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Facts and hypotheses about the programming of neuroplastic
deficits by prenatal malnutrition

Rafael Barra, Carlos Morgan, Patricio S�aez-Briones, Miguel Reyes-Parada, H�ector Burgos,
Bernardo Morales, and Alejandro Hern�andez

Studies in rats have shown that a decrease in either protein content or total dietary
calories results in molecular, structural, and functional changes in the cerebral
cortex and hippocampus, among other brain regions, which lead to behavioral dis-
turbances, including learning and memory deficits. The neurobiological bases
underlying those effects depend at least in part on fetal programming of the devel-
oping brain, which in turn relies on epigenetic regulation of specific genes via stable
and heritable modifications of chromatin. Prenatal malnutrition also leads to epige-
netic programming of obesity, and obesity on its own can lead to poor cognitive
performance in humans and experimental animals, complicating understanding of
the factors involved in the fetal programming of neuroplasticity deficits. This review
focuses on the role of epigenetic mechanisms involved in prenatal malnutrition–
induced brain disturbances, which are apparent at a later postnatal age, through
either a direct effect of fetal programming on brain plasticity or an indirect effect
on the brain mediated by the postnatal development of obesity.

INTRODUCTION

A renewed interest in the effects of nutrition on fetal

growth and adult health has emerged in the past 2 deca-
des as a result of some epidemiological and experimen-

tal studies showing a relationship between maternal
malnutrition and adult chronic diseases, such as hyper-

tension and type 2 diabetes. These diseases, together
with obesity, dyslipidemia, and ischemic cardiac dis-

ease, are part of a more general syndrome, the meta-
bolic syndrome. Fetal malnutrition may lead to a

diversity of structural and functional alterations in the
brain, including deficits in neuroplasticity. In general,

all of these disorders seem to be a consequence of fetal

programming, whereby a stimulus or insult at a critical
period of early life can result in long-term changes in

physiology or metabolism, as proposed by Barker’s hy-
pothesis,1–3 which in turn is part of the so-called devel-

opmental origins of health and disease (DOHaD) (for
review, see Gluckman et al4). Since those early reports,

the fetal programming theory has extended to encom-
pass many other tissues and organs in mammals, in-

cluding the brain.5–7 Thus, fetal programming, as a
subset of DOHaD, should be viewed as a part of a

broader biological mechanism termed developmental
plasticity, by which organisms, in response to cues such

as nutrition, adapt their phenotypes to their
environment.
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Neuroplasticity refers to the capacity of the nervous

system to adapt (functionally and structurally) in re-
sponse to experience and injury. It relies on the efficacy

of existing synapses or on changes in neural connectiv-
ity by the formation and/or deletion of synapses, as well

as on extra-synaptic mechanisms such as regulation of
neuronal excitability, regulation of synapse formation,
and stabilization of total synaptic strength and dendritic

arborization.8 Repeated patterns of synaptic transmis-
sion in the brain lead to diverse forms of synaptic

plasticity at excitatory and inhibitory synapses (eg,
long-term potentiation [LTP] and long-term depres-

sion), whereby the efficacy of synaptic transmission
becomes up- or downregulated, respectively. Many

forms of synaptic potentiation depend primarily on ex-
citation of synaptic ionotropic glutamate receptors (ie,

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
[AMPA], kainate, and N-methyl-D-aspartate [NMDA]

receptors) and downstream protein kinase–dependent
signaling that affects trafficking and the synthesis of a

variety of proteins involved in sustaining and perpetuat-
ing the neuronal response.9 They may also depend on

the activation of some receptor-dependent modulatory
pathways that regulate synaptic plasticity by interacting

at various levels with various signal transduction path-
ways (ie, c-aminobutyric acid–ergic [GABAergic], do-

paminergic, noradrenergic, serotonergic, cholinergic,
purinergic, and neurotrophin receptors).10–13 Thus,

neuroplasticity emerges as a major intrinsic property of
neural tissue that constitutes the neurobiological basis

of learning and memory.
It has been found that neuroplasticity may be influ-

enced by fetal programming because various types of
prenatal insults (malnutrition, stress, hormones, drugs)

could deeply affect learning and memory processes in
the offspring. Such responses include early and short-

term changes in physiology and behavior; however,
responses to modifications of the gestational environ-

ment may also be expressed at later offspring life stages.
Fetal programming relies on epigenetic regulation of
specific genes via stable and heritable chromatin modi-

fications independently of the underlying DNA se-
quence, giving rise to the appearance of different

phenotypic traits in the cells generated during develop-
ment (for reviews, see Burdge and Lillycrop14 and

Laubach et al15). Changes in chromatin structure arise
mainly from 4 distinct mechanisms: DNA methylation,

histone modifications, ATP-dependent chromatin
remodeling, and noncoding RNAs. Each of these mech-

anisms could affect neuroplasticity at later stages of
development.

DNA methylation, by which a methyl group is at-
tached to a cytosine nucleotide in CpG islands, is a reac-

tion catalyzed by a family of DNA methyltransferases

(DNMTs). Methylation depends on methyl group

donors and cofactors involved in methionine and folate
1-carbon metabolism, which are usually found in

ingested food.15–17 Much of the methionine formed is
converted into S-adenosylmethionine (SAM), a univer-

sal methyl group donor in numerous reactions. In addi-
tion, SAM is demethylated and subsequently
hydrolyzed to homocysteine, which may be methylated

back to methionine by methionine synthase depending
on the availability of methyl donors such as 5-methyl-

tetrahydrofolate (derived from folic acid) or betaine
(derived from choline). Thus, DNA methylation

depends on folate and choline availability, as well as on
vitamin B6 and B2 (required to catalyze the conversion

of tetrahydrofolate to 5-methyl- tetrahydrofolate) and
vitamin B12 (a precursor to methionine synthase).16,17

In the organism, low concentrations of homocysteine
favor remethylation, whereas high homocysteine con-

centrations promote transsulfuration, which may re-
move homocysteine from the methionine cycle and

catabolize the methionine excess, at least in the liver,
kidney, intestine, pancreas, and brain. As a corollary, it

seems clear that dietary amino acids, folate, and vitamin
B should be balanced to prevent adverse changes in fetal

metabolic pathways, such as hyper- or hypomethylation
of DNA. In this regard, increased DNA methylation is

generally associated with gene silencing, whereas de-
creased methylation is related to gene activation.18

DNMT1 and DNMT3a, which are involved in mainte-
nance and in de novo methylation, respectively,19 are

expressed in postmitotic neurons in the brain; double-
knockout mice lacking both DNMTs showed defective

LTP in the hippocampal CA1 region, together with defi-
cits in learning and memory.20

Histone modification includes histone acetylation,
methylation, and other types of modification that may

either activate or deactivate transcription by changing
the way DNA wraps around the nucleosome. Histone

acetylation, which is regulated by histone acetyltransfer-
ases (HATs) and a variety of histone deacetylases
(HDACs), is considered as an open chromatin mark as-

sociated with gene activation, whereas histone methyla-
tion can act either as an open (gene activation) or

condensed (transcription repression) mark, depending
on the residue where methylation occurs.21 For in-

stance, H3K4 methylation is considered a gene activa-
tion signal, whereas H3K9 and H3K27 methylation are

correlated with transcription repression.22 Consistently,
transgenic mice with reduced intrinsic HAT activity of

the CREB binding protein in the hippocampal CA1 and
dentate gyrus showed impaired long-term memory

(which indicates that HAT activity of CREB is required
for long-term memory consolidation), whereas acety-

lated histone levels and long-term memory were
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rescued by administration of an HDAC inhibitor.23

More recently it has been found that folate deficiency
leads to reduced proliferation and enhanced apoptosis

in hippocampal cells via increased expression of
HDAC4, -6, and -7, whereas cell treatment with an

HDAC inhibitor led to a noticeable improvement of the
folate deficiency–associated alterations of differentia-
tion.24 Additionally, it has been found that mice defi-

cient in H3K4 methyltransferase exhibited memory
impairment in contextual fear conditioning learning,25

whereas reduced methylation of H3K9 produced the
opposite effect.26

ATP-dependent chromatin remodelers use ATP
hydrolysis to unwrap or disrupt the association between

DNA and histones, to relocate or to evict nucleosomes
along DNA, or to exchange 1 histone variant for an-

other. A family of ATP-dependent chromatin remodel-
ing complexes, called BAF, has been found to greatly

contribute to the establishment of the diversity, stability,
and plasticity of the nervous system. In particular, mice

with selective genetic manipulations of the neuron-
specific BAF53b subunit have severe deficits of long-

term memory and were unable to consolidate hippo-
campal LTP.27

Finally, small and long noncoding RNAs, which are
required to maintain chromatin structure by bridging

the interaction between proteins and DNA, can interact
with chromatin modifiers or act as molecular scaffold-

ing to regulate epigenetic mechanisms within the cell.
For instance, small noncoding RNAs (miRNAs) have

been found to be relevant in memory consolidation by
regulating CREB28 in a serotonin-dependent synaptic

plasticity mechanism.29 Interestingly, methyl donor de-
ficiency during pregnancy can induce persistent brain

defects in pups by reducing Stat3 signaling targeted by
miRNA-124.30 Late maternal folate supplementation

rescued rats from brain defects associated with methyl
donor deficiency by restoring Let-7 and miR-34 path-

ways, 2 miRNAs known to be regulated by methyla-
tion.31 Thus, methyl donors could affect the epigenetic
landscape in the developing brain through various

mechanisms, including methylation of DNA and associ-
ated histones, as well as of noncoding miRNAs, thereby

highlighting the important epigenetic role of methyl
donors in neuronal development. In contrast, the role

of long noncoding RNAs on neuroplasticity has re-
ceived less attention.32 A recent report indicates that

the long noncoding RNA BC048612 coregulates, to-
gether with miRNA 203, the expression of the neuronal

growth regulator 1 cell adhesion protein in neurons.33

The foregoing data are consistent with the notion

that the prenatal epigenetic profile exerts a prominent
and profound influence on the formation and/or con-

solidation of the nervous system during development.21

However, it seems also clear that in postmitotic, fully

differentiated neurons epigenetic modifications might
be highly dynamic and could thereby support neuronal

functions and plasticity.34 Moreover, epigenetic mecha-
nisms that alter gene expression may impact adult sen-

sory cortical plasticity, memory, and sensory
discrimination ability by modifying the threshold of in-
duction for robust and persistent memories, thereby en-

abling information encoding in sensory cortices (for
review, see Phan and Bieszczad35).

How can maternal dietary calories and proteins
program the emergence of complex diseases during

postnatal life? Several recent reviews have focused on fe-
tal programming of disease,16,36 including metabolic

syndrome,37,38 diabetes,38,39 insulin resistance,40 hyper-
tension and cardiac disease,41 obesity,38,42,43 reproduc-

tive function,44 and placental development.45 The
effects of prenatal malnutrition on brain programming

deserve more attention (but see reviews by Manuel-
Apolinar et al,46 Grissom et al,47 and Moody et al48).

Although there is vast literature regarding epigenetic
modifications induced in a variety of organs by under-

nutrition early in life, the role of epigenetics in the
effects of fetal malnutrition on the developing brain has

begun to be understood only recently. As an example,
in 2001 Tucker claimed that “there is no evidence for

an involvement of methylation in plastic CNS [central
nervous system] processes, such as synaptic or dendritic

remodeling,”49 whereas in 2008 Borrelli et al50 pub-
lished a review that aimed to identify the epigenetic

mechanism associated with neuronal plasticity.
Ascribing the neuroplastic deficits found in previously

malnourished adults to an altered fetal programming of
the brain—as frequently stated in the literature—is a hy-

pothetical issue because prenatal malnutrition can also
program, for example, obesity, which may lead to neu-

roplastic deficits too. Conceptually, elucidating this as-
pect is not a purely academic question because, if

neurodevelopmental alterations are a consequence of
obesity developed during postnatal life but programmed
in utero, they should then be prevented by precluding

development of overweight. On the contrary, if they are
a direct consequence of epigenetic intrauterine pro-

gramming of the brain via phenotypic diversity of neu-
ral/glial mediators, transporters, receptors, and other

proteins, which are mainly sensitive to epigenetic nutri-
tional influences only during the narrow period of pre-

natal life and lactation,21 they could be present at
adulthood irrespective of the dietary regime adopted

later in postnatal age.
The current review focuses on the role of epigenetic

mechanisms in prenatal malnutrition–induced brain
disturbances, which are apparent at later postnatal age,

either via a direct effect of fetal programming on brain
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plasticity or via an indirect effect on the brain mediated

by the postnatal development of obesity as an alterna-
tive (or rather complementary) programming mecha-

nism (see Figure 1). Two objectives are pursued. First,
this review seeks to provide a summary of the effects of

prenatal malnutrition on brain development and func-
tion, with emphasis on the consequences in neuroplas-

ticity, and to present the existing evidence for
epigenetic mediation. Second, this review seeks to sum-

marize the programming effects of prenatal malnutri-
tion on obesity and metabolic syndrome in later life,

highlighting both their repercussions on brain plasticity
and the epigenetic mechanisms involved.

PRENATAL MALNUTRITION: EFFECTS ON BRAIN
DEVELOPMENT AND FUNCTION AND THE ROLE OF

EPIGENETICS

Human population studies

In 2008, the prevalence of babies with intrauterine
growth restriction in developing countries was reported

to be as high as 10.8%.51 Nutritional deficits during
pregnancy may ultimately result in impairment of

higher brain functions at later stages of life. Moreover,
nourishment restrictions during pregnancy lead to fetal

growth restriction and may cause permanent brain dys-
function, particularly cognitive and behavioral deficits

in humans.52,53 Studies in children who are small for
gestational age (SGA), a crude anthropometric parame-

ter used for the clinical diagnosis of intrauterine under-
nutrition, have revealed that these children are at a high

risk for exhibiting subnormal intellectual quotients and

experiencing learning deficits.54,55 It has been reported

that the intelligence quotient (IQ) score at school age is
linked to birth weight among low birth weight babies56

and that there are associations between birth weight
and cognitive function at subsequent ages,57 indicating

that birth weight at the bottom end of the normal range
(which mainly results from moderate maternal under-

nutrition) is related to impaired higher mental function
in later life. A recent systematic review examining neu-

rodevelopmental outcomes in SGA children58 reported
that these infants were particularly impaired in cogni-

tive (global cognitive ability, memory, processing abil-
ity, learning, problem solving, perceptual performance,

spatial orientation) and behavioral (attention, personal
social ability, adaptive behavior) developmental

domains. These findings were subsequently confirmed
in a meta-analysis showing that school-age SGA chil-

dren show lower cognitive scores (verbal and perfor-
mance IQ, as revealed by Wechsler intelligence scales)
and higher incidence of behavioral disorders (checked

on standardized tests) than controls born appropriate
for gestational age59 (Table 1).58–61

There are also very clear data in the literature
showing fetal programming of methyl donor deficiency,

another condition of prenatal malnutrition. Folates and
vitamin B12 are needed for methionine synthesis, the

precursor of SAM. Therefore, they play a key role in nu-
trition and epigenomics by providing monocarbons re-

quired for methylation of DNA and gene regulators. In
humans, low maternal erythrocytes folate concentration

in early pregnancy was specifically associated with be-
havioral problems such as hyperactivity and peer prob-

lems in 9-year-old children, and this association was

Growth and differen�a�on of post-mito�c cells

Prenatal life Adult neurons

Restric�ons:
- protein
- calories
- micronutrients

Fetal epigene�c marks
in cells of cerebral
cortex, hippocampus
and other brain regions

Fetal epigene�c marks in
cells o�ypothalamus,
liver, pancreas, muscle,
fat and other �ssues

- Impaired memory
- Defec�ve LTP
- Abnormal expression

of LTP-modula�ng
molecules

Metabolic
syndrome, 
including
obesity

(i) Direct neuronal programming pathway

(ii) Indirect neuronal reprogramming pathway

Figure 1 Scheme depicting how dietary restrictions during prenatal life (proteins, calories, micronutrients) can lead to the emer-
gence of disturbances in neuroplasticity at adulthood (impaired memory, defective long-term potentiation, abnormal expression
of neurotransmitters/mediators and their receptors) via 2 alternative coexisting pathways: 1) direct neuronal programming (epige-
netic marks in fetal progenitor cells and developing neurons that will form the cerebral cortex, hippocampus and other brain regions involved in
neuroplasticity); and/or 2) indirect neuronal reprogramming of postnatal/adult neurons mediated by obesity (as part of the metabolic syndrome),
which develops in postnatal life as a consequence of epigenetic marks on fetal cells that will form organs involved in growth, metabolism, and
hunger and satiety mechanisms (hypothalamus, liver, pancreas, muscle, fat and other tissues). Abbreviation: LTP, long-term potentiation.
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apparently mediated by fetal head growth.62 In addition,

maternal folate deficiency was found to be associated
with poorer performance on neurodevelopmental tasks

in infancy63 and childhood.64 In contrast, higher mater-
nal folate intake in early pregnancy was related with

higher general intelligence in 3-year-old children.65

More recently, it has been found that moderately ele-
vated preconception fasting total plasma homocysteine, a

marker closely linked to folate deficiency, is inversely as-
sociated with psychomotor and cognitive development

scores in infants and children.66 In addition, folate insuf-
ficiency in early pregnancy, as revealed by insufficient

plasma folate concentrations (<8 nmol/L) in pregnant
mothers, was found to produce a long-lasting, global ef-

fect on brain development, which was associated with
poorer cognitive performance.67 Finally, human popula-

tion studies performed by Yajnik and collaborators in
India showed that low maternal folate and vitamin B12

concentrations measured during pregnancy were
correlated to adverse effects on brain development of off-

spring at 2 years of age (motor, mental, and social

development),68 whereas in childred aged 9–10 years low

folate but not low vitamin B-12 concentrations during
pregnancy were associated with poor cognitive function

scores.64 On the contrary, folate and vitamin B-12 sup-
plementation for six months in children aged 6–

30 months improved gross motor and problem-solving
skills,69 which indicates that treatment at later postnatal
ages with methyl donors could result in beneficial effects

on neurodevelopment. The Western diet provides about
0.2 mg of natural folate/day, whereas 0.4 mg folate/day is

recommended. The beneficial effects of folic acid supple-
mentation >0.5 mg daily are still controversial.70 In this

regard, recent evidence suggests that the use of folic acid
supplementation dosages exceeding �1000 mg/day dur-

ing pregnancy should be monitored and prevented as
much as possible, unless medically prescribed.71

Studies on experimental animals

The vast bulk of data available on the effects of fetal

malnutrition on brain development and function arises

Table 1 Effects of prenatal malnutrition on cognition and behavior: outcomes from children born small for gestational
age
Nutritional condition
at birth

Type of study Type of test Age range at
evaluation

Effect References

SGA Meta-analysis Cognitive IQa 5–19 y Lower verbal IQ scores
Lower performance IQ

scores

Chen et al 201659

SGA Meta-analysis Behavioral scoresb 5–19 y Considerably different be-
havior scores

Chen et al (2016)59

SGA Systematic review Cognitive scoresc Cognitive impairment
(global cognitive ability,
memory, processing
ability, learning, problem
solving, perceptual per-
formance, spatial
orientation)

Murray et al (2015)58

SGA Systematic review Behavioral scoresd 3 mo to 10 y Impaired behavioral
development (attention,
personal social ability,
adaptive behavior)

Murray et al (2015)58

SGA Review Cognitive IQe Not reported Considerably lower IQ de Bie et al (2010)60

SGA Systematic review IQ, cognitive scores,
educational
achievementf

Not reported Minor association between
SGA and cognitive
outcome

Noeker (2005)61

Abbreviations: IQ, intelligence quotient; SVG, small for gestational age.
aTests used included the following: Wechsler Intelligence Scale for Children; Revised Wechsler Intelligence Scale for Children; Third
Wechsler Intelligence Scale for Children; Wechsler Preschool and Primary Scale of Intelligence; Revised Wechsler Preschool and Primary
Scale of Intelligence.
bTests used included the following: Child Behavior Check List; Conner Abbreviated Parent Rating Scale; Strengths and Difficulties
Questionnaire.
cTests used included the following: Bayley Scales of Infant Development; Wechsler Intelligence Scale for Children; Kaufman Assessment
Battery for Children; Visual Auditory Digit Span; Rey Auditory Verbal Learning Test; Rey Osterrieth Complex Figure Test; Wechsler
Preschool and Primary Scale of Intelligence; Radial Arm Maze; Raven’s Progressive Matrices; Revisie Amsterdamse Kinder
Intelligentietest; British Abilities Scale; Clinical Adaptive/Clinical Linguistic Auditory Milestone Age.
dTests used included the following: Mental Development Index; Child Behaviour Checklist; Ages and Stages Questionnaire; Mother and
Baby Scales; Minnesota Infant Development Inventory; Infant Behaviour Questionnaire—Revised; Behaviour Rating Scale in Bayley
Scales of Infant Development; Strengths and Difficulties Questionnaire.
eCognitive tests for IQ evaluation were not reported.
fTests used included the following: Child Behavior Checklist; Hamburg-Wechsler; Raven’s Progressive Matrices; Wide Range
Achievement Test; Kaufman-Assessment Battery for Children.
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from studies in rodents. Most frequent models of pre-

natal malnutrition include either a deficiency of a par-
ticular component in the maternal diet (eg, reduction of

the protein content or deficiency in a micronutrient
such as folic acid) or a deficiency in total dietary calo-

ries (eg, a reduction in the amount of diet given daily to
pregnant rats). Table 272,73,75,96–103 shows a summary of
the effects of prenatal malnutrition on behavioral, elec-

trophysiological, and molecular neuroplasticity corre-
lates taken from animal models subjected to

malnutrition (protein, caloric, or micronutrient restric-
tions) during pregnancy and fed by well-nourished

mothers after birth.

Maternal protein restriction and brain function in the
offspring. In the last decades, several animal studies

have shown that severe protein restriction during gesta-
tion (reduction to 6% of the casein content in the ma-

ternal diet, calorically compensated by carbohydrate
excess) correlates with a low weight gain of pups as well

as with a broad range of behavioral disorders. These
studies have revealed that rats born from dams sub-

jected to severe malnutrition during pregnancy, showed
numerous and sometimes irreversible deficits in explo-

ration, social behavior, sleep-wake cycle, emotionality,
avoidance conditioning, learning, and memory once

they had reached adulthood.72,73,75,96–101 In addition,
the brains of severely prenatally undernourished rats

exhibit long-lasting modifications in structure, chemis-
try, and function, especially in brain regions providing

the anatomical and functional substrate of cognitive
processes.102,103 For instance, undernutrition in utero

results in decreased excitability,76,77 reduced number of
neurons78 and brain-derived neurotrophic factor

(BDNF) concentration in the hippocampal formation of
pups,74 and impaired learning and memory ability in

the Morris water maze.74 These rats also showed de-
creased levels of basal dopamine in the prefrontal cor-

tex.79 Additionally, prenatally malnourished adult rats
are less sensitive to the amnesic effect of the medial sep-
tal infusion of chlordiazepoxide,104 which is indicative

of a functional loss of GABAergic response. In contrast,
those animals show increased sensitization to cocaine-

induced stereotypy105 and sensitivity to the NMDA
antagonist MK-801,106 suggesting that prenatal malnu-

trition affects the physiological properties of dopami-
nergic and glutamatergic neurotransmitter systems. It

has been reported that severe protein malnutrition dur-
ing gestation reduced the expression of the

microtubule-associated protein 1B (formerly called
MAP 5) in the rat brain, whereas the microtubule-

associated protein 1A (formerly called MAP 1) is in-
creased until adulthood.80 Because both proteins play

key roles in anchoring ionotropic neurotransmitter

receptors to microtubules,107 their expression changes

in the brain of prenatally undernourished offspring
could likely be related to the reported learning and

memory deficits in these animals via a GABAergic and/
or glutamatergic dysfunction. Studies on other forms of

intrauterine undernutrition resulting from lesser insuf-
ficiencies in dietary protein (reduction to 8% of the ca-
sein content in the maternal diet, calorically

compensated by excess carbohydrate) revealed that
these prenatally malnourished rat pups, unlike severe

6% casein prenatally malnourished pups, do not show a
body weight deficit at birth; therefore these animals

were called “hidden” malnourished pups.108 However,
the pups arising from those pregnant dams whose diet

was mildly restricted continue to exhibit alterations in
their central neurochemical profiles when compared

with eutrophic controls,108 as evidenced by increased
concentrations and release of cortical noradrenaline

during early postnatal life, followed by decreased corti-
cal release of noradrenaline at adulthood.109,110 Some

morphometric studies have also revealed that this
model of prenatal protein malnutrition results in a re-

duced cross-sectional area of the corpus callosum of
mice,111 as well as in increased neuronal density and

suppression of the normal maturational dorsolateral
gradient in the rat cerebral cortex.110 In addition, elec-

trophysiological studies have shown that hidden prena-
tally malnourished rat pups exhibit, as a whole, a

reduced spontaneous discharge rate by cortical neu-
rons,112 a diminished cortical excitability to callosal

inputs,109 an increased fatigability of transcallosal
responses,109 and a diminished ability of callosal-

cortical synapses to perform temporal summation and
to develop LTP in all frontal, visual, and entorhinal cor-

tices.81,83,84 Besides, the neocortex of these prenatal
malnourished rats showed an increased expression of

a2 C adrenoceptors81,85,86 (whose activation is related to
decreased memory formation113) and a decreased ex-

pression of both b1 and b2 adrenoceptor subtypes82,84

(whose activation is associated with increased cerebral
cortex LTP114 and memory facilitation.115 On the other

hand, behavioral studies have shown that those animals
exhibit lower performance in delayed spatial alternation

tasks,116 as well as reduced visuospatial memory,81 indi-
cating that prenatal malnutrition during fetal life can

induce deficits in the consolidation of long-term mem-
ories. It is noteworthy that most of these deleterious

effects of hidden prenatal malnutrition were detected in
adulthood, even though the animals were subjected to

nutritional rehabilitation since birth.

Maternal caloric restriction and brain function in the
offspring. Severe purely prenatal caloric restriction (25%

of normal caloric intake) has been shown to induce
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hyperactivity of the hypothalamo-pituitary-

adrenocortical axis, as revealed by increased blood lev-
els of adrenocorticotropic hormone (ACTH) and corti-

costerone.117 Similarly, reduction of the caloric intake
of rats to 40% during pregnancy results in elevated

blood levels of corticotropin-releasing hormone (CRH)
and corticosterone in the offspring, together with en-
hanced expression of CRH mRNA and CRH protein in

the hypothalamus,91 and in decreased sensitivity of para-
ventricular neurons to glucocorticoid receptor ligands.92

Those animals also showed a reduction of the corpus cal-
losum total area, partial areas, and perimeter, as com-

pared with normal animals, with the splenium of corpus
callosum (posterior fifth) clearly decreasing the myelin-

ated and unmyelinated fiber diameters.90 These structural
changes correlate with functional alterations of brain

interhemispheric communication, as revealed by
decreases in amplitude and projecting field of

transcallosal-evoked responses and suppression of the
interhemispheric asymmetry of visual-evoked responses

found in adult rats submitted to caloric restriction during
fetal life.87–89 Finally, it has been found that rat pups born

from mothers submitted to 50% caloric restriction during
pregnancy exhibit downregulated expression of collapsin

response mediator proteins in the brain.93 These are pro-
teins exclusively expressed in the nervous system, which

are involved in the regulation of crucial process for
growth and development of the brain, such as neurito-

genesis in dendrites and spines,118 and in functions be-
yond cytoskeletal regulation, including axonal transport,

vesicle trafficking, and neurotransmitter release.119

Maternal restriction in micronutrients and brain

function in the offspring. Folate deficiency deregulates
epigenomic mechanisms related to fetal programming

through decreased cellular availability of SAM and pro-
duces intrauterine growth retardation and birth defects.

Folate and vitamin B12 deficiencies produce long-
lasting cognitive disabilities through impaired hippo-

campal cell proliferation, differentiation, and plasticity,
as well as atrophy of the hippocampal CA1 region,94,95

mimicking the effect of knockout mice lacking
DNMTs.20 The combined deficiency of vitamin B12

and folate during rat pregnancy has also been found to
decrease the expression of synapsins in the cerebellum

of the offspring, an effect that depends on impaired
estrogen receptor a/Src tyrosine kinase pathway and

subsequent reduced phosphorylation of synapsins.120

Fetal programming of neuroplasticity and the role of
epigenetics

Brain plasticity depends on molecular and cellular

mechanisms that are regulated by genes, which may be
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subject to epigenetic regulation by dietary components,

highlighting the importance of adequate maternal pro-
tein nutrition during pregnancy for subsequent brain

plasticity and for achieving proper brain development
during adulthood. On these grounds, it is believed that

neuroplastic deficits found in the adult life of prenatal
malnourished individuals are a consequence of an al-
tered fetal programming of brain development and

function,121,122 but to what extent are they a direct effect
of intrauterine epigenetic programming of neural com-

ponents and/or an indirect consequence of other prena-
tally programmed postnatal factors, such as obesity,

remain to be clarified.
An early hypothesis to explain fetal brain program-

ming followed the observation that the fetus is protected
against high glucocorticoid levels provided by the mother

through the placental barrier enzyme 11b-hydroxyste-
roid dehydrogenase type 2 (11bHSD2). This enzyme

converts physiological glucocorticoids into inactive 11-
keto derivatives. Both protein123 and food restrictions124

in pregnant rats lead to decreased placental 11bHSD2 ac-
tivity, resulting in overexposure of the fetus to maternal

glucocorticoids. Such a deficiency is observed in new-
borns with reduced body weight at birth.125,126

In turn, overexposure to maternal glucocorticoids
caused by prenatal undernutrition can reduce glucocor-

ticoid receptor expression in the offspring’s hippocam-
pus,124 hypothalamus126,127 and pituitary gland,128

resulting in a decreased negative feedback control by
glucocorticoids and, therefore, in increased

hypothalamus-pituitary-adrenal (HPA) activity,129

which leads to chronically increased endogenous gluco-

corticoids levels that extend to postnatal age.130

Fetal glucocorticoid overexposure has detrimental

effects on human brain function, as revealed by im-
paired cognitive development131 and decreases in verbal

and visuospatial abilities and narrative memory.132

However, it remains unclear whether those alterations

are a consequence of enhanced exposure of the brain to
maternal glucocorticoids during fetal life or to increased
endogenous glucocorticoids during postnatal life. More

recently, prenatal malnutrition has been associated with
epigenetic alterations that affect glucocorticoid func-

tionality. For example, the placenta of intrauterine
growth-restricted infants exhibit higher methylation

levels at the 11bHSD2 gene promoter.133 Those infants
show a poorer quality of movement, a marker of ad-

verse neurobehavioral outcomes.133 Those observations
suggest that an adverse intrauterine environment lead-

ing to growth restriction may enhance the exposure of
the fetal brain to cortisol (thereby producing down-

stream adverse effects) by reducing 11bHSD2 expres-
sion via increased methylation of its gene promoter

region.133

Concerning the epigenetic control of the glucocor-

ticoid receptor, experimental studies have shown that
rat maternal undernutrition (30% reduction of ad libi-

tum standard diet) throughout gestation increased
methylation of the glucocorticoid receptor gene pro-

moter and reduced glucocorticoid receptor expression
in the liver of the adult progeny.134 However, epigeneti-
cally mediated programming of brain glucocorticoid re-

ceptor downregulation has not yet been described. In
addition to epigenetic modifications in the expression

of proteins concerned with corticoids functionality,
some studies indicate that gestational protein deficiency

in the rat results in reduced expression of the Wnt2
protein, together with a highly variable methylation pat-

tern of the Wnt2 gene promoter region.135 Wnt2 is a
signaling glycoprotein critically involved in placental

vascularization,136 and its expression is downregulated
in women with severe eclampsia.137 Epigenetically-

controlled Wnt2 expression is induced by fetal under-
nutrition and is associated with impaired growth and

development of the human fetus.138 However, the im-
portance of those alterations for mature brain function

remains unexplored. Wnt genes play an important role
in cell signaling mechanisms, controlling fundamental

developmental processes of the central nervous system
by inducing expression of BDNF and other members of

the BDNF signaling pathway in glial cells.139,140

Wnt signaling is a critical component of activity-

mediated synapse formation in the adult brain.141–143

Recent studies have shown that Wnt signaling is also es-

sential for the neuroendocrine control of the hypothala-
mus,144 a crucial brain center in energy balance

regulation. Recently, using microarray gene expression
analysis, it was shown that the offspring of pregnant

rats submitted to 50% restriction of 6% protein diet
showed postnatal downregulated expression of genes

encoding for the transcriptional activator Creb1 and its
co-activator Crebbp in the hippocampus (which are

largely involved in hippocampal plasticity via regulation
of BDNF transcription), together with hypermethyla-
tion of gene Slc2a1, which is associated with cognitive

impairment.145 Thus, BDNF expression could be altered
in the brain of prenatally malnourished animals via epi-

genetic regulation of both Wnt and CREB signaling.
Additionally, evidence of epigenetic regulation of

Dnmt1 and Dnmt3a genes has been found in the adult
mammalian brain,20,146 where it can exert a variety of

roles in memory formation via regulation of BDNF ex-
pression.146 This clearly indicates that epigenetic regula-

tion is not restricted to early development but also can
be of physiological relevance in the adult brain via a

reprogramming process. Thus, all the aforementioned
studies represent initial steps toward the characteriza-

tion of the epigenetic modifications that ultimately may
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explain how fetal malnutrition may play a substantial

role in programming neuroplasticity deficits at later
ages in the offspring.

Taken together, the data summarized above indi-
cate that hidden prenatal malnutrition induces substan-

tial changes in brain structure, neurochemistry, and
function. Some of these disorders are possibly the result
of epigenetic modifications, which is consistent with the

concept of fetal programming by early nutritional
cues.147 Although this is an expanding area of research,

it is presently unknown whether changes in brain plas-
ticity after prenatal malnutrition are a direct conse-

quence of epigenetic intrauterine programming of
neural/glial mediators, receptors, and other proteins or

whether they are indirectly mediated, at least partially,
by other programmed postnatal events such as obesity

and the associated metabolic syndrome.

PRENATAL MALNUTRITION: PROGRAMMING OF
OBESITY AND METABOLIC SYNDROME IN LATER LIFE

AND REPERCUSSIONS ON BRAIN PLASTICITY

Developmental origins of the metabolic syndrome rest
on the fact that the fetus may adapt and survive to a

hostile environment (prenatal undernutrition, stressor,
or other factor) during determined time frames of epi-

genetic plasticity, anticipating future metabolic
responses by reprogramming its genome-wide gene ex-

pression profile. This reprogramming favors early sur-
vival and prepares the fetus for an adverse postnatal

environment, as stated by the Barker’s thrifty phenotype
hypothesis, but potentially causes a predisposition to

disease in later stages of life, once postnatal environ-
mental conditions and resources are favorable to sur-

vival.1–3 The original Barker’s hypothesis assumes an
intrauterine period of developmental plasticity where

fetal programming does occur, that is, a time frame-
work of epigenetic plasticity that finishes during the

early postnatal period, leaving the organism at risk to
develop overweight and obesity during postnatal life,
among other metabolic imbalances, when the offspring

is exposed to food abundance, contrary to the environ-
ment anticipated by maternal undernutrition. This hy-

pothesis is supported by studies from the Dutch famine
(a famine from December 1944 to April 1945, where

the official daily ration was only 400–800 calories),
which revealed an atherogenic lipid profile, altered glu-

cose tolerance, increased risk for coronary heart disease
in adulthood, and a declination of cognitive function in

individuals exposed to famine as fetuses.148,149 Studies
demonstrating the increased incidence of adult meta-

bolic syndrome among low-birth-weight children have
further been repeated, and the findings have been con-

firmed worldwide.150,151

Most features of the metabolic syndrome have been

replicated in animal studies. A 50% maternal nutrient
restriction (ie, hidden prenatal malnutrition) during rat

pregnancy results in slightly smaller offspring that de-
velop the metabolic syndrome in adulthood, showing

obesity (especially greater fat mass index), hypertension,
and glucose intolerance, along with elevated leptin, in-
sulin, and triglyceride plasma levels.152,153 Additionally,

a study by Bieswal et al154 found that adult rats (60 d of
age) born from mothers given a 50% nutrient restricted

diet, nursed by eutrophic dams, and fed on normal
chow ad libitum after weaning show all fat compart-

ments (subcutaneous, perirenal, periepididymal, and
mesenteric) augmented by more than 50% compared

with eutrophic controls; they also presented higher cir-
culating levels of triglycerides and leptin. Moreover, un-

dernourished mice and rats born from mothers
submitted to either 8% protein diet155 or 10% casein

diet156 developed obesity during postnatal life, thus in-
dicating that dietary restriction of protein content leads

to increased weight gain in the postnatal life of the
offspring.157

Nutrient restriction during fetal life leads to the
metabolic syndrome during postnatal life through three

possible mechanisms: modifications to the cellular re-
sponse to stress; alterations in adult organ morphology

or cell number; or alterations of tissue or systemic
responses.121,158–160

Modifications to the cellular response to stress

Possible causes of adaptive responses to stress may in-
clude epigenetic changes of chromatin induced by

downregulation of the DNA methyltransferase-1 in the
offspring of rats submitted to diet restriction,161 mito-

chondrial dysfunction induced by an enhancement of
mitochondrial biogenesis generated by an increased in-

sulin sensitivity due to upregulation of sirtuin 1,162 oxi-
dative stress and lipid peroxidation of b cells of adult
offspring arising from mothers exposed to diet restric-

tion during pregnancy,163 or differential expression of
transcription factors generated by a decrease in the he-

patic levels of the key glycolytic enzyme glucokinase in
intrauterine growth-restricted rats.150

Alterations in adult organ morphology or cell number

These changes may arise from the adaptation to low-
protein availability during pregnancy, which may lead

to hypertension due to a reduced number of functional
nephrons,164 together with obese retroperitoneal fat de-

position and insulin resistance.165
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Alterations of tissue or systemic responses

Maternal undernutrition may result in both a decreased

expression of placental 11bHSD2, causing low birth
weight, and impaired glucose-insulin homeostasis.123

Thus, prenatal malnutrition may program obesity and
metabolic disturbances in the later life of humans and

animals by several mechanisms, most them under epi-
genetic control. Indeed, the existence of epigenetic reg-

ulation of the mitochondrial genome,166 oxidative
stress,167 expression of transcription factors,168 and the

cell number in adipose tissue169 as contributing factors
in postnatal obesity is generally accepted.

Epidemiological studies have found an association
between obesity and poor cognitive performance.170

General overweight (body mass index >25 kg/m2) and
obesity (body mass index >30 kg/m2) have been

strongly associated with poor cognition scores in the
Mini-Mental State Examination, especially in the pres-

ence of abdominal obesity.171 Whereas obese, hyperten-
sive men performed poorly in cognitive tasks (learning,

memory, executive functioning, and abstract reason-
ing), the best performance was achieved by lean, nor-

motensive men.172 More recently, a study that included
>2000 children associated increased body weight with
decreased visuospatial organization and lower mental

ability.173 The fact that obesity associates with cognitive
deficits, especially in executive functions, throughout

the lifespan174 highlights the need for more obesity re-
search at basic and clinical levels. Quantification of cen-

tral obesity is a better predictor of cognitive deficits
than body mass index, and both parameters may be en-

hanced by the presence of other risk factors such as hy-
pertension and diabetes.162 Although cardiovascular

risk factors may be linked to obesity and cognition, the
literature shows that the relationship between over-

weight/obesity and cognition remains despite accurate
control for cardiovascular risk factors.175,176 The mech-

anisms by which obesity results in cognitive impair-
ment are uncertain. Risk factors include hyperglycemia,

hyperinsulinemia, and vascular damage to the central
nervous system,177 as well as dyslipidemia.178

Triglycerides may impair the transport of leptin across
the blood-brain barrier,179 which may in part account

for the peripheral leptin resistance observed in obesity.
Despite the latter, none of the epidemiological studies

mentioned above addresses a possible link between in-
trauterine malnutrition and obesity, which would be

critical for correlating fetal malnutrition to obesity and
later brain function disabilities.

Since the early study of Greenwood and
Winocur180 that showed that a diet high in saturated

fatty acids can impair learning and memory perfor-
mance in rats exposed to some mazes, several more

recent preclinical studies have found that adiposity on

its own is specifically associated with reduced perfor-
mance on learning and memory task.181,182 It has also

been reported that manipulation of brain triglyceride
levels has an immediate and direct adverse effect on

cognition, as revealed by impaired acquisition in the T
maze, the Morris water maze, and food reward lever
press, most likely due to defective hippocampal LTP.182

Because most of these neuroplastic responses involve
NMDA receptor function, Farr et al182 suggested that

either endogenous triglycerides (which are elevated in
obese animals) or exogenously administered triglycer-

ides may alter NMDA functionality, thereby impairing
LTP and learning performance. More recently, it was

reported that glial glutamate carrier proteins were upre-
gulated in mice fed a high-fat diet, whereas glutamate-

degrading enzymes and the NR2B NMDA subunit
(which plays an essential role in learning, memory, and

neuronal pattern formation) were downregulated,183

thus providing mechanistic support for the deleterious

effect of obesity on cognitive functions. A high-fat diet
suppressed expression of the insulin-sensitive neuronal

glucose transport proteins GLUT3/GLUT4 and sup-
pressed the ERK/CREB pathway, leading to decreased

LTP in the CA1 region of hippocampus.184 Other stud-
ies have shown that diet-induced obesity causes ghrelin

resistance in hypothalamic neurones.185 Because ghrelin
is involved in a variety of functions, including regula-

tion of food intake, body weight gain, insulin release,
b-cell survival, adiposity, and control of energy

homoeostasis, dysregulation of the ghrelin system has
been directly implicated in the development of obesity

and the repercussions of the metabolic syndrome in
brain function.186 Studies performed on either ob/ob or

melanocortin 4 receptor–null obese mice have also
shown defective neuroplasticity concerning cognitive

processes. Adult obese diabetic mice (ob/ob) exhibit im-
paired LTP in the hippocampal CA1 area and reduced

expression levels of synaptophysin.187 In addition, ge-
netically predisposed obese mice (melanocortin 4
receptor-knockout) failed the long-term object memory

recognition.188

Thus far, the experimental evidence indicates that

obesity induces poor cognitive performance in humans
and experimental animals via different neuroendocrine

mechanisms. Among these, those affecting neuroplas-
ticity, at least in the hippocampus, have been recently

reviewed by Kanoski and Davison189 and Francis and
Stevenson190 and include impaired glucoregulation, re-

duced levels of hippocampal brain-derived neurotro-
phic factor, brain neuroinflammation produced by

increased levels of proinflammatory cytokines, loss of
blood-brain barrier integrity, and altered adult neuro-

genesis in the hypothalamus and hippocampus.191
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However, as pointed out by Stranahan and Mattson,192

because diet-induced obesity models exhibit alterations
across many metabolic and endocrine factors that could

contribute to cognitive deficits, it is hard to establish
whether changes in 1 particular factor could account

for 1 specific memory phenotype. Notwithstanding this
drawback, it seems apparent now that obesity by itself
may reprogram epigenetically mediated alterations of

brain plasticity mechanisms because it induces changes
in DNA methylation of memory-associated genes, in-

cluding Sirtuin1, in the hippocampus of adult mice.193

Nevertheless, regardless of the fact that obesity may al-

ter mRNA expression of various hippocampal enzymes
known to alter subsets of epigenetic regulators that con-

trol histone acetylation (eg. Sirt1, histone deacetylases
Hdac5, and Hdac9),194 the downstream mechanism

that couples adiposity to memory-associated genes
remains unknown. In this regard, it has been proposed

that some proinflammatory cytokines and adipokines
may play a role in this coupling: first, interleukin 1b se-

creted from peripheral fat depots mediates the obesity-
linked memory impairment in db/db mice,195 an obe-

sity model wherein leptin receptor activity is deficient
because the mice are homozygous for a point mutation

in the gene for the leptin receptor; second, deficits in
spatial memory found in mice fed a high-fat diet after

weaning occurred concomitantly with a desensitization
of the protein kinase B (Akt) pathway coupled to hippo-

campal leptin receptors.196 All of this evidence is consis-
tent with the notion that various obesity signals may

mediate high-fat-diet–induced alterations in the epige-
netic landscape within the brain.

CONCLUSION

The studies presented in this review are intended to

highlight the fact that prenatal malnutrition may lead to
neuroplastic deficits at later ages. If neuroplastic deficits

are caused by obesity, they should be prevented by pre-
cluding overweight development during postnatal life;
on the contrary, if they result from an epigenetic intra-

uterine programming of neural components, they could
be present at adulthood irrespective of the nutritional

regime adopted later in a postnatal age. Despite the fact
that the latter still remains to be subjected to experi-

mental testing, the currently available data presented
herein support the following: 1) prenatal nutritional

scarcity has an adverse impact on brain architecture
and circuits and affects lifelong behavior, metabolism,

and mental health; 2) nutritional restriction during fetal
life exerts its effects through epigenetic mechanisms

leading to long-term changes in gene expression; 3) pre-
natal malnutrition, even moderated, programs obesity

and metabolic disturbances in later life by epigenetic

modifications in protein expression interfacing the en-

vironmental calorie supply and the energy require-
ments; and 4) obesity on its own can cause poor

cognitive performance via neuroendocrine mecha-
nisms, including epigenetically mediated reprogram-

ming of adult neurons. Nevertheless, further
investigation is required to generate new data that may
describe the mechanisms involved in each of these rel-

evant aspects, reflecting the functional link between
malnutrition and pathological programing of

neuroplasticity.
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