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ABSTRACT

We present simulation results and an explanatory theory on how antagonistic salts affect the spinodal decomposition of binary
fluid mixtures. We find that spinodal decomposition is arrested and complex structures form only when electrostatic ion-ion
interactions are small. In this case, the fluid and ion concentrations couple and the charge field can be approximated as a polyno-
mial function of the relative fluid concentrations alone. When the solvation energy associated with transferring an ion from one
fluid phase to the other is of the order of a few kpT, the coupled fluid and charge fields evolve according to the Ohta-Kawasaki
free energy functional. This allows us to accurately predict structure sizes and reduce the parameter space to two dimensionless
numbers. The lamellar structures induced by the presence of the antagonistic salt in our simulations exhibit a high degree of
nematic ordering and the growth of ordered domains over time follows a power law. This power law carries a time exponent
proportional to the salt concentration. We qualitatively reproduce and interpret neutron scattering data from previous exper-
iments of similar systems. The dissolution of structures at high salt concentrations observed in these experiments agrees with
our simulations, and we explain it as the result of a vanishing surface tension due to electrostatic contributions. We conclude by
presenting 3D results showing the same morphologies as predicted by the Ohta-Kawasaki model as a function of volume fraction
and suggesting that our findings from 2D systems remain valid in 3D.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5085660

. INTRODUCTION

Antagonistic salts are defined by the special property
that, in a mixture of high and low permittivity fluids, one
constituent ion kind migrates towards regions of higher per-
mittivity, while the other ion type does the opposite. Recent
experimental studies of the antagonistic salt NaBPhy, sol-
vated in a mixture of heavy water and 3-methylpyridine oil
(3MP), suggest that adding antagonistic salts can cause struc-
tures to form on the nanometer scale." These structures
seem to be periodically repeating regions of high water/Na*
concentration and high o0il/BPh} concentration. Their length
scale depends on many factors, such as the salt concentra-
tion,! volume fraction, and temperature.? Such mixtures show

visible coloration with strong temperature sensitivity when
the structure periodicity is of the order of the wavelength
of visible light.> In other words, any fluid mixture of unequal
permittivities may in principle be turned into a liquid crystal
by simply adding an antagonistic salt. Being able to control
mesoscopic structure formation in liquid crystals has potential
for optical and nanoscale manufacturing technologies, such as
directed self-assembly.*

The theory of antagonistic salts has been studied to a
notable extent by the group of Onuki.> Their model describes
the onset of structure formation in a system near the critical
temperature of fluid demixing and the characteristic length
of these structures.® Antagonistic salt mixtures have also
been studied numerically by Araki, Okamoto, and Onuki,”#
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showing lamellar structure formation and various degrees of
nematic ordering. Recently, Tasios et al.° employed a simple
lattice-based Monte Carlo algorithm to obtain a rich phase
diagram of 3D structures from antagonistic salt mixtures.
In the present work, we add to this body of research an
explicit analytical description of the coupling between the
fluid and ion concentrations and use it to show that antagonis-
tic salt mixtures are very well approximated by the same free
energy model commonly used to treat diblock copolymers—
the Ohta-Kawasaki model.’® The Ohta-Kawasaki model is
known to lead to ordered liquid crystal structures’’-'* seem-
ingly identical to the structures we obtain numerically from
antagonistic salt systems. By approximating our system with
the Ohta-Kawasaki model, we can predict for which param-
eters there is strong coupling of the fluid and ion con-
centrations, which leads to structure formation, and when
these structures become unstable due to zero or negative
surface tension resulting from electrostatic contributions.
We also add a more quantitative treatment of the dynam-
ics of nematic ordering, showing that nematically ordered
domains grow continuously at a rate proportional to the salt
concentration.

This article is structured as follows. Section II explains
our numerical method and justifies the simulation parame-
ters used. We introduce a free energy model to derive the
forces of fluid-ion coupling and demonstrate the relationship
of our system to the Ohta-Kawasaki model. Our main results
are split into five subsections. In Subsection III A, we derive
a polynomial function of the order parameter to approxi-
mate the charge distribution. Using this result, we demon-
strate in Subsection III B how our system is related to the
Ohta-Kawasaki model. In Subsection [l C, we present our
simulation results on nematic ordering. In Subsection I1I D,
we discuss and interpret experimental data from small-angle
neutron scattering in the light of our results and validate the
approximations derived in Subsection III C and validate our
model by comparing theoretical predictions of the character-
istic length with the simulation results. Subsection III E con-
cludes with a few examples of the different morphologies pos-
sible in 3D depending on volume fractions. Finally, in Sec. [V,
we summarize our results and discuss possibilities for future
research.

Il. METHOD

We use the lattice-Boltzmann method (LBM) in an imple-
mentation previously presented by Rivas et al.'#'> The LBM is
an efficiently parallelizable numerical method to model fluid
dynamics which are equivalent to the Navier-Stokes equation
whenever flow velocities are much smaller than the speed of
sound. In the LBM, the space is discretized in a grid of lattice
sites xo apart, each containing a set of populations f;. The ori-
gins of the LBM in statistical physics lead to the interpretation
of each population as proportional to the probability of finding
a fluid particle travelling in the direction given by the index 1,
but the fluid is modeled purely as a continuum nonetheless.’®
The number of populations per lattice site is determined by
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the coarseness of the velocity discretization. We use 19 pop-
ulations per lattice site (commonly called the D3Q19 scheme),
corresponding to a zero vector representing resting particles
plus 6 velocity vectors connecting the lattice site to its closest
neighbours plus 12 to the next further neighbours in the grid.'”
The populations are evolved in each time step by an advection
step, in which populations are simply moved to the lattice site
they are connected with by their corresponding velocity vec-
tor, and by a collision step, in which viscous energy dissipation
and fluid forcing are accounted for by relaxing the populations
to an equilibrium distribution. In the single-relaxation-time
scheme by Bhatnagar, Gross and Krook (BGK) that we use, the
collision step takes the following shape:

i fim 2 f) ¥ )

f{is a discretized Maxwell-Boltzmann distribution expanded
in terms of Hermite polynomials up to second order in veloc-
ity.1618 7z gives the fraction of a time step, over which full
relaxation to equilibrium takes place and determines the vis-
cosity of the fluid. S;, called the source term, contains the
modification of the local equilibrium state due to any fluid
forces added to the system. Our chosen method to calculate
the source term goes back to Guo et al.”® A mixture of two
fluids is simulated by simply representing each fluid compo-
nent o by a separate set of populations f”. The local mass
concentrations of our fluid components are then n, = ¥;f7.
We treat both fluids equally, i.e., they have equal density and
viscosity.

The order parameter y = (n; — ny)/(n; + n2) € [-1, 1]
encodes the local fluid composition. We assume fluid incom-
pressibility, i.e., ny + ny = const. = ny. Fluid demixing is
modeled by the pseudopotential method introduced by Shan
and Chen.?° In this method, an interaction parameter G
encodes the strength of repulsive forces between unlike fluid
components. These repulsive forces are included in the
respective fluid’s source term S{" like any other force. For suf-
ficiently high G, spinodal decomposition into two bulk phases
occurs, whereas for sub-critical G, the phases mix homoge-
nously. G encodes both material properties and the effect of
temperature on intermixability.

Experimental evidence of D,O/3MP mixtures shows
structure formation induced by antagonistic salts at temper-
atures below the critical point, where macroscopic demix-
ing would not occur without salt.> According to Onuki and
Kitamura, this may be the effect of large thermal concentra-
tion fluctuations near the critical point of demixing stabilizing
under the influence of the antagonistic salt.® As our model
does not include thermal fluctuations, we only study the effect
of antagonistic salt at values of G slightly above the critical
point of demixing.

The electrokinetic forces acting on fluids and ions are
derived from a free energy functional .#r including fluid
demixing via a phenomenological Ginzburg-Landau term %
and ionic contributions .# modelling the salt as an ideal gas
coupled to the fluid by a solvation potential with an electro-
static contribution from the ionic charges
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Here, c. is the concentration of positive /negative ions, vy is
the ionic volume (assumed equal for both ion types for sim-
plicity), p = e(z.c+ + z_c_) is the charge concentration with the
elementary charge e and valence z., and ¢ is the electrostatic
potential satisfying V¢ = —p/e. For simplicity, we assume
the permittivity & to be the same for both fluids and hence
homogeneous in space. We use a linearized solvation poten-
tial u$°! = Ap.y /Ay with an ion-specific constant antagonicity
Aus. Ap. is the solvation energy associated with transferring
an ion from the bulk of one fluid phase to the other in a macro-
scopically demixed state where in the n;-dominant phase
¥ =y and in the ny-dominant phase, ¢ = ¢ fulfilling y; —

= Ay. Note that throughout this work, we write the Laplace
operator as V2, while A signifies a variable related to a finite
difference.

Similar models have been used in the past to theoretically
describe binary fluid mixtures with antagonistic salts.'421.22
The fluid demixing term %r = [ g(y, V¢) dV incorporates the
surface tension y,. caused by the repulsive pseudopotential
forces in the LBM implementation. In order to model bulk
demixing, it should have the shape of a polynomial with two
minima at the bulk values +Ay /2 of  plus a gradient term. We
choose g(, Vi) = go(? — Aw?/4)? + 0.5k |V 2. go determines
the energy penalty for mixed states. Its magnitude is irrelevant
in our considerations. Minimization of .%y alone results in two
bulk phases with an interface in the shape of a hyperbolic tan-
gent y(x) = 0.5Ay tanh(x/1;). We derive the interfacial width
A1 = AY~'\2xksc/go by demanding that the chemical potential
6.Fr/8y = 0 at equilibrium. The surface tension is estimated
by integrating the interfacial energy density from bulk to bulk,
ie., ¥se = 0.5 [*2 ks VY |? dx = Ay3+fkscgo/72, for a hyperbolic
tangent shaped interface.

As long as spurious currents and inertial hydrodynam-
ics are negligible, the pseudopotential model of demixing has
been shown by Sbragaglia et al. and Scarbolo et al. to cor-
respond to a similar monotonically decreasing free energy
functional.?*24 While full equivalence of the pseudopoten-
tial model to a free energy functional requires an additional
gradient-shaped forcing term as a function of the order
parameter, this term has been shown by numerical investiga-
tion to be generally negligible.?®

The ion concentrations c, live on the same discrete lattice
as the fluid and are evolved via a finite-difference scheme.*
By using a mean-field approach to model ion dynamics, we
neglect ion pair interactions, which may become important
at salt concentrations high enough to cause significant steric
interactions. The simplest possible time evolution of c. to con-
serve ion numbers and minimize the free energy in Eq. (2) is
given by the Cahn-Hilliard equation.?> In addition to the fluxes
given by the Cahn-Hilliard equation, we evolve the ions by an

ARTICLE scitation.org/journalljcp

advection term in order to couple them to the velocity field il

of the fluid mixture
0 _ .7, -V - (icy),
ot (3)
Tt =Cedl Ve, .

# is the ion mobility, which can in general depend on the
ion concentration and ion species. In order to recover Fick’s
laws of diffusion, we set .# = D/kgT according to the Einstein-
Smoluchowski relation, with an ion diffusivity D assumed to
be constant. By performing a functional derivative of the ionic
contributions .#; to the free energy, we obtain an expression
for the ionic chemical potential

5?1

He, = = kpTIn(vpcs) + 7w +ez.d, 4)
where we use ¢ = e/47rs J(z+ce —2_c_)/(IF = To ) AV to calculate
the functional derivative of the electrostatic term. In solving
Poisson’s equation, as in general, we treat our system as 3D,
but with a thickness of one lattice site and periodic boundary
conditions in the third dimension when emulating a 2D sys-
tem. Using Eq. (4), we can write out the total ion flux J; from
Eq. (3). The resulting time evolution is identical to the well-
known Nernst-Planck equation supplemented by a solvation
term. The fluxes can be subdivided 1nto diffusive, solvation,
and electrostatic contributions Jt = ]+ + ]+ + ]H

i = -Dvc.,
= ~V.
Je =" 2y ®)
2 D
R + +V .
Ji = gree-Vo

Because the fluid is friction-coupled to the ions, it experiences
the same force density as the ions. Assuming the inertial time
scale of the ions to be much smaller than that of the fluid,
we expect the fluxes to correspond to the instantaneously
reached drift velocity of the ions times the ion concentra-
tion and derive the force density experienced by the ions from
Stokes’ law as

= —kgTVc. — At c.Vyy —ez.c.Vo. (6)
Ay

In local equilibrium thermodynamics, spatial variations of
intensive properties such as the chemical potential drive ther-
modynamic forces. The change in Gibbs free energy associ-
ated with a spatial variation of the chemical potential of fluid
composition yu, is dG = ¢ Vpu,d¥ so that we can identify the
corresponding force performing work on the system over an
infinitesimal displacement dr as

Fro =~y Wy = —Zw

_ 59\1 ZC+Aﬂ+

+

Apts
M’Vc+,

)

The second term from the right in Eq. (6) proportional to Vy
represents the migration of ions towards regions of high con-
centration of the fluid species they are preferably solvated by.
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The fluid experiences this ion solvation force due to the afore-
mentioned friction-coupling to the ions. Additionally the fluid
experiences an analogous fluid solvation force representing
migration of the fluid towards regions of high concentration of
the ion kind preferably solvated by the local fluid composition.
This force is not friction-coupled back to the ions because of
the unequal inertial time scales of fluid and ions. The ions indi-
rectly experience this force via the advection term in Eq. (3).
In summary, the fluid forcing takes the form

ﬁf =FL+F_+ ﬁs =- Z (kBTVci + AALJV(CH/’F ez.c.Ve ) (8)
N l?‘d T ﬁe

The equation of state, taking into account the gradient-
shaped ideal ion pressure and total solvation forcing terms Fy
and ﬁs, but not the nonconservative electrostatic force ﬁe, is
then

At
He o). (9)

x2 xZ
__0 0
p= %(’nz + 1’L1) + ?G‘Pl\l}z + E (kBTCi + Alﬂ

+

We write lattice units with subscript 0, i.e., the lattice length
as xp, one time step as to, and the units of mass as my. In
Eqg. (9), we introduced the pseudopotential ¥, = m0x53(1 -
exp(—xgng /myp)). It approximates the fluid concentration of
component o, but is limited to values < moxa3 (1 in simula-
tion units). It is used in place of the fluid concentrations n.
only in order to avoid numerical instabilities, where fluid com-
pression might increase the pseudopotential forces, in turn
causing further fluid compression. The factors of 3 in Eq. (9)
stem from the speed of sound of 1/\/(379c0t(‘)1 dictated by the
chosen D3Q19 scheme of spatial discretization.

We restrict ourselves to monovalent ions z, = —z_ =1and
symmetric antagonism Ay, = —Au_ = Au from here on. Simula-
tion parameters roughly corresponding to experimental val-
ues can be chosen in the following way. First, we choose a
length scale suitable to resolve the expected structure lengths,
e.g., xo ~ 1 nm. The unit of mass is chosen so that m0x53
matches the density of water. Due to a corresponding rescal-
ing of the permittivity &, we can, without loss of general-
ity, set the lattice unit of charge to the elementary charge
ep = e.

One limitation of the simple pseudopotential method we
use is that the parameter G controls both the interface width
A1 and the surface tension ys.. If we choose the time scale ty in
such a way that the simulated fluid viscosity matches the vis-
cosity of water, then for values of = = 1, which are preferable
in single-relaxation-time BGK for reasons of accuracy, we get
a time step of typ ~ 0.2 ps. At such a small time step, the sur-
face tension obtained, e.g., for G = 5.5x3mg't;* corresponds
to 36 times the surface tension of water at room temperature.
While one could lower G to match the surface tension some-
what better, this would result in slower demixing dynamics,
increased computational cost, and extremely large interface
widths of tens of nanometers. Instead, we choose ty in such
a way, that we match the desired surface tension. As a side
effect, the viscosity in our simulations is significantly smaller
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than that of water; however, we do not expect this to make
any qualitative difference. The main source of fluid flow in our
system is demixing, which is a diffusive process independent
of inertial effects as long as G is not chosen too large. While the
resulting interface width is still of the order of a few nanome-
ters, this is not neccessarily unrealistic for systems close to
the critical point of demixing,?62?7 where structure forma-
tion by antagonistic salts is observed in experiments. When
approaching the critical point, the interface length A; diverges
and the surface tension ys; vanishes with a strong temperature
sensitivity.

Choosing for example xo = 1 nm, tp = 10 ps, and
G = 5.5x3mg't %, we have ysc = 0.036mot;* = 2.75 x 10~*Nm ™!
and 4; = 1.3xp = 1.3 nm. Accordingly, & = 40 corresponds
to £ = 0.1 in simulation units, kgT = 0.6mox3t,* for a tem-
perature of about 330 K, and a salt concentration of 0.1 is
equivalent to about 166 m mol~. In practice, as our aim is to
understand the system fundamentally, we experimented with
a wide range of simulation parameters without focusing very
much on their relation to experimental values. For example,
in most simulations, we keep Au in a range of about 3-8kgT,
which is noticeably lower than the 15kgT of NaBPhs commonly
used in experiments because this allows us to more easily
avoid numerical errors from steep ion concentration gradi-
ents and high fluid forcing terms. Doing so, we have come
to the conclusion that, above all, the dimensionless numbers
A and 24/4,;s introduced in Egs. (21) and (23) determine the
behaviour of the system. In the interest of reproducibility, we
nonetheless give the simulation parameters used in simulation
units in all figure captions.

Illl. RESULTS
A. Fluid-charge coupling

All our simulations are initialized as a homogeneous mix-
ture with symmetric volume fraction m = (n)/((ng) + (nz))
= 0.5 and constant ion concentrations c. = 0.5¢; everywhere
given by the initial salt concentration cs. The fluid concen-
trations n; and ny are initially perturbed by a small stochas-
tic prefactor at each lattice site in a way that keeps the
overall volume fraction constant. For G = 5.5x3m;'t 2, spin-
odal decomposition during the first about one thousand time
steps is driven almost completely by the pseudopotential
forces of demixing. As the local contrast in fluid concentra-
tions ny and ny grows, charges build up due to ion separa-
tion by solvation, and the resulting electrostatic forces on the
fluid arrest the process of coarsening. After a further about
one thousand time steps, we observe lamellar, bicontinuous
structures.

Because of a strong coupling via the solvation potential,
both the fluid order parameter ¢ and the charge p follow the
same lamellar pattern, as shown in Fig. 1. Our key result in this
paper is an analytic description of this coupling. Using the lin-
ear coupling limit valid for low Au/kgT allows us to use prior
results on the Ohta-Kawasaki free energy model to derive
the two dimensionless numbers A and 14/, describing our
system.
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FIG. 1. Left: Excerpts of the order parameter ¢ from 2D simulations. Right: Qual-
itative comparison of ¢ and charge p in 1D cuts of length 100xg. p is in arbitrary
units in order to be on the same scale as . Top: Au = 5kgT. Bottom: A = 15kgT.
Parameters: ¢s =5 x 1075, £ = 1.4 x 1074, kgT = 100, G = 4.5.

As we are concerned with systems close to the critical
point of demixing, the pseudopotential forces of demixing are
small and the time scale of fluid relaxation is much larger than
that of ion relaxation. This leaves the advection term in Eq. (3)
largely irrelevant. In our simulations, the ions are practically
in equilibrium at all times with respect to the current fluid
composition ¢. From the equilibrium solution of the evolution
Eq. (3) for the charge p and the total local ion concentration
ct = ¢+ + c_, we obtain two coupled differential equations

Vp/e = M(c;V2Q+ Ve - VQ), (10)
evier = M(pV2Q + Vp - VQ). (1)

For the ease of notation, we write M = —Au/AykgT and
Q =y +epAy/Au. When M < 1, the solvation is weak compared
to the ideal pressure of ions, and diffusion keeps the total ion
concentration homogeneous so that c; ~ ¢y = const. = ¢g = I'.
Using c; = cp, our first approximation of the charge follows
from Eq. (10) as po/e = ¢sMQ — (csMQ) = ¢sMQ + Py, where
Py is chosen to ensure charge neutrality. Here, as through-
out the rest of the paper, (-) signifies a spatial average. po
is a valid approximation as long as p does not depend lin-
early on spatial coordinates, which might be the case, e.g.,
if ¢ includes strong external electric fields. By inserting this
into Eq. (11), we approximate the first order fluctuations of c;
around its expectation value cs, which will be significant for
larger M

M2T,
evZc; = M(poV2Q + Vpg - Q) = TOVZQZ + MPoV2Q

2Ty (12)

M2T,
S ecy = Q2 + MPoQ —(TOQZ +MPoQ) + ecs .

=I

Here, Ty is chosen to ensure total ion conservation. The
approximation c; = ¢; can in turn be plugged back into Eq. (10),
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yielding a higher-order approximation p; for the charge p and
so on. The general expansions of p and c; up to order n are

] My 2% MIP,
—(i-1)/2 —j/2
Pn _ Z n.'(t )/ i+ Z .1'1)/ Q+p,,
e i=1,3,5,.. v j=2,46,.. J:
-l MiP, o 2 ML (13)
ecy = — g, E — Gk,
il . J!
i=1,3,5,.. j=2,4,6,..

Pn = —(on/e — Pn), In = —(cn —T'y) +ecs.

It is worth noting that (Qky = 0 for uneven k whenever the vol-
ume fraction is 1/2, and the two fluids are treated identically
apart from Au. = —Au_ and z, = —z_. This in turn means that all
P, = 0 and thus Eq. (13) becomes much simpler, with p, turn-
ing into a polynomial of only uneven powers of Q and ¢, of only
even powers of Q.

Equation (13) fails by overestimating the fluctuations of c;
when Au > kgT. Strong solvation leads to completely ionless
regions of ¢t ~ 0 in the vicinity of the interfaces because here
both ion kinds experience solvation forces in opposite direc-
tions towards higher concentrations of their preferred fluid
components. Numerically, whenever outgoing fluxes at any
lattice site would reduce the local ion concentration below
zero, all outgoing fluxes at that site are reduced by a com-
mon factor so that the local ion concentration goes to zero
instead. Ingoing fluxes are then calculated and potentially
similarly reduced individually by the previously computed
factor reducing the neighbouring lattice site’s outgoing fluxes.
In our simulations, ion concentrations may become negative
without this type of discretization correction when Ay > 7kpT.

The analytic approximations leading to Eq. (13) do not
take a limited ion availability into account and similarly pre-
dict negative ¢ for Au > kgT. To a surprisingly good degree of
accuracy, we can still approximate c; in this limit by rescaling
each consecutive ¢, by a factor T, in order to force an ampli-
tude of ion concentration fluctuations equal to c. The additive
constants I', then all become 0 for n > 1. We write the charge
and ion concentration approximations including the correc-
tion for finite salt concentration as o, and &,. Thus Eq. (12)
becomes

2
C1 =Cs —%QZ ’ MPOQ1

n (14)

MZ
1 = <—203 o+ MPOQ>,

and by reinserting into Eq. (10), we obtain the charge as before

M3¢2 M?Pyc M3¢? M2?Pyc

51/e = Q3 S0? - s Q3 002y,

Ple= o 2T, <24'r1 o, (15)
=p;

Naturally, the procedure can be repeated to obtain higher
order corrections and a general expansion as in Eq. (13). While
pn and ¢, tend to converge towards the exact results p and c;
for n — o as long as Au is small enough that ion-depletion
at the interfaces does not play a role (roughly Au < 5kgT),
the ideal value of n for o, and ¢, must be empirically chosen
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depending on Au. We find that n = 2 produces a more
accurate approximation than n = 1 only for high values of
Au ~ 15kgT, the largest antagonicity we used in our simula-
tions. Higher values of n would likely only be appropriate for
extreme antagonicities of Ay > 15kpT.

The proposed methods of approximating the ion distribu-
tions gain their value from the possibility of neglecting elec-
trostatic fluxes so that Q ~ y. In Fig. 2, we show the quality of
the theoretical model using Q = ¢ for a range of values of cs
and Au. In Fig. 2(a), the root mean square errors of approxi-
mating p as py are seen to decrease with increasing n and cs.
In Fig. 2(c), we can see that, for low cs and thus large struc-
ture sizes, the charge begins to concentrate at the interfaces
due to electrostatic interaction with the counter charges in
the opposite fluid component. This feature is not captured by
pn due to neglecting electrostatics.

Errors depend in a more complicated manner on Au than
on cs. As shown in Fig. 2(b), p2, by ignoring limited availabil-
ity of ions, quickly fails for high Au by predicting negative
ion concentrations. For Au — 0, it fails again because struc-
ture sizes diverge when there is no solvation, causing p and
¢ to become decoupled. The charge approximations p, cor-
rected for limited ion availability fare much better for high
Au, but the errors here do not converge to 0 for n — .
Instead, p; is a better approximation for intermediate Au and
02 for high Ap. In Figs. 2(e) and 2(f), we can see how for larger
n, pn features more pronounced regions of zero charge at
the interfaces, which correspond to ion-depleted regions of
Ct = 0.

—3
Cs [xo ]
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
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B. Ohta-Kawasaki equivalency

Using the analytical results for the charge and ion con-
centrations from Sec. Il A, we can significantly simplify
our system and make use of known results from the Ohta-
Kawasaki free energy model. Looking back at the solvation
force in Eq. (8), we find, by taking the linear approximation for
symmetric fluids p = pg = ecsMy,

>

A A
F = —ﬁv((m - c_)l//) - —ZCSMﬁww. (16)
This is very similar to the continuum limit of the pseudopoten-
tial force acting on fluid o~ due to interaction with the fluid o in

the pseudopotential model when neglecting third and higher
order gradient terms?®

Fo = -G, V¥s. (17)
Setting ¥, = n, and postulating Vn, = -Vny due to incom-
pressibility, we find that F; in fact points in precisely the same
direction as Fl, + FZ, that is, away from the interface
naVng — nVne

AL rreen

= —2(1’11 + nz)_s (ngan + ’l’hV’l’lz). (18)

This means that the solvation force acts purely to increase
the surface tension. When fluid incompressibility is fulfilled,
Ny + ny is constant, and Eq. (18) has the same shape as Eq. (17).
Similarly, the ideal pressure force resulting from ion diffusion
also acts only in the direction of the pseudopotential force

== Simulation
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FIG. 2. Errors in approximating the charge distribution via the order parameter while neglecting electrostatics. The charge approximations o, refer to the nth order approxima-
tions introduced in Eq. (13). The hatted charge approximations o, refer to the approximations with a normalizing prefactor accounting for finite salt concentrations introduced

in Egs. (14) and (15). Root mean square error /((p — pn)?)/{p?) as a function of the salt concentration cs (a) and the antagonicity A (b) for several orders of approxima-
tion n as well as for a linear model p = e using « as a fit parameter. Exemplary cuts through 2D charge distributions are shown for cs = 0.01x53 (), cs = 0.14x53 (d),
Ay = 10kgT (e), andAu = 15kgT (f). Parameters: £ = 4, kgT =1, Au = 3kgT, G = 5.5 [(a), (c), and (d)], and ¢s =5 x 1075, & = 1.4 x 104, kT = 100, G = 4.5[(b), (€),
and (f)].
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. . . . 2
assuming symmetric fluids and therewith ¢; = ¢; = %wz
+ Fl/e7

Fy = —kpTVc = —kg TM2T oy Vi Je. (19)

Indeed we find both ﬁd and ﬁs to be almost irrelevant in deter-
mining the general morphology of the system in simulations
as long as their magnitude does not rise to a level where they
cause fluid compression. This holds true even when Fy and Fy
are orders of magnitude larger than the electrostatic force F,.
By subsuming the influence of F; and F; into a modified surface
tension y =y +7y4 +7vs and neglecting the electrostatic fluxes
¢, we are left with a greatly simplified system. The surface ten-
sion y can be determined from Eq. (9), e.g., via a Laplace test,
meaning that a single bubble of one fluid component of vari-
ous radii is initialized in the bulk of the other fluid component.
According to the Young-Laplace law, the surface tension y is
the slope of the graph of pressure differences inside to outside
the droplet versus the inverse droplet radius.

Whenever Au is small enough for the first-order charge
approximation pg /e = csMy to be accurate, our system is fully
equivalent to the Ohta-Kawasaki model commonly used to
model diblock copolymers?®

Fr = Fr(y)+ / £|VO dr,

—V2D =y,

(20)

The first term is the fluid demixing energy .%; introduced
in Sec. Il but with «s substituted with «, which fulfills
y = 0.5 [*2 k|Vy|? dx for a hyperbolic tangent shaped ¢ and
thus includes the surface tension contributions of ﬁd and
F;. Crucially the model adds an electrostatic term weighted
by & in which the order parameter directly corresponds to
a charge. The long-range interaction potential @ is, in the
first-order charge approximation p = pg, proportional to the
electrostatic potential with ® = ¢&/ecsM.

The Ohta-Kawasaki model is usually treated in either of
two limits depending on the characteristic length A;, of struc-
tures in equilibrium as compared to the interface width 4;. In
the weak-segregation limit, i.e., when A, < 4;, the wavelength
of structures is'? A, = 27n(k/2£)/4, or, as k = 6yl /Ay?,
Aps o (y/g)%. In the strong-segregation limit,’? i.e., when
AL > Ap, Ags (y/f)%. In analogy to our free energy Eq. (2),
the term £|VO|? corresponds to the electrostatic term 0.5p4.
By setting p = po = ecsMy, we can see by comparison that
£ = (Au/kRgTAY)?e*c2/2& = Ay/2Ay* A3, In summary,

_ /113 (ecSA,u )2

ey \ kgT
1
6\? kT 1
Aws = ZHAI(X) =2n cost (6/1187) * (21)
1 2
o (12\F [ keT P )
Ass —4AI(X) _4(6C3Aﬂ) (1287)°.

The dimensionless number A turns out to be useful to predict
the morphology produced by a given set of system parameters.
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In our simulations, we find that by varying all involved simu-
lation parameters, including the pseudopotential interaction
parameter G, the structures begin to gradually dissolve in the
range of A = 1-10 or A,s/4; = 6-9 up to a return to a mixed
state at higher A. The onset of structure dissolution is char-
acterized by lamellar regions interspersed with blots of mixed
regions.

Following the study of Onuki and Okamoto,?° the elec-
trostatic surface tension contribution in a system with het-
erogenity in only the z direction, such as parallel lamellar
structures, can be calculated by subtracting the electrostatic
energy density integrated from one bulk to the other over an
interface

A lV(Dlzdz). 22)

Yeft =¥ = /§|V(1>|2dZ =)’(1— ﬁ e
By making a simple 1D ansatz of y = 0.5Ay sin(27x/ A,s) valid in
the weak-segregation limit and integrating |[V®[? from the bulk
of one phase to the other over 1,5/2, we can predict a critical
A = 213373774 » 3.1, at which y.¢ is expected to become zero.
This approximately matches the point at which we observe the
onset of structure dissolution in simulations.

Recall that in deriving the equivalency to the Ohta-
Kawasaki model, we set Q ~ y, i.e., we neglected electrostatic
fluxes. Defining the interfacial energy density W; = 0.5«|Vy/[?
and the electrostatic energy density W, = 0.5¢|V¢|,> we can,
using again p = po, quantify the ratio of solvation and electro-
static fluxes as

2 2
Uil yefa (Wi Mu Wi (23)
il s VWe  \Bapyez/e \ We

Here we introduce the Debye length 1; = /ekpT/e%cs. It gives
the length scale over which the density of countercharges
near a surface charge decays. The interfacial and electrostatic
energy densities are the main two counteracting factors driv-
ing structure formation in the Ohta-Kawasaki model, with
the former striving to minimize interface area and the lat-
ter favouring either the homogeneous charge or rapid spatial
oscillations of p and therewith ¢, leading to a large num-
ber of interfaces. A balance of these two energy densities is
found when lamellar structures form, so it seems reasonable
to assume a comparable order of magnitude in such mor-
phologies. Indeed, Araki and Onuki showed this to be true
in steady-states and weak segregation.” Assuming W; ~ We,
Eq. (23) suggests electrostatic fluxes to be about an order of
magnitude smaller than solvation fluxes and hence quanti-
tatively negligible whenever the Debye length is 21,s/2. In
other words, for 14 > A,s/2, ion dynamics are largely unaf-
fected by electrostatic interactions with other ions. When
g — Ays/2, structure sizes diverge, and for 13 < Aus/2,
spinodal decomposition is largely unaffected by electrostatic
effects.

C. Nematic ordering

As long as the ion dynamics are dominated by solvation,
the morphology is almost completely determined by A. As A is
increased, lamellae become thinner and the degree of nematic
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ordering at a given time increases. In the top row of Fig. 3,
we show three representative morphologies for A = 0.08, 0.9,
and 1.3.

Nematic order parameters commonly used in the analy-
sis of liquid crystal structures measure the overall homogen-
ity of nematic orientation. They are suitable when one is
interested in deviations from some prefered direction, for
example, given by an applied electric field, surface pat-
terning, or initially ordered state,3°>2 or to determine the
nematic homogenity of some spontaneously ordered steady-
state.>33% In our case, ordering progresses without any inher-
ently preferred direction, and we are interested in the time
evolution of the size of nematically ordered domains. As
long as these domains are much smaller than the simula-
tion domain, standard nematic order parameters indicate no
nematic order because all nematic orientations are equally
frequent in the simulation domain. When the size of nemati-
cally ordered domains approaches the simulation domain size,
some random nematic orientation begins to dominate and
standard nematic order parameters indicate order, but we
are uninterested in this regime because under these condi-
tions, finite size effects affect the time evolution of nematic
order.

Instead we quantify nematic ordering over time by a
nematic range parameter v giving the length scale over which
the nematic orientation changes. For this purpose, we first
determine the angle of orientation © of the lamellae at a given
position. The bottom row of F'ig. 3 shows the local angle of ori-
entation as a function of position for three morphologies. The
gradient magnitude of the orientation field ® gives the aver-
age angle by which the lamellar orientation changes over a

Order Parameter v

Orientation Angle 6
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distance of one lattice site in the direction of the greatest rate
of change. The local nematic range v estimates the distance
in lattice sites in the direction of the fastest change of ® over
which 0 changes to a perpendicular orientation. Using the fact
that the gradient of ¢ ought to be perpendicular to the local
lamella everywhere, we choose the definition

® = arctan (lep) + %,
Y 24

(Ivep’

yo
2

When the entire system domain is filled with exactly parallel
lamellae, VO is zero everywhere, and v — 0. Otherwise, the
smaller the domains of common orientation are, the larger |VO|
is on average, so that v — O for disordered systems.

The driving force of nematic ordering is long-range elec-
trostatic fluid forcing. As our model does not include ther-
mal fluctuations, no opposing force exists to disrupt nematic
ordering. Hence, nematic ordering appears to continue indef-
initely, until either the entire system domain is filled by per-
fectly ordered lamellae, or the process of nematic ordering is
hindered by finite size effects. In Figs. 4(a) and 4(c), we show
how v increases mostly monotonously in time. Nematic order-
ing begins to fluctuate considerably when domains of com-
mon orientation become comparable in size to the simulation
domain, which occurs in Fig. 4(a) when v > 38x¢. While this
corresponds to only about 8% of the system size of 504xy,
recall that v measures the size of ordered domains in the
direction of the fastest change of ©. In any other direction,
the domain may be considerably larger. One example of finite

FIG. 3. From left to right, A increases
from 008 (cs = 0.027x;%), to
09 (cs = 0.x33), and finally 1.3
(cs = 0.14x3). Top: Order parame-
ter y after 750 000 time steps in a 504
% 504 system. Bottom: Local value of
the lamellar alignment angle ® defined
in Eq. (24). The angle is measured clock-
wise starting from vertical lamellae. Blue
represents lamellae oriented from the
bottom left to the top right (or vice versa),
and red from the top left to the bot-
tom right. Parameters: & = 4, kgT = 1,
Ap=3kgT,G=5.5.
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FIG. 4. (a) Range of nematic ordering over time for five different salt concentra-
tions. Ordering tends to increase for all salt concentrations with time, but at a much
slower rate for lower salt concentrations. v fluctuates strongly at the high nematic
range v > 38x, due to finite size effects. (b) The exponent of the power law fit
above as a function of the salt concentration and as a function of VA (inlet). The
results are slightly different because of the salt concentration dependence of y.
The exponent is determined using only data for v < 38xg. (c) Time evolution of v
in a larger 2064x, size system compared to the results above in a 504x, system.
The fluctuations in v visible for v > 38x, do not appear in larger systems and can
be attributed to finite size effects. The power law fit (full lines) over the full data
set in the 2064x, system is practically identical to that of the 504x, system for
v < 38xq. Parameters: £ =4, kgT =1, Au = 3kgT, G=5.5.

size effects contributing to fluctuations of v is the orientation
angle dependence of the number of separate lamellae that fit
into the simulation domain due to its square shape and the use
of periodic boundary conditions. For this reason, large num-
bers of nematic defects must form, leading to decreasing v,
before nematic ordering can increase further.

As nematic ordering is driven by electrostatic fluid forc-
ing, and the electrostatic fluid forcing is proportional in mag-
nitude to A, it is not surprising that ordering progresses faster
for higher A. The nematic range as a function of time seems to
be well-modelled as a power law of the form v/xo = (t/to)”,
with an exponent n « cs proportional to the salt concen-
tration. Because of the early onset of finite size effects, we
made another simulation on a much larger 2064x, system over
3 x 108 time steps for A = 1.16. The resulting evolution of v
shown in Fig. 4(c) confirms the previously mentioned power
law behaviour but without any major deviations due to finite
size effects. Such a power law behaviour has been previously
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described for the growth of nematically ordered domains in
the Ohta-Kawasaki model.>> As shown in Eq. (21), A « c2.
Judging from smaller-scale simulations, the system parame-
ters € and Au affecting the magnitude of electrostatic forces
and therewith A appear to similarly affect the rate of nematic
ordering. We suspect that indeed 5 « VA, though we have so
far only performed sufficiently long-term simulations to accu-
rately determine 5 as a function of the salt concentration.
The results of fitting the exponents 5 as either ocs or « VA
are shown in Fig. 4(b). We are currently engaged in imple-
menting a performance efficient version of our code for 2D
simulations using the D2Q9 scheme in order to further study
nematic ordering as a function of A, for larger system sizes
and time scales, and to test the influence of viscosity. It is
known that in the Ohta-Kawasaki model, r is a function of
& o A, though the precise form of this dependency has not
been studied to our knowledge.>>

Because the lamellar patterns are oppositely charged,
the nematic ordering can be significantly sped up and ori-
ented in a controlled manner by applying an external elec-
tric field. The electric field has to be applied early during
the demixing process to be able to align the lamellae. When
an electric field is applied on a domain of already nemati-
cally ordered lamellae, the resulting electrostatic forces acting
on both sides of an interface are directed in opposition to
each other and cancel out due to opposite charges. Increas-
ing the field strength eventually leads to a break-up of the
lamellar structures which is known as the Helfrich-Hurault
instability in the context of smectic and cholesteric liq-
uid crystals.?¢ In the case of our simulations, hydrodynamic
chaos ensues, though in the Stokes regime, a square lattice
undulating pattern can be predicted from free energy consid-
erations.>%>7 If the field strength is decreased again, lamel-
lar structures in alignment with the external field direction
will reform. Structure formation by electric fields has been
extensively studied for diblock-copolymer mixtures®-“? with
results that should be entirely transferable to the case of
antagonistic salt mixtures as long as external electric fields are
not strong enough to decouple the ions from the fluid order
parameter.

D. Length scales

In small-angle neutron scattering (SANS), a neutron
diffraction image of a sample is recorded and time-averaged
on a screen. According to the Rayleigh-Gans equation, this
diffraction image is well-approximated as the radially aver-
aged power spectral density (PSD) of the scattering length
density in the sample. The scattering length density is an
empirically determined material constant. Figure 5(a) shows
the PSD Sy, (q), i.e., the absolute squared of the Fourier trans-
form, of a linear combination ns = s;ny + SsNy + S4+C+ + s_c_ of
the fluid and ion concentrations. We choose the prefactors
so and s. representing relative scattering length densities as
s; = 14, s, = 6.4, s_ = 21, and s, = 0 from the experimen-
tal values for aD,O/3MP mixture with the antagonistic salt
NaBPH,4." Note that we do not aim to quantitatively match
the experimental data, as we are operating at different volume
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FIG. 5. (a) Simulation results of power spectral density showing primary and sec-
ondary structure peaks and disappearance of structure at high A. A was varied by
changing salt concentration. For readability, each graph after A = 0.05 is shifted
by a factor of 10° along the y-axis compared to the previous one. (b) Order param-
eter on identical color scales for cs = 2 x 10‘7x63 (A ~ 8) on the left and five
times that of the salt concentration (A ~ 59) on the right. Parameters: ¢s = (1-100)
x 1078, £=2x 10710, kgT = 10°, Ap = 5kgT, G = 4.5.

fractions and neglecting potentially important system param-
eters such as permittivity and viscosity differences between
the fluids. Nonetheless, S,,(q) has a notable resemblance to
experimental results from SANS." For low salt concentrations,
or low A, the PSD approximately follows the Ornstein-Zernike
function,’! indicating typical hydrodynamic concentration
fluctuations but no periodic structure. At intermediate salt
concentrations, a major peak appears at a wavenumber g
= 1/4;, corresponding to the center-to-center spacing Ay,
between two neighbouring lamellae of either fluid.

The secondary peaks at higher wavenumbers for interme-
diate A in Fig. 5(a) are the harmonics of the peak frequency, i.e.,
they are located at integer multiples of gn,. The uneven har-
monics can be explained by approximating the lamellar struc-
tures as a square wave of frequency ¢y,, which by the Fourier
series can be decomposed into the sum of all uneven harmon-
ics of qm. The even harmonics are caused by a decrease of
the total fluid density at the interfaces due to the pseudopo-
tential forces of demixing. Our general assumption of fluid
incompressibility is of course only approximately true here.
The density dip at the interface can also be approximated as a
step function, but at twice the frequency gn, of the lamellae, as
each lamellar has two interfaces. At least one such secondary
peak at quite precisely double the frequency of the first peak
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is visible in the experimental data of Sadakane et al.,’ and as its
intensity is low compared to the noise, we believe that higher
order peaks may have simply not been resolved due to impre-
cisions of the measurement. The PSD of the order parameter
Sy (q), while otherwise almost identical to Sy,(q), does not show
secondary peaks at the even harmonics of q,;,. The sharp inter-
facial density dips in n; and ny are smoothed by normalization
with ng + no.

Going to high salt concentrations, we again recover
essentially the same picture in the PSD as for low salt concen-
trations. As we illustrate in Fig. 5(b), periodic structures desta-
bilize and remixing occurs, when A exceeds some threshold.
In Sec. III B, we estimated the critical value where the effec-
tive surface tension goes to zero as A¢ ~ 3.1. In simulations, the
point where we observe structure dissolution varies depend-
ing on the values of G and Au/kgT in the range of about
A¢ ~ 1-10. A likely reason for this is that the sinusoidal single-
wave approximation we made in estimating A. is overly sim-
plistic. The actual shape of the lamellae can have aspects of
a square wave as well as flat shoulders of almost constant
zero-valued order parameter at the interfaces for high Ay,
as shown in Figs. 2(e) and 2(f). Also, an imperfect nematic
ordering changes the electrostatic field in a very non-trivial
way.

It is worth noting that the remixing state shown on the
right in Fig. 5(b) does not ever reach fluid flow equilibrium,
with domains of the non-zero order parameter sprouting and
dissolving continuously. We expect that this likely unphysical
behaviour might disappear when using a less coarse-grained
model, where each fluid molecule experiences only the elec-
trostatic force acting on ions it is currently bound to by sol-
vation. As it is, electrostatic forces are applied equally to both
fluid components at each lattice site.

Extracting the structure size, i.e., the periodicity A;, of
the lamellae as the inverse of the spatial frequency of the
primary peak in the PSD, we find good agreement with
the scaling laws derived in Eq. (21) according to the Ohta-
Kawasaki model. We compare the theoretical predictions with
simulation results for varying salt concentrations, dielectric
permittivities, and antagonicities in Figs. 6(a) and 6(b). The
parameters 4; and y are determined via Laplace tests. A is
determined by fitting a hyperbolic tangent function to a 1D
cut through the droplet interface. Full lines show the pre-
dicted structure sizes using a value of y obtained from Laplace
tests including ionic contributions. Here the surface tension
is calculated using Eq. (9) so that ion pressure and solvation
effects are present but electrostatic contributions are dis-
abled by setting j2 = F, = 0 in the Laplace test. For dashed
lines, the Laplace test is performed without any ions present
so that ¥ = ys. Although y changes by about a factor of 2
due to ionic contributions from the lowest to the highest
salt concentration, the impact on the structure size predic-
tions is not very large. Non-electrostatic ionic contributions
to the surface tension may be neglected in calculating the
structure size unless a particularly high degree of accuracy is
desired.

Following Onuki and Kitamura,® the structure size is given
by
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FIG. 6. [(a) and (b)]: Comparison of theoretical predictions in weak-segregation (WS) and strong-segregation (SS) limits [see Eq. (21)], as well as of the theory of Onuki [see
Eq. (25)] with simulation results of equilibrium structure sizes for various salt concentrations (a) and for a range of permittivities and antagonicities (b). When varying &, we
keptcs = 0.1x63, when varying Au ¢s = 0.05x63. Full lines show the theoretical predictions using y including pressure contributions from solvation and the ideal pressure
according to Eq. (9), while dashed lines result from neglecting all ionic contributions when calculating the surface tension. (c) Time convergence of length scales for various

salt concentrations. Parameters: € =4, kgT =1, Au = 3kgT, G =5.5.
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yp — 1 sO'p
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(25)
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2 isce?/e(kpT)?  VOYscdie?/e

with a dimensionless parameter y, quantifying the strength
of antagonicity. Our weak-segregation scaling in Eq. (21) can
be rewritten as A,s = 2714/+/¥p, Which is almost identical
to Onuki’s prediction. The model by Onuki predicts a diver-
gence of structure sizes when y, — 1, which our model does
not reproduce directly. The reason for this is that the Ohta-
Kawasaki model, from which the scaling laws in Eq. (21) are
derived, describes our system accurately only when electro-
static fluxes are small versus solvation fluxes and thus y, >
1 [cf. Eq. (23)]. When y, < 1, electrostatic fluxes keep the
ions bound to the interfaces, the charge is no longer strongly

Yp

coupled to the order parameter, and periodic structure for-
mation ceases. We find Onuki’s prediction to be almost iden-
tical to the weak-segregation Ohta-Kawasaki limit in Figs. 6(a)
and 6(b) for yp ~ 11. Onuki’s model fares slightly worse than
the strong-segregation Ohta-Kawasaki limit when structure
sizes grow larger than about 154;, but Onuki’s model can be
expected to fare better wheny, — 1.

The position of the primary spatial frequency peak, i.e.,
the structure size, can also be quite accurately determined
by calculating the radially averaged PSD of the order param-
eter Sy(q), i.e., the structure factor, and then taking its first
moment

o = 2q Su()q
" Zq Sl//(q) .

The dominant length scale taken as the inverse of g, con-
verges very quickly compared to the slow convergence of

(26)
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FIG. 7. Resulting droplet, tubular, and lamellar morphologies in 3D systems for m = 0.2, 0.3, and 0.5 from left to right. Parameters: ¢s = 0.125, £ =4, kgT =1, Au = 3kgT,

G=55.

nematic ordering, as seen in Iig. 6(c). Note the slower conver-
gence for lower salt concentrations, as it is the electrostatic
forcing, scaling with the salt concentration, that stops the
spinodal decomposition in the first place. As structure sizes
are increased at a constant interface width A;, we gradually
approach the limit of strong segregation, in which Araki and
Onuki similarly observed a noticeably slower convergence of
structure sizes.”

Comparing the structure factor of the order parameter
in the model by Onuki and Kitamura® with that in the model
of Ohta and Kawasaki'? reveals why a divergence of structure
sizes occurs in the former as y, — 1 but not in the latter. In
the Ohta-Kawasaki model, the inverse structure factor can be
approximated as

@) = q* +Cq 2, (27)

with some constant C > 0 and a q~2 term stemming from
the Coulombic attraction of opposite fluid phases inhibit-
ing macroscopic demixing and forcing S, — 0 for q — 0.
In the description of pure diblock copolymer solutions, this
is of course a reasonable condition indicating that oppo-
sitely charged blocks of a single diblock copolymer cannot
stretch and separate indefinitely.’%“* In the model of Onuki
and Kitamura, on the other hand,®

-1 2,.2 gt

Sy (@) =q +7qu+—/laz~ (28)
Due to the presence of the 1, term, we no longer neccessarily
have S, — 0 for q — 0. The fact that long-range interac-
tions of charges are screened by the Debye layer allows for
macroscopic demixing. By performing the first and second
derivatives of S;,,l(q)lq=o, we find that the structure factor S, (q)
has a maximum at q = 0 for y, <1 and a minimum at q = 0
for y, > 1. Thus macroscopic demixing occurs for y, < 1. A
similar form of structure factor as in the model of Onuki and
Kitamura can also be used to describe polyelectrolytes sta-
bilized by electrostatic repulsion in a poor solvent. In such
systems, mesophase structures are formed for small salt con-
centrations and a transition to macroscopic demixing occurs
when A, falls below some threshold value.#%43

E. Extension to 3D

The method as discussed is extensible to 3D in a straight-
forward manner. Preliminary results so far are essentially
identical to the 2D case, with gradual nematic ordering in
proportion to the salt concentration, a charge distribution
well-approximated as a polynomial function of the order
parameter and average structure sizes as predicted by the
Ohta-Kawasaki and Onuki models in Eq. (21). A somewhat
wider variety of different periodic structures is observed
depending on the volume fraction m, as shown in Fig. 7. A
minority phase tends to form spherical bubbles, which may
split or elongate depending on the strength of electrostatic
forces. Slightly asymmetric volume fractions lead to tube
structures, which may be separate or, for almost symmet-
ric volume fractions, conjoined into a bicontinuous network.
Finally, symmetric volume fractions lead to lamellar struc-
tures. The same morphologies as a function of volume frac-
tion have been previously produced by the Ohta-Kawasaki
model.*> In 2D, we observe only lamellar and droplet phases.

An interesting avenue of further research lies in the tran-
sition region between the droplet and tubular phases. Here we
find simulated systems which do not seem to ever converge
to a static state, instead exhibiting repeating cycles of droplet
nucleation, elongation of the droplet to a tubular shape by
electrostatics, and eventually splitting and evaporation of the
tube as electrostatic pressure builds up. It is possible that
a static state would be reached in a less coarse-grained
model applying the electrostatic force separately to the two
fluid components as we suggested in discussing Fig. 5(b) in
Sec. 111 D, but this remains to be seen.

IV. CONCLUSIONS
A. Summary

Based on our simulations, we developed a theoretical
model giving the charge distribution as a function of the fluid
composition at each point in time. When antagonicity is of the
order of a few kg T, this function is linear, and for higher antag-
onicities, it is a higher-order polynomial. With this model, we
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can neglect the complicated dynamics of the ions completely
and effectively reduce the system from a quaternary mixture
to a unary phase field model. We find that electrostatic inter-
actions in the ion dynamics can in many cases be neglected in
the parameter space where mesoscopic structure formation
happens, as structure formation occurs only when electro-
static ion fluxes are small in comparison with solvation fluxes.
The condition of solvation-dominated ion dynamics y, > 1,
or Aty < eAu?/6 x 102, is identical to the condition of struc-
ture formation derived by Onuki.® Assuming, for example,
Au = 15kgT at a temperature of T = 330 K and &, = 40, the
product of the interface width and surface tension has to fulfill
Ary < 10 pN in order for strong fluid-ion coupling and there-
with structure formation to be possible. For most water-oil
mixtures, this value is much larger under normal conditions
but can be expected to rapidly decrease to zero as the tem-
perature approaches the critical point of demixing.?627 In
a recent paper, Okamoto and Onuki have predicted a simi-
lar coupling that we observe of charge and order parameter
between nonionic solutes in water-oil mixtures to explain the
so-called Ouzo-effect.“®

By showing equivalency in the case of low antagonicity
to the Ohta-Kawasaki model, we motivate the observed struc-
ture formation and nematic ordering and predict the resulting
structure sizes. While it remains to be seen how the scaling
laws and morphologies differ from the Ohta-Kawasaki model
due to nonlinear coupling of charge and fluid composition for
high Au, we observe excellent agreement with the scaling laws
of the Ohta-Kawasaki model up to Au = 8kgT. Our 3D simu-
lations show essentially the same morphologies as a function
of the volume fraction m, as known from the Ohta-Kawasaki
model.*> On a similar note, Pousaneh and Ciach recently
showed in their study of confined mixtures“” how binary fluid
mixtures containing antagonistic salts can also be modeled
via the Landau-Brazovskii free energy model, which is recov-
ered by the Ohta-Kawasaki model in the weak-segregation
limit.>>

Our results on nematic ordering point towards the pos-
sibility of controlling the average size of ordered domains at
a given time or at least the speed of nematic ordering via a
number of system parameters affecting A, namely, the salt
concentration cs but possibly also the temperature, which will
strongly affect the ratio of A7/y close to the critical point. It
remains to be studied, whether thermal fluctuations eventu-
ally stop nematic ordering or it progresses continuously as
suggested by our simulations.

Comparing to experimental data from SANS, we numer-
ically reproduce and explain the dissolution of structures at
high salt concentration as a result of remixing caused by high
electrostatic fluid forces and zero or negative effective sur-
face tension when A > A.. For equal volume fractions, m = 0.5,
and again assuming Ay = 15kgT and &, = 40, this condition is
equivalent to A3cZ/y > 1.9 - 10%N~! m~2 for a critical A, ~ 3.1.
We also interpret the secondary peaks observed in the experi-
mental data as a result of reduced fluid and ion concentrations
at the interfaces.

Future work may include quantifying the effects of dielec-
tric permittivity contrasts between the two fluid components,

ARTICLE scitation.org/journalljcp

further testing the applicability of the Ohta-Kawasaki model
for high, but still realistic values of Au ~ 15k T, a more detailed
study of the dynamics of nematic ordering, and reproducing
the lamellar phase at low volume fractions, as observed in the
experiments of Sadakane et al.’
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