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Abstract 25 

Determining the clinical significance of germline and somatic KMT2D missense variants 26 

(MVs) in Kabuki syndrome (KS) and cancers can be challenging. We analysed 1 920 distinct 27 

KMT2D MVs that included 1 535 germline MVs in controls (Control-MVs), 584 somatic 28 

MVs in cancers (Cancer-MVs) and 201 MV in individuals with KS (KS-MVs). The 29 

proportion of MVs likely to affect splicing was significantly higher for Cancer-MVs and KS-30 

MVs than in Control-MVs (p=0.000018). Our analysis identified significant clustering of 31 

Cancer-MVs and KS-MVs in the PHD#3 and #4, RING#4 and SET domains. Areas of 32 

enrichment restricted to just Cancer-MVs (FYR-C and between amino acids 3 043-3 248) or 33 

KS-MVs (Coiled–coil#5, FYR-N and between amino acids 4 995-5 090) were also found. 34 

Cancer-MVs and KS-MVs tended to affect more conserved residues (lower BLOSUM scores, 35 

p<0.001 and p=0.007). KS-MVs are more likely to increase the energy for protein folding 36 

(higher ELASPIC ∆∆G scores, p=0.03). Cancer-MVs are more likely to disrupt protein 37 

interactions (higher StructMAn scores, p=0.019). We reclassify several presumed pathogenic 38 

MVs as benign or as variants of uncertain significance. We raise the possibility of as yet 39 

unrecognised ‘non-KS’ phenotype(s) associated with some germline pathogenic KMT2D 40 

MVs. Overall, this work provides insights into the disease mechanism of KMT2D variants 41 

and can be extended to other genes, mutations in which also cause developmental syndromes 42 

and cancer. 43 

 44 

Keywords: KMT2D; Kabuki syndrome; missense variant; protein domain  45 
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1 Introduction 46 

Histone lysine methylation defects are an important cause for developmental disorders and 47 

cancers (1, 2). KMT2D (formerly known as MLL2 and ALR) encodes lysine (K)-specific 48 

methyltransferase 2D, which catalyses the mono-, di- and trimethylation of the lysine 4 on 49 

histone 3 (H3K4), promoting the expression of its target genes (3). Germline deleterious 50 

heterozygous KMT2D variants cause Kabuki syndrome type 1 (KS, MIM# 147920), a rare 51 

congenital disorder characterized by intellectual disability, growth retardation, distinctive 52 

facial features and structural anomalies (4-7). Somatic deleterious KMT2D variants have been 53 

described in a spectrum of cancers including leukaemias, gastrointestinal and central nervous 54 

system tumours (8, 9).  55 

 56 

Correct interpretation of KMT2D variants is crucial for diagnosis in KS and disease 57 

progression in cancers (10, 11).  About 80% of deleterious germline KMT2D variants are 58 

predicted to result in a truncated protein (5) (Figure S1). Germline pathogenic missense 59 

KMT2D variants are also frequently encountered in KS (4, 5, 12-31). In contrast, only 35% of 60 

somatic KMT2D variants in cancers are predicted to be protein truncating (Figure S1). 61 

Approximately 50% of the somatic variants found in cancers are missense, and the remaining 62 

are in-frame insertions/deletions and synonymous variants (32) (Figure S1).  63 

 64 

Although limited functional analysis of KMT2D variants is now possible, determining the 65 

consequences of KMT2D missense variants (MVs) in diagnostic setting remains challenging 66 

because parental segregation is not always possible, and especially due to incomplete 67 

understanding of KMT2D protein structure and its interactions (33-36). Notably, the three-68 

dimensional structure of only the SET domain of the protein is available (PDB entries 4z4p 69 

and 4erq) (37). A systematic study of KMT2D MVs can, therefore, have significant clinical 70 
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benefits and help to distinguish pathogenic from benign germline variants and driver somatic 71 

variants from passenger ones. Additionally, this may provide insights into the structure and 72 

function of this important protein. Furthermore, the consequences of disease-causing 73 

germline and somatic variants can be different. For example, some activating somatic BRAF 74 

variants cause malignant melanoma (38), while other activating germline BRAF variants 75 

cause cardiofaciocutaneous syndrome (MIM #115150) (39). Somatic loss-of-function 76 

SMARCA4 variants cause hypercalcemic type small cell carcinoma of the ovary (40) and 77 

postulated activating germline SMARCA4 variants are associated with Coffin-Siris syndrome 78 

(MIM #614609) (41). However, germline and somatic KMT2D MVs have not previously 79 

been systematically compared. Likewise, loss-of-function, dominant negative or activating 80 

germline MVs in the same gene can cause different phenotypes or diseases (42-45). 81 

Although, all KS-causing KMT2D variants are presumed to be loss-of-function, the 82 

possibility of other phenotypes resulting from a different spectrum of germline KMT2D 83 

variants has not been examined. Similarly, loss-of-function, dominant negative or activating 84 

somatic MVs can have different consequences (46). However, this aspect has not been 85 

explored for KMT2D previously. For all these reasons, we performed a comprehensive 86 

systematic study of KMT2D MVs.  87 

 88 

2 Methods 89 

The study design is summarised in Figure 1. The databases and tools used in this study are 90 

summarised in Tables S1 and S2. 91 

2.1 Compilation and interpretation of KMT2D MVs 92 
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KMT2D MVs reported in control population (Control-MVs) were compiled from the Exome 93 

Aggregation Consortium (47) (ExAC, Version 0.3.1) database, the 1000 Genomes (1K-G) 94 

Project (48), Database of Single Nucleotide Polymorphisms (dbSNP) (49) and the NHLBI-95 

GO Exome Sequencing Project (ESP) (50). The ExAC data was accessed via 96 

http://exac.broadinstitute.org/ and the other data were obtained from the Ensembl version 80-97 

GRCh37. For ExAC, only high-quality and non-flagged sites were included. For analyses, we 98 

assumed that Control-MVs did not result in any phenotype. 99 

 100 

KMT2D MVs annotated as being identified only in somatic tissue (Cancer-MVs) were 101 

compiled from the Catalogue of Somatic Mutations in Cancer (COSMIC) (32) database, 102 

version 77.  103 

 104 

KMT2D MVs reported in KS (KS-MVs) were obtained from literature (and cross-checked 105 

with Human Gene Mutation Database Professional® [HGMD]) (51), ClinVar (52) and our 106 

in-house database for Kabuki syndrome test results. Of note, the Manchester Centre for 107 

Genomic Medicine has offered diagnostic KMT2D genotyping by sequencing since 2012.  108 

 109 

All the Control-MVs, Cancer-MVs and KS-MVs were assessed by the Ensembl Variant 110 

Effect Predictor (VEP) (53) to obtain their minor allele frequencies and to identify the 111 

variants that were likely to disrupt splicing. EX-SKIP tool (54) was used to identify 112 

substitutions that may result in exon skipping in mature transcripts. All MVs predicted not to 113 

disrupt splicing were mapped with their frequencies on KMT2D protein domains, regions and 114 

motifs (according to UniProt accession number O14686) using the Mutation Mapper tool 115 

from the cBio Cancer Genomics Portal (55, 56). For purpose of our analysis, we divided the 116 
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regions of the protein sequence that are not part of a specific domain or motif into 19 ‘no 117 

domain’ regions (Figure S2). 118 

 119 

Next, for all MVs that were predicted not to significantly affect splicing, we generated the 120 

Blocks Substitution Matrix Series 62 (BLOSUM62) (57) scores for evolutionary conservation 121 

analyses, the Ensemble Learning Approach for Stability Prediction of Interface and Core 122 

mutations (ELASPIC) algorithm ∆∆G values (58) for changes to the thermodynamic 123 

properties resulting from substitutions, the Structural Mutation Annotation (StructMAn) score 124 

(59) for calculating the impact of MVs on the interaction of KMT2D with other proteins and 125 

ligands, obtaining the probability-of-disruption scores when possible. The PDB file for the 126 

longest chain reported for KMT2D as part of a complex was downloaded from the Protein 127 

Data Bank in Europe (37) (PDB entry 4erq) in order to support the analyses given by 128 

ELASPIC and StructMAn.  129 

 130 

2.2 Statistical Analysis 131 

To study the association between the type of the phenotype and the location of MVs, the 132 

likelihood ratio chi-square test was applied. The Z-test with the Bonferroni correction was 133 

used to compare the proportion of MVs on each location according to the phenotype. The 134 

Kruskal-Wallis test with multiple comparisons was applied to compare the BLOSUM62 135 

scores, ELASPIC ∆∆G and StructMAn interaction scores amongst the phenotypes, which 136 

were also described using the median and interquartile range. For all statistical analyses, the 137 

IBM SPSS® version 22 programme was used and a two-sided, exact p-value <0.05 was 138 

considered as significant.  139 

 140 
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3 Results 141 

3.1 Compilation of variants 142 

In total we identified 1 920 distinct MVs, which included 1 535 KMT2D Control-MVs, 584 143 

KMT2D Cancer-MVs and 201 KS-MVs (Table S3). Of note, six MVs were reported in all 144 

three groups, 85 were reported in both Cancer-MVs and Control-MVs groups, 83 were 145 

reported in both KS-MVs and Control-MVs groups, and 23 were reported in both Cancer-146 

MVs and KS-MVs groups (Figure S3) (Table S3-1). 147 

 148 

The MAFs for 1 211/1 535 (78.9%) Control-MVs were <1/10 000, and for 53/1 535 (3.5%) 149 

Control-MVs was >1/1 000 (Table S3). The Arg5048 was the most frequently altered amino 150 

acid in the Cancer-MVs group (7/584, 1.2%), followed by Arg3582 and Arg3727 (each 151 

5/584, 0.9%) (Table S3). The Arg5179 was the most frequently altered amino acid in the KS-152 

MVs group (8/201, 4%), followed by the Arg5048 and Arg5432 amino acids (each 7/201, 153 

3.5%) (Table S3).  154 

 155 

16/1 535 Control-MVs, 14/584 Cancer-MVs and 11/201 KS-MVs were predicted to 156 

significantly affect splicing (two of these variants were present in both Control-MVs and KS-157 

MVs groups, and one in both Cancer-MVs and KS-MVs groups) (Table S3-2) (Figure 2). As 158 

these variants are likely to result in loss of function by introduction of frameshift, they were 159 

excluded from subsequent analyses that were performed on 1,519 Control-MVs, 570 Cancer-160 

MVs and 190 KS-MVs. The proportion of presumed MVs predicted to affect splicing is 161 

significantly higher for KS-MVs and Cancer-MVs in comparison with Control-MVs 162 

(χ2=21.88, df=2, p=0.000018). Of these 41 variants that are predicted to disrupt splicing, 6/16 163 

(37.5%) in controls, 8/14 (57.1%) in cancer and 7/11 (63.6%) in KS affect either the first or 164 
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last bases of exons, demonstrating a further enrichment of canonical splice-donor and splice-165 

acceptor sites in cancer and KS (Table S3-2) (Figure 2). EX-SKIP tool analysis showed that 166 

out of these six Control-MVs, two (c.50C>T and c.5188G>A) did not increase the probability 167 

of exon-skipping when compared against wild-type (WT) and the remaining four 168 

(c.4131G>C, c.4419G>T, c.4693G>T, c.4694C>T) variants were predicted to result in in-169 

frame exon skipping.   170 

 171 

3.2 Location of MVs 172 

We identified several regions of constraint for Control-MVs (Figure 3; Tables 1 and 2). 173 

Cancer-MVs clustered in PHD#3, PHD#4, RING#4, FYR-C, and SET domains in 174 

comparison with Control-MVs (p<0.05) (Tables 1 and 2). Cancer-MVs also clustered 175 

specifically between amino acid numbers 3 043-3 248 (No Domain #8 in Figure S2) when 176 

compared with Control-MVs and KS-MVs (p<0.05) (Table 2). KS-MVs clustered in PHD#3, 177 

PHD#4, Coiled–coil#5, RING#4, FYR-N and SET domains when compared with Control-178 

MVs (p<0.05) (Tables 1 and 2). KS-MVs also clustered specifically between amino acid 179 

numbers 4 995-5 090 (No Domain #16 in Figure S2) when compared with Control-MVs and 180 

Cancer-MVs (p<0.05) (Table 2). 181 

 182 

3.3 Consequences on protein properties 183 

The median BLOSUM score for Control-MVs was -1 (-2;1), for Cancer-MVs was -1 (-2;0), 184 

and for KS-MVs was -1 (-2;0) (Figure 4). Overall, the BLOSUM scores for Cancer-MVs and 185 

KS-MVs were significantly lower when compared to Control-MVs (p<0.001 and p=0.007, 186 

respectively) (Figure 4). 187 
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 188 

The ELASPIC ∆∆G score for Control-MVs was 0.76 (0.25;1.07), for Cancer-MVs was 0.89 189 

(0.4;1.46), and for KS-MVs was 0.98 (0.34;2.17) (Figure 4). The ELASPIC ∆∆G scores for 190 

KS-MVs were significantly higher when compared to Control-MVs (p=0.03) (Figure 4). No 191 

other pairwise comparisons were significant (Figure 4). 192 

 193 

The StructMAn score for Control-MVs was 0.17 (0.14;0.26), for Cancer-MVs was 0.32 194 

(0.15;0.42), and for KS-MVs was 0.21 (0.14;0.34) (Figure 4). The StructMAn scores for 195 

Cancer-MVs were significantly higher when compared to Control-MVs (p=0.019). No other 196 

pairwise comparisons were significant (Figure 4). 197 

4 Discussion 198 

We present a comprehensive analysis of KMT2D MVs reported in control populations, 199 

cancers and KS. Rare KMT2D MVs are frequent in the general population as nearly 80% of 200 

Control-MVs have a MAF <1/10 000 (Table S3). Hence, the rarity of a KMT2D variant is not 201 

a reliable indicator of pathogenicity. This compilation highlights five arginine residues in 202 

KMT2D that are recurrently substituted in cancer (Arg5048, Arg3582 and Arg3727) and KS 203 

(Arg5048, Arg5179 and Arg5432) (Table S3). Interestingly, Arg5048 is amongst the most 204 

frequently mutated residues in both cancer and in KS. Arg5048 and Arg5432 are located 205 

outside any recognized domains of the protein (No domain #16 and #18, respectively in 206 

Figure S2). The Arg5432Trp substitution has been shown to disrupt the interaction of 207 

KMT2D with RBBP5 and ASH2L, and result in loss of its catalytic activity (60). Arg5179 is 208 

located in the FYR-N domain, which is a region of around 50-100 amino acids enriched in 209 

phenylalanine (F) and tyrosine (Y) found in chromatin-associated proteins (61). Arg3582 and 210 

Arg3727 are located in the coiled-coils #3 and #4, respectively. Coiled-coils are a type of 211 
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secondary structure composed of two or more alpha helices which pack together like a cable. 212 

These structures help to position catalytic activities at fixed distance (62).  213 

 214 

Intriguingly, we found that six KMT2D MVs have been described in controls, cancers and 215 

KS; 85 in cancer and controls; and 83 in KS and controls (Tables S3-1). Several possibilities 216 

could account for these MVs being observed in control and disease cohorts. Overlap between 217 

controls and cancer MVs could be explained by incorrect curation of germline variants as 218 

somatic-only in the COSMIC database or wrongly curated somatic variants as germline 219 

benign variants in controls. Overlap between controls and KS-MVs could be explained by 220 

incorrect interpretation of pathogenicity of these benign variants in KS. Alternatively, these 221 

variants may be causing KS with reduced penetrance. However, incomplete penetrance has 222 

never been reported in KS. Notably, in other disorders, somatic mosaicism of truly 223 

pathogenic variants in healthy controls has been described (e.g. in Bohring-Opitz syndrome) 224 

(63) and this could be another explanation for some overlap observed between KS-MVs and 225 

Control-MVs. 65/83 of the overlapping KS-MVs and Control-MVs are located outside the 226 

regions of enrichment in KS-MVs, therefore, they are more likely to be benign variants 227 

(Table S3-1). 228 

 229 

MVs predicted to alter splicing, those affecting canonical splice-donor and splice-acceptor 230 

sites were significantly more frequent in cancer and KS, which is consistent with the loss-of-231 

function mechanism associated with these two disorders (Table S3-2) (Figure 2). These 232 

variants in cancer and KS should be more appropriately reclassified as splicing variants.  233 

 234 

Of note, the six Control-MVs affecting the first or last nucleotide of exons are all located at 235 

the first half of the gene (exons 2, 13, 16, 17, 18, 21; Figure 2), which should allow the 236 
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expression of an alternative protein coding transcript (ENST00000526209.1). The protein 237 

encoded by this alternative transcript includes the catalytic SET and Post-SET domains 238 

without the PHD-type and RING-type zinc fingers, the SPPPEPEA region, the HMG Box, 239 

coiled-coils, the LXXLL motifs and the FYR-N and –C domains (Figure S2). This 240 

observation points towards the potential redundancy of the N-terminus of KMT2D, which is 241 

consistent with previous observations and may indicate the compensatory capacity of the 242 

alternative transcript for normal development (60, 64, 65). Interestingly, 11/16 (68%) 243 

KMT2D protein-truncating variants (PTVs) reported in ExAC are located in the first half of 244 

the gene (from residue 1 to 2,768). This is in contrast with KMT2D PTVs in HGMD and 245 

COSMIC, where 39% of KS-PTVs, and 53% of Cancer-PTVs are in this region. 246 

 247 

We demonstrate significant clustering of Cancer-MVs and KS-MVs in the PHD-type zinc 248 

fingers #3 and #4, RING-type zinc finger #4 and SET domains, reflecting the importance of 249 

these domains in the function of KMT2D. The PHD (plant homeodomain) fingers are 250 

domains of 50–80 amino acids containing a zinc-binding motif that appears in many 251 

chromatin-associated proteins, which recognise methylated H3K4 (66). The RING-type zinc 252 

fingers are composed of 40-60 amino acids that bind two atoms of zinc, and may mediate 253 

protein-protein interactions (67). The SET (Su(var)3-9, Enhancer-of-zeste, and Trithorax) 254 

domain is composed of 130-140 amino acids in which resides the methyltransferase activity 255 

and the substrate-binding sites (60, 68). This similarity of clustering seen in Cancer-MVs and 256 

KS-MVs is strongly suggestive that these variants result in loss-of-function.  257 

 258 

We found significant clustering of Cancer-MVs in the FYR-C domain and between residue 259 

numbers 3 043-3 248 (No domain #8 in Figure S1). The FYR-C domains have the features 260 

similar to those of FYR-N domains (61). Notably, these regions were not enriched for KS-261 
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MVs. The lack of KS-MVs in these regions could be due to the lack of power of our study. 262 

Alternatively, these variants may result in dominant-negative or gain-of-function effects, 263 

specific to some cancers. We, therefore, specifically looked at the type of cancers reported 264 

with Cancer-MVs in the FYR-C domain and between residues 3 043-3 248 (No domain #8). 265 

This showed that 87% and 82.1% of the variants detected in the FYR-C domain and No 266 

domain #8 regions came from solid cancers, but there was no enrichment for a specific type 267 

of cancer (Table S3). Another possibility is that germline MVs in this region may result in a 268 

condition different from KS, which has yet to be delineated.  269 

 270 

460/570 (80.7%) Cancer-MVs were outside the regions of the protein with statistically 271 

significant clustering. Interestingly, 84/460 Cancer-MVs are part of set of overlapping 272 

Cancer-MVs and Control-MVs in comparison with only 7/110 Cancer-MVs in the cancer-273 

enriched regions of KMT2D (Table S3-1). Overall, this analysis suggests that a substantial 274 

number of these Cancer-MVs, which lie outside the cancer-enriched regions of KMT2D, may 275 

not be driver variants but passengers ones. 276 

 277 

For KS-MVs we detected significant clustering in the Coiled–coil#5 and FYR-N domains, 278 

and in between residue numbers 4 995-5 090 (No Domains #16 in Figure S1), but we did not 279 

identify significant clustering in these regions for Cancer-MVs. As MVs in these three 280 

regions are likely to result in loss-of-function, the lack of Cancer-MVs in these regions is 281 

likely to be due to lack of statistical power. 282 

 283 

120/190 KS-MVs were outside the regions of the protein with statistically significant 284 

clustering. Of note, 75/120 KS-MVs were also seen in Control-MVs in comparison with only 285 

12/70 KS-MVs in the KS-enriched regions of KMT2D (Table S3-1). Furthermore, 107/120 286 
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MVs were either inherited from an apparently unaffected parent or the information on 287 

inheritance was unavailable. Taken together, 75 KS-MVs can be classed as benign or variants 288 

of uncertain significance when classified according to the American College of Medical 289 

Genetics guidelines (69). Finally, the misdiagnosis of KS in some patients might also explain 290 

that their phenotypes do not match with their genetic findings, which may be benign. 291 

Unfortunately, many KS-MVs were got from sources without a comprehensive individual 292 

delineation of the syndrome, and most of those patients were just described as suffering from 293 

KS (e.g. ClinVar, Hannibal et al. (12); Van Laarhoven et al. (30)). Therefore, we could not 294 

filter patients with a true KS phenotype from those without it. 295 

 296 

22 MVs were seen in both KS and cancers (Table S3-1). Of note, 21 of these were present in 297 

KS-enriched and/or Cancer-enriched regions. The unique MV that was not part of any of 298 

these enriched regions, the p.Arg5340Leu substitution, may abolish the interaction between 299 

KMT2D and WDR5 resulting in the complete loss of the H3K4 dimethylation activity of the 300 

complex (33, 34). Thus, all the overlapping KS-MVs and Cancer-MVs are highly likely to be 301 

pathogenic. 302 

 303 

We did not find clustering of pathogenic MVs in a number of recognised domains and motifs 304 

in KMT2D such as the SPPPEPEA region, the HMG Box, most coiled-coils (except coiled-305 

coil#5), the LXXLL motifs and the Post-SET domains. The SPPPEPEA region is a poorly 306 

characterised sequence of repeats composed by the amino acids Serine (S), Proline (P), 307 

Glutamic acid (E) and Alanine (A) (70). The HMG (High mobility group) Box is a sequence 308 

of ~75 amino acids that binds DNA (71). The LXXLL (L, Leucine; X, any amino acid) 309 

motifs are necessary to activate nuclear receptors, and therefore, to activate transcription (72). 310 

The Post-SET domain also contributes to the methyltransferase activity of KMT2D (68). Our 311 
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results suggest that these regions of KMT2D are more tolerant to variations or that there may 312 

be as yet unrecognised phenotypes associated with variants in these regions.  313 

 314 

We found that the Cancer-MVs and KS-MVs tend to affect more conserved residues, KS-315 

MVs increase the energy that the protein needs for folding/interacting, and that Cancer-MVs 316 

have a greater probability of disrupting protein interactions. We did not identify significant 317 

difference in the ELASPIC ∆∆G scores or StructMAn scores of Cancer-MVs or KS-MVs 318 

against Control-MVs, respectively (Figure 4B and C), which could be due to limited 319 

available information on dynamics and interaction sites of KMT2D. This is reflected by our 320 

observations that the ELASPIC ∆∆G scores and StructMAn interaction scores could be 321 

generated for only 222/2 279 MVs and 92/2 279 MVs, respectively. This also limited the 322 

analysis of scores according to the locations (e.g. the enriched regions) as most of these 323 

values were given for the catalytic, PHD-1 and PHD-2 Zinc fingers domains only (Table S3). 324 

 325 

Although this approach needs confirmation by large-scale functional analyses, which are 326 

being described just recently (73), and a better characterisation of the protein structure of 327 

KMT2D, a recent study about functional consequences of some MVs in this gene confirms 328 

our methodology. Cocciadiferro et al. (34) demonstrated that MVs detected in patients with 329 

KS and located on PHD-type zinc fingers #3 and #4 (p.Glu1391Lys, pMet1417Val, 330 

p.Ile1428Thr, p.Ser1476Cys), RING-type zinc finger #4 (p.Thr5098Pro), FYR-N 331 

(p.Gly5189Arg, p. Trp5217Met) and SET (p.Arg5471Met, p.Glu5425Lys, p. Arg5471Met, 332 

p.Tyr5510Asp) domains, and in between residue numbers 4 995-5 090 (No Domain #16; 333 

p.Phe5034Val, p.His5059Pro) decreased catalytic activity and/or disrupt the interaction of 334 

KMT2D with ASH2L/RbBP5. These are exactly the same regions and domains that our study 335 

found to be enriched in KS-MVs when compared to Control-MVs. Two exceptions are PHD-336 
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type zinc finger #5 and Coiled–coil#5 domains. While the p.Gln1522Arg MV in the former 337 

also disrupted enzymatic activity and interaction with ASH2L/RbBP5, this domain was not 338 

detected to be enriched in KS-MVs in our analysis. This may be explained by the lack of 339 

enough MVs detected in patients with KS in this domain. Inversely, no MVs in Coiled–coil#5 340 

were studied by Cocciadiferro et al. (34), which cannot discard this domain as relevant for the 341 

function of KMT2D. 342 

 343 

Similarly, few Cancer-MVs have been characterised functionally and those findings are also 344 

concordant with our results. Zhang et al. (74) demonstrated that MVs detected in patients 345 

with lymphomas and located on RING-type zinc finger #4 (p.Cys5092Ser, p.Cys5092Tyr), 346 

FYR-C (p.Asp5257Val) and SET (p.Arg5432Trp, p.Asn5437Ser, p.Gly5467Asp) domains 347 

decreased catalytic activity of KMT2D. These three domains were found to be enriched in 348 

Cancer-MVs when compared to Control-MVs. Other relevant MVs that decreased KMT2D 349 

activity in lymphomas were p.Arg5027Leu and p.Leu5056, which are located between 350 

residue numbers 4 995-5 090 (No Domain #16). This region was not detected to be enriched 351 

in Cancer-MVs in our analysis, which may be explained by the type of cancer studied. 352 

Inversely, no MVs in PHD-type zinc fingers #3 and #4, and between residue numbers 3 043-353 

3 248 (No domain #8) were studied by Zhang et al. (74), which cannot discard these domains 354 

as relevant for the function of KMT2D. 355 

 356 

In conclusion, this compilation can aid analysis of KMT2D MVs in diagnostic laboratories. 357 

We show that rarity of KMT2D variants has limited value in determination of their 358 

pathogenicity. We have identified a set of recurrent KMT2D MVs in cancer and KS. We 359 

show that some presumed KMT2D MVs are in fact likely to result in loss of function by 360 

introduction of frameshift. This work leads to reclassification of a set of presumed pathogenic 361 
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MVs as benign variants or as VUS. We identify regions of the KMT2D protein that 362 

demonstrate significant clustering of MVs in cancer and KS within and outside the known 363 

domains and regions of the protein. We establish that the mechanism of most pathogenic 364 

KMT2D Cancer-MVs is loss of function, although other possibilities cannot be ruled out for 365 

some atypical Cancer-MVs. We raise the possibility of as yet unrecognised ‘non-KS’ 366 

phenotypes associated with some germline pathogenic MVs. Finally, this work provides 367 

insights into the disease mechanism of cancers driven by KMT2D mutations and of KS1 368 

(Kabuki syndrome type 1). Future work will be needed to understand the impact of the MVs 369 

that could not be examined by the described in-silico programmes. Similar analyses in other 370 

genes, mutations in which also cause developmental syndromes and cancer, should also be 371 

carried out in the future (1, 2).  372 
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8 Figure Legends 

8.1 Figure 1: Study design 

Summary of steps followed for compilation and analysis of missense variants (MV) in 

KMT2D. 

8.2 Figure 2: Presumed KMT2D MVs that are likely to disrupt splicing 

are enriched in Kabuki syndrome and cancer  

Variants affecting the first or last three bases of exons (first/last in red, second/second last in 

orange and third/third last in green) are depicted. Variants seen in Kabuki syndrome are 

denoted with *, variants seen in cancer are denoted with #, and are placed above the transcript 

(ENST00000301067.11), whereas control variants are placed below the transcript. The 

proportion of presumed MVs predicted to affect splicing is significantly higher for KS-MVs 

and Cancer-MVs in comparison with Control-MVs (χ2=21.88, df=2, p=0.000018). Within the 

variants predicted to disrupt splicing, a further enrichment of canonical splice-donor and 

splice-acceptor sites can be found in cancer and KS (variants in red). Interestingly, the six 

Control-MVs affecting the canonical splice-donor and splice-acceptor sites either do not 

increase the probability of exon-skipping or are predicted to result in in-frame exon skipping.   

 

8.3 Figure 3: Specific regions of the KMT2D protein are enriched for 

missense variants in Kabuki syndrome and cancer 

Distributions of KMT2D missense variants (MV) seen in (A) control population, (B) cancers, 

and (C) Kabuki syndrome (KS) is shown. The X-axis shows the length of the KMT2D 

protein and the location of its domains and regions. The domains and regions are color-coded 
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and the legend is provided at the bottom of the figure. The enriched regions/domains in 

cancers or in Kabuki syndrome are highlighted in red brackets in the respective panels. The 

Y-axis in (A) shows minor allele frequencies of controls and in (B and C) the number of 

times a specific Cancer-MV or KS-MV was seen in our cohort. (D) Proportion of KMT2D 

missense variants grouped according to domains and regions. 

8.4 Figure 4: Cancer and Kabuki syndrome MVs affect more conserved 

residues, increase KMT2D delta-delta free energy and may disrupt its 

interaction with other proteins. 

Global comparisons of (A) BLOSUM62, (B) ELASPIC ∆∆G and(C) StructMAn scores of 

missense variants (MV) seen in control population, cancers and Kabuki syndrome. When 

compared to Control-MVs, Cancer-MVs and KS-MVs have both significantly lower 

BLOSUM scores, KS-MVs have significantly higher ELASPIC ∆∆G scores, and Cancer-

MVs have significantly higher StructMAn scores. 











Table 1. Comparison of proportions of missense variants seen in control population, 
cancer and Kabuki syndrome according to their grouped locations. 

Protein Domaina Control Population 

n (%) 

(n=1 519) 

Cancer 

n (%) 

(n=570) 

Kabuki syndrome 

n (%) 

(n=190) 

RING-type Zinc Finger 20 (1.3) 13 (2.3) 6 (3.2) 

PHD-type Zinc Finger 40 (2.6) 40 (7.0)b 27 (14.2)c

SPPPEPEA region 90 (5.9) 27 (4.7) 4 (2.1) 

HMG Box 10 (0.7) 8 (1.4) 1 (0.5) 

Coiled coil 27 (1.8) 12 (2.1) 4 (2.1) 

LXLL motif 15 (1) 3 (0.5) 0 (0) 

FYR-N Terminal 27 (1.8) 12 (2.1) 13 (6.8)b

FYR-C Terminal 10 (0.7) 23 (4)b 3 (1.6) 

SET 6 (0.4) 22 (3.9)b 12 (6.3)b

Post-SET 0 (0) 1 (0.2) 0 (0) 

No Domain 1 274 (83.9) 409 (71.8)d 120 (63.2)d

a In order of location; domains with significantly different proportions amongst the 

phenotypes (p-adjusted<0.05) are depicted in italic. 

b Proportion significantly higher than controls. 

c Proportion significantly higher than the other two groups. 

d Proportion significantly lower than controls. 

 



Table 2. Comparison of proportions of missense variants seen in control population, cancer and Kabuki syndrome according to every 
significantly different location. 

Protein Domaina Length of region 

(delimiting amino acids) 

Control Population 

n (%) 

(n=1 519) 

Cancer 

n (%) 

(n=570) 

Kabuki syndrome 

n (%) 

(n=190) 

PHD-type Zinc Finger #3 57 (1 374-1 430) 5 (0.3) 13 (2.3)b 12 (6.3)c

PHD-type Zinc Finger #3 & #4 11 (1 420-1 430) 1 (0.1) 3 (0.5) 4 (2.1)b

PHD-type Zinc Finger #4 61 (1 420-1 480) 5 (0.3) 13 (2.3)b 6 (3.2)b

No Domain #5 447 (1 565-2 011) 122 (8.0) 41 (7.2) 5 (2.6)d

No Domain #6 588 (2 081-2 668) 232 (15.3) 47 (8.2)d 25 (13.2)

No Domain #8 206 (3 043-3 248) 26 (1.7) 28 (4.9)c 1 (0.5) 

Coiled Coil #5 79 (3 897-3 975) 1 (0.1) 0 (0) 3 (1.6)c 

No Domain #15 22 (4 468-4 989) 159 (10.5) 55 (9.6) 6 (3.2)e

No Domain #16 96 (4 995-5 090) 25 (1.6) 13 (2.3) 15 (7.9)c

RING-type Zinc Finger #4 47 (5 091-5 137) 9 (0.6) 11 (1.9)b 5 (2.6)b

FYR N-Terminal 61 (5 175-5 235) 27 (1.8) 12 (2.1) 13 (6.8)c



FYR C-Terminal 92 (5 236-5 327) 10 (0.7) 23 (4.0)b 3 (1.6)

SET 123 (5 397-5 519) 6 (0.4) 22 (3.9)b 12 (6.3)b

a In order of location; only domains with significantly different proportions amongst the phenotypes (p-adjusted<0.05) are depicted. For 

visualisation of these regions, see Figure S2. 

b Proportion significantly higher than controls. 

c Proportion significantly higher than the other two groups. 

d Proportion significantly lower than controls. 

e Proportion significantly lower than the other two groups. 
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