networks with EM routing, proposed architecture

At first, no dropout is used in any layer of the network, neither convolutions nor

fully connected layers. A second model is trained using dropout in the first hidden layer

of the neural network for regression, with 𝑝 = 0,5. This is done only with the dynamic

routing type architecture.

- 34 -

5. Results

5.1 Case Study 1: Spring-mass system

The first case study corresponds to a spring-mass system, which consists of eight

aluminum disk masses separated by seven springs. The excitation force comes from a

shaker connected to the first mass. One accelerometer is connected to each mass. These

accelerometers measure horizontal acceleration data and are used to calculate

transmissibility functions. Data is acquired with frequency resolution of 0.125 [Hz], in the

range of 10-110 [Hz]. Figure 5.1 shows a representation of the system.

 The system is adequate for this kind of analysis because damage can easily (and

accurately) be represented by a spring having less stiffness than the others. Damage

quantification will correspond to the stiffness reduction rate, and the localization will be

the position of the “damaged” element, being one element for each spring. For example, a

stiffness reduction of 10% in the third spring means the third element is damaged with

𝑦3 = 0.1.

After training, models are tested with one experimental image, in which the 5th

element suffers a stiffness reduction of 55% in its spring.

- 35 -

Figure 5.1 8 DOF spring-mass system

For this case study, four types of images are generated, according to the number of

damaged elements.

Table 5.1 Types of training images

Damaged Elements Number of Images
0 10,000
1 30,000
2 30,000
3 30,000

With these images, three models are proposed:

Table 5.2 Model configurations

Model Dataset Number of Images
Model 1 0 and 1 damaged elements 40,000
Model 2 0, 1, and 2 damaged elements 70,000
Model 3 0, 1, 2, and 3 damaged elements 100,000

- 36 -

5.1.1 Training Results, Dynamic Routing

For the first case study, performance metrics and training time are shown in table 5.3:

Table 5.3 Training performance metrics for capsule networks models with dynamic routing, first case study

Model MSE DME FAE Time per
epoch [s]

1_DR 0,045 % 0,37 % 22,8 % 22,6
2_DR 0,091 % 0,94 % 16,2 % 49,0
3_DR 0,209 % 1,58 % 9,77 % 101,4

5.1.2 Experimental Results: Dynamic Routing

Model 1

Figure 5.2 Experimental test with model 1, dynamic routing

Model 2:

- 37 -

Figure 5.3 Experimental test with model 2, dynamic routing

Model 3:

Figure 5.4 Experimental test with model 3, dynamic routing

5.1.3 Training Results: EM Routing

- 38 -

Table 5.4 Training performance metrics for capsule networks models with EM routing, first case study

Model MSE DME FAE Time per
epoch [s]

1_EM 0,067 % 0,33 % 48,92 % 46,1
2_EM 0,17 % 1,36 % 18,83 % 81,7
3_EM 0,25 % 1,46 % 16,45 % 116,8

5.1.4 Experimental Results: EM Routing

Model 1:

Figure 5.5 Experimental test with model 1, EM routing

Model 2:

- 39 -

Figure 5.6 Experimental test with model 2, EM routing

Model 3:

Figure 5.7 Experimental test with model 3, EM routing

- 40 -

5.1.5 Comparison Between Models

In figures 5.8 to 5.10, a comparison between DR, EM and CNN is shown.

Model 1:

Figure 5.8 Comparison between architectures, model 1

Model 2

- 41 -

Figure 5.9 Comparison between architectures, model 2

Model 3:

Figure 5.10 Comparison between architectures, model 3

5.2 Case Study 2: Structural Beam

- 42 -

The second case is a beam with damaged elements. Damage is generated by saw

cuts at different locations of the beam. Just like the first case, a shaker is connected to one

end of the beam to generate the excitation force, and the structure is suspended with two

springs holding it. These springs have low stiffness to simulate a “free-free” scenario.

Eleven accelerometers are connected to the beam to measure vibrations and calculate

transmissibilities. Data is acquired with frequency resolution of 1 [Hz], in the range of 1-

2000 [Hz]. To build the FE model, unidimensional beam elements are used, with two

nodes per element and two degrees of freedom per node. The beam is divided into 20

elements of 5 [cm] each. Figures 5.11, 5.12 and 5.13 show the setup, a diagram of the

beam’s elements, and cut examples for the beam.

Figure 5.11 Beam setup

- 43 -

Figure 5.12 Beam element numbering

Figure 5.13 Beam cut examples

After training, models are tested with four experimental cases, which are described in

table 5.5:

Table 5.5 Damage scenarios for beam experimental cases

Damage
Scenario

Number
of cuts

Distance from the
left side [mm]

Damaged
Element

Cut depth
[mm]

1 1 313 7 7
2 1 637 13 9

3 2
361 8 8
812 17 15

4 3
363 8 13
574 12 8
696 14-15 6

While in the first case study, a stiffness reduction of a spring implies a damage in

the same amount of the reduction, in this case the saw cuts inflict stiffness reduction and

therefore damage, but this damage’s value is unknown. For example, a cut depth of 15

- 44 -

[mm] (of a total depth of 25 [mm]) doesn’t necessarily mean the element suffers a 60%

stiffness reduction.

For this case study, the configuration in terms of images and models is the same

as the one used for the first case study (see tables 5.1 and 5.2)

5.2.1 Training Results, Dynamic Routing

For the structural beam case, performance metrics are presented in table 5.6:

Table 5.6 Training performance metrics for capsule networks models with dynamic routing, second case study

Model MSE DME FAE Time per
epoch [s]

1_DR 0,038% 1,17% 65,30% 22,3
2_DR 0,415% 5,33% 55,28% 30,1
3_DR 0,783% 6,17% 44,70% 132,2

In figures 5.14, 5.15, and 5.16, DME and FAE results are shown, for each of the 3 trained

models.

- 45 -

Figure 5.14 DME and FAE versus damage level for structural damage using model 1

Figure 5.15 DME and FAE versus damage level for structural damage using model 2

- 46 -

Figure 5.16 DME and FAE versus damage level for structural damage using model 3

5.2.2 Experimental Results: Dynamic Routing

Trained models are tested on experimental images. The results are shown in the following

images:

Model 1:

- 47 -

Figure 5.17 Experimental test 1 with model 1, dynamic routing

Figure 5.18 Experimental test 2 with model 1, dynamic routing

- 48 -

Figure 5.19 Experimental test 3 with model 1, dynamic routing

Figure 5.20 Experimental test 4 with model 1, dynamic routing

Model 2:

- 49 -

Figure 5.21 Experimental test 1 with model 2, dynamic routing

Figure 5.22 Experimental test 2 with model 2, dynamic routing

- 50 -

Figure 5.23 Experimental test 3 with model 2, dynamic routing

Figure 5.24Experimental test 4 with model 2, dynamic routing

Model 3:

- 51 -

Figure 5.25 Experimental test 1 with model 3, dynamic routing

Figure 5.26 Experimental test 2 with model 3, dynamic routing

- 52 -

Figure 5.27 Experimental test 3 with model 3, dynamic routing

Figure 5.28 Experimental test 4 with model 3, dynamic routing

5.2.3 Training Results: EM Routing

- 53 -

Table 5.7 Training performance metrics for capsule networks models with EM routing, second case study

Model MSE DME FAE Time per
epoch [s]

1_EM 0.132% 1.59% 77.43% 153.8
2_EM 0.464% 4.36% 52.08% 260.1
3_EM 0.948% 6.14% 45.24% 375.9

In figures 5.29, 5.30 and 5.31, DME and FAE results are shown, for each of the 3 trained

models.

Figure 5.29 DME and FAE versus damage level for structural damage using model 1

- 54 -

Figure 5.30 DME and FAE versus damage level for structural damage using model 2

Figure 5.31 DME and FAE versus damage level for structural damage using model 3

- 55 -

5.2.4 Experimental Results: EM Routing

Trained models using CapsNets with EM routing are tested with experimental cases.

Results are shown in the figures below.

Model 1:

Figure 5.32 Experimental test 1 with model 1, EM routing

- 56 -

Figure 5.33 Experimental test 2 with model 1, EM routing

Figure 5.34 Experimental test 3 with model 1, EM routing

- 57 -

Figure 5.35 Experimental test 4 with model 1, EM routing

Model 2:

Figure 5.36 Experimental test 1 with model 2, EM routing

- 58 -

Figure 5.37 Experimental test 2 with model 2, EM routing

Figure 5.38 Experimental test 3 with model 2, EM routing

- 59 -

Figure 5.39 Experimental test 4 with model 2, EM routing

Model 3:

Figure 5.40 Experimental test 1 with model 3, EM routing

- 60 -

Figure 5.41 Experimental test 2 with model 3, EM routing

Figure 5.42 Experimental test 3 with model 3, EM routing

- 61 -

Figure 5.43 Experimental test 4 with model 3, EM routing

5.2.5 Comparison Between Models

In figures 5.44 to 5.55, a comparison between DR, EM and CNN is shown.

Model 1:

- 62 -

Figure 5.44 Comparison between models, test 1, model 1

Figure 5.45 Comparison between models, test 2, model 1

- 63 -

Figure 5.46 Comparison between models, test 3, model 1

Figure 5.47 Comparison between models, test 4, model 1

Model 2:

- 64 -

Figure 5.48 Comparison between models, test 1, model 2

Figure 5.49 Comparison between models, test 2, model 2

- 65 -

Figure 5.50 Comparison between models, test 3, model 2

Figure 5.51 Comparison between models, test 4, model 2

- 66 -

Model 3:

Figure 5.52 Comparison between models, test 1, model 3

Figure 5.53 Comparison between models, test 2, model 3

- 67 -

Figure 5.54 Comparison between models, test 3, model 3

Figure 5.55 Comparison between models, test 4, model 3

5.2.6 Influence of dropout, dynamic routing

- 68 -

With the purpose of achieving better generalization between the training sets (which are

generated through a FE model) and the experimental cases, dropout with 𝑝 = 0.5 is added

in the first hidden layer, for dynamic routing models only. Training results are shown in

table 5.8:

Table 5.8 Comparison between models with and without dropout, training phase

Model Dropout MSE [%] DME [%] FAE [%]
Time per
epoch [s]

1
No 0.038 1.17 65.30 22.3
Yes 0.138 3.79 51.67 22.5

2
No 0.415 5.33 55.20 30.1
Yes 0.610 9.96 47.96 48.11

3
No 0.783 6.17 44.70 132.2
Yes 0.949 10.53 46.99 137.4

Each model is tested using the experimental cases. The results are shown in the following

figures:

Model 1:

- 69 -

Figure 5.56 Experimental test 1 with model 1, dynamic routing with dropout

Figure 5.57 Experimental test 2 with model 1, dynamic routing with dropout

- 70 -

Figure 5.58 Experimental test 3 with model 1, dynamic routing with dropout

Figure 5.59 Experimental test 4 with model 1, dynamic routing with dropout

Model 2:

- 71 -

Figure 5.60 Experimental test 1 with model 2, dynamic routing with dropout

Figure 5.61 Experimental test 2 with model 2, dynamic routing with dropout

- 72 -

Figure 5.62Experimental test 3 with model 2 , dynamic routing with dropout

Figure 5.63 Experimental test 4 with model 2, dynamic routing with dropout

Model 3:

- 73 -

Figure 5.64 Experimental test 1 with model 3, dynamic routing with dropout

Figure 5.65Experimental test 2 with model 3, dynamic routing with dropout

- 74 -

Figure 5.66Experimental test 3 with model 3, dynamic routing with dropout

Figure 5.67 Experimental test 4 with model 3, dynamic routing with dropout

Every model is compared with the better result previously achieved, which is dynamic

routing without dropout.

Model 1:

- 75 -

Figure 5.68 Effects of dropout on test 1, model 1

Figure 5.69 Effects of dropout on test 2, model 1

- 76 -

Figure 5.70 Effects of dropout on test 3, model 1

Figure 5.71 Effects of dropout on test 4, model 1

Model 2:

- 77 -

Figure 5.72 Effects of dropout on test 1, model 2

Figure 5.73 Effects of dropout on test 2, model 2

- 78 -

Figure 5.74 Effects of dropout on test 3, model 2

Figure 5.75 Effects of dropout on test 4, model 2

Model 3:

- 79 -

Figure 5.76 Effects of dropout on test 1, model 3

Figure 5.77 Effects of dropout on test 2, model 3

- 80 -

Figure 5.78 Effects of dropout on test 3, model 3

Figure 5.79 Effects of dropout on test 4, model 3

- 81 -

6. Discussion and Analysis

In the previous chapter, results for both case studies are shown. For each case,

CapsNets type architectures are tested with two routing algorithms: dynamic routing and

EM routing. These two are compared with the (next) best result, which is achieved using

a CNN based architecture. In this chapter, results are discussed and analyzed by cases.

6.1 Case Study 1: Spring-mass system

During training, tables 5.3 and 5.4 show that capsule networks achieve great

training results with both routing alternatives. Particularly, it can be seen that the MSE

metric reaches the top value of 0.25%, which is promising. This is explained by the fact

that the cost function (shown in equation 3.1) and the MSE metric are very similar. In the

first, the squared difference between each prediction and the real output is used, while in

the latter, the absolute value of the same difference is used.

DME and FAE metrics are strongly related to the capability of the model to locate

damaged elements. DME is particularly important. It measures the false negatives given

by the model. It is highly expected that every model presents a small number of false

negatives, for a false negative can lead to serious consequences. In this system, each of the

6 models show DME values under 1.6%. This shows that the model considers localization

of damage during the optimization stage, even though the cost function’s nature is

primarily related to quantification. The minimum value the cost function can achieve is

when not only the quantity of damage in the system is well identified, but also when it is

located in the correct spots, because it evaluates the difference between the real and

predicted outputs in every node.

On the other hand, the FAE metric measures the amount of false positives, and in

the 6 models, the maximum value reaches 49%. As models get more complex (in terms of

- 82 -

the kind of images used for training), FAE values decrease. This is explained by the fact

that in those models there are images with more damaged elements, in which case it is

less likely for them to give a false negative. A data point with 3 damaged elements can only

have 4 false positives, whereas one with 1 damaged element can have 6 false positives.

Comparing capsule networks with dynamic routing and with EM routing, tables 5.3

and 5.4 show that training results are very similar in terms of performance metrics, except

for FAE. Capsule networks with dynamic routing show, for all models, less false positives

than those with EM routing, with a mean value of 36% less. Training time also establishes

a difference. Models with dynamic routing take much less time in training that those with

EM routing.

When analyzing experimental results, it can be noticed that capsule networks

models with the two kinds of routing successfully identify and quantify the 5th damaged

element (see figures 5.2 to 5.7), however, as models are trained with more kinds of images,

more relevant false positive values appear. It seems that the FAE value increases, although

training results show the opposite. This is explained by the fact that false positive values

increase in their magnitude, not in their quantity. Is not that there are more false positive

values, it is that those fewer values are more perceptible.

When comparing capsule networks-based models with CNN, it can be noted that

all three models achieve similar results. The three are able to quantify correctly (within a

range of ±7%) the damaged element, with no false negatives. False positive values appear

mainly adjacent to the damaged element. Even though the system is not a continuous one,

each spring is connected to two masses, this meaning that a stiffness reduction in one

spring will affect the vibrations of two masses. The model may interpret this as a stiffness

reduction in the adjacent element, showing then a false positive. Other false positive

values that are not near the area correspond to a defect of the model (although every kind

of false positive is a deficiency of the model, the latter kind is associated to a deficiency

only in the algorithm, not explained by physical reasons). CNN based models present

more false negatives than the capsule network based ones. In models 2 and 3 (figures 5.9

and 5.10) the total percentages of false negatives in CNN add up to 16% and 21%

respectively, while in capsule networks with dynamic routing they add 7% and 8%, and

using EM routing, 7% and 7%. Apart from summing larger quantities, false positives

- 83 -

coming from CNN based models are more distributed along the spring-mass system than

those using capsule networks. As mentioned above, this is not a good result and shows a

poorer performance from CNN. For example, in figure 5.10, a 4% false positive is shown

in the first element of the system. The two capsule network based models don’t show any

amount of damage in that element.

In terms of generalization, neither CNN nor capsule networks based models suffer

from overfitting, or at least not in a relevant way. All models are capable of identifying the

correct damaged element and to measure it accurately. All models present false negative

values, but since they are mainly in the range of 0-10% damage, they are not too relevant.

In this way, experimental results match with training results.

Although the analyzed system exists merely for research purposes, this outcome

shows that localization and quantification of structural damage can be done through

capsule networks and aim for promising results.

6.2 Case Study 2: Beam

In this case, tables 5.6 and 5.7 show promising results for all models, especially in

case 1. MSE values increase as models get more complex, regardless the routing algorithm.

In the case of dynamic routing, the minimum MSE reaches a value of 0,038% and the

maximum, a value of 0,783%. In the case of EM routing, the minimum and maximum are

0,132% and 0,948%, respectively. This occurs because, as more kinds of images are fed

to an algorithm, the total damage in an individual image has a high probability of

increasing, and there are more damaged elements. The model must hold more

information from the images in its weights and biases. Thus, the task of recognizing

exactly the same amount of damage and assigning it to the correct positions in the beam

is harder than in, for example, model 1. This also explains the increase in DME. As with

the first case study, FAE values decrease because, as images contain more damaged

elements, there are less possibilities for false alarms.

In figures 5.14, 5.15, 5.16, 5.29, 5.30 and 5.31, FAE and DME values are presented

in detail, according to their damage percentage. This is important considering that it is

- 84 -

not the same to have, for example, a 70% damage false negative than a 3% one. The same

happens for false alarms. Results show that, for models 1, false alarms and false negatives

only accumulate in the range of 0-10%. For models 2 and 3, those values accumulate in

the 0-10%, 10-20%, and 20-30%. This means that, for any model, training results suggest

that any element with more than a 30% damage is properly identified (meaning that it is

not a false positive), and that any element with more than a 30% damage will certainly be

identified as such (the proper amount of damage depends on the MSE metric). It is also

noted that false negatives are far more scarce than false positives, without the need of

punishing a false negative more than a false positive in the cost function. This indicates

that the approach is conservative, which is a concept to aim at in structural damage

assessment. Perfect precision is something no model can achieve. Thus, it is better to

overestimate damage than to underestimate it.

Comparing both routing algorithms, it can be observed that dynamic routing clearly

outperforms EM routing in model 1. All of the three metrics present better results than

those with EM routing. That difference is not so clear in models 2 and 3. In model 2,

dynamic routing is better at quantifying damage (i.e better MSE), but less accurately when

localizing damage (i.e, lower DME and FAE) than EM routing. In model 3, both routing

algorithms present virtually the same results. This is explained by the types of

architectures used for each routing algorithm. The architecture used along with the

dynamic routing algorithm has 2, 3 or 4 secondary capsules, depending on the model.

Those capsules are used to identify the kind of image, in terms of damaged elements.

Model 1 has 2 secondary capsules, for there are only two kinds of images (undamaged

beam and 1 damaged element). The classification task is easier than in the other models,

because there are only two options. From a routing point of view, results show that the

two clusters formed by the routing algorithm are very separated, unlike those in the other

models. The algorithm can isolate undamaged images with relative ease, however,

segregation between damaged images results a harder task for the algorithms. In the case

of capsule networks using EM routing, there are 18 secondary capsules, one for each

element in the beam. The activation of each capsule indicates the probability of existence

of a damaged element in the beam. This means the secondary capsules’ layer comprises

the task of locating damage, and not only identifying the number of damaged elements

like capsules in dynamic routing. The number of secondary capsules doesn’t change from

- 85 -

model to model, so the architecture is the same for all. This is why results, although they

change from model to model, they don’t vary as much as with dynamic routing models.

All six models are evaluated on the experimental cases. Each of the 4 cases is tested

in each of the 6 models. For models 1, experimental cases 1 and 2 present the best results.

This is an expected result, since models 1 are trained to detect up to 1 damaged element.

Cases 3 and 4 show that the algorithms do not present great capability of generalization.

This is also an awaited result, mainly because models do not see this kind of images during

training. In the case of dynamic routing, model 1 is intrinsically built to recognize only 0

or 1 damaged elements due to its secondary capsules. This affects its facility at

generalizing.

In figure 5.17, it is shown that, even though the model can correctly identify the

damaged element, it clearly doesn’t quantify it correctly (see table 5.5) and displays an

important false negative at the right end of the beam. That particular false negative is

presented several times in all models.

Testing shows different results than those obtained by training process. According

to figures 5.14, 5.15, 5.16, 5.29, 5.30 and 5.31, false negative values should be much smaller

(in terms of damage size) than they are. Taking as an example figure 5.17 again, that false

negative at the right end of the beam is incoherent with the information conveyed by figure

5.14. There should be no false positives with damage size over 10%. This discrepancy is far

more substantial in those results achieved by EM routing than those with dynamic

routing. Figures 5.37 and 5.38 show false positives with damage size over the 40%, which

again, is inconsistent with the fact that, according to figure 5.30, there should be no false

positives with that damage size.

Although experimental results yield a count for false positives that could be

reduced, from a safety point of view, it is better to have false positives than false negatives.

In this sense, all models perform almost impeccably. Figure 5.19 shows a false negative

value, but it is explained by the fact that the case presents two damaged elements, whereas

that particular model is trained to recognize beams with up to one damaged element. This

also occurs at figures 5.20, 5.34, and 5.35. All four images correspond to cases 3 and 4,

and in all of them, the element that isn’t recognized is the one with the least damage

percentage. When the model is trained to recognize (for example) up to one damaged

- 86 -

element, the maximum amount of damaged distributed along the beam is 100%. In the

case of figures 5.19 and 5.34, since there is already a damaged element with a considerable

size (cut depth: 15/25 [mm]), the model “concludes” that there is no other damaged

element because the limit amount of damage is to be reached. Something similar occurs

with figures 5.20 and 5.35, where the maximum total damage is 200%. The rest of the

cases present no false negative, neither using dynamic routing nor EM routing.

All experimental results are compared to the (previously) best result, which is

obtained using CNN. From figures 5.44 to 5.55, the first and main conclusion is that

capsule networks with dynamic routing present better results that CNN and capsules with

EM routing. With exception of figure 5.44, where it presents the worst result (by wrongly

assigning the damage amount to the end of the beam instead of the 7th element), all the

experimental cases are best represented by DR. Most accurate cases are shown by figures

5.45, 5.50 and 5.55, where DR correctly measures damaged elements and exhibits the least

amount of false positives. Furthermore, most of these values are located next to the actual

damaged elements. This is related to the fact that, unlike the spring-mass system, a beam

is a continuous structure where elements are not clearly delimited, and divisions are set

arbitrarily.

As established before, DR shows acceptable performance, surpassing CNN

obtained results for training and test sets. On the other hand, EM routing has the problem

of computing too many false positives. Examples of this are figures 5.36 and 5.37, where

false positives are considerable and have an important size. For diagnostics purposes,

these values can generate confusion in analysis, acting as distractors and thus making the

model inaccurate and unreliable. This occurs because models using EM routing are too

complex and this affects generalization ability. The fact of using 18 secondary capsules,

one for each element in the beam, builds a complexity for the models that proves to be

unnecessary. Since the model is more complex than the dataset, its capacity is used to

overanalyze the dataset and then adjust itself in a way that loses generalization. Even

though the same models are used with the spring-mass system, in that case overfitting

doesn’t occur because of two main reasons. The first one is mentioned before and relates

to the fact that each element of the spring-mass system is independent, and the system

itself is a discrete one, unlike the beam which is continuous. The second is that only 7

capsules are used and not 18, meaning the model is less complex.

- 87 -

To detect overfitting, a data subset is used only to compute the loss function (or

accuracy) value. This subset is not used for training purposes. This validation loss function

is compared to the training set loss function to detect overfitting. In this case, no signs of

overfitting where detected. There is no overfitting between training and validation sets,

but there are clear signs of overfitting between the training set and the experimental cases.

This occurs because, unlike experimental cases, training and validation sets are built from

a FE model and are presented as TF images. Thus, overfitting signs uncover the capacity

of the algorithms to recognize the mathematical model behind the generation of images.

They focus on describing the underlying equations. These equations achieve only a

simplified representation of the real phenomenon, which is why experimental cases show

poorer results than expected.

To tackle the aforementioned issue, dropout technique was used in the last layer of

the fully connected neural network. Even though overfitting is more relevant in EM

routing than in dynamic routing, dropout was applied only on the results obtained

through the latter, because they were the best results and had greater potential to achieve

even better results. By using dropout, the network lowers its results but has a greater

generalization capability. Table 5.8 shows a comparison between results obtained with

dropout and without it. It is clearly noted that training results lower their quality,

particularly with MSE and DME. However, these results are very similar to what it is

shown in the experimental results from figures 5.56 to 5.67. Model 1 achieves to correctly

locate damage for images with one damaged element and shows no false alarms, which is

very important because it shows the model can isolate damaged elements in a very reliable

way. For cases 3 and 4, the model cannot recognize the element with the less amount of

damage. However, figure 5.71 shows that the model with dropout can assign a greater

amount of damage to the image than without dropout, and even though it presents a larger

false positive in the 7th element, it corresponds to the fact that the 8th element is greatly

damaged (cut depth: 13 [cm]).

For model 2, experimental results also improve with the use of dropout. The model

still performs well on cases 1 and 2, showing only small percentage false positives. On case

3 the model is capable of recognizing the element with the small amount of damage as well

as the one with great amount, showing only a 6% of false positive value located in the 18th

element, next to the truly damaged element. On case 4, despite the model being trained

- 88 -

with up to 2 damaged elements images (thus allowing some mistakes), the algorithm

detects correctly the three damaged elements, with the drawback of showing an important

number of false negatives. This shows that the algorithms achieve a better capacity for

generalization when using dropout, and from two points of view. The first one refers to

the capacity of the model to learn generalizable features from the FEM images to the

experimental cases. The second one (which is more complex and difficult to achieve) refers

to the capacity of the models to locate and quantify more damaged elements than those

with which the algorithm learned the task, per beam.

For model 3, in general terms the algorithm correctly assesses damage, better than

without using dropout. Particularly, figures 5.76 and 5.77 show that the use of dropout

affects directly on the quantity of false positive values. Figure 5.78 shows that the use of

dropout takes away the false positive from element 11 but misallocates the less damaged

element. Instead of allocating it to the 8th element, it is allocated to the 7th. For damage

assessment purposes though, this isn’t a highly relevant mistake, because the element is

displaced only one element, but its quantity is correctly assigned. Finally, figure 5.79

shows that the model recognizes there are 3 damaged elements, it locates them correctly,

and assigns the correct amount of damage to each damaged element. Also, the most

relevant false positive value has a damage of 2% and is located next to the element with

the most damage percentage. Comparing with the same model but without using dropout,

there is a big difference in terms of false positives. A 25% false positive, located at element

7, and a 16% one located at element 11 act as big distractors in terms of assessment, which

are not present when using dropout.

- 89 -

7. Conclusion and Comments

7.1 Conclusions

In the present work, a Capsule Network based model was developed, with the

objective of locating and quantifying damage in structural elements. The idea is to study

the application of Capsule Networks to this task and to evaluate and compare its

performance with the state-of-the-art. Two types of routing algorithms within Capsule

Networks are studied: Dynamic Routing (DR) and EM Routing (EMR). Both architectures

are analyzed with two case studies: a spring-mass system and an experimental beam. In

both cases, models are trained using images containing 10 transmissibility functions, each

image representing various damage scenarios. Images are created using a FE model tuned

to represent the experimental cases. Trained models are validated using experimental

cases and compared with CNNs, which are the state-of-the-art in that kind of problems.

Results show that during training, Capsule Networks outperform CNN, with no

signs of overfitting. During testing there were difference between the case studies. In the

first one (spring-mass system), training results match with experimental results, there are

no false negative values and few false positives. In the second case study, training results

differ from experimental results, leading to the conclusion that overfitting is occurring,

although there were no signs when observing the validation set. For this reason, dropout

is applied to the network with DR, obtaining worse results during training but better

generalization capacity, which is seen in experimental results. These final results clearly

outperform CNN, notably reducing false positive values, while maintaining a correct

damage estimation at the correct locations.

7.2 Comments and Future Work

- 90 -

The present work shows that Capsule Networks, a new Deep Learning algorithm,

can be used to locate and estimate structural damage. The Dynamic Routing algorithm is

best suited for this task, whilst the EM Routing algorithm, even though it presents similar

results to DR, clearly overfits due to its complexity.

Although it is out of this work’s scope, a way to improve the way of visualizing

results and measuring performance is to give the “real” damage percentage at

experimental images, to the beam case study, to compare results. Although the cut depth

gives a first estimate and serves for comparison, that estimation is very broad and lacks

precision. This can be performed simulating the real beam with a FE model and

comparing its natural frequencies and vibration modes with those obtained through a

simplified model with a stiffness reduction in the desired element or elements.

Capsule Networks have been a major upgrade to CNNs, and this work shows they

can be used in damage detection tasks. With the application of dropout, the model

overcomes overfitting which arises from the fact that the model integrally learns the

equation that generates the FEM data images. That equation cannot represent

authentically what occurs in reality, and that discrepancy makes it necessary to include

dropout. The routing algorithm still needs to be improved, to compete with CNNs in terms

of computational time. That is the great drawback of Capsule Networks, and it is why still

there are no major applications of the algorithm, unlike CNNs.

- 91 -

Bibliography

[1] D. E. Siskind, M. S. Stagg, J. W. Kopp, e C. H. Dowding, “Structure response and
damage produced by ground vibration from surface mine blasting”, 1981.

[2] W. I. Duvall e D. E. Fogelson, “Review of Criteria for Estimating Damage to
Residences from Blasting Vibrations - RI 5968”, 1962.

[3] Z. Hou, M. Noori, e R. St. Amand, “Wavelet-Based Approach for Structural Damage
Detection”, J. Eng. Mech., vol. 126, no 7, p. 677–683, jul. 2000.

[4] Z. Q. Lang et al., “Transmissibility of non-linear output frequency response
functions with application in detection and location of damage in MDOF structural
systems”, Int. J. Non. Linear. Mech., vol. 46, no 6, p. 841–853, 2011.

[5] K. Worden, “Structural Fault Detection using a Novelty Meassure”, J. Sound Vib.,
vol. 201, no 1, p. 85–101, 1997.

[6] V. Meruane e A. Ortiz-Bernardin, “Structural damage assessment using linear
approximation with maximum entropy and transmissibility data”, Mech. Syst.
Signal Process., vol. 54, p. 210–223, 2015.

[7] S. Chesné e A. Deraemaeker, “Damage localization using transmissibility functions:
A critical review”, Mech. Syst. Signal Process., vol. 38, no 2, p. 569–584, 2013.

[8] M. J. Sc. and F. F. H.Zhang, “Structural Health Monitoring Using Transmittance
Functions”, Mech. Syst. Signal Process., vol. 13, no 5, p. 765–787, 1999.

[9] X. Yi, D. Zhu, Y. Wang, J. Guo, e K.-M. Lee, “Transmissibility-function-based
structural damage detection with tetherless mobile sensors”, Proc. 5th Int. Conf.
Bridg. Maintenance, Saf. Manag., p. 328–335, 2010.

[10] N. M. M. Maia, R. A. B. Almeida, A. P. V. Urgueira, e R. P. C. Sampaio, “Damage
detection and quantification using transmissibility”, Mech. Syst. Signal Process.,
vol. 25, no 7, p. 2475–2483, 2011.

[11] K. Worden, L. Y. Cheung, e J. a Rongong, “Damage detection in an aircraft
component model”, Proc. Int. Modal Anal. Conf. - IMAC, vol. 2, no October, p.
1234–1241, 2001.

[12] K. Worden, G. Manson, e D. Allman, “Experimental validation of a structural health
monitoring methodology: Part I. Novelty detection on a laboratory structure”, J.
Sound Vib., vol. 259, no 2, p. 323–343, 2003.

[13] G. Manson, K. Worden, e D. Allman, “Experimental validation of a structural health
monitoring methodology. Part II. Novelty detection on a Gnat aircraft”, J. Sound
Vib., vol. 259, no 2, p. 345–363, 2003.

[14] G. Manson, K. Worden, e D. Allman, “Experimental validation of a structural health
monitoring methodology: Part III. Damage location on an aircraft wing”, J. Sound
Vib., vol. 259, no 2, p. 365–385, 2003.

[15] A. P. V. Urgueira, R. A. B. Almeida, e N. M. M. Maia, “On the use of the

- 92 -

transmissibility concept for the evaluation of frequency response functions”, Mech.
Syst. Signal Process., vol. 25, no 3, p. 940–951, 2011.

[16] L. Feng, X. Yi, D. Zhu, X. Xie, e Y. Wang, “Damage detection of metro tunnel
structure through transmissibility function and cross correlation analysis using
local excitation and measurement”, Mech. Syst. Signal Process., vol. 60, p. 59–74,
2015.

[17] R. P. C. Sampaio, N. M. M. Maia, A. M. R. Ribeiro, e J. M. M. Silva, “Transmissibility
techniques for damage detection”, Proc. Imac-Xix A Conf. Struct. Dyn. Vols 1 2, vol.
4359, no February, p. 1524–1527, 2001.

[18] T. J. Johnson e D. E. Adams, “Transmissibility as a Differential Indicator of
Structural Damage”, J. Vib. Acoust., vol. 124, no 4, p. 634, 2002.

[19] R. Perera e A. Ruiz, “A multistage FE updating procedure for damage identification
in large-scale structures based on multiobjective evolutionary optimization”, Mech.
Syst. Signal Process., vol. 22, no 4, p. 970–991, maio 2008.

[20] Y.-J. Cha e O. Buyukozturk, “Structural Damage Detection Using Modal Strain
Energy and Hybrid Multiobjective Optimization”, Comput. Civ. Infrastruct. Eng.,
vol. 30, no 5, p. 347–358, maio 2015.

[21] S. M. Seyedpoor, “A two stage method for structural damage detection using a
modal strain energy based index and particle swarm optimization”, Int. J. Non.
Linear. Mech., vol. 47, no 1, p. 1–8, jan. 2012.

[22] N. Khaji e M. Mehrjoo, “Crack detection in a beam with an arbitrary number of
transverse cracks using genetic algorithms”, J. Mech. Sci. Technol., vol. 28, no 3, p.
823–836, 2014.

[23] M. Mehrjoo, N. Khaji, H. Moharrami, e A. Bahreininejad, “Damage detection of
truss bridge joints using Artificial Neural Networks”, Expert Syst. Appl., vol. 35, no
3, p. 1122–1131, 2008.

[24] J. J. Lee, J. W. Lee, J. H. Yi, C. B. Yun, e H. Y. Jung, “Neural networks-based damage
detection for bridges considering errors in baseline finite element models”, J. Sound
Vib., vol. 280, no 3–5, p. 555–578, 2005.

[25] J. L. Zapico, K. Worden, e F. J. Molina, “Vibration-based damage assessment in
steel frames using neural networks”, Smart Mater. Struct., vol. 10, no 3, p. 553–559,
jun. 2001.

[26] W. T. Yeung e J. W. Smith, “Damage detection in bridges using neural networks for
pattern recognition of vibration signatures”, Eng. Struct., vol. 27, no 5, p. 685–698,
2005.

[27] Szewczyk, Z. Peter, e P. Hajela, “Damage detection in structures based on feature-
sensitive neural networks”, J. Comput. Civ. Eng., vol. 8, no 2, p. 163–178, abr. 1994.

[28] V. Meruane, “Online Sequential Extreme Learning Machine for Vibration-Based
Damage Assessment Using Transmissibility Data”, J. Comput. Civ. Eng., vol. 30, no
3, p. 04015042, 2016.

[29] D. Verstraete, A. Ferrada, E. L. Droguett, V. Meruane, e M. Modarres, “Deep
learning enabled fault diagnosis using time-frequency image analysis of rolling

- 93 -

element bearings”, Shock Vib., vol. 2017, 2017.

[30] F. Jia, Y. Lei, J. Lin, X. Zhou, e N. Lu, “Deep neural networks: A promising tool for
fault characteristic mining and intelligent diagnosis of rotating machinery with
massive data”, Mech. Syst. Signal Process., vol. 72–73, p. 303–315, maio 2016.

[31] M. Gan, C. Wang, e C. Zhu, “Construction of hierarchical diagnosis network based
on deep learning and its application in the fault pattern recognition of rolling
element bearings”, Mech. Syst. Signal Process., vol. 72–73, p. 92–104, maio 2016.

[32] J. Wang, J. Zhuang, L. Duan, e W. Cheng, “A multi-scale convolution neural network
for featureless fault diagnosis”, in 2016 International Symposium on Flexible
Automation (ISFA), 2016, p. 65–70.

[33] L. Liao, W. Jin, e R. Pavel, “Enhanced Restricted Boltzmann Machine with
Prognosability Regularization for Prognostics and Health Assessment”, IEEE
Trans. Ind. Electron., vol. 63, no 11, p. 7076–7083, nov. 2016.

[34] X. Guo, L. Chen, e C. Shen, “Hierarchical adaptive deep convolution neural network
and its application to bearing fault diagnosis”, Meas. J. Int. Meas. Confed., vol. 93,
p. 490–502, nov. 2016.

[35] C. Szegedy et al., “Going deeper with convolutions”, Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., vol. 07–12–June, p. 1–9, 2015.

[36] R. Girshick, J. Donahue, T. Darrell, e J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation”, Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. p. 580–587,
2014.

[37] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, e Y. LeCun, “OverFeat:
Integrated Recognition, Localization and Detection using Convolutional Networks”,
dez. 2013.

[38] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, e C. Bregler, “Efficient object
localization using Convolutional Networks”, 2015 IEEE Conf. Comput. Vis. Pattern
Recognit., p. 648–656, 2015.

[39] Y. Taigman, M. Yang, M. Ranzato, e L. Wolf, “DeepFace: Closing the gap to human-
level performance in face verification”, Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. p. 1701–1708, 2014.

[40] W. Sun et al., “An Intelligent Gear Fault Diagnosis Methodology Using a Complex
Wavelet Enhanced Convolutional Neural Network”, Materials (Basel)., vol. 10, no 7,
p. 790, jul. 2017.

[41] G. E. Hinton, A. Krizhevsky, e S. D. Wang, “Transforming auto-encoders”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6791 LNCS, no PART 1,
Springer, Berlin, Heidelberg, 2011, p. 44–51.

[42] S. Sabour, N. Frosst, e G. E. Hinton, “Dynamic Routing Between Capsules”, no Nips,
2017.

[43] Y. LeCun, C. Cortes, e C. J. C. Burges, “The MNIST dataset of handwritten digits”,
http://yann.lecun.com/exdb/mnist/, 1998.

- 94 -

[44] G. Hinton, S. Sabour, e N. Frosst, “M Atrix Capsules With Em Routing”, 2018, p. 1–
15.

[45] P. Afshar, A. Mohammadi, e K. N. Plataniotis, “Brain Tumor Type Classification via
Capsule Networks”, 2018.

[46] Y. Upadhyay e P. Schrater, “Generative Adversarial Network Architectures For
Image Synthesis Using Capsule Networks”, p. 1–9, 2018.

[47] E. Xi, S. Bing, e Y. Jin, “Capsule Network Performance on Complex Data”, vol.
10707, no Fall, p. 1–7, 2017.

[48] R. LaLonde e U. Bagci, “Capsules for Object Segmentation”, 2018.

[49] P.-A. Andersen, “Deep Reinforcement Learning using Capsules in Advanced Game
Environments”, jan. 2018.

[50] M. T. Bahadori, “Spectral Capsule Networks”, ICLR Work., p. 1–5, 2018.

[51] A. E. W. Johnson et al., “MIMIC-III, a freely accessible critical care database”, Sci.
Data, vol. 3, p. 160035, maio 2016.

[52] D. Rawlinson, A. Ahmed, e G. Kowadlo, “Sparse Unsupervised Capsules Generalize
Better”, 2018.

[53] M. I. Friswell e J. E. T. Penny, “Crack Modeling for Structural Health Monitoring”,
journals.sagepub.com, vol. 1, no 2, p. 139–148, 2016.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, e R. Salakhutdinov, “Dropout: A Simple
Way to Prevent Neural Networks from Overfitting”, 2014.

[55] I. Goodfellow, Y. Bengio, A. Courville, e Y. Bengio, Deep learning. 2016.

[56] R. J. Douglas e K. A. Martin, “A functional microcircuit for cat visual cortex.”, J.
Physiol., vol. 440, no 1, p. 735–769, 1991.

[57] J. Hawkins, S. Ahmad, e Y. Cui, “A Theory of How Columns in the Neocortex Enable
Learning the Structure of the World”, Front. Neural Circuits, vol. 11, p. 0–17, 2017.

