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Abstract The aim of this paper is to prove existence results for a class of sweeping pro-
cesses in Hilbert spaces by using the catching-up algorithm. These processes are governed
by ball-compact non autonomous sets. Moreover, a full characterization of nonsmooth Lya-
punov pairs is obtained under very general hypotheses. We also provide a criterion for weak
invariance. Some applications to hysteresis and crowd motion are given.
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1 Introduction

In this paper we study several properties of the sweeping process governed by a fixed set,
that is, the following differential inclusion:{

ẋ(t) ∈ −N (S; x(t)) + F(t, x(t)) a.e. t ∈ [T0, T ],
x(T0) = x0 ∈ S,

(1)

This research was supported by CONICYT-PCHA/Doctorado Nacional/2013-21130676.

� Emilio Vilches
emilio.vilches@uoh.cl
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where S ⊆ H is a merely ball-compact set, N (S; x) denotes the Clarke normal cone to S

at x and F : [T0, T ] × H ⇒ H is a given set-valued map with nonempty closed and convex
values.

The study of differential inclusions involving normal cones goes back a long time. In the
convex case, they are included in the so-called evolution equations governed by maximal
monotone operators, which is a well known subject (see [11, 32] and the references therein).
They also appear in the theory of projected dynamical systems which, as far as we know,
began with the works of Henry [30, 31]. In these papers, to study some planning procedures
in economy, Henry introduced the following differential inclusion:{

ẋ(t) ∈ projTS(x(t))(F (x(t))) a.e. t ∈ [T0, T ],
x(T0) = x0 ∈ S,

(2)

where S ⊆ R
n is a closed convex set, TS(·) denotes tangent cone to S and F : Rn ⇒

R
n is an upper semicontinuous set-valued map. Henry showed existence and equivalence

results for (1) and (2). Next, Cornet [23] relaxed the convexity assumption on S to tangential
regularity. Since then, projected dynamical systems has been studied by several authors (see
for instance [12, 20, 26, 48]) and the equivalence with differential variational inequalities
and sweeping processes is well known.

Two years before the work of Henry, Moreau, in his seminal papers [40, 41], introduced
the so-called sweeping process, which correspond to the differential inclusion (1) with a
convex moving set S(t) without perturbation. In these papers, to study some mechanical
problems arising in elastoplasticity, Moreau introduced the so-called catching-up algorithm
to deal with the existence of solutions. Since then, this algorithm has been used by several
authors to show existence of solutions for the perturbed sweeping process. We can mention,
e.g., [7, 10] for uniformly prox-regular sets, [43, 44] for uniformly subsmooth sets, among
others. In the first part of the paper, we show existence through this algorithm for merely
ball compact sets.

The work of Moreau was the starting point of several developments related to perturbed
sweeping process with regular and nonregular moving sets. We refer to [6, 8, 10, 14, 15, 21,
24, 28, 34, 38, 39, 42, 47, 49] for more details. In this respect, it is worth pointing out that
existence results for the sweeping process with merely closed moving sets already exist in
the literature. We can mention the work of Benabdellah [6] and Colombo and Goncharov
[21] for the unperturbed sweeping process and the work of Thibault [49] for the perturbed
sweeping process in finite dimensions. Thus, our aim is to show existence of the sweeping
process through the catching-up, which could be useful to deal with practical problems.

The second part of the paper is devoted to Lyapunov pairs for the sweeping process (1).
Lyapunov pairs are the central idea behind the Lyapunov method. This indirect approach is
relevant because it does not require an explicit expression for the solutions of the dynam-
ical system. This is especially useful when dealing with complex real-world applications.
Moreover, the Lyapunov method allows to address several stability properties of differential
inclusions as asymptotic stability, existence of equilibria, stabilization among others (see,
for example, [17–19]).

Characterizations of smooth and nonsmooth Lyapunov pairs has been considered for dif-
ferent dynamical systems by several authors (see [5, 17–19] and the references given there).
In the present case, Adly, Hantoute and Théra [1, 2] give explicit criterion for Lyapunov
pairs for maximal monotone evolution equations, which includes the sweeping process
driven by a fixed convex set. Then, Hantoute and Mazade [29] give explicit criteria for
Lyapunov functions for the sweeping process driven by a fixed uniformly prox-regular set.
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Unfortunately, it is well known that some dynamical systems do not admit smooth Lya-
punov pairs (see [18]). Thus, it is very important to deal with the nonsmooth Lyapunov
pairs. Here is where the subdifferential theory has been very helpful. In this setting, the
work of Clarke et al [19] has became a benchmark because they characterize Lyapunov pairs
for differential inclusions by using the proximal subdifferential. The proximal subdifferen-
tial is the smallest reasonable subdifferential that allows a characterization of nonsmooth
Lyapunov pairs. We follow this path and give an explicit criteria, involving the proximal sub-
differential, of weak Lyapunov pairs for the sweeping process. It is worth pointing out that
our result, in contrast with [1, 2, 29], does not involve the singular (horizon) subdifferential,
which gives a simpler criterion.

The paper is organized as follows. After some preliminaries, in Section 3 we give an
existence result through the catching-up algorithm. Then, in Section 4 we give a criteria
for weak Lyapunov pairs for the sweeping process. As a result, we also give a criterion for
weak invariance for the sweeping process. Finally, in Section 5, we give some applications
to hysteresis and crowd motion.

2 Preliminaries

From now on H stands for a separable Hilbert space, whose norm is denoted by ‖ · ‖. The
closed ball centered at x with radius r is denoted by B(x, r) and the closed unit ball is
denoted by B. The notation Hw stands for H equipped with the weak topology and xn ⇀ x

denotes the weak convergence of a sequence (xn)n to x.
Recall that a vector h ∈ H belongs to the Clarke tangent cone T (S; x) (see [16]); when

for every sequence (xn)n in S converging to x and every sequence of positive numbers
(tn)n converging to 0, there exists some sequence (hn)n in H converging to h such that
xn + tnhn ∈ S for all n ∈ N. This cone is closed and convex, and its negative polar N(S; x)

is the Clarke normal cone to S at x ∈ S, that is,

N (S; x) := {v ∈ H : 〈v, h〉 ≤ 0 ∀h ∈ T (S; x)} .

As usual, N(S; x) = ∅ if x /∈ S. Through that normal cone, the Clarke subdifferential of a
function f : H → R ∪ {+∞} is defined by

∂f (x) := {v ∈ H : (v,−1) ∈ N (epi f, (x, f (x)))} ,

where epi f := {(y, r) ∈ H × R : f (y) ≤ r} is the epigraph of f . When the function f

is finite and locally Lipschitzian around x, the Clarke subdifferential is characterized (see
[19]) in the following simple and amenable way

∂f (x) = {
v ∈ H : 〈v, h〉 ≤ f ◦(x; h) for all h ∈ H

}
,

where
f ◦(x; h) := lim sup

(t,y)→(0+,x)

t−1 [f (y + th) − f (y)] ,

is the generalized directional derivative of the locally Lipschitzian function f at x in the
direction h ∈ H . The function f ◦(x; ·) is in fact the support of ∂f (x). That characterization
easily yields that the Clarke subdifferential of any locally Lipschitzian function is a set-
valued map with nonempty and convex values satisfying the important property of upper
semicontinuity from H into Hw .

The weak tangent cone to a set S at x ∈ S is defined as

T w
S (x) := {v ∈ H : there exists tn ↘ 0, vn ⇀ v such that x + tnvn ∈ S}.
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Given S ⊆ H , we say that S is ball compact if, for all r > 0, the set S ∩ rB is compact.
For a set S ⊆ H , the distance function of S ⊆ H , denoted by dS is the function defined

by dS(x) := infy∈S ‖x − y‖. We denote ProjS(x) the set (possibly empty)

ProjS(x) := {y ∈ S : dS(x) = ‖x − y‖} .

The equality (see [19])

N (S; x) = cl∗ (R+∂dS(x)) for x ∈ S,

gives an expression of the Clarke normal cone in terms of the distance function. As usual,
it will be convenient to write ∂d(x, S) in place of ∂d (·, S) (x).

Let f : H → R ∪ {+∞} be an lsc (lower semicontinuous) function and x ∈ dom f . An
element ζ belongs to the proximal subdifferential ∂P f (x) of f at x (see [19, Chapter 1]) if
there exist two positive numbers σ and η such that

f (y) ≥ f (x) + 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ B(x; η).

The proximal normal cone of a set S ⊆ H at x ∈ S is defined as

NP (S; x) := ∂P IS(x),

where IS is the indicator function of a set S ⊆ H (recall that IS(x) = 0 if x ∈ S and
IS(x) = +∞ if x /∈ S).

We recall the following formula (see [19, Chapter 1]):

ζ ∈ ∂P f (x) ⇔ (ζ, −1) ∈ NP (epi f ; (x, f (x))) . (3)

The following well known result will be used in the proof of Theorem 1 below.

Lemma 1 Let S ⊆ H be a closed set. Then, for x /∈ S and s ∈ ProjS(x) we have x − s ∈
‖x − s‖∂dS(s).

Recall that ζ is in the Fréchet subdifferential ∂F f (x) of a function f from H into R ∪
{+∞} with f (x) < ∞ provided for each ε > 0 there exists some neighborhood U of x

such that for all y ∈ U one has

〈ζ, y − x〉 ≤ f (y) − f (x) + ε‖y − x‖.
When f is the indicator function IS of a subset S ⊆ H and x ∈ S, this amounts to saying
that for some neighborhood U of x one has for all y ∈ U ∩ S

〈ζ, y − x〉 ≤ ε‖y − x‖.
The obtained set is called the Fréchet normal cone to S at x and it is denoted by NF (S; x).
The following formula holds (see [9] and the references therein)

∂F dS(x) = NF (S; x) ∩ B.

When ∂F g(x) coincides with the Clarke subdifferential ∂f (x) of f at x, one says that f is
subdifferentially regular at x. The regularity of the indicator function IS is equivalent to the
equality NF (S; x) = N (S; x), i.e., the Clarke and the Fréchet normal cones to S at x ∈ S

coincide. Generally, one says that the set S is normally regular at x ∈ S. It is well known
(see [9]) that this is equivalent to the subdifferential regularity at x ∈ S of the distance
function dS . When S normally regular at all points in S, we merely say that S is normally
regular.

572



Existence and Lyapunov Pairs for Sweeping Processes...

3 Existence Through the Catching-up Algorithm

In this section, we show existence for the sweeping process (1). More specifically, given a
ball compact set S, we show that the catching-up algorithm converges uniformly (up to a
subsequence) to a solution of (1).

Throughout this section, F : [T0, T ] × H ⇒ H will be a set-valued map with nonempty,
closed and convex values. Moreover, we will consider the following conditions:

(HF
1 ) F is upper semicontinuous from [T0, T ] × H into Hw .

(HF
2 ) There exists h : H → R

+ Lipschitz continuous such that

d (0, F (t, x)) := inf{‖w‖: w ∈ F(t, x)} ≤ h(x),

for all x ∈ H and a.e. t ∈ [T0, T ].
The following theorem, which is the main result of this section, asserts the existence of

solutions for the sweeping process (1) for a merely ball-compact set S. This result is in line
with [6, 21, 49] and extends the result given in [4, Theorem 10.1.1] for sleek sets. More-
over, its proof is strongly based on ideas from [43, Chapter 1], where the author uses the
catching-up algorithm to deal with perturbed state-dependent sweeping processes governed
by uniformly subsmooth moving sets.

Theorem 1 Assume that S is a ball compact subset of H and that F : [T0, T ] × H ⇒ H

satisfies (HF
1 ) and (HF

2 ). Then, for any x0 ∈ S, there exists at least one Lipschitz solution
x of the sweeping process (1). Moreover,

‖ẋ(t)‖ ≤ 2h(x(t)) a.e. t ∈ [T0, T ].

Proof Let n ∈ N \ {0} and define μn := (T − T0)/n. Consider the partition of [T0, T ]
defined by tnk := T0 + k · μn for k = 0, . . . , n. For each (t, x) ∈ [T0, T ] × H denote by
f (t, x) the element of minimal norm of the closed convex set F(t, x), that is,

f (t, x) := projF(t,x)(0).

Then, due to (HF
2 ), ‖f (t, x)‖ ≤ h(x) for all (t, x) ∈ [T0, T ] × H .

We will construct a sequence of Lipschitz functions (xn)n which converges (up to a
subsequence) to a solution of the sweeping process (1).

Define the functions δn and θn as

δn(t) =
{

tnk if t ∈ [tnk , tnk+1[
tnn−1 if t = T ,

and

θn(t) =
{

tnk+1 if t ∈ [tnk , tnk+1[
T if t = T .

It is clear that θn(t) → t and δn(t) → t uniformly as n → ∞.
Put xn

0 := x0 ∈ S and for k = 0, . . . , n − 1 we define

xn
k+1 ∈ ProjS

(
xn
k + μn · f (tnk , xn

k )
)
,

where the right-hand side is non empty because S is ball compact. Moreover, due to (HF
2 ),

we observe that for k = 0, . . . , n − 1

‖xn
k+1 − xn

k ‖ ≤ dS

(
xn
k + μnf (tnk , xn

k )
) + μn‖f (tnk , xn

k )‖ ≤ 2μnh(xn
k ).
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Thus, if Lh is the Lipschitz constant of h,

‖xn
k+1‖ ≤ (1 + 2μnLh)‖xn

k ‖ + 2μnh(0) for all k = 0, . . . , n − 1,

which, due to [19, p. 183], entails

‖xn
k+1‖ ≤ (‖x0‖ + 2(k + 1)μnh(0)) exp (2Lh(k + 1)μn)

≤ M := (‖x0‖ + 2(T − T0)h(0)) exp (2Lh(T − T0)) .

For any t ∈ [tnk , tnk+1] with k = 0, . . . , n − 1, we put

xn(t) := tnk+1 − t

μn

xn
k + t − tnk

μn

xn
k+1.

Then, for a.e. t ∈ [tnk , tn+1
k ], ‖xn(t)‖ ≤ M and

‖ẋn(t)‖ = ‖xn
k+1 − xn

k ‖/μn ≤ 2h(xn(t
n
k )) ≤ 2(LhM + h(0)). (4)

Since x − y ∈ ‖x − y‖∂dS(y) for any y ∈ ProjS(x) (see Lemma 1), we obtain

ẋn(t) ∈ −2h(xn
k )∂dS

(
xn(t

n
k+1)

) + f (tnk , xn(t
n
k )) a.e. t ∈ [tnk , tnk+1]. (5)

Furthermore, the definitions of δn and θn together with (5) give, for a.e. t ∈ [T0, T ]
ẋn(t) ∈ −2h(xn(δn(t)))∂dS (xn(θn(t))) + f (δn(t), xn(δn(t))) . (6)

Moreover, due to the definition of xn, for all t ∈ [T0, T ]
dS(xn(t)) ≤ 2μnh(xn(δn(t)))

≤ 2μnLh‖xn(δn(t))‖ + 2μnh(0)

≤ 2μn (LhM + h(0)) .

(7)

Fix t ∈ [T0, T ] and define K(t) := {xn(t) : n ∈ N}. We claim that K(t) is relatively
compact. Indeed, let (xm(t))m ⊆ K(t) and take ym(t) ∈ ProjS(xm(t)) (the projection exists
due to the ball compactness of S and the boundedness of K(t)). Moreover, according to (7),

‖yn(t)‖ ≤ dS(xn(t)) + ‖xn(t)‖
≤ 2μn (LhM + h(0)) + M

≤ R := 2(T − T0) (LhM + h(0)) + M.

This entails that yn(t) ∈ S ∩ R B. Thus, by the ball compactness of S, there exists a
subsequence (ymk

(t))mk
of (ym(t))m converging to some y(t) as k → +∞. Then,

‖xmk
(t) − y‖ ≤ dS(xmk

(t)) + ‖ymk
(t) − y(t)‖

≤ 2μmk (LhM + h(0)) + ‖ymk
(t) − y(t)‖,

which implies that K(t) is relatively compact. Moreover, it is not difficult to see by (4) that
K := (xn) is equicontinuous. Therefore, by virtue of (4), Arzela-Ascoli’s and Dunford-
Pettis’s Theorems, we obtain the existence of a Lipschitz function x and a subsequence
(xk)k of (xn)n such that

(i) (xk) converges uniformly to x on [T0, T ].
(ii) ẋk ⇀ ẋ in L1 ([T0, T ]; H).

(iii) xk(θk(t)) → x(t) for all t ∈ [T0, T ].
(iv) xk(δk(t)) → x(t) for all t ∈ [T0, T ].
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These conditions, the convergence theorem (see [3, Proposition 5] for more details) and (6)
imply that x satisfies{

ẋ(t) ∈ −2h(x(t))∂dS (x(t)) + F(t, x(t)) a.e. t ∈ [T0, T ],
x(T0) = x0.

Furthermore, according to (7), and since S is closed we obtain that x(t) ∈ S for all t ∈
[T0, T ]. Finally, x is a solution of (1) because ∂dS(x) ⊆ N (S; x) for all x ∈ S.

Remark 1 If the set S is r-uniformly prox-regular (see [45]) and F is single-valued, then
there exists a unique solution of (1) which satisfies

‖ẋ(t)‖2 = 〈ẋ(t), F (t, x(t))〉 a.e. t ∈ [T0, T ].
Thus, in particular,

‖ẋ(t) − F(t, x(t))‖ ≤ ‖F(t, x(t))‖ a.e. t ∈ [T0, T ].
These facts are well known and the compactness of S is not needed here.

4 Lyapunov Pairs and Invariance

In this section we give an explicit criterion for weak Lyapunov pairs and weak Lyapunov
functions for the sweeping process (1). Throughout this section we assume that F : [T0, T ]×
H ⇒ H is a set-valued map with nonempty, closed and convex values. Moreover, we will
consider the following conditions:

(HF
3 ) F (·, ·) is scalarly L ⊗ B measurable on [T0, T ] × H .

(HF
4 ) For a.e. t ∈ [T0, T ], F(t, ·) is upper semicontinuous from H into Hw .

(HF
5 ) There exist h : H → R

+ Lipschitz such that

‖F(t, x)‖ := sup{‖w‖: w ∈ F(t, x)} ≤ h(x),

for all x ∈ H and a.e. t ∈ [T0, T ].
Let V : H → R∪{+∞} be a proper lsc function and W : H → R be continuous. We say

that (V ,W) forms a weak Lyapunov pair for the sweeping process (1) if for every x0 ∈ S

there exists x solution of (1) such that

V (x(t)) +
∫ t

T0

W(x(s))ds ≤ V (x0) for all t ∈ [T0, T ].

We will consider the following Hypotheses on V and W

(HV ) V : H → R ∪ {+∞} is a proper lsc function with dom V ⊆ S.
(HW ) W : H → R is an lsc function with

0 ≤ W(x) ≤ β (1 + ‖x‖) for all x ∈ H,

for some β ≥ 0.

Proposition 1 Assume, in addition to (HF
3 ), (HF

4 ) and (HF
5 ), that S is closed and ball

compact and (HV ) and (HW) hold. Then (V ,W) forms a weak Lyapunov pair for (1) if
and only if for all n ∈ N, (V ,Wn) forms a weak Lyapunov pair for (1), where

Wn(x) := inf{W(y) + n‖x − y‖: y ∈ H }.
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Proof If (V ,W) forms a weak Lyapunov pair for (1), then for x0 ∈ S there exists a solution
x of (1) such that

V (x(t)) +
∫ t

T0

Wn(x(s))ds ≤ V (x(t)) +
∫ t

T0

W(x(s))ds ≤ V (x0),

that is, (V ,Wn) forms a weak Lyapunov pair for (1). Reciprocally, if for all n ∈ N, (V ,Wn)

forms a weak Lyapunov pair for (1), for all x0 ∈ S, there exists xn solution of (1) such that

V (xn(t)) +
∫ t

T0

Wn(xn(s))ds ≤ V (x0). (8)

Since S is compact, the set of solutions of the sweeping process is compact in
Lip([T0, T ];H). Therefore, there exists a subsequence (xk)k of (xn)n converging uniformly
to a solution x of the sweeping process. Then, by passing to the inferior limit in (8), we
obtain that (V ,W) forms a Lyapunov pair for (1).

The following result, which is the main result of this section, gives a fully characteriza-
tion of the weak Lyapunov pairs for the sweeping process (1).

Theorem 2 Assume, in addition to (HF
3 ), (HF

4 ) and (HF
5 ), that S is normally regular and

ball compact and (HV ) and (HW ) hold. Then the following conditions are equivalent:

(i) For a.e. t ∈ [T0, T ], x ∈ dom V and ζ ∈ ∂P V (x)

inf{〈v, ζ 〉 : v ∈ −h(x)∂dS(x) + F(t, x)} ≤ −W(x).

(ii) (V ,W) forms a weak Lyapunov pair for the sweeping process (1).

Proof According to Proposition 1, without loss of generality, we can assume that W is
continuous.

Let G : [T0, T ] × H × R → H × R defined by

G(t, x, y) =
(−h(x)∂dS(x) + F(t, x)

−W(x).

)
Then G has closed and convex values. Moreover, for a.e. t ∈ [T0, T ] G(t, ·, :) is upper
semicontinuous from H ×R into Hw ×R and for a.e. t ∈ [T0, T ] and all (x, y) ∈ [T0, T ]×
H × R

‖G(t, x, y)‖ := sup{‖v‖: v ∈ G(t, x, y)}
≤ h(x) + ‖F(t, x)‖ + |W(x)|
≤ 2h(x) + β (1 + ‖x‖)
≤ (2Lh + β)‖x‖ + (2h(0) + β)

≤ (2(Lh + h(0)) + β)(1 + ‖x‖),

(9)

where Lh is the Lipschitz constant of h. Moreover, since epi V ⊆ S × R and S is ball
compact, epi V is also ball compact. Therefore, due to [13, Theorem 3.3], the following
conditions are equivalent:

(a) For a.e. t ∈ [T0, T ] and (x, r) ∈ epi V

G(t, x, r) ∩ T w
epi V (x, r) �= ∅.

(b) For a.e. t ∈ [T0, T ] and (x, r) ∈ epi V

G(t, x, r) ∩ co T w
epi V (x, r) �= ∅.
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(c) For a.e. t ∈ [T0, T ], (x, r) ∈ epi V and (ζ, θ) ∈ NP (epi V ; (x, r))

inf{〈v, ζ 〉 + sθ : (v, s) ∈ G(t, x, r)} ≤ 0.

(d) (epi V,G) is weakly invariant, that is, for any (x0, r0) ∈ epi V there exists a solu-
tion (x, r) of the differential inclusion (ẋ(t), ṙ(t)) ∈ G(t, x(t), r(t)) on [T0, T ] with
(x(T0), r(T0)) = (x0, r0) such that (x(t), r(t)) ∈ epi V for all t ∈ [T0, T ].

To finish the proof, it suffices to show that (c) is equivalent to (i) and (d) is equivalent to (ii).
(c) ⇒ (i): Let N the set of null Lebesgue measure on which (c) is not satisfied, let

t ∈ [T0, T ] \ N and ζ ∈ ∂P V (x). Then, by virtue of (3),

(ζ,−1) ∈ NP (epi V ; (x, V (x))) .

Therefore, by using (c),

inf{〈v, ζ 〉 − s : (v, s) ∈ G(t, x, V (x))} ≤ 0,

which implies (i).
(i) ⇒ (c): Let N ′ the set of null Lebesgue measure on which (i) is not satisfied and

α < ∞, let t ∈ [T0, T ] \ N ′ and (ζ, θ) ∈ NP (epi V ; (x, r)). Then, due to [19, Exercise
2.1], θ ≤ 0 and

(ζ, θ) ∈ NP (epi V ; (x, V (x))) .

First case: θ < 0:
It is not difficult to prove that r = V (x). Then, due to (3) and (i), we obtain

inf{〈v, ζ 〉 + sθ : (v, s) ∈ G(t, x, V (x))}
= inf{〈v,

ζ

|θ | 〉 : v ∈ −h(x)∂dS(x) + F(t, x)}|θ | − θW(x)

≤ −W(x)|θ | − θW(x)

= 0,

which proves (c).
Second case: θ = 0:
According to [50, Proposition 2.6], for all n ∈ N there exist

(ζn, θn) ∈ NP (epi V ; (xn, V (xn))) ,

with xn → x, V (xn) → V (x), ζn → ζ , θn → 0 and θn < 0. Thus, by the argument given
in the first case, for all n ∈ N

inf{〈v, ζn〉 + sθn : (v, s) ∈ G(t, xn, V (xn))} ≤ 0. (10)

Moreover, since G(t, xn, V (xn)) is closed, convex and bounded (because inequality (9)),
the infimum in (10) is attained at some points (vn, sn) with sn = −W(xn) and vn ∈
−h(xn)∂dS(xn) + F(t, xn). This implies that

vn ∈ 2h(xn)B ⊆ 2 (Lh‖xn‖ + h(0))B,
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where Lh is the Lipschitz constant of h. Hence, since (xn)n is bounded, (vn)n is bounded
and we can assume that vn ⇀ v̄. The upper semicontinuity from H into Hw of F and
∂dS(·), shows that v̄ ∈ −h(x)∂dS(x) + F(t, x). Therefore, by using (10), we get

inf{〈v, ζ 〉 : (v, s) ∈ G(t, x, r)}
= inf{〈v, ζ 〉 : (v, s) ∈ G(t, x, V (x))}
≤ 〈v̄, ζ 〉
= lim

n→∞ (〈vn, ζn〉 + snθn)

= lim
n→∞ inf{〈v, ζn〉 + sθn : (v, s) ∈ G(t, xn, V (xn))}

≤ 0,

which proves (c).
(d) ⇒ (ii): Let x0 ∈ S. We have to prove the existence of a solution x of (1) with x(T0) = x0
and such that

V (x(t)) +
∫ t

T0

W(x(s))ds ≤ V (x0) for all t ∈ [T0, T ]. (11)

Recall that dom V ⊆ S.
First case: x0 ∈ S \ dom V : by virtue of Theorem 1, there exists x solution of (1) which
obviously satisfies (11) because V (x0) = +∞.
Second case: x0 ∈ dom V : we have that (x0, V (x0)) ∈ epi V . Thus, by virtue of assertion
(d), there exists a solution (x, r) of the differential inclusion (ẋ(t), ṙ(t)) ∈ G(t, x(t), r(t))

on [T0, T ] with (x(T0), r(T0)) = (x0, V (x0)) such that (x(t), r(t)) ∈ epi V for all t ∈
[T0, T ]. Moreover, since dom V ⊆ S, x(t) ∈ S and, hence, ∂dS(x(t)) ⊆ N(S; x(t)) for
all t ∈ [T0, T ]. Therefore, x is a solution of (1). Finally, since (x(t), r(t)) ∈ epi V for all
t ∈ [T0, T ],

V (x(t)) ≤ r(t) =
∫ t

T0

ṙ(s)ds = V (x0) −
∫ t

T0

W(x(s))ds,

which proves (ii).
(ii) ⇒ (d): Fix (x0, r0) ∈ epi V . Then, V (x0) ≤ r0 and, since dom V ⊆ S, x0 ∈ S.

Moreover, due to (ii), there exists x solution of (1) such that

V (x(t)) +
∫ t

T0

W(x(s))ds ≤ V (x0) for all t ∈ [T0, T ]. (12)

Let f ∈ L1 ([T0, T ];H) such that for a.e. t ∈ [T0, T ]
−ẋ(t) + f (t) ∈ N (S; x(t)) andf (t) ∈ F(t, x(t)).

Then, since S is Fréchet normally regular (see [49, Proposition 2.1]), for a.e. t ∈ [T0, T ]
〈ẋ(t) − f (t), ẋ(t)〉 ≤ 0.

Hence, for a.e. t ∈ [T0, T ]
‖ẋ(t) − f (t)‖2 = 〈ẋ(t) − f (t), ẋ(t)〉 + 〈ẋ(t) − f (t),−f (t)〉

≤ 〈ẋ(t) − f (t), −f (t)〉
≤ ‖ẋ(t) − f (t)‖ × ‖f (t)‖
≤ ‖ẋ(t) − f (t)‖ × h(x(t)),
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where we have used (HF
5 ). Therefore, ‖ẋ(t) − f (t)‖ ≤ h(x(t)) for a.e. t ∈ [T0, T ].

Moreover, since S is normally regular and ∂F dS(·) = NF (S; ·) ∩ B. Then, for a.e.
t ∈ [T0, T ]

ẋ(t) ∈ −N (S; x(t)) ∩ h(x(t))B + F(t, x(t))

⊆ −h(x(t))∂dS(x(t)) + F(t, x(t)).

Hence, x is a solution of (1). Now, define r(t) := r0 − ∫ t

T0
W(x(s))ds. Hence, by (12), the

pair (x, r) satisfies for all t ∈ [T0, T ]

V (x(t)) ≤ V (x0) −
∫ t

T0

W(x(s))ds ≤ r0 −
∫ t

T0

W(x(s))ds = r(t),

that is, (x(t), r(t)) ∈ epi V for all t ∈ [T0, T ]. Finally, it is clear that (x, r) is a solution
of the differential inclusion (ẋ(t), ṙ(t)) ∈ G(t, x(t), r(t)) on [T0, T ] with (x(T0), r(T0)) =
(x0, r0), which proves (d).

As an immediate consequence of Theorem 2, by taking V as the indicator function of
S and W equals to 0, we obtain the existence for the sweeping process (1). The following
result is consistent with Theorem 1.

Theorem 3 Assume that S is a normally regular and ball compact subset of H and that
F : [T0, T ] × H ⇒ H satisfies (HF

3 ), (HF
4 ) and (HF

5 ). Then, for any x0 ∈ S, there exists
at least one Lipschitz solution x of the sweeping process (1). Moreover,

‖ẋ(t)‖ ≤ 2h(x(t)) a.e. t ∈ [T0, T ].

Proof Let V : H → R∪{+∞} be defined by V = IS and W ≡ 0. Then, for a.e. t ∈ [T0, T ]
and ζ ∈ NP (S; x) \ {0}

inf{〈v, ζ 〉 : v ∈ −h(x)∂dS(x) + F(t, x)} ≤ −h(x)

‖ζ‖ 〈ζ, ζ 〉 + h(x)‖ζ‖
≤ 0.

Therefore, all the conditions of Theorem 2 hold. Thus, for all x0 ∈ S, there exists at least
one solution x of the sweeping process (1).

Example 1 Let V : H → R be differentiable function whose gradient ∇V is Lipschitz
continuous and S be a normally regular and ball-compact set. Consider the following
differential inclusion:{

ẋ(t) ∈ −∇V (x(t)) − N (S; x(t)) a.e. t ∈ [T0, T ],
x(T0) = x0 ∈ S.

(13)

Consider the function Ṽ (x) := V (x) + IS(x) and fix ζ ∈ ∂P Ṽ (x). Then, by the classical
sum rule, ζ ∈ ∇V (x) + N (S; x) and

inf{〈v, ζ 〉 : v ∈ −‖∇V (x)‖∂dS(x) − ∇V (x)} ≤ 0,

which, by virtue of Theorem 2, shows that V is a Lyapunov function for (13). This result
had been already obtained in [36, Proposition 3.1] for r-uniformly prox-regular sets.
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4.1 Weak Invariance

In this subsection, as a consequence of Theorem 2, we give a characterization of weak
invariance for the sweeping process.

Definition 1 (weak invariance) We say that K is weakly invariant with respect to the sweep-
ing process (1) if for all x0 ∈ K there exists a solution of the sweeping process (1) with
x(T0) = x0 and x(t) ∈ K for all t ∈ [T0, T ].

The following result is an improvement of [22, Theorem 4.3] for a fixed set.

Theorem 4 Assume, in addition to (HF
3 ), (HF

4 ) and (HF
5 ), that S is normally regular and

ball compact. Let K ⊆ S be a closed set. Then the following conditions are equivalent:

(i) For a.e. t ∈ [T0, T ], for all x ∈ K and ζ ∈ NP (K; x)

inf{〈v, ζ 〉 : v ∈ −h(x)∂dS(x) + F(t, x)} ≤ 0.

(ii) For all x0 ∈ K there exists a solution of the sweeping process (1) with x(T0) = x0 and
x(t) ∈ K for all t ∈ [T0, T ].

5 Applications

In this section we give some applications of our existence result (Theorem 1) to hysteresis
and to the modeling of crowd motion in emergency evacuation.

5.1 Hysteresis

In this subsection, we study the so-called Play operator, which arises in hysteresis (see, for
instance [27, 46]). Several properties in hysteresis can be described in terms of some hys-
teresis operators. One of these hysteresis operators is the so-called Play operator [46], which
to a given Lipschitz function y associates the set of solutions of the following differential
inclusion: {

ẋ(t) ∈ −N (S; x(t)) + ẏ(t) a.e. t ∈ [T0, T ];
x(T0) = x0 ∈ S.

(14)

The case where S is convex, uniformly prox-regular and α-far has been studied, respectively,
in [27, 35, 46]. For a normally regular and ball compact set S and given y Lipschitz with
x0 ∈ S, due to Theorem 3 and since (HF

3 ), (HF
4 ) and (HF

5 ) trivially hold, there exists at
least one solution of (14) with ‖ẋ(t)‖ ≤ 2‖ẏ(t)‖ for a.e. t ∈ [T0, T ]. Therefore, the Play
operator is well defined in Lip ([T0, T ];H).

5.2 Crowd Motion

In this subsection, we consider a model of crowd motion in emergency evacuation. We refer
to [7, 37, 51] for a detailed description. Our discussion is based on [7].

The model handles contacts in order to deal with local interactions between people and to
describe the whole dynamics of the pedestrian traffic. This model for crowd motion (where
people are identified to rigid disks) rests on two principles. On the one hand, each individual
has a spontaneous velocity that he would like to have in the absence of other people. On the
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Fig. 1 Disks, respectively, for d = ‖ · ‖1. d = ‖ · ‖2 and d = ‖ · ‖∞

other hand, the actual velocity must take into account congestion. Those two principles lead
to defining the actual velocity as the Euclidean projection of the spontaneous velocity over
the set of admissible velocities (regarding the non overlapping constrains between sets).

More precisely, we consider N persons identified to rigid disks (for some distance d

in R
2). For convenience, the disks are supposed to have the same radius r . The center of

the ith disk is denoted by qi ∈ R
2. Since overlapping is forbidden, the vector of positions

q = (q1, . . . , qn) ∈ R
2N has to belong to the “set of feasible configurations”, defined by

Q := {q ∈ R
2N : Dij (q) ≥ 0 ∀i �= j},

where Dij (q) = d(qi, qj ) − 2r is the distance between the disk i and j and d is some
distance in R

2 (see Fig. 1).
It is worth emphasizing that Q is not uniformly prox-regular if, for instance, d(x, y) =

‖(x, y)‖1 or d(x, y) = ‖(x, y)‖∞.
If the global spontaneous velocity of the crowd is denoted by

V (t, q) = (V1(t, q1), . . . , VN(t, qN)) ∈ R
2N,

the previous crowd motion model can be described by the following differential inclusion:

dq

dt
∈ −N (Q; q) + V (t, q),

which fits in our context. Therefore, Theorems 1 and 3 give the existence for the crowd
motion model. Moreover, one solution for this model can be obtained through the catching-
up algorithm, described in the proof of Theorem 1.

Remark 2 In the last example, the underlying space H is of finite dimension (H = R
2N ),

therefore, to get the existence of solutions we can apply the results from [49]. These exis-
tence results are based on a viability result from Frankowska and Plaskacz [25]. Thus, our
contribution in finite dimensional spaces is to show the existence of solutions through the
catching-up algorithm.

6 Concluding Remarks

In this paper we have seen, under ball-compactness of the fixed set S, how we can use the
catching-up algorithm to show existence of solutions of the perturbed sweeping process.
Moreover, we give a characterization of weak-Lyapunov pairs and invariance for the sweep-
ing process. The ball-compactness of the fixed set S may appear to be a strong hypothesis
but it is totally needed. We refer to [33], where it is shown an example of a perturbed
sweeping process driven by a noncompact and convex set S without existence.

581



E. Vilches

Even though, the study of sweeping processes reached certain maturity, there still remain
several issues to be addressed. We can mention, asymptotic behavior, existence of periodic
solutions, regularity of solutions, etc. We will pursue these in future works.
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