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Abstract

Peatlands are key reservoirs of belowground carbon (C) and their monitoring is important to assess
the  rapid  changes  in  the  C cycle  caused by climate  change  and direct  anthropogenic  impacts.
Frequently, information of peatland area and vegetation type estimated by remote sensing has been
used along with soil  measurements  and allometric  functions to estimate belowground C stocks.
Despite  the  accuracy  of  such approaches,  there  is  still  the  need to  find  mappable  proxies  that
enhance predictions with remote sensing data while reducing field and laboratory efforts. Therefore,
we  assessed  the  use  of  aboveground  vegetation  attributes  as  proxies  to  predict  peatland
belowground  C  stocks.  First,  the  ecological  relations  between  remotely  detectable  vegetation
attributes (i.e. vegetation height, aboveground biomass, species richness and floristic composition
of vascular plants) and belowground C stocks were obtained using structural equation modeling
(SEM).  SEM  was  formulated  using  expert  knowledge  and  trained  and  validated  using  in-situ
information.  Second,  the  SEM  latent  vectors  were  spatially  mapped  using  random  forests
regressions with UAV-based hyperspectral and structural information. Finally, this enabled us to
map belowground C stocks using the SEM functions parameterized with the random forests derived
maps. 

This SEM approach resulted in higher accuracies than a direct application of a purely data-driven
random forests approach with UAV data, with improvements of r² from 0.39 to 0.54, normalized
RMSE from 31.33% to 20.24% and bias  from -0.73 to  0.05.  Our case study showed that:  (1)
vegetation height,  species richness and aboveground biomass are good proxies to map peatland
belowground  C  stocks,  as  they  can  be  estimated  using  remote  sensing  data  and  hold  strong
relationships with the belowground C gradient; and (2) SEM is facilitates to incorporate theoretical
knowledge in empirical modeling approaches.
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1. Introduction

Peatlands are important for the regulation of carbon (C) cycling and store one third of the world soil
C stocks (Parish et al., 2008), from which belowground C accounts for ~95% of the total peatland C
pool  (Smith  et  al.,  2004).  These  are  fragile  ecosystems  and  if  the  conservation  of  their  peat
properties  is  degraded  either  due  to  anthropogenic  impact  or  climate  change,  they  release
accumulated  soil  C  to  the  atmosphere  (in  the  forms  of  CH4 and  CO2)  faster  than  it  is  being
sequestered (Fenner & Freeman, 2011). This accelerates the greenhouse effect and global warming
(Phillips & Beeri, 2008; Schaepman-Strub et al., 2008). Although concerns about the consequences
of human-induced changes to the C cycle have generated many international initiatives to quantify
peatland C stocks (Hribljan et al., 2017), the contribution of C stocks in small isolated peatlands in
comparison to larger systems is still uncertain (McClellan et al., 2017). 

Remote sensing provides a rapid and economical approach to supplement traditional direct methods
such as coring and probing (Rudiyanto et al., 2018). Frequently, in-situ measurements include peat
thickness,  dry  bulk  density  and  carbon  concentration,  which  has  to  be  obtained  by  laboratory
analysis (e.g. Dargie et al.,  2017), while remote sensing products include the peatland area and
vegetation  types.  These  variables  are  then  used  to  predict  belowground  C  stocks  by  applying
allometric functions to the obtained vegetation classes. For example, Dargie et al. (2017) have used
a maximum likelihood classification with radar, optical and DEM-derived data to classify different
land covers including terra firme and peatland classes. Afterwards, they have used in-situ data to
create allometric functions with peat and soil properties as input to estimate the total C pools of the
central Congo basin. Other studies have used remote sensing to map peatland attributes, such as
peat thickness, and derived continuous estimations of belowground C stocks by allometric functions
using these spatially explicit estimations (e.g. Rudiyanto et al., 2018). Despite the accuracy of such
approaches,  their  application  is  hampered  by  high  field  and  laboratory  costs.  Hence,  linkages
between belowground C stocks and aboveground peatland attributes derived by remote sensing,
such as vegetation attributes, could be used to decrease monitoring efforts.

Ecological  studies  have  already  established  empirical  knowledge  about  linkages  between
aboveground vegetation attributes and belowground C stocks. For example, vegetation properties
such as aboveground biomass, species richness and plant functional type cover are related to the
decrease of water-logging and peat mineralization processes in peatlands (Dorrepaal et al., 2005;
Jonsson & Wardle, 2009). The abundance and biomass of certain vascular species have proven to
be good proxies of belowground C stocks, while species richness has been shown to be positively
related to soil microbial activity (Chen et al., 2017, 2018; Cong et al., 2014; Lange et al., 2015) and
hence  to  organic  matter  decomposition  rate  (Fenner  & Freeman,  2011).  Previous  studies  have
retrieved these proxies in peatlands using remote sensing data directly. For example, Castillo-Riffart
et al. (2017) and Cabezas et al. (2016) estimated species richness in anthropogenic peatlands using a
combination  of  satellite  optical  and  textural  data,  while  Turetsky  et  al.  (2011)  successfully
estimated  aboveground  biomass.  Likewise,  species  composition,  plant  functioning  and  growth
forms have been mapped successfully by hyperspectral data with reasonable accuracies (Harris et
al., 2015; Schmidtlein et al., 2012; Schmidtlein & Sassin, 2004).
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To assess the relationship between vegetation attributes and belowground C stocks, we propose to
use structure equation models (SEM). SEMs are a family of multivariate methods that allows the
definition of preexisting relationships between variables (expert knowledge). Accordingly, SEMs
are well-suited for hypothesis testing and understanding underlying processes. Furthermore, SEMs
can be constrained using prior knowledge (e.g. causal relationships) of the system at hand and they
thus feature a higher transferability than pure data driven modeling approaches (Grace et al., 2010).

The main objective of this study was to assess the potential of vegetation attributes as proxies to
predict and map belowground C stocks in a small isolated peatland in Chiloé Island, Chile. First,
linkages  among vegetation  attributes  and belowground C stocks  were  investigated  using  SEM.
Second, we combined hyperspectral and photogrammetric information derived from an Unmanned
Aerial  Vehicle  (UAV) to spatially  extrapolate  the previously selected vegetation  attributes  with
random forests  regressions.  Finally,  we fed the SEM with the random forests  extrapolations  to
obtain the belowground C stock maps. 

Using this general setup, we addressed the following research questions:

- Does  the  structural  equation  model  outperform  a  purely  data-driven  random  forests
approach?

- Which mappable aboveground vegetation attributes are reliable indicators of belowground C
stocks?

2. Materials and methods

 2.1. Study site

The study site is an anthropogenic acidic peatland located at the FLUXNET site Senda Darwin
Peatland (CL-SDP; 418520 S, 738400 W) in the north of Chiloé Island, in the Los Lagos region of
Chile (Fig. 1a,b). This peatland was formed due to the burning of a temperate rainforest, which
produced a poorly drained soil that was later colonized by moss species of the genus  Sphagnum
(Díaz et al., 2007). The belowground C stocks of this peatland were estimated as ~11.56 ± 1.57 kg
C m-2 (Cabezas et al., 2015). 

The study area is about 16 ha and covers two types of  land use (Fig. 1b): a conservation area (~5.5
ha; southern part of the area), which has been protected and used for scientific investigations for the
last 20 years, and a managed area (~10.5 ha; northern part of the area) where Sphagnum mosses are
artisanally harvested for commercial purposes (~10 kg of dry moss per month) and for grazing of
four oxen (see Cabezas et al., 2015 for a full description of the area). 

The floristic composition of the area is dominated by  Sphagnum magellanicum, but also by the
bryophytes Dicranoloma imponens and Campylopus introflexus. These species can be found in sites
affected by water logging. With less water availability, dominant graminoids species are Danthonia
chilensis,  Schoenus rhynchosporoides and  Uncinia tenuis. On poorly-drained and water-saturated
areas dominant species are Juncus procerus, Juncus planifolius and Juncus stipulatus. 

Common forb species are  Anagallis alternifolia,  Centella asiatica and  Lotus pedunculatus, while
common shrub species are Baccharis patagonica, Gaultheria mucronata and Myrteola nummularia
(list of species in Appendix A of Cabezas et al., 2015). 
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Fig. 1. (a) Location of the study area in Chile; (b) UAV false color composite (R = 765 nm, G =665
nm, B = 565 nm) of the study area with plot locations scaled with the measured belowground C
stocks (blue points). The dashed line shows the border between the conservation area (bottom) and
the managed area (upper); (c) detailed sampling design.

2.2  In-situ / reference data 

A vegetation assessment was conducted between January and April 2014, in which 36 plots were
established in a systematic grid with 60 m × 60 m spacing. Each plot was a 2 m × 2 m quadrat
where the species presence, cover, biomass, vegetation height, soil depth and the C stocks were
estimated. 

Species coverages were obtained by averaging visual estimates of two observers. The biomass and
C reservoirs were divided into two type of stocks: the aboveground stocks included the vascular
flora growing on the substrate, and the underground stocks included the peat, live moss, debris (fine
and coarse) and buried trunks (remnants from burning the forest).  A detailed description of the
sampling methods is presented in Cabezas et al. (2015); the aboveground biomass stocks for each
plot was estimated by harvesting the vascular flora in a 0.25 m2 sub-plot located in the center of the
plot. Belowground C stocks, consisting of peat, living moss, woody debris (fine and coarse) and
buried burnt trunks, were sampled using a peat profile sampler (Eijkelkamp, Giesbeek, Netherlands)
at the central point of the plot (Fig. 1c). Soil and aboveground C stocks were dried at 70°C for 72 h
to  obtain  the  weight  and density  of  the  material,  and to  estimate  their  values  in  kg  m-2.  Five
composite samples were generated from random sampling points to obtain the C fraction for each
stock (Cabezas et al., 2015). From these composite samples a sub-sample of 10 g was extracted,
ground mixed and processed in an elemental analyzer (NA2500, Carlo Erba, Milan, Italy).  Soil
depth was measured by summing up all these composites.  
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2.3.  UAV data acquisition

Hyperspectral data were collected in February 2016 using a UAV (octocopter) based on a NAZA-M
V2 flight controller (DJI, Shenzhen, China). The UAV carried two small snapshot mosaic cameras
(Gamaya, Lausanne, Switzerland), one covering the visible spectral region (VIS) with 16 bands and
the  other  the  near-infrared  (NIR)  spectral  region with  25  bands.  The  flight  plan  aimed  for  an
average of 80% of forward and 70% of sided overlap, and an altitude of 100 m above the ground.
The image frames were processed in a Structure-from-Motion (SfM) pipeline (Agisoft Photoscan,
Russia) to obtain a single hyperspectral brick of 41 bands (450 mn ̶ 950 mn, and 10 nm bandwidth)
and  a  point  cloud  with  elevation  information  (Kattenborn  et  al.,  2018;  Lopatin  et  al.,  2019).
Reflectance data were obtained by calibrating the raw hyperspectral data with a reference panel
with  known  reflectance  placed  in  the  field  during  the  flight.  The  resulting  pixel  size  of  the
hyperspectral orthomosaic was ~0.1 m while the point cloud densities resulted in ~1,000 points/m2

(i.e. an average of 1 point every 0.003 m). 

The height values of the point cloud were transformed from meters above sea level to meters above
the  ground  using  TreesVis  (Weinacker  et  al.,  2004).  Retrieving  absolute  vegetation  height
information from SfM-based point clouds can be challenging in peatlands as there is a low chance
that points representing the terrain will  be reconstructed (Mercer and Westbrook, 2016). As we
considered peat as part of the belowground stocks, only vascular vegetation height was measured.
We used the measured in-situ vascular vegetation height to correct for possible shifts in the SfM-
based elevations.  A bilinear interpolation was applied to the average height values of the point
cloud falling inside the plots using the average plot measurement as targets. The vegetation height
accuracy resulted in root mean square errors (RMSE) of ~0.02 m.

Finally, both hyperspectral data and the point cloud were georectified with a bilinear interpolation
using a Pleiades panchromatic image (0.5 m × 0.5 m) collected on January 28, 2014. We selected
23  steady  features  (e.g.  tree  crowns  and  corners  of  an  elevated  footbridge  located  in  the
conservation area) as ground control points. The positional accuracy resulted in RMSE of ~0.40 m.
Moreover, we placed markers without georeference in the corners of all 36 plots to make the plots
directly visible from the hyperspectral orthomosaic. From the 36 plots, only 31 were finally visible
in  the  orthomosaic.  Unseen  markers  were  located  mainly  in  the  conservation  area,  where  the
visibility was hampered by the high shrub biomass. For plots where the markers were not visible in
the orthomosaic, we retrieved the spectral and vascular vegetation height information from the GPS
position. 

2.4.  Selected aboveground vegetation attributes

We reviewed  the  literature  to  determine  the  main  vegetation  characteristics  related  to  peatland
belowground  C  stocks.  We  used  this  information  to  develop  a  structural  equation  model  that
assimilates this knowledge into a network of multivariate interactions, whichwere trained with and
tested against our data. 

The key aboveground vegetation characteristics influencing belowground C stocks were related to
the decrease of water-logging and peat mineralization, which are causing the decline of Sphagnum
cover  and  promoting  the  colonization  by  vascular  plants.  Hence,  these  characteristics  relate  to
processes  that  alter  belowground fluxes  and gas-exchanges,  resulting  in  a  slow decreases  in  C
stocks.  Moss  species  (mainly  Sphagnum spp)  exude  inhibitory  polyphenol  compounds  by  the
rhizoids  that  increase  the accumulation  of  belowground C due to  a  low decomposition  rate  of
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organic matter (i.e. the decomposition rate is lower than the accumulation rate; Fenner & Freeman,
2011). On the contrary, vascular plants tend to stimulate belowground microbial activity through
increased labile carbon, accelerating the decomposition rate of the organic matter. This is followed
by an expected  alteration  of  soil  nutrient  content,  pH conditions  and a  water  table  that  further
reinforce  the  vascular  plant  colonization.  This  will  cause  the  decrease  of  peat  abundance  and
eventually  belowground  C  stocks  (Fenner  &  Freeman,  2011).  For  this  reason,  the  cover  and
biomass  of  growth  forms  (i.e.  bryophytes,  graminoids,  forbs  and  shrubs)  and  certain  vascular
species  have been shown to be proxies for C stocks (Dorrepaal  et  al.,  2005; Ma et  al.,  2017).
Likewise,  a  higher  plant  diversity  has  been demonstrated  to  increase  rhizosphere  C inputs  and
belowground microbial activity (Chen et al., 2017, 2018; Cong et al., 2014; Lange et al., 2015),
hence increasing the organic matter decomposition rate on peatlands (Fenner & Freeman, 2011). 

Following  these  relations,  we  selected  four  aboveground  vegetation  characteristics  from  the
literature related to belowground C stocks that can be estimated from remote sensing data with
moderate accuracies: vegetation height (e.g. Rudiyanto et al., 2018), species richness (e.g. Castillo-
Riffart  et  al.,  2017),  aboveground biomass  (e.g.  Turetsky et  al.,  2011)  and the assemblages  of
vascular species communities or floristic gradients estimated by an ordination algorithm (Nonmetric
Multidimensional Scaling, NMDS, see Supplementary data; e.g. Schmidtlein & Sassin, 2004). The
range observed for these variables and their indicators are presented in Table 1. Furthermore, we
included soil depth as a key intermediate mediator (Akumu & McLaughlin, 2014). 

Table 1. Plot-based variables included in the modeling. 

Variables Indicators (unit) Min Mean Max

Vascular vegetation height Vegetation height (cm) 2.83 30.30 130.55

Floristic composition NMDS 1 -
0.78

0 1.18

NMDS 2 -
1.13

0 0.71

NMDS 3 -
0.66

0 1.13

Vascular aboveground biomass Shrub biomass (kg m-²) 0 0.38 5.36

The sum of graminoid, forb and fern biomass 
(kg m-²)

0.03 0.13 1.86

Vascular species richness Shrub richness (N) 0 4 7

Graminoid richness (N) 0 1.81 4

Forb richness (N) 0 1.43 5

Ferns richness (N) 0 2.01 5

Soil depth Soil depth of peat, live moss, debris (fine and 
coarse) and buried trunks (remnants from 
burned forest) (cm)

18.5
0

38.47 91

Belowground C stocks Carbon stocks of peat, live moss, debris (fine 
and coarse) and buried trunks (remnants from
burned forest) (kg m-²)

3.07 11.40 24.91
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            2.5.   Algorithms used

2.5.1. Random forests

The ensemble regression tree method random forests (RF; Breiman, 2001) has been reported to be
an efficient regression algorithm when the numbers of observations is comparably low in relation to
the number of predictors (Svetnik et al., 2003). RF requires two parameters to be set: 1) mtry, the
number of predictor  variables used for the data partitioning at each split  and 2) ntree,  the total
number  of  trees  to  be  grown  in  the  model  run.  We  set  ntree  to  500  based  on  literature
recommendations, whereas mtry was tuned using leave-one-out cross-validation. The importance of
predictor  variables  was  measured  by  the  Gini  decrease  in  node  impurity  measure,  which  is
computed  by  permuting  the  predictor  variables  with  the  out-of-bag  data  in  the  RF  validation
approach (for details see Liaw & Wiener, 2002).

2.5.2. Structural equation modeling

Structural equation modeling (SEM) is a multivariate family of methods that can model a large
number  of  interactions  simultaneously,  providing  a  framework  for  inferring  cause-effect
relationships and estimating direct and indirect relations among variables (Grace et al., 2010).

We used partial least squares path modeling (PLS-PM or PLS-SEM; Tenenhaus et al., 2005), a non-
parametric composite-based SEM, whichis mainly used in social science, but has already shown
potential in ecological (Ferner et al., 2018) and remote sensing applications (Lopatin et al., 2015).
PLS-PM  is  validated  at  different  levels  (i.e.  loading,  weights,  R²),  and  has  an  overall  model
goodness-of-fit  (GoF;  ranging  from  0  to  1,  where  1  is  a  perfect  representation)  proposed  by
Tenenhaus et al. (2005). The significance (α = 0.05) of each interaction and model outputs were
obtained by means of bootstrapping (1,000 iterations). 

PLS-PM can create latent variables (LVs) comprised of one or several variables in a supervised
manner. Thus, PLS-PM can create components to separate predictors according to their correlations
and reduce overfitting. We used all LVs in reflective mode or type ‘A’ (see Tenenhaus et al. (2005)
for information on the LVs types). The interactions among LVs are explained by Linear Ordinary
Least Squares (OLS). We standardized variables to normalize path coefficients and intercepts (i.e.
turn variables with different raw units into standard deviation units; Grace & Bollen, 2005). The
PLS-PM  was  tuned  using  the  Cronbach’s  alpha  index  (check  for  unidimensionality  among
indicators) and the loading values (correlation within the indicators of a LV; variables with loadings
below 0.5 were dropped). 

The theoretical construct of the model is presented in Fig. 2 and the indicators used in Table 1. We
used Moran’s I index and spatial correlograms to check for spatial autocorrelation on the residuals
of the bootstrapped LVs. 
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Fig. 2. The hypothesized model for the plot-based PLS-PM. Solid black lines represent expected
effects obtained from literature. Examples are (1), (2), (3), (4), (5) and (6) Lawson et al. (2014); (7)
Rocchini et al. (2018); (8) Dorrepaal (2007); (9) and (10) Dorrepaal et al. (2005); (11) and (12)
Lange et al. (2015) and (13) Lawson et al. (2014), Akumu & McLaughlin (2014) and Draper et al.
(2014).

2.6.      Modeling and validation

Three types of belowground C stocks predictive models were tested (summarized in Fig. 3): 

a) using random forests and PLS-PM independently with plot-based predictors (Fig. 3a); 

b) using random forests and PLS-PM independently with UAV-based predictors (Fig. 3b);

c) using a hybrid model combining PLS-PM plot-based information with random forests UAV
estimations (Fig. 3c). 

In the models depicted in Fig. 3 a) and b), PLS-PM and RF were used independently to compare
their performances. For the plot-based models we used the variables presented in Table 1, while the
remote  sensing  models  (Fig.  3b)  were  parameterized  with  UAV-based  spectral  and  height
information. We applied a brightness normalization (Feilhauer et al., 2010) to the hyperspectral data
to compensate for high heterogeneity in illumination owed due to the high spatial resolution and a
minimum noise fraction transformation (MNF; Green et al., 1988) algorithm to reduce noise. We
selected the first three MNF components (~99% of the original information) for the analysis. The
canopy height information was obtained from the point cloud using FUSION (McGaughey, 2018).
The  point  cloud  variables  included  common  vegetation  height  metrics,  such  as  the  minimum,
maximum,  mean,  median,  mode  and  standard  deviation  of  the  vegetation  height  (compare
Supplementary data for the full list of variables). The 3D metrics were rasterized to pixel size of 2
m × 2  m to  match  the  field  plots  size.  The  PLS-PM structural  model  for  the  remote  sensing
estimation is presented in Fig. A1. 
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Fig. 3. Methodological workflow of the predictive models. In (a) and (b) belowground C stocks
independent predictive models using RF and PLS-PM were applied using the plot-based and UAV-
based  predictors,  respectively;  and  (c)  the  hybrid  models  combining  the  SEM  plot-based
information with the RF UAV estimations. 

For the hybrid model c), we trained and validated PLS-PM with plot-based information (Fig. 3c i)
to find significant vegetation characteristics influencing belowground C stocks and to use their path
coefficients (β) to build a predictive function (Fig. 3c ii) as:

C=∑
i=1

n

β1× LV i+ε1(1)

where  C is the estimated belowground C stocks,  LVi is a significant vegetation LV, βi is the path
coefficient of the  LVi,,  εi is the error and n is the number of significant vegetation characteristics
detected by PLS-PM. We then used RF to extrapolate the selected PLS-PM LV scores using the
UAV-based predictors (Fig. 3c iii). Finally, we used equation (1) to predict and map belowground C
stocks using the RF map extrapolations (Fig. 3c iv and 3c v respectively).    

To avoid overfitting and to assess model accuracy and map extrapolation stability, all three types of
models (Fig. 3a, b and c) were embedded in a bootstrapping procedure with 500 repetitions. In each
iteration, 36 observations were randomly selected with replacement from the 36 available samples,
from which  on average  36.8% (~13 samples)  were not  selected.  We used this  observations  as
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holdout samples for the validation (Kohavi, 1995). Model performances were compared based on
differences in the coefficients of determination (r²; calculated as the squared Pearson's correlation
coefficient), the normalized root mean square error (%RMSE) and the bias between predicted and
observed variables of the holdout samples in the bootstrap. The normalized root mean square error
was calculated as:

%RMSE=(√ 1
2
∑
i=1

n

( y j− ŷ j)
2
/[max(C)−min ⁡(C )])×100 (2)

where C is the measured belowground C stocks, while the bias of prediction was measured as one
minus the slope of a regression without intercept of the predicted versus observed values (Lopatin et
al., 2016, 2017). 

We applied  a  one-sided  bootstrapping  test  to  check for  significant  differences  (in  terms  of  r²,
%RMSE and bias) among models (Araya-López et al., 2018; Lopatin et al., 2016). We tested for
differences between PLS-PM and RF in the three type of models presented in Fig. 3. 

Finally,  it  is  worth-mentioning  that  still  in-situ values  of  belowground C stocks  are  needed  to
calibrate and validate the relationships obtained by the vegetation characteristics. Hence, we did not
obviate soil sampling completely for the analysis. We used the R-packages ‘plspm’ (Sanchez et al.,
2017) and ‘randomForest’ (Liaw & Wiener, 2002) for the analyses, while the image processing was
accomplished using Python 3.6 with the  Scikit-learn  (Pedregosa et  al.,  2011)  and Scikit-image
libraries (van der Walt et al., 2014; scripts available in Appendix C).

2.7.     Maps

We  calculated  the  median  and  the  coefficient  of  variation  (CV,  in  percentage,  calculated  as

CV p=[
SDp

mean (C )0
]× 100,  where  CVp is  the  pixel’s  coefficient  of  variation,  SDp is  the  pixel’s

standard  deviation,  and  mean(C)o is  the  mean  belowground  C  stock  value  of  all  reference
measurements; Araya-López et al., 2018) of the 500 predicted belowground C stock maps produced
by the models in Fig. 3b and c during the iterative validation. Pixels with high CV indicate higher
uncertainties of the predictive model, while low values depict areas with stable predictions.

We masked out areas that were not represented in the plot-based information to avoid predictions
outside the training range (non-vegetation: NDVI < 0.3; and areas with presence of trees: vegetation
height > 2 m). 

Finally, we used RGB maps of the PLS-PM LV scores extrapolated by RF (Fig. 3c iii) to see the
spatial  distribution  of  the  plot-based  information  and  support  the  analysis  of  the  predicted
belowground C stock gradients. The components were normalized between 0-255 and plotted with a
20–80% percentiles linear stretching for visual interpretation of variable interactions. 

3. Results

            3.1.  Model performances 

The PLS-PM plot-based model yielded an overall goodness-of-fit of 0.65. Moran´s I test showed
that LVs (inner models) and their residuals were not significantly affected by spatial autocorrelation
(aboveground biomass: I = -0.02 and P = 0.72; species richness: I = -0.02 and P = 0.71; soil depth:
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I =  -0.04  and  P =  0.42;  and  belowground C stocks:  I =  -0.04  and  P =  0.41).  Details  on  the
construction of the LVs (outer model) are presented in Table A1. The model path diagram with
significant path feedbacks and total variable importance on belowground C stocks are presented in
Fig.  4.  Only  soil  depth  and  vegetation  height  showed  a  significant  direct  relation  to  the
belowground  C  stocks.  The  relation  of  species  richness  with  belowground  C  stocks  became
significant  when the  indirect  influences  were  included (mainly  caused by the  relation  between
vascular species richness and soil depth; Fig. 4b). 

Soil  depth appeared to  be negatively  related  to aboveground biomass  and species  richness.  No
direct  link  was  observed  to  floristic  composition.  Hence,  a  linear  equation  was  created  using
vegetation height and soil depth to predict belowground C stocks. To use only vegetation attributes
in the equation, we used aboveground biomass and species richness path coefficients to predict soil
depth, resulting in the following equation:

BelowgroundC stocks=−( H ×0.34 )+( [− (BM × 0.37 )−(SR × 0.37 ) ]⏟
Soildepth

×0.88)(3)

where  H is the vegetation height [cm],  BM is the aboveground biomass [ kg m-2] and  SR is the
species richness. 

Fig. 4. (a) Resulting PLS-PM model using plot-based information. Arrows represent unidirectional
relationships  among  LVs.  Solid  and dashed  arrows  denote  positive  and  negative  relationships,
respectively. Arrows with non-significant coefficients (α = 0.05) were not drawn. The thickness of
the paths is scaled based on the magnitude of path coefficient (β). Path coefficients and internal R²
correspond to mean bootstrap values of the internal PLS-PM validation. (b) Bar plot showing the
variable importance (direct + indirect effects) of the vegetation attributes to predict belowground C
stocks. Asterisks (*) indicate a significant (α = 0.05) influence over belowground C stocks.

Table 2 shows the results  of belowground C stocks accuracy prediction using RF and PLS-PM
independently with plot-based predictors (models of Fig. 3a). Both algorithms yielded high median
accuracies with r² over 0.70 and %RMSE below 25%. However, PLS-PM showed more parsimony
as  fewer  predictors  were  used  and  presented  significant  improvements  (α  =  0.05)  in  terms  of
%RMSE and bias. RF variable importance is presented in Table 3, showing that soil depth obtained
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the highest model scores, whereas all vegetation attributes were non-important. Table 4 presents the
modeling  results  using  UAV-based predictors  (models  of  Fig.  3b),  where  it  is  shown that  RF
outperformed PLS-PM significantly in all models. The canopy 3D variables derived from the point
cloud showed higher importance than the spectral MNF components for all models except for the
model of belowground C stocks (compare Supplementary data). Finally, Fig. 5 depicts the results of
the hybrid model coupling the plot-based information (PLS-PM) and UAV data (RF). The hybrid
model  resulted  in  higher  accuracies  than  the  purely  data-driven random forests  approach,  with
improvements from of r² from 0.39 to 0.54, normalized RMSE of from 31.33% to 20.24%, and bias
from -0.73 to 0.05.

Table  2. Prediction  accuracies  of  belowground  C  stocks  applying  plot-based information  with
random  forests  (RF)  and  PLS  path  modeling  (PLS-PM).  The  median  values  of  the  iterative
validation are shown. Asterisks (*) indicate a significant difference (α = 0.05) between PLS-PM and
RF.

Algorithm r² %RMSE Bias N° predictors

PLS-PM 0.79 14.48* 0.12* 3

RF 0.72 22.35 0.70 5

Table 3. Variable importance of the random forests plot-based model (Fig. 3a).

Variables Gini purity index

Soil depth 100.00

Vascular species richness 16.98

Floristic composition 10.41

Vascular vegetation height 1.01

Vascular aboveground biomass 0.00

Table 4. Prediction accuracies of peatland characteristics (latent variables) using PLS-PM and RF
with solely remote sensing information.  Vegetation height was obtained directly from the UAV
photogrammetric point cloud. All values are the median of the bootstrapping validation. 

PLS-PM RF

Latent variables r² %RMSE bias r² %RMSE bias

Vascular vegetation height - - - - - -

Floristic composition 0.22 26.77 -0.78 0.57*** 22.57** -0.59**

Vascular aboveground biomass 0.30 38.13 -0.69 0.67** 20.18** -0.27*

Vascular species richness 0.32 26.44 -0.69 0.59** 25.30*** -
0.58***

Soil depth 0.40 30.93 -0.62 0.45* 28.83** -0.79

Belowground C stocks 0.34 36.67 -0.62 0.39* 31.44** -0.73**

Significant differences: *α = 0.1, **α = 0.05, ***α = 0.001.
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Fig. 5. Scatterplots of observed versus predicted values of belowground C stocks for: (a) the direct
use of random forests using UAV-based predictors, and (b) the hybrid model combining PLS-PM
plot-based information and RF UAV predictions. The dots and the error bars represent the median
and  the  standard  deviation  of  the  values  generated  in  the  iterative  validation,  respectively.  (c)
Bootstrapping distribution of accuracies. Asterisks (*) indicate a significant differences (α = 0.05).

            3.2.  Spatial extrapolation of belowground C stocks 

The prediction maps (Fig. 6) show that the use of RF with UAV-based predictors resulted in an
underestimation of belowground C stocks (see also Fig. 5). Furthermore, the hybrid model depicted
lower model uncertainties in prediction, with coefficient of variation (CV) values < ~30%. 

The  extrapolated  PLS-PM plot-based  LV scores  by  the  RF  models  (Fig.  3c  iii)  showed  clear
differences between land use types (Fig. 7). The conservation area (to the south) featured more
interactions (color combinations), with higher LV score values of aboveground biomass, species
richness,  floristic  composition  and  soil  depth,  while  the  managed  area  (to  the  north)  was
characterized by simpler and smoother patterns of species richness and floristic composition scores.
Areas where the bootstrap iteration procedure showed higher CV agree with areas of higher (LV)
biomass and species richness. 
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Fig.  6. Belowground  C  stocks  prediction  maps  using  random  forests  (RF)  with  UAV-based
predictors (left) and the hybrid model combining PLS-PM plot-based information and RF UAV
estimations  (right).  The maps  represent  the  median  (top)  and the  coefficient  of  variation  (CV;
below) of the 500 bootstrapping iterations. 

Fig. 7. Spatial distribution of the PLS-PM LV scores produced by RF regressions (Fig. 3 iii). RGB
map representations using only aboveground peatland characteristics (a), and a mix of above with
belowground variables  (b).  The variables  were normalized  (0-255)  and plotted  with  a  20–80%
percentiles linear stretching. BM = vascular aboveground biomass, FC = floristic composition, SR =
vascular  species  richness  and  Depth  =  soil  depth.  The  dashed  line  is  the  border  between  the
conservation (southern) and the managed (northern) areas. 
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4. Discussion

            4.1.  Linkages between vegetation attributes and belowground C stocks

The conservation area (to the south) presents higher cover of shrub species (more aboveground
biomass) and abundance of native species related to a peatland in the original state (Fig. 7), such as
Sphagnum magellanicum, Sticherus cryptocarpus and Blechnum cordatum (low NMDS axis score;
Fig. A2). In contrast, the managed area (to the north) has higher species richness and presence of
vascular invasive species such as  Plantago lanceolata,  Agrostis  capillaris and  Trifolium repens
(higher NMDS axis score; Fig. A2), which relates to a more degraded peatland (Dorrepaal et al.,
2005; Jonsson & Wardle, 2009). The differences in species composition relate to the colonization of
less  water-logged  areas  by  vascular  plants.  The  colonization  of  vascular  plants  decrease  the
reservoirs of belowground C stocks in the long term by producing changes in soil nutrient content
and pH will eventually hamper further growth of  Sphagnum species (Fenner & Freeman, 2011).
Vascular plants further increase the oxigenization of soils, the microbial activity and decomposition
rate of the organic matter, which facilitates liberation of ancient carbon as CO2 to the atmosphere
(Walker et al., 2016) and inhibits further accumulation of C (Chen et al., 2017, 2018; Cong et al.,
2014;  Gorham,  1991;  Lange  et  al.,  2015).  This  process  is  likely  to  be  faster  and  occur  more
frequently  under  climate  change scenarios,  as  an  increasing  temperature  promotes  drought  and
accelerates colonization by vascular plants and microbial activity (Fenner & Freeman, 2011). 

The negative effects that colonization of vascular plants exert over belowground C stocks is well
represented in the PLS-PM model: vegetation height, aboveground biomass, floristic composition
(higher  scores  showing an  increase  of  invasive  vascular  species)  and species  richness  depicted
negative  effects  (Fig.  4b).  From  all  aboveground  variables,  only  vegetation  height  showed  a
significant direct relation to the belowground C stocks. This is clearly an expression of the fact that
bog vegetation  is  low when peat  accumulation  is  high.  When considering  also  indirect  effects
through the use of moderator variables (especially soil depth), all the above mentioned variables
increased  their  relative  importance.  This  shows  the  importance  of  studying  variable  inter-
dependencies when modeling complex systems (see section 4.3 below).

            4.2.  Model performances

The predictions of random forests (RF) and PLS-PM using plot-based information (Fig. 3a) showed
high accuracies in both cases. Nevertheless, PLS-PM outperformed RF significantly using linear
relations and fewer variables, indicating that SEM is indeed useful to constrain the models using
ecological expert knowledge. 

RF  outperformed  PLS-PM  significantly  when  using  remote  sensing  data  to  directly  predict
belowground C stocks (Fig. 3b). This showed that PLS-PM could not handle the high colinearity of
the  remote  sensing  data.  Although  PLS  is  known  to  be  able  to  address  a  certain  degree  of
colinearity,  machine  learning  algorithms  like  RF  behave  more  flexible  by  applying  complex
relationships in higher dimensional feature spaces (Svetnik et al., 2003). 

We also tested the use of PLS and support vector machines (SVM) regressions for the predictions.
Their performances in terms of r², %RMSE and bias were lower than those obtained by RF, hence
their results were not presented here.

When  using  UAV-based  independent  variables,  the  aboveground  vegetation  variables  were
predicted  with  higher  accuracies  than  the  belowground  variables  (Table  4).  Nevertheless,
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predictions of aboveground vegetation variables still showed high uncertainties (i.e. average r2 of
~0.61 and %RMSE of ~22.68). In this study, the accuracies for the vascular aboveground biomass,
species  richness  and  floristic  composition  are  likely  to  be  affected  by  three  factors:  1)  the
destructive sampling performed in a 0.5 m × 0.5 m area located at the center of the 4 m2 plots (Fig.
1) prior to UAV acquisition; 2) the time lag of two years between the field (2014) and the UAV
(2016) campaigns. In this time period, Sphagnum and shrub biomass and abundance were expected
to remain stable due to their slow growth but herbaceous properties may have experienced shifts; 3)
the inaccuracies during UAV data georectification may have added errors in the five field plots
where markers were not visible from the hyperspectral orthomosaic. These observations could have
been skipped during the analysis, but we decided to use them anyway as the number of observations
was already low. 

The prediction  of  the  aboveground variables  showed relatively  similar  results  as  other  studies:
Castillo-Riffart et al. (2017) estimated species richness in the same study are using satellite-based
sensors, yielding model r2 between 0.54 and 0.6 and %RMSE between 18% and 20%. Moreover,
Harris et al. (2015) mapped the floristic composition of a temperate peatland in the west coast of
Wales using a full-range airborne-based hyperspectral data and PLS regressions. They obtained a r2

in validation of 0.72 and RMSE 0.18 (in feature space units). Estimations of aboveground biomass
in  acidic  peatlands  have  been  obtained  mainly  by  allometric  equations  and  land  cover  maps
obtained by high resolution imageries (e.g. Beilman et al., 2008). 

Compared to the RF models based on UAV-based predictors alone (Fig. 3b), the hybrid model
coupling PLS-PM plot-based information and RF UAV predictions (Fig. 3c) resulted in significant
improvements  .  This  suggests  that  the  use  of  vegetation  attributes  as  predictors  improved  the
estimation of belowground C stocks by incorporating known ecological relations constraining the
model. SEM theoretical constructs are generalizable, allowing their comparison across sites (Grace
et al., 2007) and scales (Grace et al., 2016), while empirical models based on remote sensing data
alone, despite precision and ease of implementation, lack portability as they are largely affected by
sensor and site-specific conditions (Kattenborn et al., 2017; Schmidtlein et al., 2012; Vuolo et al.,
2013). The proposed approach showed similar accuracies as other studies using a more complex set
of predictors (such as peat thickness, dry bulk density and carbon concentration) and/or allometric
functions (Akumu & McLaughlin, 2014; Beilman et al., 2008; Dargie et al., 2017; Draper et al.,
2014;  Gumbricht  et  al.,  2017;  Jaenicke  et  al.,  2008).  The  advantage  of  using  aboveground
vegetation characteristics as proxies are: 1) field efforts and costs are reduced by allowing non-
destructive sampling. This may decrease soil sampling and laboratory analyses, and 2) variables can
be mapped by remote sensing with higher accuracies than belowground variables (e.g. Castillo-
Riffart et al., 2017; Harris et al., 2015). The aboveground vegetation variables used in the present
study relate to changes in C fluxes (e.g. gas-exchange to the atmosphere) that slowly alter the C
stocks (Fenner & Freeman, 2011). Therefore, the use of such proxies will always require validation
as relations between vegetation proxies and belowground C stocks may depend on site specific
conditions,  such  as  floristic  composition,  management  treatments  and  successional  stages.
Nevertheless,  improving the  understanding of  the interactions  between below and aboveground
plant and community properties could advance the operationalization of such mapping approaches
by decreasing the amount of data required for training and validation.

The accuracies obtained in this investigation are still not sufficient for an operational monitoring of
peatland belowground C stocks. To achieve this goal, higher accuracies are needed (e.g. > 80% of

16



variance  explained)  to  decrease  the  amount  of  field  data  without  compromising  model
performances. Likewise, the approach portability  needs to be assessed, as site specific approaches
are not ideal for management tasks. To improve the estimation of belowground C stocks with the
proposed approach, an increase of the prediction accuracy of the indirect proxies is needed (i.e.
vascular species richness and aboveground biomass). For example, the development of an accurate
allometric equation to assess aboveground biomass in a non-destructive manner would facilitate the
proposed procedure.  The vascular  species  richness  estimation  could be enhanced e.g.  by using
detailed  multi-scale  canopy  3D  and  textural  information  based  on  the  point  cloud  and  the
orthomosaic (Lopatin et al., 2019, Kattenborn et al. 2019) 

            4.3.  Variable importance

The plot-based PLS-PM model  showed significant  links  (direct  +  indirect)  between soil  depth,
species richness, vegetation height and belowground C stocks (Fig. 4). The model showed that for
every centimeter increase of soil depth, centimeter decrease of vegetation height and reduction of
species numbers by one species, there is a belowground C stocks increase of ~0.88 kg m -2, ~0.53 kg
m-2 and  ~0.68  kg  m-2,  respectively.  In  comparison  to  these  results,  the  RF  model  was  rather
uninformative: the RF Gini purity index (Table 3) showed that soil depth was the only meaningful
predictor  of  belowground C stocks  in  the  RF model.  This  suggest  that  considering  only direct
relations (i.e. regression coefficients or model variable importance) may lead to underestimations of
the ecological importance of several variables in the model. For example, in the PLS-PM plot-based
model,  influences  of  species  richness  and floristic  composition  on determining belowground C
stocks using direct links (path coefficients) yielded non-significant results (β < 0.1 each), whereas
presenting strong importance if indirect links were considered (species richness = -0.68; floristic
gradient = -0.40); the assessment of only direct influences may lead to an erroneous evaluation of
the ecosystem dependencies (Irwin, 2006). 

Although ecological interdependencies and indirect linkages can be estimated as well by applying
separate  linear  or  multiple  regressions  (e.g.  Gough  et  al.,  1994)  or  analyses  of  variance  (e.g.
Dorrepaal et al., 2005), SEM tracks these relationships while allowing the prediction of its variables
within a composite model (e.g. Grace et al., 2016). 

The variable importance of the random forests models using the UAV-based predictors showed that
the canopy 3D information outperformed the spectral information in all cases except in the direct
prediction of belowground C stocks (see Supplementary data),  where the first MNF component
yielded the  highest  importance.  In  addition,  variables  such as  the  mode and the  coefficient  of
variation  of the point  cloud also depicted  a  high importance.  This  indicates  that  for  predicting
belowground C stocks the combination of spectral and canopy 3D information has a high potential. 

            4.4.  Belowground C stocks extrapolation

The  prediction  maps  (Fig.  6)  agreed  with  our  knowledge  about  the  study  site,  where  the
belowground C stocks has a smoother transition between the conservation and managed areas than
the aboveground vegetation variables (Cabezas et al., 2015). 

The total amount of C stocks estimated with the hybrid model was ~233,790 kg m-2. This is a rather
low value compared to other natural peatlands in Chilean Patagonia (Cabezas et al., 2015), which
can be attributed to its young stage (Díaz et al., 2008). Chiloé Island presents many similar isolated
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small  peatlands,  which,  despite  their  relatively low individual  C pools,  sum up to considerable
amounts of total C stocks (McClellan et al., 2017). Given the fact that these wetlands are numerous
and isolated, the measurement bias and field sampling costs could be high (Jobe & White, 2009).
The lower field operational costs of assessing aboveground vegetation attributes compared to soil
samples makes the presented mapping approach suitable to estimate the overall C contribution of
the landscape. 

Lower  CV  pixel  values  were  obtained  in  areas  were  vegetation  variables  presented  larger
variability,  whereas  higher  CV were  caused  mainly  by  extremes  in  aboveground  biomass  and
species richness (Fig. 7). The models resulted in higher uncertainties for the conservation area due
to a higher abundance of shrubs, while the managed area presented high uncertainties in eroded
grasses  with  presence  of  exotic  species.  This  difference  is  an  expression  of  the  low
representativeness  of  pure  aboveground  biomass  and  exotic  rich  plots  compared  to  plots  with
intermedium gradient values (i.e. only one pure shrub plot in the conservation area and two plots
with high number of invasive species in the managed area were included in the analysis).

Maps of the vegetation attributes evaluated in this study can be obtained at different spatial scales.
For example,  vegetation height  can be obtained by airborne LiDAR, photogrammetry based on
UAV, airborne or high resolution optical  satellites (e.g. WorldView or Pleiades stereo-imagery;
Maack  et  al.,  2015)  or  SAR interferometry  (e.g.  TanDEM-X;  Kattenborn  et  al.,  2015).  More
research  is  needed  to  link  such  products  with  ecological  studies  to  assess  if  the  hypothesis
developed from local ecological studies hold across spatial scales (Pettorelli et al., 2014). Further
work is needed to find stable and mechanistic links between belowground C stocks and vegetation
characteristics,  which would facilitate a continuous monitoring of soil pools while reducing the
amount of destructive soil samples. We believe that SEM is suitable to find ecological meaningful
interactions and to link ecosystem properties with remote sensing. Nonetheless, the relationships
presented in this investigation needs to be tested against new data to see if their assumptions hold
across landscapes.

 

5. Conclusions

This study evaluated the use of remotely sensed vegetation attributes as proxies to predict peatland
belowground C stocks. By using a hybrid model that couples plot-based ecological knowledge of
the ecosystem functioning (structural equation modeling) with remote sensing estimates (machine
learning), we conclude the following:

1. The  use  of  vegetation  characteristics  such  as  vascular  vegetation  height,  aboveground
biomass and species richness as proxies resulted in more accurate  belowground C stock
estimations,  compared  to  the  use  of  raw  remote  sensing  data.  The  use  of  vegetation
characteristics  is  advantageous  because  of  their  relatively  easy  and  non-destructive
assessment.  The relationships  found for  vegetation  proxies  and belowground C stock is
likely to be site specific, and therefore change with geographic position, species composition
or  state  of  the  peatland.  Hence,  more  investigation  is  needed  to  check  whether  the
relationships found here hold across landscapes.

2. The assessment of indirect relationships between the vegetation attributes and belowground
C  stocks  improved  the  interpretation  of  variable  importance.  Considering  only  direct
linkages  (coefficients)  resulted  in  underestimation  of  the  vascular  species  richness  and
floristic composition contribution to the model. 
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3. Structural  equation  models  are  suitable  to  track  indirect  and  bi-directional  links  among
components in a defined model. Nonetheless, they cannot handle correctly the number and
dimensionality  of  the  remote  sensing  data,  so  their  integration  with  machine  learning
algorithms is appropriate for mapping purposes. 

4. The  structural  equation  model  showed  flexibility  to  fit  the  large  gradients  of  peatland
vegetation attributes caused by land use differences. 

5. Peatland belowground C stocks is difficult to estimate directly using optical and 3D canopy
height remote sensing information. Algorithms that take into account more complexity in
the predictors, such as random forests and support vector machines, are able to model the
relations between canopy reflectance/canopy and the C gradient, obtaining higher accuracies
than  linear  models.  Nevertheless,  these  accuracies  were  not  sufficient  for  a  reliable
estimation of belowground C stocks. 

The  integration  of  ecological  expertise  into  remote  sensing  applications  has  great  potential  to
improve not only the final mapping accuracy, but to contribute to the knowledge of ecosystem
functioning  and  processes.  Nevertheless,  more  investigation  is  needed  to  find  generalized
aboveground proxies of belowground C stocks to effectively decrease the amount of soil samples
needed for model calibration.  
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Appendix A. PLS path modeling extra information

Table A1. PLS-PM outer model specifications. The weights correspond to the outer model 
coefficients while the loading are similar to the correlations in regression analysis. Non-significant 
predictors (n.s.) are highlighted in gray. 

Latent variables Predictor Weight (ω) Loading (l)

Vascular vegetation height Vegetation height 1.00 1.00

Floristic composition

NMDS 1 1.00 1.00

NMDS 2 n.s. n.s.

NMDS 3 n.s. n.s.

Vascular aboveground 
biomass

Bryophytes biomass n.s. n.s.
Herbaceous biomass 0.65 0.94

Shrubs biomass 0.45 0.87

Vascular species richness

Graminoid richness 0.50 0.90

Forbs richness 0.59 0.93

Shrub richness n.s. n.s.
SOM Soil organic matter depth 1.00 1.00
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C stocks Belowground C stocks 1.00 1.00

Fig.  A1.  PLS-PM  structural  model  for  the  estimation  of  vegetation  proxies,  soil  depth  and
belowground C stocks using UAV-based predictors (Fig. 3b). 

Appendix B. Floristic composition information
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Fig.  A2.  Results  of  the  floristic  gradient.  (a)  Distribution  of  plots  (sample  points)  in  the  two-
dimensional  ordination space of NMDS, showing the distribution  of the belowground C stocks
(left) and the management types (right) along the gradients. Close plots feature a similar species
composition, while remote plots are more dissimilar. Vectors illustrate the correlations of the axes
with the PLS-PM latent variables (H = vascular vegetation height, BM = vascular aboveground
biomass, Rich = vascular species richness and Depth = soil depth). (b) Typical species identified
with the isopam clustering algorithms in the NMDS first axis. Underlined species names indicate
exotic species. (c) Floristic gradient obtained in the NMDS first axis with the plot locations (black
dots) and the placement of the commons species on it. 

Appendix B. Applied scripts

The R and Python scripts applied in this investigation can be found in the following repository:

https://github.com/JavierLopatin/Peatland-carbon-stock
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