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Abstract We address the question of whether all large‐magnitude earthquakes produce an erosion peak
in the subaerial components of fluvial catchments. We evaluate the sediment flux response to the Maule
earthquake in the Chilean Andes (Mw 8.8) using daily suspended sediment records from 31 river gauges.
The catchments cover drainage areas of 350 to around 10,000 km2, including a wide range of topographic
slopes and vegetation cover of the Andean western flank. We compare the 3‐ to 8‐year postseismic record of
sediment flux to each of the following preseismic periods: (1) all preseismic data, (2) a 3‐year period prior to
the seismic event, and (3) the driest preseismic periods, as drought conditions prevailed in the
postseismic period. Following the earthquake, no increases in suspended sediment flux were observed for
moderate to high percentiles of the streamflow distribution (mean, median, and≥75th percentile). However,
more than half of the examined stations showed increased sediment flux during baseflow. By using a
Random Forest approach, we evaluate the contributions of seismic intensities, peak ground accelerations,
co‐seismic landslides, hydroclimatic conditions, topography, lithology, and land cover to explain the
observed changes in suspended sediment concentration and fluxes. We find that the best predictors are
hillslope gradient, low‐vegetation cover, and changes in streamflow discharge. This finding suggests a
combined first‐order control of topography, land cover, and hydrology on the catchment‐wide erosion
response. We infer a reduced sediment connectivity due to the postseismic drought, which increased the
residence time of sediment detached and remobilized following the Maule earthquake.

1. Introduction

Earthquakes shape topography by coseismic uplift and simultaneously reduce relief by enhancing erosion.
These processes define the role of large earthquakes in terms of the mass balance of mountain belts
(Hovius et al., 2011; Li et al., 2014). A better understanding of the processes triggered by high‐magnitude
earthquakes helps to constrain this long‐term trade‐off between uplift and erosion. In addition, the
observation and description of such large‐scale disturbances triggered by earthquakes are relevant for
improving our knowledge regarding hazard and risk assessment associated with catastrophic events.

Earthquakes disturb the surface of the Earth and potentially modify sediment transfers from sources to
sinks. Regarding sediment sources, a direct relation has been proposed between earthquake magnitude
and the total area and volume of coseismic mass wasting in epicentral areas (Keefer, 1994; Malamud
et al., 2004; Marc et al., 2017; Rodríguez et al., 1999). The propensity for failure after shallow earthquakes
increases the rate of landslides during the first 1–4 years after the earthquake, which may also be controlled
by earthquake magnitude (Marc et al., 2015). However, the erosive efficacy of large earthquakes also likely
depends on site‐specific topography (Meunier et al., 2008; Sepúlveda et al., 2005, 2010), glacial cover (Gorum
et al., 2014), and fault type and depth (e.g., Antinao & Gosse, 2009; Gorum et al., 2014). From the available
catalogs of landslides from recent shallow earthquakes, Marc et al. (2016) proposed a predictive model to
estimate the total volume mobilized by landslides attributable to earthquakes. This model considers
parameters describing the earthquake properties and landscape. However, it was not designed for
subduction earthquakes, which represent end‐members in terms of earthquake magnitude, but with
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limited onshore ground motion that restricts the number and overall volume of coseismic landslides
(Lacroix et al., 2013).

Regarding sediment transfer by rivers, sediment yields triggered by earthquakes are among the highest
reported (Korup, 2012). Landslides induced by earthquakes provide fine‐grained sediment supplies (e.g.,
Wang et al., 2015), which may increase the concentration of sediment in rivers independent of the variability
of storms (Dadson et al., 2004; Hovius et al., 2011). Nonetheless, the residence time of the detached sediment
may last from years to centuries and is inversely proportional to the frequency of intense runoff events
(Wang et al., 2015). This observation highlights the fact that the catchment‐wide erosion response is
sensitive not only to landsliding but also to the establishment of connectivity that is needed for routing
sediments to, and through, rivers (e.g., Fryirs, 2013). Hillslope‐channel connectivity is established through
discontinuous surface runoff, which depends on climate and site‐specific thresholds for rainfall intensity.
Sediment routing through rivers may also be modified by earthquakes. For example, landslides induced
by earthquakes can dam rivers and modify drainage networks (Korup, 2005), as was the case for the
Riñihuaso event following the 1960 Mw 9.5 Valdivia megathrust earthquake (Araya et al., 2014; Davis &
Karzulovíc, 1963). Seismic shaking also triggers hydrological responses (Manga & Wang, 2015), disturbing
streamflow at a regional to continental scale (e.g., Mohr et al., 2017; Montgomery & Manga, 2003; Shi
et al., 2015). Given that seismic events can increase streamflow by up to a factor of five compared to
preseismic conditions (Mohr et al., 2017), these streamflow pulses may plausibly be relevant for the transport
of sediment at the landscape‐scale.

Large earthquakes, including megathrusts, are well recorded in the stratigraphy of lacustrine sediments
(Howarth et al., 2012; Moernaut et al., 2015, 2018). In southern Chile, lacustrine turbidites sourced from
hemipelagic sediments are generated over a macroseismic intensity threshold of VI ½ to VII ½ (Moernaut
et al., 2018). Earthquakes may also trigger lake tsunamis, subaquatic landslides, and delta collapses. These
disturbances, together with the sediment sourced from subaerial coseismic landslides, generate differenti-
able deposits in the lacustrine stratigraphy (Van Daele et al., 2015).

Along the western flank of the Peruvian segment of the Central Andes, the cumulative seismic moment is
greatest along the subduction interface and is thus below the coastline. This region does not coincide with
the catchments yielding the highest decennial suspended sediments, which instead are located further
inland, close to the main water divide (Morera et al., 2017). This observation, together with the restricted
volume of coseismic landslides observed in a recent Andean megathrust earthquake (Lacroix et al., 2013),
suggests a low catchment‐wide erosional response to this type of seismic event. In this context, studying
the net effect of a large megathrust on sediment fluxes may help to test if interplate megathrusts produce
a postseismic erosion peak, as is the case for relatively shallow, large (Mw ≥ 7.3), intraplate earthquakes
(Dadson et al., 2004; Hovius et al., 2011; Wang et al., 2015). Studying an individual megathrust may also
allow exploration of whether the postseismic sediment fluxes are dominated by the volume of co‐seismic
landsliding (supply limited) or by surface runoff and its effect on hillslope‐channel connectivity
(transport limited).

The Maule earthquake (Mw 8.8) occurred in the Chilean segment of the Central Andes, involving a rup-
ture zone of around 500 × 140 km (Figure 1a). This event is the second largest in magnitude recorded in
the Andean subduction margin and is the fifth largest worldwide (ANSS Comprehensive Earthquake
Catalog, https://earthquake.usgs.gov/data/comcat/, 09/26/2018). Despite the relatively low number of
coseismic landslides triggered by this megathrust (Figure S1 in the supporting information; Serey et al.,
2019) compared to earthquakes in other regions of the world (section 3), the Maule earthquake produced
the largest reported coseismic release of water by rivers (Mohr et al., 2017) and triggered widespread
turbidite deposits in the lakes of south‐central Chile (Van Daele et al., 2015). Here, we examine the above
questions of whether interplate megathrusts produce post‐seismic erosion peaks and whether the post‐
seismic fluxes are dominated by the supply of landslide material or by surface runoff and consequent
hillslope‐channel connectivity (i.e., supply‐ vs. transport‐limited response). To address these questions,
we take advantage of the large number of monitored streams in this part of Chile to document the changes
of suspended sediment fluxes in rivers before and after the Maule earthquake. We relate the observed
response to a variety of factors, including local seismic effects (coseismic landslides, seismic intensities,
and peak ground accelerations [PGAs]), hydroclimate, topography, lithology, and land cover for the
studied catchments.
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2. Study Region

Our study area is part of the continental Andean western flank (~32‐40°S), where two longitudinal ranges
(the Coastal Cordillera and the Principal Cordillera) are separated by a piedmont region, the Central
Depression (Figure 1). The active volcanic arc is located in the Principal Cordillera, and this range also com-
prises extensive and thicker Cenozoic volcanic and clastic units. Hard rocks and steep slopes are present in
both ranges, but the Coastal Cordillera in Central Chile has lower modal slopes (Figure S2), lacks deposits
from recent and ancient volcanic activity, and hosts a larger proportion of metamorphic and intrusive rocks
compared to the Principal Cordillera (Figure S3).

Figure 1. Location and setting of the Maule earthquake. (a) Horizontal peak ground accelerations and (b) seismic inten-
sities in relation to the hydrometric stations and their drainage areas. Background colors represent modeled values
from the U.S. Geological Survey. Point data are from Boroschek et al. (2012), Van Daele et al. (2015), and Astroza et al.
(2012). Gray ellipses in (a) indicate the approximate extent of large (Mw≥8) megathrust events in the 100 years
preceding the Maule earthquake (Campos et al., 2002; Lin et al., 2013). (c) Main disturbances triggered by the earthquake:
coseismic subaerial landslides (Serey et al., 2019), seismically induced event deposits (SED; Van Daele et al., 2015)
and volcanic areas with coseismic subsidence (Pritchard et al., 2013). The catchments outlined in yellow present some
of the following responses: higher mean values of suspended sediment fluxes with respect to one or more of the back-
ground preseismic periods, historical maximum suspended sediment concentrations, and/or rise in the sediment rating
curves during the postseismic period. Catchments with a drop in the postseismic sediment rating curve are outlined
in pink. Background topographic models were obtained from (a) the GEBCO_2014 Grid, version 20150318, http://www.
gebco.net, and (b and c) a merged digital elevation model (DEM; Shuttle Radar TopographyMission [SRTM] 1 arc‐second
—TanDEM‐X ©DLR 2017 re‐sampled to 30 m).
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Neogene tectonic deformation in the study area has both longitudinal and latitudinal spatial variations
(Charrier et al., 2007; Tapia et al., 2015). An acceleration of exhumation was documented at 10 to 2 Ma
(Farías et al., 2008; Maksaev et al., 2009), but between 35 and 38°S, low‐temperature thermochronology
shows a wide range of ages between 20 and 6 Ma (Spikings et al., 2008). The interplay between the tectonic
history and the climate pattern has led to millennial and decennial erosion rates decreasing southward,
mainly correlated with decreasing mean slope, and increasing vegetation and rainfall (Carretier et al., 2013).

The cycle of subduction‐zone seismicity in Chile exhibits both long seismic gaps (over decades to centuries)
and earthquakes occurring in rapid succession (over hours to years) in nearby fault segments (e.g., Melnick
et al., 2017). As a result, the entire study area was affected at least once by a large (Mw≥8) megathrust event
in the past century (Figure 1a; Lin et al., 2013). Thus, we assume that, in general, hillslopes have been
recently disturbed by megathrusts along the entire study area, yet the more southern regions suffered the
highest seismic impact owing to the Valdivia (Mw 9.5) and Maule (Mw 8.8) earthquakes.

Longitudinally, the climate transitions from a Mediterranean to a temperate climate at ~38°S, with an
increase in annual rainfall from ~250 to >2,000 mm to the south. In the Mediterranean segment, the annual
precipitation is concentrated during the Austral Winter (June–August). During the Austral Summer
(December–February), the Principal Cordillera is affected by convective rainfall. North of 36°S, these heavy
rainfall events contribute to less than 10% of the annual precipitation. However, rainfall during these events
may occur above 4,000 m above sea level, where snow cover is commonly present (Viale & Garreaud, 2014).
These storm events are considered as main triggers of mass wasting, such as the rainfall produced by the
2013 summer storms (Sepúlveda et al., 2015). The strong interannual precipitation variability is modulated
by the El Niño Southern Oscillation (ENSO; Aceituno, 1988) and its seasonal expressions (Montecinos &
Aceituno, 2003). Nonetheless, the longest lasting (>6 years) and spatially extraordinarily large (30–38°S)
drought affecting central Chile, which started in 2010, was decoupled from the negative ENSO phase.
Judging from the past (Garreaud et al., 2017), negative ENSO phases commonly accompany drought. This
most recent drought event is considered a megadrought based on hydrometric and dendrochronological
data, resulting in a sharp decline in river discharge of up to 90% (Garreaud et al., 2017).

3. The Maule Earthquake

The Mw 8.8 Maule earthquake (27 February 2010) nucleated and propagated along the convergent
Nazca‐South American plate boundary (Figure 1a). It had a duration of ~2.5 min, reaching a slip of up to
~16 and 10m in the northern and southern rupture segments, respectively (Moreno et al., 2012). The rupture
zone extended horizontally for ~500 × 140 km and vertically in depth to ~5–45 km (Vigny et al., 2011).
Corrected local PGA records reached up to 0.93 g in the horizontal component and 0.7 g in the vertical
component (Boroschek et al., 2012). In addition, one station recorded 1.25 g before saturation (Saragoni &
Ruiz, 2012). The U.S. Geological Survey (USGS) PGA interpolation had systematically lower values than
the local records (Figure 1a), which may be due to site effects at the local seismic stations (Boroschek et al.,
2012). Twenty‐one percent of the MSK‐64 intensities exceeded VII (Astroza et al., 2012), and only one
value reached the maximum of IX in the coastal town of Constitución (Figure 1b). Although higher slip
occurred under the ocean, the entire continental forearc region suffered MM intensities that exceeded V
(U.S. Geological Survey [USGS], 2010) and VII in specific locations (Van Daele et al., 2015; Figure 1b).

The largest aftershock occurred on 2 January 2011 and was characterized by a Mw of 7.2, a focal depth of 24
km, and PGA values between 0.08 and 0.32 g. Two seismic events with normal focal mechanisms (Mw 6.9
and 7) occurred on 11 March 2010 and PGA values at that time reached up to 0.24 g (https://earthquake.
usgs.gov/earthquakes/eventpage/usp000h94v/shakemap/pga, 10/14/18). These events began a seismic
sequence with Mw>4 at a depth of 10–25 km (Farías et al., 2011).

Topographic effects of the Maule earthquake include coseismic uplift (up to +2.5 m) and subsidence (up to
‐1 m) in the coastal region (Farías et al., 2010). In addition, local subsidence of lakes (Van Daele et al., 2015)
and up to 15 m of subsidence in volcanic areas occurred in the Principal Cordillera (Pritchard et al., 2013;
Figure 1c). The earthquake triggered at least 1,218 landslides (Serey et al., 2019). This number is lower than
the 3,477 landslides estimated for the Mw 9.0 Tohoku‐Oki megathrust event (Wartman et al., 2013)
and much lower than for shallow, smaller magnitude crustal earthquakes such as the 2008 Mw 7.9
Wenchuan earthquake (with close to 200,000 landslides; Fan et al., 2018) or the 1999 Mw 7.3 Chi Chi
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earthquake (with >10,000 landslides; e.g., Khazai & Sitar, 2004). The landslides induced by the Maule
earthquake were mostly disrupted landslides such as shallow slides and rock falls, according to Keefer's
(1984) classification of coseismic landslides. In total, the volume of landslide material was on the order of
106 m3 (Serey et al., 2019).

The Maule earthquake also disturbed the hydrological cycle, as observed from microcatchments (<4.5 km2)
located in the Coastal Cordillera (Mohr et al., 2012) and regional‐scale catchments monitored by the Chilean
Dirección General de Aguas, DGA (up to 2.08 × 104 km2). Accumulated excess streamflow discharge
amounted to at least 1.1 km3, which is the largest volume reported after an earthquake (Mohr et al.,
2017). The coseismic disturbances may have affected the circulation of fluids in very shallow unsaturated
soils (Mohr et al., 2015), shallow saturated soils (Mohr et al., 2012), and in deep hydrothermal reservoirs
(Pritchard et al., 2013). In recent years, attempts to test hypotheses explaining that response have generally
favored changes in permeability (Mohr et al., 2017).

So far, no megaturbidite deposits attributable to the Maule earthquake have been detected in lakes, in
contrast to the giant 1960 Valdivia earthquake (Mw 9.5; Van Daele et al., 2015). For the Maule earthquake,
Van Daele et al. (2015) described mass transport deposits and two types of lacustrine turbidites (LT1 and
LT2; Figure 1c). Mass transport deposit and LT1 originated from downslope movements of sediments
initially deposited on the lacustrine slopes. In contrast, LT2 presents more terrestrial facies, fed from subaer-
ial mass wasting events or delta collapses (Van Daele et al., 2015). The LT2 deposits have been identified in
six lakes with local MM intensities > VI. However, localized subaerial mass wasting events occurred only in
the two northernmost lakes, which likely represent the sources of these deposits (Figure 1c).

4. Materials and Methods
4.1. Suspended Sediment Records

Daily measurements of the suspended sediment concentration (SSC, in mg/l) and streamflow discharge (Q,
in m3/s) were carried out by the DGA (http://www.dga.cl/). See Solar (1999) and Text S1 in the supporting
information for sampling descriptions. Details of our revision of stream gauge locations and procedures for
delineation of catchments (Holmgren, 1994; Jenson & Domingue, 1988; Tarboton, 1997) are in Text S2.

From the 87 gauges, we selected data from 32 draining catchments affected by seismic intensities >V (lati-
tudes 31–40°S), which contained at least 1 year of postseismic records. Thirty one of the 32 gauges containing
more than 3 years of postseismic data were analyzed (Table 1). Sampling started in 1985 for most of the
gauges (Carretier et al., 2018), providing decades of daily hydrometric values to constrain a preseismic
baseline. Using this database, we estimated the average daily suspended sediment discharge (Qs, in kg/s)
as the product of the SSC and daily discharge Q.

4.2. Baseflow Separation

Previous work highlighted the decisive role that groundwater discharge may play for streamflow
(Andermann, Crave, et al., 2012; Andermann, Longuevergne, et al., 2012) and the relevance of separating
total streamflow (Q) into baseflow (Qb, in m3/s) and direct‐flow (Qd, in m3/s) when interpreting sediment
mobilization in mountainous areas (Andermann, Crave, et al., 2012; Andermann, Longuevergne, et al.,
2012; Tolorza et al., 2014). Our key assumption is that sediment mobilization is restricted to the channel net-
work for periods when Qb=Q, whereas larger parts of the catchment (e.g., hillslopes) may be involved when
Qd>0 (e.g., Andermann, Crave, et al., 2012; Tolorza et al., 2014). Surface processes triggered by the Maule
earthquake include disturbances that may modify the sediment transport under differing stages of stream-
flow. Coseismic and postseismic landslides may feed the river network when hydrologic connectivity is
established between landslides and rivers, that is, during rainfall‐runoff events. In contrast, the rapid release
of water recorded after the earthquake occurred during low‐flow conditions, thus potentially remobilizing
the postseismic sediment within channels or floodplains. In addition, the dynamics of sediment transport
in the postseismic period were characterized by low streamflow due to the severe drought. To compare such
drought‐restricted river flow with other periods of comparable hydrologic conditions, we isolated sediment
fluxes that occurred during baseflow conditions from sediment exported when we assume a large fraction of
the catchment contributed to rainfall‐runoff (i.e., during storm flow conditions). To this end, we applied a
recursive baseflow filter (Ladson et al., 2013; Natahan & McMahon, 1990), available in R's hydrostats
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package (Bond, 2016), to the entire streamflow time series. We then calculated basal and direct suspended
sediment discharge (Qso and Qsd, respectively, in kg/s) and concentrations (SSCo and SSCd, respectively,
in mg/l) for both conditions separately (i.e., when Qb=Q and Qd>0).

4.3. Hydroclimatology and Time Series Analysis

Our data cover years with highly variable hydroclimatic conditions. Both extraordinarily wet and dry periods
occurred prior to and after the earthquake (e.g., Garreaud et al., 2017; Montecinos & Aceituno, 2003; Viale &
Garreaud, 2014). Those conditions might affect thresholds for sediment mobilization on hillslopes (for
landsliding and for runoff generation) and in rivers (detachment threshold). Indeed, the geomorphic work
of successive and moderately intense rainfall‐runoff events differs from that triggered by high intensity‐
low frequency events, thus affecting not only the mean sediment fluxes but also their entire distribution
(e.g., Andermann, Crave, et al., 2012; Andermann, Longuevergne, et al., 2012; Mohr et al., 2014; Tolorza
et al., 2014). This might be particularly relevant given the drought conditions of the postseismic period. In
order to account for such differences for the whole range of streamflow conditions (i.e., over the entire
streamflow regime), we calculated (1) the peak, mean, and various percentiles (95th, 90th, 75th, 50th, and
25th) forQ,Qs, SSC,Qso, andQsd for different time‐windows and (2) the postseismic/preseismic ratio of each
quantile for the 31 stations with more than 3 years of postseismic data. To this end, we considered the
following time windows:

Table 1
Basic Data From the Hydrometric Stations From Which Postquake Measurements Are Available

Id St. Name River St. Code

Drainage N prequake data N postquake data

area
[km2]

Period
PRE‐1

Period
PRE‐2

Period
PRE‐3

Period
POST‐1

Period
POST‐2 E[mm/a]

1 Cuncumen Choapa 04703002 1110 8003 1088 1325 2948 1068 0.01
2 Las_Burras Illapel 04721001 600 13600 1053 1304 2207 1089 0.00
3 Chacabuquito Aconcagua 05410002 2106 6314 1091 796 2514 890 0.09
4 Resg_Los_Patos Putaendo 05414001 884 6367 720 940 2459 849 0.02
5 El_Manzano Maipo 05710001 4842 11830 776 944 1923 449 0.24
6 Los_Almendros Mapocho 05722002 637 11652 822 1157 1957 403 0.05
7 Rinc_de_Maipu Mapocho 05737002 4003 12645 806 1161 1314 514 0.04
8 Puente_T_Cauq. Cachapoal 06008005 2453 2037 643 0 2348 694 0.10
9 Bajo_los_Briones Tinguiririca 06028001 1441 4756 886 694 2365 601 0.17
10 Los_Quenes Claro 07103001 352 10884 1066 1349 2830 1080 0.09
11 DJ_Claro Teno 07104002 1205 11269 1091 1340 2866 1051 0.13
12 Sauzal Purapel 07343001 406 7115 983 980 2369 1033 0.02
13 Las_Brisas Loncomilla 07359001 9906 7770 1084 1234 2854 1060 0.02
14 San_Fabian_2 Nuble 08106002 1648 3346 1094 434 2045 1093 0.04
15 Cam_a_Confluencia Chillan 08117005 758 6187 1095 923 2834 1079 0.02
16 Cholguan Itata 08123001 867 7271 997 1366 2818 1039 0.02
17 Longitudinal Diguillin 08132001 1324 6702 1094 944 2508 1066 0.02
18 Balsa_Nueva_Aldea Itata 08135002 4499 6910 1093 1213 2816 1096 0.01
19 Coelemu Itata 08141001 10216 6618 1091 1150 2742 1077 0.03
20 Llanquen Biobio 08307002 3360 2510 1092 0 2832 1097 0.02
21 Tijeral Vergara 08358001 2405 8540 971 1221 2689 1053 0.01
22 Puente_Perales Laja 08383001 3565 6339 1090 1231 2272 547 0.02
23 Desembocadura Biobio 08394001 24221 7257 1012 1243 695 695 0.02
24 Lumaco Lumaco 09102001 1028 8537 995 1350 2715 994 0.01
25 Cholchol Cholchol 09116001 5051 7176 1095 931 2790 1089 0.01
26 RariRuca Cautin 09123001 1251 9086 1085 1352 2782 1029 0.04
27 Cajon Cautin 09129002 2789 8871 1088 1350 2883 1051 0.02
28 Quepe Quepe 09135001 1664 8610 1073 1302 2468 975 0.01
29 Los_Laureles Allipen 09404001 1650 7006 1027 953 2733 1072 0.06
30 A_Llafquenco Trancura 09414001 1412 8725 1062 1343 2730 1035 0.02
31 Gorbea Donguil 09434001 746 8541 1093 1317 2298 1069 0.01
32 Rucaco Cruces 10134001 1802 8605 1095 1317 2768 974 0.01

Note. Erosion rates (E, in mm/a) from Carretier et al. (2018).
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1. The total preseismic data available (period PRE‐1: 1985 to February 2010).
2. The latest 3 years of the preseismic period (period PRE‐2: February 2007–2010).
3. The driest intervals of the preseismic period (period PRE‐3: all the data recorded during the strong nega-

tive ENSO phases of April 1988 to May 1989 and July 1998 to February 2001).
4. The total postseismic period, up to 2018 (period POST‐1: February 2010–2018).
5. The 3‐year postseismic period (period POST‐2: February 2010–2013).

The comparisons consist of ratios between quantiles of the (a) POST‐1/PRE‐1, (b) POST‐2/PRE‐2, and (c)
POST‐2/PRE‐3 periods.

4.4. Sediment Rating Curves

We calculated the suspended sediment rating parameters (SSRs), which describe the relationships between
SSC and Q in addition to SSCd and Qd, that is, the κ and κdirect coefficients and the b and bdirect exponents of
the fitted power laws:

SSC ¼ κQb
d (1)

SSCd ¼ κdirectQ
bdirect
d (2)

where κ was reported to increase after the Chi‐Chi earthquake using a fixed value of b in order to compare
changes in κ for unit discharge (Dadson et al., 2004; Hovius et al., 2011). However, Huang and Montgomery
(2013) observed systematic changes in both parameters—κ and b—following a change in the regional sedi-
ment transport regime after theMorakot typhoon in Taiwan. A decrease in b together with an increase in the
intercept κ resulted in much greater sediment concentration during the subsequent low‐flow events after the
typhoon. Given the drought during the postseismic period, and thus a higher proportion of low‐flow data
with respect to the preseismic period, we did not fix but let b vary in order to explore the entire parameter
space of the inverse power law model. SSRs were calculated based on (i) the entire PRE‐1 period and (ii)
the data for each hydrologic year. In order to determine the best fit values of κ and b, as well as their uncer-
tainties, we performed amaximum likelihood estimation on parameters of the linear regressionmodel of the
log transformation of equations (1) and (2), assuming that the error terms of the regression model are nor-
mally distributed. In practice, the κ and b parameters are found bymaximizing the maximum likelihood esti-
mation function.

4.5. Other Environmental Parameters of Catchments

With the aim of quantitatively describing the catchments, we calculated the following basin‐
specific properties:
4.5.1. Hillslope Gradient
Steep slopes enhance landslides and the mobilization of sediments to rivers (e.g., Roback et al., 2018). To
characterize the steepness of the studied catchments, we calculated the mean, median, and third quartile
of hillslope gradient, as well as the percent area of hillslope gradient greater than 30° (see Figure S2 for
the distribution of the hillslope gradients within the selected catchments). The critical hillslope gradient
for landsliding depends on several site‐specific conditions including the soil properties, vegetation, and
water content. Most coseismic landslides of the Maule earthquake occurred within areas with a local slope
of 20–40° according to the estimations of Serey et al. (2019) from the 30 m ASTER GDEM. Here we used a
single cutoff value of 30° in order to highlight the slope distribution for a range of slope values for which hill-
slopes are more prone to failure. The hillslope gradient was obtained from (1) the 1 arc sec SRTMDEMbased
on a first‐order derivative estimation and (2) a merged DEM based on a steepest descent estimation
(Tarboton, 1997). The merged DEM includes data from TanDEM‐X ©DLR 2017 12 and 30 m as well as
SRTM 1 arc second, resampled to 12 m (see Figure S4 for the locations of tiles with different resolutions).
4.5.2. Vegetation
In theMediterranean and temperate climate regimes, short‐term erosion is highly sensitive to changes in the
vegetation cover because exposed soils can be easily detached and mobilized by high‐intensity rainfall
during the humid seasons (Mohr et al., 2014; Schuller et al., 2013). Bare soils and rocks are prone to release
sediments rapidly. Both shrubland and pastures may also promote sediment transport due to the low density
and seasonal loss of vegetation. Bare soils, bare rock, and sparsely vegetated areas also may include
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disturbances such as volcanic deposits and wildfires, with potentially high impacts on sediment fluxes (e.g.,
Major et al., 2016; Wagenbrenner & Robichaud, 2014). We used the Chilean Land Cover map provided by
Zhao et al. (2016), which was obtained from LANDSAT 2014 images, and grouped the land surface into eight
land cover classes, including bare soils, bare rock, shrublands, and pastures (see Table S1 in the supporting
information for definitions of erodible covers and Figure S5 for maps). We also calculated the mean percent
of tree cover based on Hansen et al. (2013).
4.5.3. Lithology
Two observations suggest a first‐order control of lithology on the generation of coseismic landslides by
megathrusts: (i) landslides triggered by the Maule earthquake in the Coastal Cordillera tend to cluster in soft
lithologies, such as sandstones and limestones (Serey et al., 2019), and (ii) most of the landslides triggered by
the Tohoku earthquake affected the youngest (Neogene) geologic units, while coseismic debris mobilization
was controlled by lateral spreading within Quaternary sediments (Wartman et al., 2013). To characterize the
hardness of rocks within catchments, we distinguish between two major lithologic groups based on the
1:1000000 geologic map (Sernageomin, 2003). Here hard lithologies include intrusive, hypabyssal, meta-
morphic, and older Mesozoic volcanic and sedimentary units. We define soft lithologies as geologic groups
composed of Cenozoic sedimentary and volcano‐sedimentary rocks (see Figure S3 for the distributions of
hard and soft lithologies as well as Table S2 for the attributes that define the rock groups).
4.5.4. Earthquake
We calculate the following parameters to describe the impact of the ground motion within the catchment
boundaries: (i) the maximum horizontal PGA from Boroschek et al., 2012) and the USGS (2010); (ii) the
maximum seismic intensities, considering data from Astroza et al. (2012), Van Daele et al. (2015), and
USGS (2010); (iii) the volumetric sum of landslides activated by the earthquake; (iv) the volumetric sum
of landslides activated by the earthquake normalized by the catchment area; and (v) the sum of the landslide
areas divided by landslide distance to streams. The coseismic inventory was built by Serey et al. (2019)
including previous unpublished works (Escobar, 2013; Moya, Sepúlveda, Serey, García, et al., 2015; Moya,
Sepúlveda, Serey, Montalva, et al., 2015; Serey et al., 2017). Methods for volume estimates (Larsen et al.,
2010) are briefly described in the Text S3. The distance to streams represents the horizontal distance between
the centroid of the landslide and streams calculated with the procedures described in Text S2. Specifically,
this distance was computed using the GRASS GIS tool v.distance.
4.5.5. Sediment Traps
Lakes and reservoirs act as sediment traps within the river catchments, disconnecting and buffering the
downstream propagation of catchment‐wide erosive responses (e.g., Fryirs, 2013). We compiled
georeferenced information of natural and artificial water bodies (Chilean Congress National Library,
https://www.bcn.cl/siit/mapas_vectoriales/, 08/30/2018), which we complemented with updated informa-
tion of hydro‐electric reservoirs (Chilean Commission of Energy, http://datos.energiaabierta.cl/dataviews/
228007/centrales‐hidroelectricas/, 30 August 2018) in order to account for the recent number of lakes and
reservoirs within the catchment areas. The influence of an individual sediment trap for downstream sedi-
ment transfer is likely to depend on its upstream contributing area. We estimate that area by identifying
the maximum value of the accumulation rasterwithin the lake or reservoir polygon. The accumulation raster
is the output of r.watershed that accounts for the number of cells that drain through each cell. The estimated
upstream contributing area was used to weight the relative importance of each sediment trap.

4.6. Random Forest

We used the Random Forest (RF) regression method (Breiman, 2001) to identify the catchment and
earthquake‐related controls that determine the changes in SSC and Qs before and after the Maule
earthquake. The RF consists of ensembles of decision trees trained on data, forming a robust nonparametric
statistical model. The RFs are capable of handling nonlinear, noisy, fragmented, or even correlated
multidimensional data. The RF may be used for both classification and regression (Liaw & Wiener, 2002;
Strobl et al., 2008). Its core is the combination of bootstrap aggregation with random variable selection
(Breiman, 2001). The RF explores the importance of predictors using bootstrapped data and predictor
subsets for growing decision trees. In the RF, each tree node is split into two groups using the best among
a subset of predictors that are randomly chosen at that node. The split follows a simple minimization of
the total variance. An advantage of the RF is its robustness against overfitting (Breiman, 2001; Liaw &
Wiener, 2002). At each bootstrap iteration, the RF predicts the data not included in the bootstrap data
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(so‐called “out‐of‐bag” data) using the tree grown on the bootstrap sample. After aggregating all of the out‐
of‐bag predictions, RFs estimate the overall error rate by major vote (Breiman, 2001). The relative loss of
model performance when omitting a specific predictor defines that predictor's importance, provided that
it is corrected for spurious correlation effects (Strobl et al., 2008).

Our response variables are the ratios between preseismic and postseismic SSC and fluxes (see section 4.3 and
Table S3). Predictor variables include the ratios of continuous data on streamflow discharge over the timing
of the earthquake (see section 4.3), geology, land cover, topography, and earthquake properties (Table S4).
We grew the RF with 1,000 individual trees. The number of variables at each node ranged between 12
and 19 (out of a total of 34 predictors). Although this setup is higher than the recommended number of nodes
(Liaw & Wiener, 2002), the model performance was best when using that value. The number of predictor
variables is largely considered as a tuning parameter (Hastie et al., 2009). We performed all calculations
using R's randomForest package (Liaw & Wiener, 2002).

We iteratively performed RF models and selected the results with a positive correlation between the
observed and predicted values considering a threshold R2 ≥0.5 (Data Sets S1 and S2 in the supporting infor-
mation). To rank the contributions of different environmental controls as predictors of postseismic sediment
concentrations and fluxes, we quantified their relative importance in terms of the total added predictive
accuracy and node purity. The latter is a measure of the difference between the residual sum of squares
before and after the split on that specific predictor.

5. Results
5.1. Postseismic suspended sediment exportation in the decennial context

For almost all of the analyzed hydrometric stations (n=30, 29, and 25 for the three comparisons; Figures 2a–
2c, respectively), the mean values of Qs during the postseismic period are equal to or lower than those of the
preseismic periods. Exceptions of higher postseismic meanQs include station 3 (Figure 2a: all postseismic vs.
pre seismic data), stations 3 and 5 (Figure 2b: 3 postseismic vs. 3pre seismic years), and stations 5, 14, 27, and
32 (Figure 2c: dry‐period ratios). The reduced postseismic mean Qs at most stations is consistent with the
lower mean Q: ratios of mean streamflow discharge are lower than 1 for all the stations in Figures 2a and
2b and lower than 1 for 24 of the 29 stations that were compared in Figure 2c. This illustrates the severity
of the drought affecting those time series, even when the postseismic data are compared with other dry
periods. The mean SSC, however, is higher in the postseismic periods for several catchments (Figure 2).
These catchments are characterized by steep slope gradients and low vegetation cover.

Five stations show distinctive peaks of SSC (Figure S6) at the beginning of the 2012 hydrologic year, 2 years
after the Maule earthquake (stations 1, 3, 8, 9, and 11). Among them, the Chacabuquito station contains the
most complete record (Figures 3a–3c). This station reached its historic SSC peak on 27 May 2012, during the
first large rain storm after the Maule earthquake occurred. According to the CR2MET daily rainfall product
(DGA, 2017), this storm yielded 58.6 mm on average across the catchment the day before (26 May 2012;
Alvarez‐Garreton et al., 2018).

We observe only six stations (stations 1, 3, 4, 5, 6, and 14) where postseismic SSRs clearly exceed the long‐
term power law trend. These catchments are all located in the Principal Cordillera and have the steepest
slopes of all studied catchments, exhibiting a high percentage of bare soils (Figure 2). In contrast, the post-
seismic SSRs at eight stations (12, 13, 16, 21, 24, 25, 26, and 29) cluster below the long‐term preseismic power
law trend. Interestingly, these stations include the catchments that are located in the Coastal Cordillera
nearest to the rupture area, which experienced the highest PGA (i.e., station 12: Purapel en Sauzal, station
21: Vergara en Tijeral, and station 24: Lumaco en Lumaco; Figures 3d–3f).

Most of the postseismic rating coefficients κ and b (at 29 out of 31 stations) lie within the long‐term variabil-
ity for individual hydrologic years. This is true both for the Q‐SSC and the Qd‐SSCd relationships.
Nonetheless, 10 stations experienced higher κ and lower b values for the postseismic hydrologic years when
compared to preseismic conditions (stations 3, 5, 11, 14, 18, 19, 26, 28, 29, 30, 31, and 32).

Figure 4 shows the ratios between quantiles of Qs, Qsd, and Qso of the postseismic and preseismic periods.
The Qs ratios are concentrated below 1 in all cases (Figures 4a–4c), with the lowest concentration for
POST‐2 quantiles compared to those of the PRE‐3 period (dry years of the preseismic background). The
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response of the Itata River is notable as the postseismic sediment yield was lower than that of the preseismic
periods, despite the fact that it experienced approximately a fivefold postseismic increase in streamflow
(Mohr et al., 2017).

The results are distinct if we treat the baseflow and storm flow separately. In spite of the similarity between
the Qs and Qsd ratios (Figures 4a–4f), the base suspended sediment flow Qso increased after the earthquake
for a larger number of gauges (Figures 4g–4i), and these include several ratios that are 2 to 4 times theQs and
Qsd ratios. More than half of the stations recorded higher postseismic values for the 25th percentile of Qso in
the case of the three comparisons, while the entire distribution of Qso ratios comprises values >1 for 14 to 24
stations (Figure 4i).

5.2. Environmental Controls on Suspended Sediment

We obtained 67 robust RF models (R2≥0.5) to predict SSC ratios and 117 to predict Qs ratios. In both cases,
we counted the times that each predictor was ranked among the five most important (Figure 5). By far, pre-
dictors describing bare to sparsely vegetated cover and hillslope gradient, which are illustrated in Figure 6,
were the most important for predicting changes from preseismic to postseismic SSC. Moderate and high

Figure 2. Postseismic/preseismic ratios between the mean values of hydrometric parameters for the following periods: (a) POST‐1/PRE‐1 (full postseismic period/
full preseismic period), (b) POST‐2/PRE‐2 (3‐year postseismic period/3‐year preseismic period), and (c) POST‐2/PRE‐3 (3‐year postseismic period/driest preseis-
mic period). Circles are colored according to the percent of the catchment covered by bare soil and shrublands, according to Zhao et al. (2016), and are sized
according to the third quartile of the topographic gradient, which was calculated with TanDEM‐X ©DLR 2017 (12 and 30 m resized to 12 m; see Figure S4).
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water discharge ratios in the comparison between dry‐years (POST‐1/PRE‐3 ratios) and sediment traps also
showed some impact by their contribution to node purity and overall accuracy of RF models, respectively. In
contrast, none of the predictors describing the erosional resistivity of the lithology, the seismic intensities,
PGA, and coseismic landslides within catchments exhibited significant impact. Results improved by
including hillslope gradient and bare to sparse vegetation cover. Yet for the specific comparison of the
postseismic Qs with respect to other dry years, the best predictors were the Qmedian and Qpeak ratios.

Taken together, our RF modeling exercise identified the combination of bare soil and hillslope gradient as
the best combination to predict environmental controls for changes in both SSC and Qs (Figure 5). When
focusing on dry conditions, however, moderate to high water discharge also emerged as relevant predictors.

6. Discussion
6.1. Sediment Fluxes After the Maule Earthquake

Most of the 31 monitored streams showed a reduction in suspended sediment flux in the 3–8 years following
the earthquake for moderate to high values of the Qs and Qsd distributions (mean, median, 75–95th percen-
tiles, and peaks) compared to background values. Only the lower fraction of sediment fluxes (those under
25th percentile of Qs) and the base sediment fluxes (sediment fluxes under base streamflow conditions,
Qso) were higher than the preseismic background for most gauges. This is particularly true in comparison
with other dry periods.

Our knowledge of landslides activated by this specific earthquake is restricted to the co‐seismic period (Serey
et al., 2019). However, studies of other regions and climates indicate that post seismic increase in landslide
rates (Marc et al., 2015) and catchment‐wide erosion (Hovius et al., 2011; Wang et al., 2015) may last several
years. From 27 February 2010 to present, most of the studied Chilean rivers have not yet shown an increase
in their moderate to high sediment fluxes (Figures 3 and 4). We can therefore consider this seismic event as

Figure 3. Hydrometric variability at the Chacabuquito and Sauzal stations (see drainage areas in Figure 1b). (a and d) Correlation diagrams between Q and SSC,
as well as the power law fits using all prequake data and individual postseismic hydrologic years. (b and e) Time series for the daily Q (gray) and interannual
variability of the κ coefficient. (c and f) Time series of the daily suspended sediment concentration (SSC; dark gray) and interannual variability of the b coefficient.
Data for 2018 were not available for the entire hydrologic year and therefore are excluded. The dashed horizontal line represents the κ and b coefficients of all
preseismic data. Both coefficients are obtained from optimization of a maximum likelihood estimation of the log transformation of equations (1) and (2), assuming
a normal distribution of errors. The dashed vertical lines indicate the date of the earthquake.
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not particularly erosive, despite its high magnitude. This finding is counterintuitive at first glance. However,
our results are consistent with both Marc et al. (2016), who analyzed a database of 40 earthquakes, and with
the small number of large landslides attributable to megathrust earthquakes in the Chilean Andes (Antinao
& Gosse, 2009). In addition, Mohr et al. (2014) did not find an impact of the Maule earthquake on sediment
transport in small headwater catchments of the Coastal Range. Here we demonstrate the limited impact on
catchment‐wide erosion for one of the largest surveyed subduction earthquakes along a region that is
characterized by variable precipitation rates, slopes, and vegetation cover. Our study therefore confirms
the need to evaluate other parameters when predicting landslide and erosion responses to earthquakes,
aside from the magnitude alone.

Figure 4. Postseismic/preseismic ratios of quantiles of the suspended sediment discharge (Qs), and the direct (Qsd) and base (Qso) suspended sediment discharge for
the three evaluated preseismic periods. The red and blue points are records from the Itata River and its tributaries, respectively. Arrows in a–f indicate the
position of a single outlier (labeled below the arrow).
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6.2. Controls on Postseismic Suspended Sediment

TheMaule earthquake triggered sediment pulses in lakes up to a distance of 200–260 km from the main rup-
ture area (slip >1–10 m; Figures 1a and 1c) due to local seismic intensities that exceeded MMI VI (Figure 1b;
Van Daele et al., 2015). However, most of these deposits were fed from lake slopes and delta collapses.
Hence, we argue that this constitutes remobilization and resedimentation rather than the occurrence of pri-
mary erosion and that the sediment sources were restricted to subaqueous environments. These subaqueous
slides were likely triggered by increased pore water pressures due to cyclic seismic loading (Wang & Manga,
2011). In terrestrial environments, the Maule earthquake triggered at least 1,218 co‐seismic landslides of
small to moderate size (i.e., 10.6 × 106 m3; Serey et al., 2019). Given the relatively small number of co‐seismic
landslides compared to other large earthquakes (section 3) and the severe drought during postseismic con-
ditions, the Maule earthquake did not produce an immediate sediment pulse for the 32 monitored river
gauges (Figure S6). Of the coseismic landslides, approximately half occurred within gauged catchment
(Figure 1c). The relatively low number of triggered landslides is consistent with the high erosional resistance
of the granitic and metamorphic lithologies of the Coastal Cordillera. In fact, mass wasting events in the
Coastal Range were concentrated in areas with relatively low resistance sedimentary rocks of the Arauco

Figure 5. Histogram of ranked predictors conditioned by response classes of Random Forest (RF) models (R2≥0.5) in terms of increased accuracy and increased
node purity. (a) Results of 67 RF models predicting ratios of suspended sediment concentrations (Data Set S1). (b) Results of 117 RF models predicting ratios of
suspended sediment fluxes (Data Set S2). See Table S4 for details of predictors.
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Peninsula (Moya, Sepúlveda, Serey, García, et al., 2015; Moya, Sepúlveda, Serey, Montalva, et al., 2015).
However, this observation is not repeated in the Principal Cordillera (Serey et al., 2019). Our RF‐model
does not support a lithologic impact on the postseismic SSC and Qs (Figure 5). We are therefore inclined
to conclude that the general lithologic contribution for controlling catchment‐wide postseismic erosion is
minor, at least for the monitored catchments and excluding the Arauco Peninsula. Another control on the
relatively low coseismic landslide population may be the recurrence of seismic disturbances, reducing the
supply of hillslope material susceptible to failure during subsequent events. Assuming a legacy effect of
former earthquakes, a latitudinal gradient in coseismic landsliding mimicking the spatial patterns of
seismic intensity and PGA of the giant Valdivia earthquake is plausible, at least in the Principal Cordillera
where lithologies are similar from north to south. However, such a pattern is not supported by the
coseismic catalog of the Maule earthquake (Figures 1c and S1; Serey et al., 2019). Hence, we can only
speculate about the single effects of the Maule and Valdivia earthquakes on overall hillslope stability and
sediment supply. Disentangling the individual effects of subsequent disturbances remains challenging
given the data scarcity prior to and after individual disturbances (Mirus et al., 2017).

The erodibility of the soil surface and topographic slope exerted strong controls on suspended sediment
before and after this earthquake. Our RFmodels clearly identify bare to sparsely vegetated areas and the hill-
slope gradient as the most important predictors for the observed SSC and Qs ratios (Figure 5). This is even
more the case, when comparing postseismic suspended sediments with dry years prior to the earthquake,
when the system becomes more sensitive to changes in medium and high water fluxes. These results reflect
a landscape that is prone to diffusive erosion, which is consistent with densely stocked forest plantations
along the hillslopes in Central Chile (Miranda et al., 2017). Observations at the hillslope scale (Banfield
et al., 2018; Soto et al., 2019) and models at the catchment scale (Rodríguez‐Echeverry et al., 2018) indicate
that Chile's intense forestry practices promote soil erosion by enhancing surface runoff. Furthermore, pre-
vious studies provide evidence for a runoff mechanism that is mainly controlled by saturation excess

Figure 6. Illustration of catchments presenting an excess/deficit response and the best predictors selected by the Random Forest (RF) models.
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overland flow in areas mostly affected by the earthquake, even under drought conditions with rainfall‐runoff
events restricted to the rainy winter seasons (e.g., Mohr et al., 2013, 2014). Assuming a dominance of erosive
saturation excess overland flow for the mobilization of hillslope sediment, high rainfall intensities are not
required to promote erosive overland flow. Instead, the antecedent, prolonged and moderately intense rain-
fall events are sufficient to drive erosive overland flow. This mechanism is in line with the recorded rainfall
intensities along the studied basins, which captured moderate rainfall events after the earthquake (Alvarez‐
Garreton et al., 2018).

The Maule earthquake occurred at the end of the dry season and after a relatively dry hydrological year
(Figure S7). Hence, it is plausible to assume dry or low soil water contents around the timing of the earth-
quake. Soils with low water content tend to be less susceptible to slope failures, simply due to their lower
weight (e.g., Vorpahl et al., 2013) and higher shear strength when compared to saturated soils (Sidle &
Ochiai, 2006). In addition, exotic tree plantations such as Pinus radiata and Eucalyptus globulus, which cover
a considerable part of the most affected area, consume a majority of the rainwater (e.g., Huber et al., 2010).
Hence, it is likely that the first postseismic rainfalls fed the vegetation rather than recharging soils or even
percolating into deeper portions of the aquifer system.

Trees are also known to stabilize slopes by adding root enforcement to the total cohesion (e.g., Cohen &
Schwarz, 2017). In addition, Mohr et al. (2015) provided theoretical evidence of earthquake‐enhanced vege-
tation activity by supplying additional water for trees by seismically shaking water out of soils. Assuming a
short‐term positive effect on plants, enhanced root cohesion immediately after the earthquake could reduce
the susceptibility of slope failure. Such a positive earthquake‐vegetation feedback is consistent with the
impact of the tree cover as a predictor in our RF models. Nevertheless, we can only hypothesize that this
positive feedback exists as soil moisture and root strength data are sparse in the study region (Ghislaine
et al., 2012; Mohr et al., 2012).

6.3. Responses of Postseismic Suspended Sediment and the Role of Connectivity

Although a majority of the observed sediment fluxes in the postseismic period is lower than the background
fluxes for all comparisons, some stations in catchments draining the Principal Cordillera recorded historic
peaks in SSC andQs and/or showed a rise in the sediment rating curves (Figure 1c). These positive responses,
however, occurred after a delay of 2 years following the earthquake. They also remain decoupled from the
location of coseismic landslides: catchments without a response, despite the occurrence coseismic land-
slides, and catchments showing a response without coseismic landslides are inconsistent with sediment
fluxes driven exclusively by coseismic landsliding.

A wide range of processes could explain our observations. For example, the recent rise of the snowline
(Garreaud et al., 2017), exposing an increasingly larger area to potentially erosive rainfall, which in turn
may intensify the downstream transfer of sediment from glacial headwaters. This mechanism is plausible
for explaining the delayed rise of peak SSC in catchments with or without coseismic landslides (that is, at
stations 3, 8, 9, and 11 and station 1, respectively). Here however, we favor two other mechanisms. First, a
hypothetical increase in the postseismic rate of landsliding, namely, that coseismic shaking in dry regolith
or surface fractures increase the propensity for subsequent slope failure. This mechanism potentially results
in a delayed landslide response. Second, a delay (at stations 3, 8, 9, and 11) or complete blockage (at stations
12, 13, 16, 21, 24, 25, and 26) of sediment fluxes due to restricted connectivity between coseismic and post-
seismic landslide deposits and the channel network during rainfall‐runoff events.

We can only speculate about postseismic landslides, however, nearly 600 coseismic landslides supplied a
potentially large volume (on the order of 4.6 × 106 m3) of new sediment to themonitored catchments for sub-
sequent routing. We may therefore expect enhanced sediment mobilization, at least in the majority of the
catchments affected by landslides, mainly during large runoff events. Nonetheless, higher postseismic SSC
was observed only in a few catchments and, following our RF results, ratios between postseismic SSC and
Qs relative to background rates are explained by (1) slope and vegetation (Figure 6), (2) changes in high
and medium streamflow in drought conditions, and (3) the effect of sediment traps (Figure 5). Thus, follow-
ing the concept of hydrological response units (Flügel, 1995), we argue that connectivity was restricted
during the drought following the Maule earthquake. Furthermore, because connectivity (or lack thereof)
dominates the postseismic response, we reject our hypothesis of erosive response being mostly controlled
by coseismic landslides.
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Hillslope gradients account for the potential energy that is needed for coseismic and postseismic landslides
(e.g., Marc et al., 2015; Roback et al., 2018), and more generally for all surface processes involving sediment
detachment and mobilization (Anderson & Anderson, 2010). Thresholds of rainfall intensity for the entrain-
ment of any particle of a given size, including sediment from landslides, soil erosion, volcanic deposits, and
anthropogenic contaminants, are related to certain flow velocities (Hjulström, 1939), which in turn are a
function of slope gradient according to Manning's equation. Indeed, recent spatially explicit connectivity
models of sediment transport from hillslopes to rivers are largely a function of the hillslope gradient, topo-
graphic ruggedness (Cavalli et al., 2013), and vegetation cover (Foerster et al., 2014). Consequently, from the
results of our RFmodels, two of the most important predictors (hillslope gradient and vegetation cover) may
describe variables that theoretically control sediment connectivity within the catchments (Borselli et al.,
2008; Cavalli et al., 2013).

Connectivity, which we infer from hillslope gradient and vegetation cover, may thus explain the historic
maximum SSC peaks and upward shift of SSR observed at the stations with the most favorable conditions
for both the detachment and mobilization of sediment on hillslopes (i.e., the highest slopes with the lowest
vegetation cover, Figures 2 and 3c). In these specific settings, the first postseismic intense rain storms in 2012
(Figure 3c) may have been sufficient to connect the coseismically mobilized sediments from the hillslopes to
the channel network. Comparable responses occurred under more humid climatic conditions after the
Wechuan and Chi‐Chi earthquakes (Dadson et al., 2004; Hovius et al., 2011; Wang et al., 2015).
Nevertheless, both these earthquakes had relatively shallow foci compared to the Maule earthquake and
triggered 10,000–200,000 landslides, exceeding the number of landslides in this study by 1 to 2 orders of
magnitude. Thus, we emphasize that the transferability of our study is limited when compared to other
hydroclimatological conditions and seismic settings.

6.4. Response of Sediment Mobilization Under Low‐Flow Conditions

Here we report a general decrease in the moderate to high sediment fluxes after the Maule earthquake. In
addition, we found evidence of enhanced sediment transport during low flow conditions. We observed a
postseismic shift in the parameters of the sediment rating curves toward lower b and higher κ values for
12 stations. This shift suggests higher postseismic sediment concentrations during low flows than the base-
line obtained from all preseismic measures. This pattern is consistent with findings after the Morakot
typhoon in Taiwan (Huang &Montgomery, 2013). Yet there is substantial scatter in the daily SSC for a given
Q. Regardless, higher postseismic quantiles of Qso (Figures 4g–4i) and higher postseismic 25th percentiles of
Qs (Figures 4a–4c) for roughly half of the stations support our interpretation. Hence, our results suggest a
higher postseismic transport efficacy during baseflow conditions. The changes in low sediment fluxes may
be attributable to the rapid coseismic release of water by rivers. The Maule earthquake affected the regional
hydrology, mostly resulting in enhanced baseflows after the earthquake (Mohr et al., 2017). Coseismic land-
slide deposits that reached the river floodplains might then have been captured by postseismic ‘flood waves’,
eventually resulting in enhanced transport‐limited sediment fluxes during the postseismic drought.

7. Conclusions

Our study demonstrates that the Maule megathrust earthquake had a limited impact on the overall
concentration and transport of suspended sediment loads in the Chilean Andes. We attribute this rather
counterintuitive response to the drought that affected the region during and after the earthquake. Given
the severity of the drought, postseismic increases in sediment flux were only observed during low‐flow con-
ditions. Under drought conditions, topography and vegetation cover best explain the sediment transport
responses of the studied catchments. As such, our results reflect end‐member climatic conditions, which
may differ from responses in wetter environments. The results presented in this work contribute to the idea
that seismically induced denudation and the evacuation of detached sediments are not necessarily a
function of earthquake magnitude. Instead, hydroclimatic conditions, vegetation cover, soil erodibility,
and topography may play first‐order roles in the postseismic erosion response. For high‐magnitude
earthquakes, coseismic landsliding may be surprisingly low under dry climatic conditions, and more
abundant for shallow intraplate earthquakes when compared to megathrust interplate earthquakes.
Although sediment delivered by landslides may increase the sedimentation rates in sinks during inter‐
seismic periods, we argue that prolonged dry postseismic conditions increase the sediment residence
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time within basins during transport to sinks. Consequently, our study has implications for benchmarking
erosion rates after earthquakes preserved in the stratigraphic record.
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