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Abstract

In this study, the vibration behaviours of functionally graded microplates with cracks are
investigated by means of a simple yet rigorous version of Mindlin’s generialised continuum
and the extended isogeometric analysis (XIGA). The simplified strain gradient theory which
includes one material length parameter and an additional micro-inertia term is employed
to capture the size effects. Meanwhile, the displacement field of the plates is described
using the refined plate theory with four unknowns and the XIGA in which enrichment
functions are involved to effectively predict the responses of microplates with cracks. In
addition, the IGA approach with highly smooth basis functions of non-uniform rational B-
spline (NURBS) ensures a clean and efficient treatment of higher continuity requirements in
the strain gradient theory. The benchmark numerical results show significant departure from
those analysed by the classical continuum elasticity. Indeed, they reveal strong influences
of microstructural characteristics on the vibration responses of microplates which are not
shown in the platform of the classical theory and the influences are more pronounced as the
size of the plates becomes comparable with the material length parameter.

Keywords: Strain gradient theory, Extended isogeometric analysis, Vibration analysis,
Functionally graded microplates

1. Introduction

It is well known that the classical continuum theories are size independent meaning and
therefore they are unable to capture the small-scale effects. Those effects have been exper-
imentally observed in settings where the sizes of the structure of interest are comparable
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to material’s microstructure lengths [I, 2]. This inability to capture the size effect is at-
tributed to the absence of an internal length scale from the constitutive relation and the
local characterisation of stress in the classical theories. The microstructural effects become
significantly dominant in structures with very small dimensions which have been used in mi-
croelectronmechanical (MEMS) and nanoelectromechanical (NEMS) systems. Meanwhile,
the generealised or higher-order continuum theories are equipped with the additional ma-
terial lengths so that the small-scale effects can be captured efficiently. The theories that
are able to account for the size effects include gradient theory by Mindlin [3], micropolar or
Cosserat theory [4], couple stress theory by Toupin [5] and Koiter [6].

It is worth mentioning that since the gradient theory includes rotation and stretch gra-
dients, it is more general than the couple stress one which is only based on the constrained
rotation. Besides, the gradient theory and Cosserat theory are not similar due to the fact
that the latter considers independent rotation components in addition to the displacement
components which are used in the former [7]. There are many works have been done based
on the couple stress theory [8HI0] and Cosserat theory [ITHI3] to predict the behaviours of
small-scale structures. Meanwhile, the generalised strain gradient theory by Mindlin which
is also called, for the lowest-order theory, dipolar gradient theory or grade-two theory is
considered as one of the most effective theory. The fundamental idea of this theory is to
incorporate an internal displacement field to each particle of a continuum, i.e. the mate-
rial particle is considered as a deformable medium. According to this theory, the gradients
of strain are included in the strain energy density which implies the appearance of new
material constants, in addition to two classical Lamé’s constants (\, u), and the material
characteristic lengths. On the other hand, the expression of the kinetic energy density de-
pends upon the micro-inertia term leading to the presence of the intrinsic material length
that associated with the material microstructure. It is worth commenting that, at the early
stage of the development, the gradient theories were highly complex with many indepen-
dent parameters which discouraged researchers and engineers to consider them seriously for
mechanics problems. Later, the theories were simplified and only one parameter in addition
to the Lamé constants is involved. The comprehensive reviews on the development of the
gradient theories can be found in the literature [7], 14, [I5]. The gradient theories, both the
general and the simplified ones, have been widely applied in many problem including stress
concentration [I6] [I7], wave propagation [I8], 19], plasticity [20, 21], fracture [22} 23] and
static analysis [24].

In the context of plate theories, there is a great deal of works devoted to the devel-
opment of reliable mathematical models that govern their behaviours. It is started with
the classical plate theory or usually called the Kirchhoff-Love plate theory in which three
degrees of freedom corresponding to displacements are involved. The fundamental idea of
this theory is to neglect the shear deformations by assuming that the cross sections nor-
mal to the midplane remain normal during deformations. This theory appears to be simple
and effective when dealing with thin plates with large length-to-thickness ratios where the
transverse shear stresses and strains are negligibly small. However, classical plate theory
shows its drawbacks in the analysis of thick plates in which the transverse shear components
are significant. In order to overcome these shortcomings, the first-order shear deformation
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theory which is also known as Reissner-Mindlin plate theory is proposed acknowledging the
existence of the shear deformations. Consequently, this theory with five unknowns (three
displacements and two rotations) is capable of reliably predicting the structural behaviours
of both thin and thick plates. However, the major issue of the theory is the necessity to
calculate the shear correction factor to match the numerical results with the analytical ones.
The procedure to determine this factor may not be able to be established due to the fact
that it is problem dependent. Several higher-order plate theories have been proposed to
eliminate this factor. Reddy [25] pioneered the use of the five-unknown third-order plate
theory which incorporates shear deformations without using the shear correction factor. In
an effort to simplify yet maintain all beneficial features of Reddy’s theory, Senthilnathan [26]
deliberately split the transverse displacement into bending and shearing parts and employed
their spatial derivatives to represent rotations. He derived the so-called refined plate theory
(RPT) with four degrees of freedom. Recently, Karttunen et al. [27] worked on an approach
that linked plate theories and elasticity solutions in which the exact 3D plate solution and
the results for interior plate problem were presented. There is a great deal of studies that
utilised the plate theories to estimate the structural responses of structures [28-30].

The attention to the combination of the plate theories and generalised continuum the-
ories including their variations to investigate the behaviours of small-scale plates has been
constantly increased over the last few years. Papargyri-Beskou and Beskos [24] conducted
static, stability and dynamic analysis of Kirchhoff plates using the strain gradient theory
(SGT) with one additional material constant. Zhang et al. [31] utilised the Fourier series to
predict the mechanical behaviours of small-scale plate based on Kirchhoff theory. Farzam
Dadgar-Rad [32] analysed the strain gradient Reissner-Mindlin plate using C° quadrilateral
elements. Ji et al. [33] proposed a comparison of strain gradient theories which were used
in the analysis of functionally graded (FG) circular plates. Khakalo and Niiranen [34] [35]
employed the SGT for the analysis of micro/nano materials and structures as well as stress
analysis around cylindrical holes with bi-axial tension. However, in most of the works, the
micro-inertia term which appears in the kinetic energy density of the original SGT has been
ignored. In addition, the solution procedures involve either analytical approach for limited
study or finite element analysis with less requirement on the continuity of the inter-elements.
It is worth noting that when a plate theory is combined with the SGT, the resulting equa-
tion are of sixth-order leading to third-order derivatives in the weak form, which requires at
least C%-continuity of the basis functions. Such higher order requirements can be efficiently
handled by the isogeometric analysis (IGA) approach.

The IGA which is introduced by Hughes et al. [36] is capable of handling the high con-
tinuity requirements easily with appropriate basis functions. This newly developed method
also aims at the integration of the design and analysis in industrial processes. This funda-
mental idea is fulfilled by employing the same basis functions to represent the geometries
and to approximate the solution fields. Among the possibilities, the non-uniform rational
B-splines (NURBS) is the most popular option of a basis function as it has a dominant
establishment in the Computer Aided Design (CAD) industry. While NURBS can exactly
represent complex geometries, the basis function is also able to approximate the unknowns
with higher order of continuity effectively since it is highly smooth. Owing to this strik-
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ing feature, NURBS can easily handle the sixth-order plate problems based on higher-order
plate theory and generalised continuum theory where C? continuity is required. The self-
contained reviews on the IGA can be found in a number of works in the literature [37-H40].
IGA has found its application in broad fields of solid mechanics including those with small-
scale structures using beam/plate theories and generalised continuum theories and their
variants [41H46]. In attempts to deal with structural fractures, the ideas of extended finite
element method (XFEM) [47] are incorporated in the platform of the IGA. While Benson
et al. [48] presented the application of XIGA in dealing with the fracture mechanic prob-
lems, De Luycker et al. [49] showed the results of XIGA for linear fracture mechanics with
good accuracy and better convergence rate. Ghorashi et al. [50] utilised the XIGA for the
simulation of stationary and propagating cracks.

Regarding the investigation into plates with cracks, there is a well established body of
work on the mechanical behaviours of such structures. Stahl and Keer [51] studied the
vibration and buckling responses of cracked rectangular plates in which the dual series
equations and the homogeneous Fredholm integral equations were considered. Bachene et
al. [52] and Natarajan et al. [53] applied the XFEM to model the discontinuities and solve
for the vibration responses of cracked plates. Tran et al. [54] analysed the vibrations of FG
plates with cracks by means of the XIGA. However, most of the research dealt with normal-
size plates using classical continuum theories without considering size effects. Recently, Liu
et al. [55] studied the size-dependent effects of cracked plates based on Reissner-Mindlin
plate theory and modified couple stress theory. However, as mentioned above, these theories
have their own shortcomings in terms of choosing shear correction factor and accounting for
the micro-inertia term.

In this study, in order to fill the existing gaps and enrich the research into small-scale
plates with cracks, the vibration analysis of cracked FG microplates by means of the SGT
and XIGA will be presented. While the simplified SGT with one internal length scale
incorporating micro-inertia term is employed to efficiently capture the size-dependent effects,
the displacement field of the plates is modelled by the RPT. In the combination of these
particular continuum theory and plate theory, the sixth-order governing equations will be
formed. Consequently, elements with C?-continuities are required to be able to numerically
solve the equations. This condition is effectively fulfilled in the platform of the NURBS-
based XIGA in which Heaviside and novel enrichment functions are employed to model the
discontinuities along the crack path and capture the near tip asymptotic field.

The outline of this study is as follows. Whereas Section [2| gives a brief review on the
SGT and kinematics of plates, Section |3 provides the formulation of the XIGA and the
discretisation procedure. Section [4| presents the convergence study and numerical results
of cracked plates with various shapes, crack locations, and boundary conditions, as well as
the effects of the scale parameters on the vibration responses. The study is closed with
concluding remarks which are given in Section [5



2. Strain gradient FG plate formulation

2.1. Brief review of the strain gradient theory (SGT)

The general SGT with microstructure is initially presented in the benchmark paper of
Mindlin [3]. In the most general case, the strain energy density and the kinetic energy
density are both formulated in terms of quantities on the microscale and on the macroscale.
However, the formulations require in total of eighteen constitutive coefficients. Consequently,
experimental identification of those constants is extremely difficult which seriously limits
the use of this theory in practical analysis and design. Fortunately, by making a number
of assumptions, Mindlin proposed simpler versions of the gradient elasticity theory with
less number of constants which allows the strain energy density to be dependent upon the
macroscopic displacement only. The simpler versions can be categorised into three forms
based on how the microscopic deformation gradient x,j; and the macroscopic displacement
u; related. While the microscopic deformation gradient is expressed directly in terms of the
second gradient of the macroscopic displacement in Form I, k;j, = uyj, it is defined as the
first gradient of the macroscopic strain in Form II, k;, = €j5,. It is worth commenting that,
according to the classical continuum, the macroscopic strain is defined as the first gradient
of the macroscopic displacement. In Form III, the microscopic deformations are split into
the gradient of macroscopic rotation, x;; = %eﬂmum,ﬂ, and the symmetric part of the second
gradient of macroscopic displacement, k;j; = % (wijr + wjin + ugiy) [14].

In this study, a simplified version of the SGT derived from the Form II will be used.
As a starting point, the strain energy density is expressed with seven material constants
including two Lamé’s constants (A, ) as follows [3] [18§]

Uo (g, k) = 5)\51'1'5;‘]' + pEijEij + a1 Kiik Ky + Aok kkjj + A3Kiij Kk + QaRkijhrig + s KR, (1)

where the Latin indices span the range (1,2,3) and the classical strain tensor is defined as
the first gradient of the macroscopic displacement

eij = 5 (Wi + uig) = gji, (2)
and the microscopic deformation gradient or also called the strain gradient tensor are ex-
pressed in terms of the first gradient of the macroscopic strain, in turns, the second gradient
of the displacement as follows

Rijh = Ejki = 5 (Wi + Ujhi) = Kij. (3)

By making further assumptions [I5], ao = IM? a4 = pl® ay = as = a5 = 0, where { is

the characteristic length or material length scale parameter and ¢? represents the volumetric

strain energy gradient, the strain energy density can be expressed with only one additional
constant

1 1
UO = 5)\6“8]’]‘ + HEG;Eij + 52 (§>\5ii,k€jj,k + H@'j,k&j,k) . (4)
)



Meanwhile, the kinetic energy density in Cartesian coordinate system is given as follows

Ky = %puﬂli + %deg—ZZZZ (5)
where p is the mass density, the time derivative is represented by the superposed dot, and
2d is the size of the cube edges of the unit cell [18]. In their study on dispersive Rayleigh-
wave propagation, Georgiadis et al. [15] suggested the relation between the material length
scale and the size of the cube edges to be ¢? = (0.1d)?. The second term of the right-hand-
side (RHS) of Eq. which is ignored in classical theory represents the micro-inertia of
the continuum. This velocity gradient involvement allows the SGT to have a more detailed
description of the motion which is used to analyse the vibration of the small-scale structures.

2.2. Kinematics of the refined plate theory (RPT)

Senthilnathan et al. [26] proposed the RPT with four unknowns in which the displace-
ment field is given as follows

U(I7y, 2) = Ug (ZL‘,y) — ZWhx (I7y) +9 (Z) Ws,x (I7y) ’ (6&)
v (SL’,y, Z) = Yo (SL’,y) — RWpy (.Z’,y) +9g (Z) Ws,y (QZ,y) ) (6b)
w(:z:,y,z) = Whp ($7y)+w8 (m,y), (60)

where uy and vy are in-plane displacement components of a material point and w, and
ws denote the bending and shear components of transverse displacement, respectively. The
distribution of transverse strains and stresses through the thickness is represented by the
function ¢ in which ¢ : z — g(2) = f(2) — z. The function f is chosen so that its first
derivative with respect to z is identically zero at the top and bottom surfaces (z = +h/2)
[41].

From Eq. (2)), the displacement-strain relations associated with the RPT can be explicitly
presented as follows

€ =gy + 2K+ g (2) Ks, (7a)
v=[L+g@e = (e, (7b)
where
e=[e € M }T’ (8a)
Y= [ Yz Vyz }T’ (8b)

and the in-plane, bending and shear strains are expressed as

U,z Wy, Ws xx
_ _ _ wS,l‘ 9
€y = vO,y ) Ry = — wb,yy ) Kg = ws,yy ) Es = w . ( )
5y
UQ,y + Vo, 2wb,a}y Q'ws,ary



By using Eqgs. and @, the strain gradient components can be given in a set of three
equations as follows

Ki =K + 26 + 9 (2) K] + 9 (2) K] + g7 (2) K5, (10)

where i represents three possibilities of {x,y,z}. The detailed expressions of the strain
gradient tensors in terms of macroscopic displacement components can be found in Appendix

(Al

2.3. Constitutive relations

In view of Eq. , the constitutive equation in the classical elasticity theory can be
determined as follows

_ 0l
a (%ij
where 0;; = 0j; are components of monopolar (or Cauchy) stress tensor. Meanwhile, the
strain gradient constitutive equations are calculated as

oU;
Mijl = Wok = 02 (Ndjhipp + 241kiije) = O (Ajkeppi + 201 03) (12)
ij

0ij = Nijerk + 2peqj, (11)

in which 7;;; = 7;,; denote components of dipolar (or double) stress tensor having dimension
of [force][length]~!. The Lamé’s constants A and p, which is also known as shear modulus
G, are related to the effective Young’s modulus F and Poisson’s ratio v as follows

vE
ATy L 15
= 2(1—% (13b)

It should be noted that the effective engineering constants E and v for the FGMs which is
used in this study are varied continuously through the structure’s thickness. The estimation
of these constants at a specific point can be done following the rules of mixture or the
Mori-Tanaka scheme [56, 57]. A review of these estimating models and the properties of the
FGMs can be found in one of the authors’ published works [4I]. Within the scope of this
study, for the sake of simplicity, the rule of mixture is employed to determine the effective
Young’s modulus £ and Poisson’s ratio v following these equations

Ee(z) = Eme(z) + ECVZZ(Z% (148“)
Ve(2) = U Vin(2) + 1. Ve(2), (14Db)

where the volume fractions V. and V,,, of the ceramic and metal phases, respectively, which
are two constituents in the mixture of the FGMs, through the plate’s thickness h are given
by
1 2\"
‘/c - =~ + e ) vm == 1 - ‘/CJ -
©=(3+1)

7

o>

<z<

o>

: (15)



in which n is the material index indicating the profile of material variation through the
thickness. As can be interpreted from Eq. , this estimation enables the materials to
change smoothly from metal at the bottom surface to ceramic at the top. In addition,
the mixture becomes fully homogeneous ceramic material if n = 0 while fully homogeneous
metal material is obtained as n goes toward +o0.

With the assumption of o,, = 0, the monopolar stress components can be written ex-
plicitly as follows

Og Qll Ql? 0 0 0 Ex
Oy Qa1 Q2 0 0 0 Ey
Ozy = 0 0 C%?66 0 0 Vay (16)
Ozz 0 0 0 Q55 0 Vzz
Oy 0 0 0 0 Qu Vyz
where
Qu = Qm= Tt Qo= Qn = T Qu= Q= Qoo = % (17)
Meanwhile, the dipolar stress components are expressed in a set of three equations as
follows
Nizx Quu Q2 0 0 0 Kize
Niyy Q21 Q2 0 0 0 Kiyy
M= ¢ =01 0 0 Qu 0 0 2Ky (18)
Nizz 0 0 0 Q55 0 2’%12
Nizy 0 0 0 0 Qs 2Kizy

where i is one of the values from the set {z,y, z}.

2.4. Variational formulation

In view of Egs. (4] and , the strain energy and kinetic energy can be calculated by
taking the integration of the energy densities over the volume occupied by the structures as
follows

U:/UOdV:/a:edV—i-/n:h:dV (19a)
v v

“
B B 1 AL
K—/KodV—/<2pu u—|—6pd . a}() v, (19b)
v v

where o, €, 7, and Kk represent monopolar stress, strain, dipolar stress, and strain gra-
dient components, respectively. Meanwhile, u = {u,v,w}T and x are displacement and
three-dimensional spatial components, and V is the region in R3 occupied by the body. As
can be observed from Eq. , both strain energy and kinetic energy consist of the clas-
sical terms and gradient terms. This inclusion enables the current approach to be able to
comprehensively describe the structural behaviours across the scales.
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By applying the principle of virtual work, the weak form of the free vibration problem
can be expressed as follows

/ oel Dbeyd) + / 6eTDoe,dQ | + / ORI DR, + / Sk Di,dQ + / SRTDR Q)
Q Q Q Q Q
_ / 50" hiidQ + S / (i, + o indi,, + oa i . ) 0

Q Q (20)

where € is the domain in R? occupied by the mid-plane of the plate (V = € x [—%, %}) and
the strain tensor as well as the material matrix are

€o A B E
es=4 Kk ¢, D’=| B D F |, (21)
Ks E F H
in which matrix components are defined as
h/2
(Aij, Bij, Dij, Eij, Fij, Hij) = / (1,2,22,9,29,92) Qi;dz, (22a)
—h/2
h/2
Dj; = / (149 () Qiydlz, (22b)
—h/2
_ Qu Qi 0
Q=| Qu Q= 0 |, (22¢)
0 0 Qes
A Qu O
- : 22d
Q { 0 Qs (22d)

Meanwhile, the strain gradient tensor and the material matrices related to gradient terms
are

K Ky K A9 BY EY GY MY
Kl K Kl BY DY F9 I9 N
Re=14 K2 p, Ry={ K. », R.={ k2 p, D=| E¢ F9 HY J¢ P9 |,
K3 K3 K3 Gy I J9 LY QF
Kkl ki Kk MY NI P9 QI RY
T Yy z
(23)
in which
g g g g g g g g g g g g g g g
(A% Bl Dy By, Fijy iy G, I, T, Ly, Miy, Nij, P, Q1 i)
h/2 4
2
= / (172,22,g,2g,g2,g’,zg’,gg',(9’)279”,zg”,gg",g’g”,(g”)Q) Qijdz. )
—h/2
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For the terms related to the kinetic energy,

. I, 0 0
U={ u —We Wy Vo —Wpy Wsy wp, wy 0}, m=|0 I, 0|, (25
0 0 I
where
L I I L L 0
I[): _[2 ]3 I5 s 11: ]1 ]1 0 s (26&)
I, Iy Ig 0 0 O
h/2
<[1a[2a137[47]57[6): /p(l,Z,ZQ,g,Zg,QQ)dZ. (26b)
—h/2

It is worth noting that even though they are appeared in Eq. for the general cases, in
this study, the components related to the derivatives of u with respect to z are identically
Zero.

3. Extended isogeometric analysis (XIGA) discretisation for microplate with
cracks

In standard IGA, in order to calculate the basis functions, the ideas of knot vector were
introduced first. It is non-decreasing vector = = {1, &s, . . ., nipr1 b Where ith knot & € R,
n and p are the number of basis functions and the polynomial order, respectively. Having
the knot vectors defined, the B-spline and NURBS basis functions can be computed. For
the sake of brevity, the explicit derivations of those functions, which can readily find in the
literature [36, [58], are not presented here.

In the platform of the XIGA, the displacements of a plate with cracks are predicted by
enriching the standard approximation as follows

u' (x) =Y Rr(x)qi+ Y Rs(x)(H(x)—H(xs)ar+ Y Ri(x) Z (B (X) — B (xk)) bax,
IeN JeNer KeNyp a=1

(27)
where the R;, Ry, and Ry are NURBS basis functions, H(x) and B,(x) are Heaviside and
crack-tip enrichment functions, respectively. While q;, a;, and b, are variables associated
with the control points and enrichments, n,, represents the number of crack-tip enrichment
functions used. Meanwhile, x is now two-dimensional spatial components. It should be
noted that the local enrichment functions R; and Rg are not necessary to be the same as
the shape function R; which is used for the displacement approximation [59]. A is the set
of all control points. Besides, N, represents the set of control points whose supports are
bisected by the crack while Ny, is the set of all control points whose support contains the
crack tip. As the integration gets less reliable results in the elements being cut by the crack
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path or element with crack tip, in this study, the full integration with subtriangle technique
is used to improve the approximation in such elements. A brief description of different sets
of control point and how enriched elements being segmented into subtriangles is provided in
Fig. [

The Heaviside function which is employed to model the discontinuity in structure with
cracks takes values of 41 if the point of interest in physical coordinate x is on one side the
crack and —1 otherwise. Giving x* is the closest point on the crack to x and e, is the unit
normal vector at x*, the function can be expressed mathematically as follows [47]

H (x) = {—l—l if (x —x*).e,, >0,

. (28)
—1 otherwise.

Fig. [2| illustrates a simple representation of the Heaviside function and its effects on the
basis functions in approximation of fields in which a crack at £ = 0.4 is considered.

Meanwhile, the crack-tip enrichment functions improve the accuracy of the solution by
spanning the near tip asymptotic field and reliably describing the singular stress field near
the crack tip. The choice of the crack-tip enrichment functions depends on the original
displacement description of the problem and how well the function can capture the near tip
asymptotic field [47]. In this specific problem of the small-scale plates in which the RPT and
SGT are employed, the enrichment functions should also account for the inclusion of high-
order strain gradient terms [60]. They are defined in the local polar coordinates associated
with the crack tip as follows

0 30 30 560 560
r3/zsin§, 7‘3/2COS§, 7‘3/28111?, r3/2cos?, r3/28in7, 7’3/20083 for ug, vy,
B =
30 50
r3/QSin§, 7"3/251n?, r5/2sin§, 7"5/2(:055, r5/2sin§, 7“5/2(:037, 7"5/231n?, r5/2cos?} for wy, ws.

(29)

By substituting the approximation in Eq. into the strains derived in Egs. ([7))-

@D, the classical strain components can be expressed in terms of the basis functions and
enrichment functions as follows

e=[el & W) = [ @yt BT @) an (6w

e. =Y Biaa, (30D)
A

where q 4 consists of both displacement and enrichment variables and the detailed expressions
of B’?, BY, B2, and B’ matrices are given in Appendix [B

Similarly, by using Eqs. (27), and Appendix , the strain gradient tensors can be
expressed in the form of the following equations

T T ) ) WD ] =Y [ @7 @ @ @ B ]
! (31)
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where i represents three possibilities of {z,y, z} and the detailed expressions of the matrices
in the RHS are given in Appendix [B]
The discretised systems of equations for the free vibration analysis using XIGA is

(K—w’M)q=0, (32)
where the global stiffness and mass matrices are respectively given as

K=K+ (K,+K,+K,), (33a)
M = M.+ (M, + M, +M,_,), (33b)

in which the subscript ¢ indicates the matrices on RHS are associated with the classical terms
while the remains are with the strain gradient terms. The element stiffness and mass matrices
from which the global matrices are assembled are given in Appendix [C] and Appendix [D]
respectively. It is worth noting that, as discussed, the derivatives of displacement variables
with respect to z are identically zero yielding My, to be a zero matrix.

As a final note to close this section, observing from Appendix [B], the third derivatives of
the approximation functions are required in the extended isogeometric discretisation process
which means the C?-continuity between elements should be maintained. This requirement
of highly smooth elements is not fulfilled in the platform of the traditional finite element
methods. However, this issue can be addressed naturally and efficiently by using NURBS-
based basis functions with polynomial order p > 3.

4. Numerical results and discussion

In this section, the numerical results of the vibration analysis of small-scale FG plates
with cracks will be presented. The microplates are made of Al/Al,O3 in which the material
properties are E. = 380 GPa, E,, = 70 GPa, v, = v, = 0.3, p. = 3800 (kg/m?), p,,, = 2707
(kg/m?). Unless specifically mentioned, the rule of mixture is employed to describe the
distribution of the ceramic and metal phases for numerical analyses in this section. It
should be noted that ¢/h = 0 implies the analysis is conducted within the context of classical
continuum, i.e. no size effects considered. As the formulation of the SGT-based vibration
problems requires at least C%-continuity elements, the quartic basis functions (p = 4) which
satisfy up to C3-continuous requirements have been employed. Meanwhile, the boundary
conditions are applied using similar techniques that have been discussed in the work of
Nguyen et al. [41].

4.1. Convergence and verification

For the illustration of the convergence and validity of the proposed approach, a number
of analyses for square plate with different parameters of element meshes have been tested.
Since there are no results reported for the vibration of cracked FG microplates based on
the SGT, the numerical results are first generated for the plates without the size-dependent
effects. Fig. [3] shows the convergence of the fundamental frequency of the simply-supported
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Al/Al,O3 square plate with a crack in which the frequency normalisation w = w% % is
used. As can be observed, the solutions converge well to the reference 3D elasticity results,
which were reported by Huang et al. [61].

Table 1] presents a complete comparison of the results generated from the proposed
method and those of other approaches including 3D elasticity and Ritz method by Huang et
al. [61], XFEM by Natarajan et al. [53], and XIGA using the third-order shear deformation
theory (TSDT) by Tran et al. [54]. As can be seen, for the case of absence of size effects,
i.e. £/h =0, the present results of the first five natural frequencies of the plates are in good
agreement with the existing analytical and approximate solutions in the literature.

In the next parts, investigations into the vibrational behaviours of square, circular, and
annular microplates with edge cracks and center cracks will be presented.

4.2. Square microplates with cracks

In this part, a number of numerical studies of vibration responses of square FG mi-
croplates with edge and center cracks are presented to demonstrate the effects of material
length scale ratio ¢/h, aspect ratio a/h, and material index n on the natural frequencies of
the small-scale structures. The geometry configurations of the square plates with edge and
center cracks are given in Fig. [4l In order to present the numerical results efficiently, unless
otherwise stated, the normalisation of frequency mentioned in the previous section is used.
As there are no results reported for the vibration of cracked microplates using the SGT, the
solutions in this study can be used as benchmark references.

Fig. [5|presents the effects of the material length scale ratio ¢/h on the natural frequencies
of SSSS Al/Al;O3 microplates with an edge crack through the first five modes. With constant
values of aspect ratio a/h, crack ratio ¢/a, and material index n, it is observed that the
growth of material length scale ratio ¢/h meaning h decreases as ¢ fixed is followed by the
increase of the natural frequency in each mode. This observation can also be made from
Table (1] where the numerical results for cases with size effects, i.e. £/h # 0 are presented.
The reason for this phenomenon is that as the consideration of the size-dependent effect
gets more pronounced, i.e. larger ¢/h, the contribution of the non-classical terms to the
structure’s strain energy in Eq. becomes proportionally significant. Therefore, the
stiffness of the structure is considerably increased yielding higher vibrational frequencies as
a result of the structural capacity improvement. It is worth commenting that the natural
frequencies consistently increase as the modes change reflects the nature of the vibration
problem regardless of size-dependent effects. For illustrative purposes, the first four mode
shapes of simply-supported plates with an edge crack for specific geometry and material
parameters of a/h = 20,¢/a = 0.5,¢/h = 0.2,n = 5 in which the size-dependent effects are
considered are plotted in Fig. [0]

Similarly, as a parametric study, while Fig. [7] shows the effects of the material length
scale ratio £/h on the the natural frequencies of clamped-free Al/Al,O3 microplates with
an edge crack, those effects on Al/Al,O3 microplates with a center crack are illustrated in
Fig. [l In the latter case, the plates are tested with different type of boundary conditions
including simply-supported and clamped ones. As the clamped plates are enforced with
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more constraints, the natural frequencies reach higher magnitudes due to the increase of the
structure’s stiffness.

Fig. [9] demonstrates the effects of the crack ratio ¢/a and the material length scale ratio
¢/h on the natural frequencies of Al/Al,O3 microplates with center crack through modes
(a/h = 20,n = 1). As it can be expected, although the variations of natural frequencies
against the crack ratio are of similar trends, the results generated from cases with ¢/h = 0 are
25% - 30% smaller than those calculated from the approach in which the SGT is considered
to account for size-dependent effects (¢/h = 0.2). Meanwhile, the increase of the crack ratio
c¢/a which means a larger crack is prescribed in the plate is generally followed by the decline
in vibrational frequencies as a result of the structure being weaken. In addition, one may
notice that while the natural frequencies of the first and third modes vary slightly as crack
length grows, those of the second and fourth modes drop significantly. This is due to the
fact that the mode shapes in the latter case are of crack-opening configurations while the
crack paths in the former cases remain closed. It is interesting to see that even though the
boundary conditions are different, mode shapes corresponding to the SSSS plates are similar
to those of CCCC ones shown in Fig. in terms of crack opening.

A more comprehensive illustration of the effects of the material length scale ratio ¢/h,
aspect ratio a/h, and material index n on the fundamental frequency of the plate can be
found in Fig. [I0] As can be further observed here, with other geometrical parameter fixed,
the increase of the material index n weakens the structural stiffness which causes the decrease
in vibrational frequencies. This is a results of the volume fraction or, in order word, the
proportion of ceramic phase (Al;O3) being reduced and replaced by the metal phase (Al)
with lower elasticity modulus as n increased. One can also interpret this trend by looking
at the material distribution of FG plates which is, in this study, governed by the rule of
mixtures shown in Eq. . For the purpose of visual illustration, Fig. shows the first
four mode shapes of a clamped-free plate with an edge crack while those of a fully-clamped
plate with a center crack are plotted in Fig. [12]

4.8. Circular and annular microplates with cracks

A number of numerical studies the vibration behaviours of circular and annular small-
scale FG plates with cracks whose geometries depicted in Fig. will be discussed in this
part of the section. In order to present the results in an efficient manner, this normalisation

R* [p.
is employed w = W= 2— Fig. presents the effects of the material length scale ratio

¢/h on the natural frequencies of the simply-supported circular plate with a center crack.
Similar to the previous part where the rectangular plates are considered, the increase in
material length scale ratio leads to the rise of the vibrational frequencies. This is attributed
to the inclusion of the strain gradient terms in the strain energy density of the small-scale
plates which increases the magnitude of the structural stiffness. The first four mode shapes
of the simply-supported microplates with a center crack and specific geometry and material
parameters are plotted in Fig.

For annular plates, only one half of the symmetric structure is analysed due to the fact
that this consideration significantly reduces the complexity of geometry representations in
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IGA and also the computational effort of solving procedure. Fig. shows the effects of
the material length scale ratio ¢/h on the natural frequencies of the microplates in which
the inner perimeter is free from constraints while the clamped boundary condition is apply
at the outer circle of the annulus. In addition, Fig. illustrates a more comprehensive
observation of how geometry and material factors effect the vibrational behaviours in which
the variation of the plate’s fundamental frequencies against the changes of material length
scale ratio ¢/h, aspect ratio R/h, and material index n are given. Meanwhile, Fig.
describes the first four mode shapes the annular plate subjected to clamped-free boundary
condition with a center crack and specific geometry and material parameters.

5. Concluding remarks

The strain gradient theory with one material length scale parameter and an additional
micro-inertia term was employed together with the extended isogeometric analysis to in-
vestigate the vibration behaviours of functionally graded microplates with cracks. The
displacement field was described using the refined plate theory with four unknowns which
results in a sixth-order problem with C?-continuity requirement. This condition was ef-
fectively fulfilled by the extended isogeometric analysis that possesses highly smooth basis
functions of NURBS with new enrichment functions. Meanwhile, the size-dependent effects
in small-scale plates which classical continuum theory failed to capture were efficiently pre-
dicted by the strain gradient theory. The benchmark results showed significant departure
from those generated by the classical theory. The parametric studies showed that the in-
clusion of material length scale and the addition of micro-inertia term resulted in increases
of vibration frequencies when the size of the plates become smaller. Besides, a completely
different scenario was observed when the material index n of the functionally graded ma-
terial increases and it decreases the vibration frequencies. In addition, the influence of the
aspect ratio a/h was also investigated which shows a remarkable effect on the frequencies of
thin plates but less pronounced for thick plates. Furthermore, the vibration mode shapes
had strong impacts on the corresponding frequencies when crack length increases, especially
for open-crack cases. Meanwhile, those were less significant for configurations with cracks
remained closed.
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Appendix A Strain gradient components

Razx U,z —Wp,zxx
Rayy Vo,zy —Wh,zyy
Ry = QKJacyz s K’?g = Ws 2y ) F"'i; = 0 ) K‘?g
2Kzzz Ws zx 0
2/€xxy Uo,zy + Vo,zz _2wb,xxy
Ryze U0, zy —Wy,zyy
Ryyy Yo,yy —Wh,yyy
Ky = 2Ky ,mg = W yy ,mi = 0 ,mfj =
2Kyzz We 2y 0
2Kyay Uo,yy + Vo,zy —2Wp 2y
Rzzx —Wh,zx 0 0
K 2yy —Whyy 0 0
K, =< 2K, p,Ko= 0 ki=¢ 0 3 k2= 0 %,k
2K .02 0 0 0
2K 2z —2Wh 2y 0 0
Kizz =0

Appendix B B matrices
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where R can be either standard basis functions or enrichment functions.
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Appendix C Element stiffness matrices
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Appendix D Element mass matrices
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where

(44a)

o o O
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Table 1: Normalised natural frequencies of SSSS Al/Al,O3 square plates with an edge crack

n  Method ¢/h  Mode
1 2 3 4 )
0 Ritz [61] 0 5.3790  11.4500 13.3200 16.1800 17.3200
XFEM [53] 0 5.3870  11.4190 13.3590 —
XIGA-TSDT [54] 0 5.3643  11.4734 13.2801 16.2062 17.2927
Present 0 5.4013  11.6012 13.2822 15.3834 17.3216

0.2 6.6548 14.8945 15.9156 16.3371 19.3573
0.4 93819 16.5765 19.5058 21.2259 22.3737
0.6 12.6181 17.0482 19.6141 23.8053 28.5286
0.8 15.9933 17.4653 19.7264 24.9174 32.6846
1 17.8595 19.3634 19.8416 25.8765 33.9185

1 3D elasticity [61] 0 41150  8.8360  10.2400 13.3300 13.5200
Ritz [61] 0 4.1220  8.8560  10.2500 13.3100 13.4900
XFEM [53] 0 4.1220 85260  10.2850
XIGA-TSDT [B4] 0 41119 88791  10.2131 13.3103 13.4946
Present 0 4.1345 89400 10.2092 12.7727 13.3407

0.2 5.2431 11.7900 12,9007 13.2175 16.0945
0.4 75919 13.7657 16.2206 17.1983 18.5554
0.6 10.3308 14.1609 16.3108 19.7674 23.3282
0.8 13.1642 14.5086 16.4042 20.6946 27.1119
1 14.8369 15.9821 16.5000 21.4940 28.1524

5  Ritz [61] 0 3.5110 7.3790 8.6210  10.4900 11.1700
XFEM [53] 0 3.6260  7.4150  8.5660
XIGA-TSDT [54] 0 3.5018  7.3980 85912  10.4928 11.1511
Present 0 3.5289  7.5199 85991  9.9608  11.1737

0.2 43602 9.7714 10.3137 10.6874 12.5581
0.4 6.1475 10.7351 12.6574 14.0349 14.4805
0.6 8.2635 11.0441 12.7279 15.4147 18.8640
0.8 10.4694 11.3157 12.8007 16.1391 21.1315
1 11.5719 12.6717 12.8755 16.7637 21.9454

10 Ritz [61] 0 3.3880  7.0620  8.2890  9.5690  10.7100
XFEM [53] 0 3.4090  7.0590  8.2210
XIGA-TSDT [54] 0 3.3773  7.0792  8.2582  9.5750  10.6887
Present 0 3.4068  7.2173 82690 9.0874  10.7259

0.2 41387 9.2388  9.4179 10.1306 11.4478
0.4 57298 9.7933 11.5371 13.0854 13.2137
0.6 7.6340 10.0738 11.6013 14.0628 17.4656
0.8 9.6308 10.3210 11.6677 14.7221 19.2907
1 10.5543 11.6304 11.7359 15.2906 20.0274




quadrature points

subtriangles

element edges

Figure 1: Sub-triangles for element cut by crack path and tip element.
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Figure 2: Product of the Heaviside function H at £ = 0.4 with the B-spline basis functions and its derivatives
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with the knot vector E = {0,0,0,0, 177 %, 1,1,1, 1}.
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Figure 3: Convergence of fundamental frequency of simply-supported Al/Al;O3 square plates with different
meshes, a/h = 10,¢/a = 0.5,n = 0.
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Figure 4: Geometry of square plates with cracks.
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Figure 5: Effects of material length scale ratio £/h on the natural frequencies of SSSS Al/Al;O3 square
plates with an edge crack (a/h =100, ¢/a = 0.5, n = 1).
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(c) Mode 3

(d) Mode 4

Figure 6: The first four mode shapes of SSSS Al/Al;O3 with an edge crack.
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Figure 7: Effects of material length scale ratio ¢/h on the natural frequencies of CFFF Al/Al;O3 square
plates with an edge crack (a/h = 20, ¢/a = 0.5, n = 5).
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Figure 8: Effects of material length scale ratio £/h on the natural frequencies of Al/Al;O3 square plates
with center crack (a/h =20, ¢/a = 0.5, n =1).
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Figure 9: Effects of center crack ratio ¢/a and material length scale ratio £/h on the frequencies of SSSS
Al/Al,03 square plates with center crack, (a/h =20, n = 1).
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Figure 10: Effects of £/h,a/h,n on the fundamental frequencies of SSSS Al/Al;O3 square plates with an
edge crack, (¢/a = 0.5).
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4

Figure 11: The first four mode shapes of clamped-free Al/Al;O3 with an edge crack.



(b) Mode 2

(c) Mode 3

(d) Mode 4

Figure 12: The first four mode shapes of clamped Al/Al;O3 with a center crack.



(a) Circular plate

(b) Annular plate

Figure 13: Geometry of circular and annular plates with center cracks.

37



oo

Normalised frequency, w

1 2 3 4 5
Mode

Figure 14: Effects of material length scale ratio £/h on the natural frequencies of simply-supported Al/Al;O3
circular plates with center crack, (h/R =0.05, ¢/R=1,n=1).
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(b) Mode 2
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Figure 15: The first four mode shapes of simply-supported Al/Al;Oj3 circular with a center crack.
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Figure 16: Effects of material length scale ratio £/h on the natural frequencies of Al/Al;O3 annular plates
with center crack (h/R = 0.05, r/R =0.5, ¢/(R—r) =05, n=1).
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Figure 17: Effects of £/h, R/h,n on the fundamental frequencies of Al/Al;O3 annular plates with center
crack (¢/a = 0.5(R —r)).
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4

Figure 18: The first four mode shapes of clamped-free a Al/Al,O3 half annular plate.
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