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We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct

heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with

chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and

most were truncating.Most affected individuals with protein-truncating variants presented withmild intellectual disability. One-quarter

of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnor-

malities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to

treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by

sex; epilepsy wasmore common in females and autismmore common inmales. The four individuals withmicrodeletions encompassing

KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of

four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all in-

dividuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also

common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in

KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an un-

der-recognized cause of neurodevelopmental abnormalities.
KMT2E (GenBank: NM_182931.2, MIM: 608444) encodes

a member of the lysine N-methyltransferase 2 (KMT2) fam-

ily. This family of enzymes plays a vital role in regulating

post-translational histone methylation of histone 3 on
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tuelles de Causes Rares, Pitié-Salpêtrière Hospital, Assistance Publique—Hôpita
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lysine 4 (H3K4).1 Proper H3K4 methylation is required

to maintain open chromatin states for regulation of tran-

scription. There are at least eight known monogenic disor-

ders that impair regulation of H3K4 methylation and that
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present with neurodevelopmental syndromes2–8 (Table

S1). In addition to these Mendelian disorders, dysregulated

H3K4 methylation is believed to play a role in the patho-

genesis of schizophrenia and autism.9 Truncating variants

in KMT2E have previously been reported in three unrelated

males in a large sequencing study of non-syndromic

autism, but phenotypic data were limited.10–12 In this

report, we present 35 additional individuals with heterozy-

gous variants in KMT2E in an effort to define a KMT2E-

related neurodevelopmental disorder.

New cases were ascertained from GeneMatcher through

the Matchmaker Exchange Network and MyGene2 be-

tween September 2016 and August 2018.13,14 Microdele-

tions were detected by chromosomal microarrays in some

individuals, whereas all other individuals were found to

have variants in KMT2E via exome or genome sequencing.

Written consent for publication of photographs was pro-

vided from the individuals’ parents or legal guardians.

Additional phenotype data and genetic findings for indi-

viduals are summarized in Table S2.
Svizzera Italiana, 6900 Lugano, Switzerland; 35Oxford National Institute for He

netics, University of Oxford, Oxford OX3 7BN, UK; 36Division of Neurology an

Philadelphia, Philadelphia, PA 19104, USA; 37Department of Neurology, Perelm

USA; 38Department of Neuropediatrics, University Medical Center, Christian-A

MD 20877, USA; 40Service de Génétique Médicale, Hôpital Hôtel-Dieu, Centre
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KMT2E is constrained for protein-truncating variation in

the general population. The Genome Aggregation Data-

base (gnomAD) is a large-scale reference database with

high-quality, jointly processed exome or genome data

frommore than 140,000 individuals.15 Constraint analysis

performed on the gnomAD dataset shows that KMT2E is a

candidate haploinsufficient gene. KMT2E is very depleted

(presumably as a result of negative selection) for protein-

truncating variants; there is a probability of loss-of-

function intolerance (pLI) score of 1.0 and an observed/

expected ratio of 0.01 (showing 1% [0–0.06 95% CI] of

expected loss-of-function variation in gnomAD).

We reviewed the 28 loss-of-function variants present in

gnomAD v2.1 (Table S3). The majority of these variants

are not expected to result in protein truncation for a vari-

ety of reasons, including annotation artifacts (n ¼ 8),

sequence errors at a simple repeat (n ¼ 5), somatic mosai-

cism (n ¼ 1), and a splice-site rescue (n ¼ 1). Four variants

are part of a complex variant found in one individual; this

complex variant, when resolved, is not expected to result
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ch, University of Tübingen, 72076 Tübingen, Germany; 59EA7364 Rares du

icale, Centre Hospitalier Universitaire de Lille, University of Lille, F-59000

, Department of General Paediatrics, Centre for Paediatrics and Adolescent

artment of Pathology and Laboratory Medicine, Children’s Mercy Hospital

siology, Instituto de Neurologia de Goiania, Goiania 74210, Brazil; 63Depart-

al d’Enfants de La Timone, 13005 Marseille, France; 64Marseille Medical Ge-

for Fetal Diagnostics, Aarhus University Hospital, 8200 Aarhus, Denmark;

any; 67Department of Diagnostic Imaging, Hospital for Sick Children, Uni-

ology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037,

ter University National Health Service Foundation Trust, Health Innovation

hildren’s Hospital, Harvard Medical School, Boston, MA 02115, USA

odan@childrens.harvard.edu (L.H.R.)

n Journal of Human Genetics 104, 1210–1222, June 6, 2019 1211

mailto:Anne.ODonnell@childrens.harvard.edu
mailto:Lance.Rodan@childrens.harvard.edu
https://doi.org/10.1016/j.ajhg.2019.03.021


in truncation. Four variants found in eight individuals in

gnomAD are in the last exon; two are expected to result

in truncation of the last exon, and two will result in

protein extension. Of note, the two protein-extension

variants are located close to the variant in individual 28

(c.5453_5460delTGGCCCTG [p.Val1818Alafs*48]). The

inheritance of this variant is unknown because the father

is not available for testing, although it is not present in

his mother, so this remains a variant of uncertain

significance.

After review, we found that five variants in gnomAD

appear to result in protein truncation. These are found in

three males and two females between the ages of 30 and

70. All five are absent from the control-only subset in

gnomAD (although it should be noted that gnomAD

does not contain cohorts recruited for severe, pediatric-

onset disease; rather, it contains cohorts recruited for com-

mon adult-onset diseases such as cardiovascular disease

and type II diabetes). By reviewing the data subsets, we

found two variants that appear to be from neurologic

cohorts and three from non-neurologic and non-cancer

cohorts. Overall, very few variants present in this large

general population reference database are likely to result

in protein truncation of KMT2E.

We identified 38 individuals with KMT2E variants in

association with a neurodevelopmental phenotype. In-

cluding the three previously reported cases,10–12 34 indi-

viduals from 32 families were found to have single-

nucleotide or indel variants in KMT2E, and four additional

individuals had copy-number variants encompassing

KMT2E (Figure 1, Table 1, Table S2). The KMT2E variants

arose de novo in 26 individuals in our cohort. The variant

was maternally inherited in one previously reported indi-

vidual (maternal phenotype unknown).12 Inheritance of

the variant was unknown in four families where neither

parent was available for testing. In one family, a variant

was found in three affected male siblings. The variant

was not found in their mother. The father was not available

for testing but was reported to have an intellectual

disability. 30 variants were protein-truncating variants:

24 were indels, four were nonsense variants, and two

were variants at essential splice sites (Figure 1A). Only

one variant was seen in two independent families

(c.1776_1780delAAAGA [p.Lys593Argfs*17]); it was found

in a male (individual 9) and a female (individual 10). 23 of

these variants are predicted to produce transcripts that

would be subject to nonsense-mediated decay. Five of the

protein-truncating variants fall in the terminal exon of

the gene, potentially escaping nonsense-mediated decay;

three (found in individuals 26, 27, and 28) of these five var-

iants extend the open reading frame. The last exon in indi-

viduals 26 and 27 in our cohort has a frameshift variant

that alters the last 244–259 amino acids of KMT2E,

whereas individual 28 has an alteration in the last 48

amino acids. We evaluated the impact of this on protein

structure. Wild-type KMT2E has a very disordered C termi-

nus, but these upstream frameshifts result in increased
1212 The American Journal of Human Genetics 104, 1210–1222, Jun
stability and the formation of a predicted homeodomain

(Figure S1). CADD scores are summarized in Table 1.

Four of the individuals had de novo missense variants,

three of which occurred at highly conserved positions

and/or regions of the gene (Figure 1B). Pro1376 is not

well conserved, and serine is present in some mammalian

species. None of the KMT2E variants are reported in public

databases (gnomAD, Exome Variant Server, or 1000 Ge-

nomes),15–17 although another missense change is seen

at Pro1376 in gnomAD (p.Pro1376Leu, allele frequency

0.015%).

To understand the biophysical consequence of KMT2E

protein sequence changes, we used structural-prediction

programs (HMMER,18 PHYRE2,19 InterProScan,20 and

NetPhos21) that evaluate the presence of protein domains

and major secondary structure elements (e.g., helices,

strands, loops, disorder, post-translational modification

sites, etc.). A large protein of 1,858 amino acids, KMT2E

has two N-terminal domains: a SET enzymatic domain (aa

282–445), which is predicted to be inactive, and a Zn-finger

PHD domain (aa 120–165), andmost of the protein has few

scatteredhelices and strands, aswell as a disorderedC termi-

nus. Therewas no clustering of themissense variants; one is

in the SET domain, one is in the PHD domain, and two are

not in identified domains. KMT2E is not significantly con-

strained for missense variation in the general population

(Z score þ1.42, observed/expected ratio of 0.87 [0.82–0.92

95% CI] for missense variation in gnomAD). All four

missensevariantsmight significantly change local structure

by introducing rotamers (c.418G>A [p.Val104Ile]),22 or by

changing the charge andhydrophobicity of local sequences

(c.850T>C [p.Tyr284His], c.2720A>T [p.Asp907Val], and

c.4126C>T [p.Pro1376Ser]). Additionally, p.Tyr284His

abolishes and p.Pro1376Ser creates potential phosphoryla-

tion sites. Changing rotamers, electrical charge, and hydro-

phobicity might alter KMT2E binding properties.

For the four individuals with chromosome microdele-

tions encompassing KMT2E, all deletions occurred de

novo. Deletion sizes range from 0.052 to 3.2 Mb. The

0.052 Mb deletion in individual 30 involves only KMT2E,

whereas the other three deletions include additional

genes.23 Figure 1C illustrates the genes included in these

deletions. Median maternal and paternal age across the

cohort was 30 and 36 years, respectively. There were

phenotypic differences between individuals with protein-

truncating, missense, and copy-number variants, as sum-

marized below.

For the 30 individuals with protein-truncating variants

in KMT2E, 22 were male and eight were female (Figure 2).

Age at most recent evaluation ranged from 19 months to

24 years. Prenatal and neonatal courses were largely

uncomplicated for most individuals with protein-

truncating variants. One individual was born prematurely

at 35 weeks. Several individuals had neonatal jaundice,

one had hypoglycemia, one had sinus tachycardia, and

two had neonatal feeding difficulties. Individual 10 devel-

oped respiratory arrest at 14 h of life and had a hypoxic-
e 6, 2019
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Figure 1. KMT2E Variants in 38 Individuals
(A) 28 protein-truncating variants in KMT2E identified in 30 individuals. Variants in bold are de novo in the proband, whereas the under-
lined variant was inherited. In some cases, both parents are unavailable and the de novo status is unknown (non-bold). Variants in the last
exon are predicted to escape nonsense-mediated decay (individuals 24–28), whereas the last three variants (red) also result in protein
extension (individuals 26–28).
(B) De novo missense variants in KMT2E in individuals 33–36.
(C) De novo deletions overlapping KMT2Ewere identified in individuals 29–32. All OMIM gene-disease associations (green) are for reces-
sive disease.
ischemic injury with typical sequelae seen on neuroimag-

ing. She has spastic quadriplegia and epilepsy, and she is

not included in the analysis below because her acquired

injury significantly influences her phenotype and is most

likely not representative of the disorder itself (although it

cannot be excluded that the genetic disorder predisposed

her to the injury).

Of the remaining 29 individuals in this group (i.e.,

excluding individual 10), 24 had early developmental

delay documented. For three individuals without docu-

mented developmental delay, these are cases previously

reported from autism studies where only limited clinical
The America
information is available.10–12 The mean age of indepen-

dent walking in this group was 20 months (range 12 to

48 months, Figure 3). All individuals are currently able to

walk independently. 12 of the 29 individuals have hypoto-

nia. Individual 15 had normal initial motor development

but developed progressive spastic diplegia at 14 months

of age. Neuroimaging in this individual demonstrated cere-

bral white-matter abnormalities.

The mean age of acquired first word in this group was

20 months (range 12 to 48 months, Figure 3). Although

this information is not available for all individuals, 14

(out of 17) individuals are verbal, but seven are noted to
n Journal of Human Genetics 104, 1210–1222, June 6, 2019 1213



Table 1. Summary of KMT2E Variants Found in 38 Individuals with Neurodevelopmental Phenotypes

Individual Sex, Age Variant, GenBank: NM_182931.2 Consequence Inheritance CADD ID Autism Delay Epilepsy Macrocephalya

111 male, 11 y c.167delA, (p.Tyr56Serfs*34) frameshift, expect NMD de novo 30 mild yes NA no no

2 female, 12 y c.280delA, (p.Thr94Leufs*25) frameshift, expect NMD de novo 33 moderate no yes no yes

3.1 male, 9 y, 6 m c.450dupT, (p.Arg151*) nonsense, expect NMD unknown 34 NA yes yes NA no

3.2 male, 7 y c.450dupT, (p.Arg151*) nonsense, expect NMD unknown 34 NA yes yes NA no

3.3 male, 6 y c.450dupT, (p.Arg151*) nonsense, expect NMD unknown 34 NA yes yes NA no

4 male, 5 y, 9 m c.556þ1G>A essential splice site, expect NMD de novo 34 NA no yes yes no

5 male, 12 y, 2 m c.997delG, (p.Glu333Argfs*32) frameshift, expect NMD de novo 33 NA no yes no yes

6 male, 3 y, 1 m c.1130þ2T>C essential splice site, expect NMD de novo 33 yes no yes no yes

7 female, 21 y c.1239delC (p.Asn414Metfs*4) frameshift, expect NMD unknown 34 moderate no yes yes yes

8 female, 8 y c.1603delC (p.Leu535Tyrfs*15) frameshift, expect NMD unknown 25 NA no yes NA relative

9 male, 11 y, 4 m c.1776_1780delAAAGA, (p.Lys593Argfs*17) frameshift, expect NMD de novo 34 yes no yes no yes

10 female, 3 y, 6 m c.1776_1780delAAAGA, (p.Lys593Argfs*17) frameshift, expect NMD de novo 34 yes no yes yes no

11 female, 1 y, 10 m c.1812delG, (p.Ile605Serfs*41) frameshift, expect NMD de novo 26 NA NA yes no no

12 male, 3 y, 7 m c.2261delC, (p.Ser754*) nonsense, expect NMD de novo 34 low-normal no yes no no

13 male, 4 y, 3 m c.2452C>T, (p.Arg818*) nonsense, expect NMD de novo 37 mild no yes no no

14 male, 8 y c.2602_2605delACTA, (p.Thr868Hisfs*3) frameshift, expect NMD de novo 35 NA yes yes no no

15 male, 1 y, 7 m c.2620C>T, (p.Arg874*) nonsense, expect NMD de novo 39 NA no yes no no

16 female, 3 y, 6 m c.2936delT, (p.Leu979Trpfs*9) frameshift, expect NMD de novo 23 NA no yes no yes

17 male, 4 y, 8 m c.3070C>T, (p.Gln1024*) nonsense, expect NMD de novo 38 NA no no no yes

1810 male, 12 y c.3198delC, (p.Trp1067Glyfs*2) frameshift, expect NMD de novo 35 mild yes NA no yes

19 female, 6 y, 5 m c.3198_3234del, (p.Trp1067Glnfs*2) frameshift, expect NMD unknown 35 mild no yes no yes

20 male, 5 y, 10 m c.3494_3495delGA, (p.Arg1165Thrfs*3) frameshift, expect NMD de novo 34 NA no yes no yes

2112 male, NA c.3527_3530delCAGA, (p.Thr1176Argfs*16) frameshift, expect NMD maternally
inherited

20 NA yes NA no NA

22 female, 9 y c.3554C>G, (p.Ser1185*) nonsense, expect NMD de novo 35 mild no yes yes no

23 male, 6 y c.3672_3673delTA, (p.Tyr1224*) frameshift, expect NMD de novo 24 NA no yes no yes

24 male, 5 y c.4397_4398ins19, (p.Pro1467Thrfs*75) frameshift, last exon, escape NMD de novo NA mild no yes no yes

25 male, 12 y, 10 m c.4485_4486delTC, (p.Gln1496Lysfs*39) Frameshift, last exon, escape NMD de novo 24 mild NA yes no no

26 male, 6 y, 7 m c.4829dupT, (p.Leu1610Phefs*259) frameshift, protein extension de novo 34 low-normal NA NA no yes

(Continued on next page)
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speak poorly or to have articulation problems. Three of

the individuals were reported to have speech regression.

Intelligence quotient (IQ) data were available for only

seven out of the 29 individuals: the mean IQ was 74 (range

62–98). Seven of the individuals have been diagnosed with

autism. One additional individual was diagnosed with a

sensory integration disorder, and another diagnosed with

difficulty in social interaction but did not meet the criteria

for autism. At least two of the individuals have been

diagnosed with attention-deficit/hyperactivity disorder

(ADHD). Additional behavioral concerns were reported

in 11 of the individuals; these included stereotypies,

skin-picking behavior, self-injurious behavior, aggression,

and anxiety.

14 of the 30 individuals had macrocephaly, defined by a

head circumference equal to two or more standard devia-

tions above the mean, or in the 95th percentile or greater.

An additional two individuals have relative macrocephaly,

defined here as head circumference one standard deviation

higher than the standard deviation for the height. Individ-

ual 6 also had a de novo pathogenic PTEN (GenBank:

NM_000314.6, MIM: 601728) c.493G>A (p.Gly165Arg)

variant, which can also account for his macrocephaly.

Other growth parameters were variable for individuals in

this group, but most were in the normal range for height

and weight.

Excluding individual 10, who had a hypoxic-ischemic

injury, only four of the individuals in this group (4, 7, 8,

and 22) had epilepsy (two or more unprovoked seizures);

an additional individual (9) had a history of just one

seizure at eight years of age. There was no consistent

seizure semiology or epilepsy syndrome described across

the individuals. Only one of the four individuals with

epilepsy (7) had treatment-resistant epilepsy. 19 of the in-

dividuals had undergone at least one brain MRI. MRI find-

ings were normal or non-specific, and there were no

consistent abnormalities (Table S2). Noted abnormalities

included thinning or partial agenesis of the corpus cal-

losum (individuals 5, 12, and 15); various cysts including

pineal, epidermoid, arachnoid, and ependymal (individ-

uals 6, 7, 9, and 19, respectively); increased white-matter

signal (individuals 8 and 17); hyperintense signal in the

basal ganglia (individual 10); decreased volume (individ-

uals 5, 10, 12, and 15); delayed myelination (individual

19); small areas of heterotopia (individual 20); and Chiari

I malformation (individual 14).

Many of the individuals were reported to have gastroin-

testinal symptoms, including reflux, vomiting, or bowel

motility issues; these are issues commonly seen in individ-

uals with hypotonia. All individuals tested had normal

hearing. There were no significant ophthalmological find-

ings. There were no other recurrent health complications

noted in this group. When we compared individuals

with truncating variants in the terminal exon of KMT2E

to those with earlier-truncating variants, there were no

clear phenotypic differences, although the number of

individuals available for comparison is small.
n Journal of Human Genetics 104, 1210–1222, June 6, 2019 1215



Figure 2. Photos of Individuals with KMT2E Variants
Each individual is noted with the corresponding number used throughout the manuscript. Included on the bottom right of each cluster
is the individual’s sex.
(A) Individual 9, 11 years old
(B) Individual 11, 1 year, 10 months old
(C) Individual 12, 4.5 years old
(D) Individual 13, 6 years old
(E) Individual 15, 1 year, 7 months old
(F) Individual 20, 6 years old
(G) Individual 24, 5 years old
(H) Individual 25, 12 years old
(I) Individual 30, 18 years old
(J) Individual 31, 22 years old
(K) Individual 32, 7 years old
(L) Individual 33, 16 years old
Consistent facial features include dolichocephaly, large foreheads, and deep-set eyes, often with down-slanting palpebral fissures, peri-
orbital fullness, prominent cheeks, and prominent nasolacrimal folds.
It is notable that 22 out of the 30 individuals with

protein-truncating variants were male. It is possible that

decreased penetrance or variable expressivity of the condi-
1216 The American Journal of Human Genetics 104, 1210–1222, Jun
tion in females means that fewer female individuals with

de novo protein-truncating variants come to diagnostic

attention. Additionally, the expressivity of certain aspects
e 6, 2019



Figure 3. Developmental Milestones in Individuals with Variants in KMT2E
Most children with protein-truncating variants acquire first words and walking by 24 months of age, though a minority are more signif-
icantly delayed. Only individual 12, who experienced a cardiac arrest and injury, did not acquire these skills. A majority of individuals
with a microdeletion had significant delay in speech development but walked at a similar time to individuals with protein-truncating
variants. Of those with missense variants, those with severe infantile epilepsy had significant delays.
of the phenotype is variable between males and females

(Table 2). Although the rates of intellectual disability and

macrocephaly were similar, interestingly, epilepsy was

seen in 43% of females but in only 5% of males (p ¼
0.047, Fisher’s exact test), whereas autism was seen in

35% of males and in none of the females (p¼ 0.14, Fisher’s

exact test) with protein-truncating variants in KMT2E.

These sex-related differences in phenotype parallel differ-

ences in the epidemiology of autism and epilepsy: autism

is four times more common in males than in females,24

whereas polygenic idiopathic generalized epilepsies are

more common in females.25

Of the four individuals with de novo 7q22.2-22.3 chro-

mosome deletions including KMT2E, two were male and

two were female (Figure 2). The age at most recent evalua-

tion ranged from 7 to 22 years. Clinically, individuals with

deletions presented similarly to those with truncating

variants. Although the sample size is small, there appear

to be more severe developmental delays in this group.

The average age of first words was 34.5 months (range 18

to 48 months, Figure 3). Only two of the four individuals

are verbal. Walking was delayed in all; age of walking

ranged from 15 to 42months. Three of the four individuals

in this group have epilepsy (30, 31, and 32). Two of the

four individuals in this group have macrocephaly (29

and 32).

Individual 32 has been previously reported.26 He pre-

sented with global developmental delay, overgrowth, mac-

rocephaly, delayed bone age, and treatment refractory

generalized epilepsy. MRI of the brain demonstrated reduc-

tion of cerebral white matter, corpus callosum hypoplasia,

right cerebellar hypoplasia, and an enlarged cisterna ma-

gna. Brain imaging was also performed in individuals 30

and 31. The MRI of individual 31 demonstrated global ce-

rebral atrophy, and the MRI of individual 30 demonstrated

a possible focal cortical dysplasia.

Of the four individuals with de novo missense variants

in KMT2E, two were male and two were female (Figure 2).
The America
The age at most recent evaluation ranged from 29 months

to 36 years. All four of the individuals with missense

variants had epilepsy. Individual 33 had five generalized

tonic-clonic seizures, starting at the age of 15 years.

Individuals 34, 35, and 36 all presented with infantile

epileptic encephalopathy. Individual 34 developed sei-

zures at 6 months of age, and individuals 35 and 36

both developed seizures in the neonatal period. Reported

seizure semiologies include generalized tonic-clonic,

tonic, atonic, and myoclonic seizures and epileptic

spasms. The initial EEG in individual 35 showed burst

suppression and subsequently evolved into hypsarrhyth-

mia. The EEG in individual 36 also showed hypsarrhyth-

mia. The EEG in individual 34 demonstrated background

disorganization and multifocal and generalized epilepti-

form discharges. All three individuals have treatment-

resistant epilepsy. Individual 34 was started on the keto-

genic diet at 14 months of age, but this diet did not

improve seizure control.

In our cohort, individuals with missense variants also

had more severe developmental delays than did the indi-

viduals with truncating variants. Only two of the four

individuals can walk independently, and none of the indi-

viduals were verbal at most recent follow-up (Figure 3).

Two of the four individuals in this category have micro-

cephaly, and the other two are normocephalic. Three of

these individuals have had a brain MRI: one individual

had delayed myelination, one had cerebral atrophy, and

one had an incidental abnormality in the right cerebral

peduncle.

Comparison of the facial features of eleven of the indi-

viduals in our cohort suggests some commonalities,

including macrocephaly, dolichocephaly, high forehead,

deep-set eyes, periorbital fullness, prominent cheeks, and

prominent nasolabial folds (Figures 2 and 4). Utilizing

Face2Gene (FDNA, Boston, MA) facial recognition soft-

ware, we created a composite image from frontal photo-

graphs of these 11 individuals (excluding individual 30,
n Journal of Human Genetics 104, 1210–1222, June 6, 2019 1217



Table 2. Summarized Phenotypes by Variant Type

Subset # Intellectual Disability Autism Epilepsy Macrocephaly Microcephaly

Protein-Truncating Variants

Total 30 81% (13/16) 26% (7/27) 15% (4/26) 55% (16/29) 0% (0/29)

Male 22 82% (9/11) 35% (7/20) 5% (1/19) 52% (11/21) 0% (0/21)

Female 8 80% (4/5) 0% (0/7) 43% (3/7) 63% (5/8) 0% (0/8)

Microdeletion

Total 4 100% (4/4) 25% (1/4) 75% (3/4) 50% (2/4) 0% (0/4)

Missense

Total 4 100% (3/3) 33% (1/3) 100% (4/4) 0% (0/3) 66% (2/3)
who wore glasses in the photograph) to represent the com-

mon facial gestalt.

KMT2E encodes a histone methyltransferase protein, a

transcriptional regulator reported to play key roles in

diverse biological processes, including cell-cycle progres-

sion, maintenance of genomic stability, adult hematopoi-

esis, and spermatogenesis. The gene is highly expressed

in the brain, particularly during fetal development.11

KMT2E appears to be distinct from other members of

the KMT2 family. Most KMT2 proteins contain an enzy-

matically active SET domain that possesses methyltrans-

ferase function.9,27 Although the KMT2E protein contains

a SET domain, its sequence and location within the pro-

tein are different from those of other members of the

KMT2 family, and studies suggest that it might lack

intrinsic methyltransferase activity.28 However, the SET

domain is still highly conserved in KMT2E, and it has

been proposed that KMT2E might have an indirect effect

on H3K4 methylation, possibly through transcriptional

regulation of additional histone-modifying enzymes.

Most members of the KMT2 family contain multiple

PHD finger domains that function as H3K4 methylation

readers. In contrast, KMT2E contains a single PHD finger

domain. PHD fingers typically bind to specific epigenetic

histone marks in order to recruit transcription factors

and nucleosome-associated complexes to chromatin.

Finally, whereas most members of the KMT2 family func-

tion as global activators of open chromatin, KMT2E is

believed to be a repressor, although the precise mecha-

nisms involved in KMT2E regulation of gene transcription

have not yet been elucidated.29

Of the individuals in our cohort, those who have pro-

tein-truncating KMT2E variants present with syndromic

intellectual disability. Most individuals are functioning in

the low normal to mild range of intellectual disability.

Seven of the male individuals (including three of the previ-

ously reported individuals10–12) have also been formally

diagnosed with autism. There appears to be a subtle com-

mon facial gestalt among the individuals whose images

were available for review. Additional features, albeit not

obligate or specific, include macrocephaly, hypotonia,

and GI dysmotility. Neuroimaging is normal or non-spe-
1218 The American Journal of Human Genetics 104, 1210–1222, Jun
cific. Epilepsy was not common among individuals with

protein-truncating variants. There were no significant

phenotypic differences between individuals with trun-

cating variants in the terminal exon of the gene and those

with earlier-truncating variants, suggesting a probable

common pathophysiology of haploinsufficiency.

Whereas, in our cohort, only approximately 14% of the

individuals with protein-truncating variants have epilepsy,

all of the individuals we report as having missense variants

have epilepsy. This association met statistical significance

(p ¼ 0.0026, Fisher’s exact test). Three of the individuals

with missense variants fall in the category of an infan-

tile-onset epileptic encephalopathy. In addition, these in-

dividuals have more severe developmental delays, and

two have microcephaly. We hypothesize that the pheno-

type of epileptic encephalopathy could be variant specific

andmight relate to an alternate mechanism such as a gain-

of-function or dominant-negative effect. Recently, distinct

developmental disorder phenotypes have been identified

to result from PTVs and missense variants in the same

gene.30,31 Additional cases and further functional studies

are required to clarify this.

Overall, the individuals with chromosome 7q22.2-22.3

microdeletions encompassing KMT2E presented similarly

to those with truncating variants, further supporting hap-

loinsufficiency as the disease mechanism. Although the

sample size was small, these individuals appeared to have

more severe developmental delays than did those individ-

uals with truncating variants, which is likely explained

by the influence of additional genes included in their

deletions. The 7q22.2-22.3 region contains multiple addi-

tional genes involved in the regulation of the cell cycle;

such genes include SRPK2 (MIM: 602980), RINT1 (MIM:

610089), and LHFPL3 (MIM: 609719).26 In particular,

SRPK2 and LHFPL3 show depletion of loss-of-function vari-

ation from expectation in the gnomAD database (pLI of 1.0

and 0.9, respectively) and are expressed in the central

nervous system. SRPK2 encodes a cell-cycle-regulated

protein kinase that phosphorylates serine and arginine

domain-containing proteins and modulates pre-mRNA

splicing in neurons.32 LHFPL3 is a transmembrane protein,

but little is known about its function to date.
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Figure 4. Composite Photo from Face2Gene
Individuals in Figure 2 were used in this analysis, excluding indi-
vidual 30, who is wearing glasses.
Several Kmt2e (Mll5)-deficiency mouse models have

been created and characterized.29,33–36 These mice present

with growth restriction and increased mortality, as well

as impaired hematopoiesis. A neurological phenotype in

these mice has not been reported. Both homozygous and

heterozygous loss of Kmt2e in mice results in DNA damage

and elevated levels of reactive oxygen species (ROS).36 The

cellular effects were effectively reversed by supplementa-

tion with the glutathione precursor N-acetylcysteine

(NAC).36 This has interesting therapeutic implications for

humans because NAC supplementation has been used in

the treatment of glutathione depletion in acetaminophen

overdose as well as rare inborn errors of metabolism associ-

ated with increased free-radical damage. Further studies are

required if we are to establish whether humans haploinsuf-

ficient for KMT2E are also vulnerable to increased ROS and

whether there might be a benefit in treating with NAC or

other antioxidants. This evaluation could include clini-

cally measuring urine F2 isoprostanes and blood gluta-

thione levels.37

In this report, we define a KMT2E-related neurodevelop-

mental disorder, which adds to the growing list of KMT2

gene family disorders. Most individuals with protein-trun-

cating variants appear to present with generally mild

developmental delay and intellectual disability. Autism is

also relatively common. Additional common, but not obli-

gate, features include relative macrocephaly, hypotonia,

and functional gastrointestinal disturbances. There ap-

pears to be a subtle facial gestalt. Epilepsy was not common

among individuals with protein-truncating variants. We

suspect haploinsufficiency as the disease mechanism.

The similar phenotype seen in individuals with microdele-

tions of this region is consistent with this hypothesis. In

contrast, individuals with missense variants all presented

with epilepsy, including infantile-onset epileptic encepha-

lopathy, and more severe developmental delays. Variant-
The America
specific alterations in KMT2E function, possibly even

gain-of-function alterations, might explain this divergence

in phenotype. Further studies are required if we are to

further understand the correlation between genotype

and phenotype. There is no established therapy for

KMT2E-related disorders, although based on animal data,

there might be a role for NAC or other antioxidant

treatments.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.03.021.
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