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Spatial distribution of freshwater 
crustaceans in Antarctic and 
Subantarctic lakes
Angie Díaz1,2, Claudia S. Maturana2,3, Luz Boyero   4,5, Patricio De Los Ríos Escalante   6,7, 
Alan M. Tonin   8 & Francisco Correa-Araneda9

Antarctic and Subantarctic lakes are unique ecosystems with relatively simple food webs, which 
are likely to be strongly affected by climate warming. While Antarctic freshwater invertebrates are 
adapted to extreme environmental conditions, little is known about the factors determining their 
current distribution and to what extent this is explained by biogeography or climate. We explored 
the distribution of freshwater crustaceans (one of the most abundant and diverse group of organisms 
in Antarctic and Subantarctic lakes) across four biogeographic provinces (Continental Antarctic, CA; 
Maritime Antarctic, MA; Subantarctic islands, SA; and Southern Cool Temperate, SCT) based on 
the literature, predicting that species distribution would be determined by biogeography, spatial 
autocorrelation among regions (in relation to dispersal) and climate. We found that variation in species 
composition was largely explained by the joint effect of spatial autocorrelation and climate, with little 
effect of biogeography – only regions within the SA province had a clearly distinct species composition. 
This highlights a plausible main influence of crustacean dispersal – mainly through migratory seabirds 
– and suggests that some regions will be more affected by climate warming than others, possibly in 
relation to the existence of nearby sources of colonists.

Antarctica is the Earth’s southernmost continent, almost entirely covered by an ice sheet. Remarkably, however, 
it holds a high variety of lake ecosystems, many located in ice-free coastal areas, and some in ice-free inland areas 
and in surrounding Antarctic and Subantarctic islands1. These lakes are characterized by their low metazoan 
diversity and low food-web complexity, with higher trophic levels such as fish being missing or largely absent1–3. 
Such low diversity and ecological complexity could make these ecosystems particularly vulnerable to ecological 
changes as a result of climate change-driven extinctions4. It is thus important to explore distribution patterns of 
their biota and the determinants of such patterns, which can shed light on future ecological changes5.

Crustaceans are the most diverse and well-documented freshwater invertebrates in Antarctic and Subantarctic 
lakes, where the eight major crustacean orders are represented6. Most taxa are common components of zooplankton, 
where they occupy a wide range of ecological niches, and can respond quickly to environmental change, including 
temperature increase7. Thus, they are considered sentinel organisms which can help understanding climate change 
effects8,9. The occurrence of crustacean species in Antarctic and Subantarctic lakes has been reported in many pub-
lications and compiled in two major reviews6,10, but no attempt has been made to explore whether their distribution 
is explained mostly by biogeography or whether climate is a main determinant. We explored this question using 
published information and tested the hypothesis that variation in crustacean species composition across regions 
within Antarctica is determined by (i) biogeography (i.e., regions from the same biogeographic province will have 
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Order/Species

CA MA SA SCT

En Wi Sc So Ss Pa Sg Pe Cr Kr Hd Mc Fa Ca Ak Ref.

Anostraca

Branchinecta gaini (Daday, 1910)* • • • • • 1,2

Cladocera

Alona guttata (Sars, 1862)** • 1

Alona quadrangularis (O.F. Müller, 1776)** • 1,2

Camptocercus aloniceps (Ekman, 1900)* • • 1,2

Camptocercus rectirostris (Schödler, 1862) • 1

Chydorus patagonicus (Ekman, 1900) • • 1,2

Chydorus sphaericus (O.F. Müller, 1776)* • • • • • 1,2

Daphnia gelida (Brady, 1918)** • 2

Daphnia pulex (Leydig, 1860) • 1

Daphniopsis studeri (Rühe, 1914)* • • • • • 1,2

Ceriodaphnia silvestrii (Daday, 1902)** • 1

Ilyocryptus brevidentatus (Ekman, 1905) • • • 1,2

Macrothrix boergeni (Studer, 1878)** • 2

Macrothrix flagellata (Smirnov & Timms, 1983)** • 2

Macrothrix laticornis (Jurine, 1820)** • 1

Macrothrix ruehei (Kotov, 2007) • • 2

Macrothrix oviformis (Ekman, 1900)* • • • • 2

Macrothrix sp. (Baird, 1843)* • 2

Ovalona weinecki (Studer, 1878)* • • • • • • • • 2

Pleuroxus macquariensis (Frey, 1993)** • 1,2

Pleuroxus wittsteini (Studer, 1878) • • • 1,2

Bosmina coregoni (Baird, 1857) • 2

Podocopida

Candona sp. (Baird, 1845) • 1,2

Chlamydotheca pestai (Graf, 1931)** • 1,2

Chlamydotheca symmetrica (Vávra, 1898)** • 1

Cypretta sp. (Vávra, 1895)** • 1,2

Eucypris corpulenta (G. O. Sars, 1895)** • 1,2

Eucypris fontana (Graf, 1931)* • • 1,2

Eucypris virens (Jurine, 1820) • • 1,2

Ilyodromus kerguelensis (G.W. Müller, 1906) • • • 1,2

Neocypridopsis frigogena (Graf, 1931)* • • 1,2

Tanycypris sp. (Triebel, 1959) • 1,2

Candonopsis falklandica (Vávra, 1898)** • 1

Newnhamia patagonica (Vávra, 1898)** • 1

Calanoida

Boeckella poppei (Mrázek, 1901)* • • • • • • 1,2

Boeckella michaelseni (Mrázek, 1901)* • • 1,2

Boeckella brevicaudata (Brady, 1875) • • • 1,2

Boeckella vallentini (Scott T., 1914)* • • • • 1,2

Boeckella sp. (Guerne & Richard, 1889)* • 2

Gladioferens antarcticus (Bayly, 1994)** • 1,2

Parabroteas sarsi (Daday, 1901)* • • • • 1,2

Cyclopoida

Acanthocyclops robustus (Sars G.O., 1863)** • 1,2

Acanthocyclops vernalis (Fischer, 1853) • 1,2

Diacyclops michaelseni (Mrázek, 1901)** • • 1,2

Diacyclops mirnyi (Borutzky & Vinogradov, 1957)** • • • 1,2

Diacyclops joycei (Karanovic et al. 2014)** • 2

Diacyclops kaupi (Karanovic et al. 2014)** • 2

Diacyclops walkeri (Karanovic et al. 2014)** • 2

Mixocyclops crozetensis (Kiefer, 1944)** • 1,2

Paracyclops chiltoni (Thomson G.M., 1883) • • 1,2

Tropocyclops prasinus prasinus (Fischer, 1860) • 1

Continued
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Order/Species

CA MA SA SCT

En Wi Sc So Ss Pa Sg Pe Cr Kr Hd Mc Fa Ca Ak Ref.

Harpacticoida

Antarctobiotus koenigi (Pesta, 1928)** • 10,6

Antarctobiotus robustus (Richters, 1907) • • 10,6

Epactophanes richardi (Mrázek, 1893) • • • • 10,6

Marionobiotus jeanneli (Chappuis, 1940)* • • • 10,6

Marionobiotus sp. (Chappuis, 1940)* • 6

Tigriopus angulatus (Lang, 1933)* • • • • 10,6

Attheyella (D.) trigonura (Eckman, 1905) • 10

Amphipoda

Kergueleniola macra (Ruffo, 1970)** • 10,6

Pseudingolfiella possessionis (Smet, 2015)** • 6

Chiltonia mihiwaka (Chilton, 1898) • • 10

Hyalella curvispina (Shoemaker, 1942) • 10

Hyalella neonoma (Stock & Platvoet, 1991) • 10

Falklandella obtusa (Schellenberg, 1931) • 10

Praefalklandella cuspidatus (Schellenberg, 1931)** • 10

Isopoda

Iais sp. (Bovallius, 1886) • 6

N° total species 4 3 1 9 4 4 17 9 11 19 6 14 25 1 1

N° species by zones 7 9 46 26

N° order 3 4 8 7

Table 1.  Presence/absence matrix of crustacean taxa in lakes of each study region based on Pugh et al. 2002 (1) 
and Dartnall et al. 2017 (2). Provinces: CA, Continental Antarctic; MA, Maritime Antarctic; SA, Subantarctic 
islands; SCT, Southern Cool Temperate. Regions: En, Enderby; Wi, Wilkes; Sc, Scott; So, South Orkney Islands; 
Ss South Shetland Islands; Pa, Antarctic Peninsula; Sg, South Georgia; Pe, Prince Edward Island; Cr, Iles Crozet; 
Kr, Iles Kerguelen; Hd, Heard Island; Mc, Macquarie Island; Fa, Falkland/Malvinas Islands; Ca, Campbell Island; 
Ak, Auckland Island. Underlined species: Endemic from one biogeographic province; *: Endemic from two or 
more biogeographic provinces; **: Endemic from one region within a province.

Figure 1.  Results of hierarchical cluster analysis grouping the study regions based on crustacean species 
composition. Regions: see Table 1 footnote.
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more similar species composition than regions from different provinces), (ii) spatial autocorrelation among regions 
(i.e., regions closer to each other will have more similar species composition than more distant regions due to higher 
dispersal among them) and (iii) climate (due to species-specific environmental constraints).

Figure 2.  Results of NMDS ordination of study regions based on crustacean species composition (A), with 
inset of the main group (B). Regions: see Table 1 footnote.

Permutations R p-value

CA vs. MA 10 0, 556 0, 10

CA vs. SA 84 0, 698 0, 01

CA vs. SCT 10 0, 185 0, 20

MA vs. SA 84 0, 497 0, 04

MA vs. SCT 10 0, 556 0, 10

SA vs. SCT 84 0, 694 0, 02

Table 2.  ANOSIM Pairwise test analysis between provinces based on the presence/absence crustacean 
matrix. Provinces: see Table 1 footnote.

Average Abundance Similarity Contribution Dissimilarity Contribution

Group 1 Group 2 Group 1 Group 2 Group 1 vs Group 2

Epactophanes richardi 0, 67 — 13, 57 0 5, 26

Daphniopsis studeri 0, 67 0, 11 13, 57 0 4, 89

Ovalona weinecki 0, 83 0, 33 19, 47 5, 75 4, 79

Tigriopus angulatus 0, 67 0 11, 11 0 4, 37

Pleuroxus wittsteini 0, 5 0 6, 79 0 4, 06

Boeckella brevicaudata 0, 5 0 5, 74 0 3, 65

Boeckella vallentini 0, 5 0, 11 5, 68 0 3, 38

Ilyodromus kerguelensis 0, 5 0 5, 68 0 3, 38

Boeckella poppei 0, 17 0, 56 0 30, 17 3, 28

Marionobiotus jeanneli 0, 5 0 5, 22 0 3, 17

Chydorus sphaericus 0, 5 0, 22 4, 62 0 2, 93

Branchinecta gaini 0, 17 0, 44 0 15, 41 2, 69

Macrothrix ruehei 0, 33 0 0 0 2, 6

Macrothrix oviformis 0, 17 0, 33 0 11, 39 2, 46

Parabroteas sarsi 0, 17 0, 33 0 0 2, 09

Chiltonia mihiwaka 0 0, 22 0 20, 42 2

Antarctobiotus robustus 0, 33 0 0 0 1, 97

Paracyclops chiltoni 0, 33 0 0 0 1, 97

Diacyclops mirnyi 0 0, 33 0 8, 7 1, 95

Cumulative Contribution 91, 45 91, 84 60, 89

Table 3.  Similarity Percent analysis (SIMPER) to identify the contribution (%) of each species to the similarity 
and dissimilarity of each group.
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Results
We extracted a list of 66 crustacean taxa (59 species and 7 genera/mosphospecies; hereafter species for simplic-
ity) representing 8 orders (Table 1). Species were distributed mainly across the Subantarctic islands (SA) and 
Southern Cool Temperate province (SCT) (46 and 26 species, respectively). SA showed at least 1 species from 
each of the 8 crustacean orders, and all SA islands except Prince Edward Island (Pe) contained species that were 
endemic of our study area. Iles Kerguelen (Kr) showed the greatest richness (19 species, 5 endemic), followed by 
South Georgia (Sg; 17 species, 5 endemic), Macquarie Island (Mc; 14 species, 7 endemic including Iais sp., the 
only isopod recorded at these latitudes) and Iles Crozet (Cr; 11 species, 2 endemic). For SCT, Falkland/Malvinas 
Islands (Fa) concentrated most of the species (25) allocated across 7 orders and a high number of endemic species 
(10). Campbell (Ca) and Auckland Islands (Ak) had one endemic species, Chiltonia mihiwaka (Amphipoda). 
The cladoceran Ovalona weinicki11 and the calanoid Boeckella poppei12 were present in most localities (8 and 6, 
respectively), but only B. poppei was present in all of them. In the Maritime Antarctic province (MA) there were 9 
species across 4 orders. South Orkney Islands (So) was the richest region, with all 9 species and the only records 
of Podocopida and Cladocera within MA, with the exception of Macrothrix oviformis and O. weinicki, which were 
also found in South Shetland Islands (Ss) and Antarctic Peninsula (Pa). In the Continental Antarctic province 
(CA) there were 7 species of the orders Cladocera [Daphniopsis studeri at Enderby (En)], Calanoida [B. poppei 
at En and Gladioferens antarcticus at Wilkes (Wi)] and Cyclopoida (Diacyclop sp. in all 3 regions), with 3 species 
endemic of this province (D. joycei, D. kaupi and D. walkeri).

Cluster analysis showed 3 distinct groups of regions according to crustacean species composition: (1) Ca and 
Ak from SCT; (2) Sc from CA; and (3) all regions from SA, MA and CA (excluding En and Wi) and Fa from SCT. 
The latter group was further divided into 3 sub-groups: (3a) Cr, Pe, Kr, Heard Island (Hd) and Mc from SA, the 
latter without significant support; (3b) MA, Sg from SA and Fa from SCT, the latter without significant support; 
and (3c) En and Wi from CA (Fig. 1). The NMDS produced the same groups as cluster analysis (Fig. 2).

ANOSIM showed significant differences among biogeographic provinces (Global R = 0.57, p = 0.001). 
Pairwise tests showed significant differences for CA vs. SA, MA vs. SA and SA vs. SCT and no significant dif-
ferences among CA, MA and SCT (Table 2), thus revealing two groups (Group 1: SA; Group 2: CA, MA and 
SCT). Based on similarity percent analysis (SIMPER), the species that most contributed to Group 1 were Ovalona 
weinecki (19.5%), Epactophanes richardi (13.6%), Daphniopsis studeri (13.6%) and Tigriopus angulatus (11.1%); 
species that most contributed to Group 2 were Boeckella poppei (30.2%), Chiltonia mihiwaka (20.4%) and 
Branchinecta gaini (15.4%); dissimilarity between Group 1 and Group 2 was explained by a large number of spe-
cies, all with lower contribution values (<5.2%) (Table 3).

The partial redundancy analysis (pRDA) showed that both spatial autocorrelation and climate explained a 
significant part of the variance (spatial autocorrelation: R2

adj = 0.38, p = 0.003, variance explained = 26.67%; cli-
mate: R2

adj = 0.05, p = 0.029, variance explained = 3.73%), but most variance was due to the shared contribution 
of both variables (R2

adj = 0.60, p = 0.001, variance explained = 41.87). Residuals explained 27% of the variance 
(R2

adj = 0.40) (Fig. 3).

Discussion
Our results showed that spatial autocorrelation among Antarctic and Subantarctic lakes and climate were key 
determinants of crustacean distribution, while biogeography had a secondary role. Multivariate analyses revealed 
that only the Subantarctic biogeographic province had a distinct crustacean fauna. This province contained 46 
species belonging to the 8 crustacean orders described for Antarctica. The species that most contributed to the 
distinctness of the Subantarctic province was the cladoceran O. weinecki11, which is the only Antarctic represent-
ative of a genus of mainly tropical and subtropical distribution13. Van Damme and Dumont14 re-described this 
species from a complex of Alona sp. (principally, A. weinecki) described for Subantarctic islands6,10.

Geographic distance may explain the fact that Macquarie island, which is separated ~6,000 km from the other 
Subantarctic islands, shared only a few species with them; and could also explain the high incidence of endemic 
species of crustaceans and other freshwater organisms in Macquarie island15. The relevance of distance was also 
revealed by our partial redundancy analysis (which showed that spatial autocorrelation among regions explained 
a large amount of variance), and it is most likely related to patterns of dispersal. Dispersal among nearby islands 
occurs mainly via migratory seabirds, which can transport resistant eggs within the gut or in mud adhering to 
feet1,6,10,16,17. Distance among regions is often a key determinant in the distribution of freshwater fauna18, which 
may help explain some inconsistencies in the definition of biogeographic provinces.

The Maritime Antarctic province had similar species composition to South Georgia island from the 
Subantarctic province and the South American Falkland/Malvinas islands from the Southern Cool Temperate 
province. All these regions are separated by less than 2,000 km, so geographic distance could again be important 
in their similarity. It has also been proposed that Antarctic and South American crustacean fauna could have a 
common origin, as both continents were separated ~30 Mya19,20, thus being vicariant faunas21,22. However, this is 
unlikely, because most crustacean species in Continental and Maritime Antarctic provinces are Holocene immi-
grants, having arrived within the last 11 ka10.

Campbell and Auckland Islands (New Zealand), from the Southern Cool Temperate province, had a distinct 
fauna and mainly shared the unique amphipod species C. mihiwaka23 and the widespread B. poppei. The separa-
tion of the Scott sector from the Continental Antarctic province from other regions was related to the Cyclopoida 
D. joycei24, which is the only species that inhabits this region. The other two sectors of the Continental Antarctic 
province (Enderby and Wilkes) have other species of this genus: D. mirnyi (present in both regions), D. walker 
(in Enderby) and D. kaupi (in Wilkes). This group of Diacyclops species is known as the “michaelseni group”25, a 
circum-Antarctic assemblage that shares some morphological characteristics and originated in Antarctic fresh-
water lakes in late Pliocene, prior to the onset of glaciation24. Lastly, the wide distribution of some species such 
as O. weinecki or B. poppei could be due to recent colonization events from northern latitudes, of anthropogenic 
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origin in some cases10. Other authors have suggested an ancient origin for these species, which may have survived 
during Pleistocene glaciations in refugia26–28, such as Kerguelen Island14.

The lack of consistent climatic data for different Antarctic and Subantarctic regions precluded a more robust 
assessment of the influence of climate on freshwater crustacean distribution. However, our analyses using latitude 
as surrogate for climate suggested that climate affects distributional patterns, and its effect is variable among 
regions, depending on their location. Thus, some regions of Antarctica are likely to be more affected by climate 
warming than others, and this variation could be related to geographic distance to other sources of colonists. 
These differences may be further enhanced by the fact that some parts of Antarctica are experiencing greater 
temperature increases than others; the increase is particularly large in the Antarctic Peninsula, which has regis-
tered an increase of 0.67 °C per decade in the last 50 years29–31. Further studies are needed in order to improve our 
knowledge on biodiversity patterns and their main drivers in this continent that is experiencing some of the most 
rapid environmental changes on Earth32.

Methods
Study area.  The Antarctic continent can be divided into 3 biogeographic provinces which differ considerably 
in climatic conditions3,32–34: the CA, which is the largest and coldest region with temperature rarely above freezing35, 
comprising the continent landmass south of 72°S and the Balleny Islands; the MA, which includes the western side 
of the Antarctic Peninsula north of 72°S and experiences seasonal snowmelt35; and the SA, which comprises a series 
of islands and small archipelagos in the Southern Ocean proximate to the zone of Antarctic Polar Front (APF), with 
temperatures that on average are above freezing point year-round36. Besides, we considered a fourth biogeographic 

Figure 3.  Results of partial redundancy analysis (pRDA) showing the amount of variability in crustacean 
distribution attributable to spatial autocorrelation among regions, climate, and the shared contribution of both 
variables. The amount of variability explained by each factor or their shared contribution is based on R2adj; 
asterisks indicate significant results (at p < 0.05, based on 999 permutations).

Figure 4.  Map of the four Antarctic and Subantarctic biogeographic provinces considered in this study: 
Continental Antarctic (in blue colour), Maritime Antarctic (orange), Subantarctic islands (green) and Southern 
Cool Temperate (yellow).
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province, north of the APF and influenced by low temperatures: the SCT province, which is formed by several 
islands from New Zealand and South America10, with cool to cold temperate climate37 (Fig. 4).

Data collection.  We elaborated a presence/absence matrix of all freshwater crustacean species reported for 
Antarctic and Subantarctic lakes, based on two major literature reviews6,10, which contained all the available 
information to date. We divided each biogeographic province into regions following the above two reviews: CA 
comprised the En (30°E–90°E), Wi (90°E–150°E) and Sc (150°E–150°W) sectors; MA included the Pa, Ss and 
So; SA included Sg, Pe, Mc, Hd, Cr and Kr; and SCT included Ca and Ak from New Zealand and Fa from South 
Atlantic ocean (Table 1, Fig. 4). We excluded suspect records from the dataset, ruled out possible synonymies, 
and updated scientific names. We assumed that sampling effort of different taxa was similar across sites, although 
potential differences may have some influence on our results.

Data analysis.  We explored the influence of biogeography on regional species composition using hierarchi-
cal cluster analysis integrated with similarity profile analysis in SIMPROF38 and metric multidimensional scaling, 
MDS39 based on a similarity matrix using the Jaccard index. We tested for significance of the different groups of 
regions generated by cluster analysis using one-way ANOSIM, with biogeographic province as factor40,41, followed 
by pairwise tests. Further, we identified the main species associated with each group through SIMPER based on 
the presence/absence matrix of crustacean species. These analyses were done using Primer v.6 software42.

We explored the separate and joint influence of spatial autocorrelation among regions and climate using 
pRDA. The amount of variation explained by each factor and by their shared contribution was calculated by var-
iance partitioning analysis, which is based on adjusted R2 (R2

adj), and their statistical significance tested through 
permutation tests (999 randomizations). Species composition data was Hellinger-transformed prior to analysis 
to provide an unbiased estimate of variance partitioning based on RDA. Spatial autocorrelation was obtained 
with the eigenfunction analysis known as Principal Coordinates of Neighbor Matrix PCNM43, which created 10 
spatial variables (PCNM vectors) based on a matrix of Euclidean distances between regions calculated using the 
geographic coordinates. These vectors allow the representation of different spatial relationships among regions 
at different spatial scales and can be treated as independent variables44. As we were not able to obtain consistent 
climatic data for all the study regions – there are relatively few meteorological stations in Antarctica and any 
gross estimate based on different data sources could be misleading –, we used decimal latitude as surrogate for 
climate. To eliminate any effect caused by different elevations, we used the residuals of a linear regression with 
latitude (as a response variable) against elevation (as a predictor) in the analysis45,46. Elevation was obtained 
from www.gps-coordinates.net based on latitude and longitude. These analyses were performed on R v. 3.5.147, 
using the functions rda, varpart, anova.cca and pcnm from vegan package48.

Data Availability
Data will be available on the Open Science Framework online repository.
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