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Energy conservation is a topic of great interest in wireless sensor net-
works (WSNs). Various techniques have been proposed to minimise
the energy consumption. One approach is to design medium access
control (MAC) protocols capable of adjusting the sensor node cycle
according to the available energy in the battery. The state of charge
(SOC) is an indicator of the available energy stored in the battery
before discharging. This work proposes a simplified battery model
to estimate the SOC and compares the accuracy and computational
load of the algorithm as metrics for the implementation of the MAC
protocol design.
Introduction: Wireless Sensor Networks (WSNs) are frequently used in
monitoring applications (e.g., environmental phenomena and health-
care). Traditionally, these types of networks are energised with batteries,
which are known to have a limited lifetime [1]. This situation is one of
the reasons why the conservation of energy in WSNs is a critical
research topic. To address this issue, WSNs are incorporating the use
of Energy Harvesting Devices (EHDs), which are capable of delivering
energy to the network sensors allowing the battery to recharge. Knowing
the amount of energy available in the battery of sensor nodes, contrib-
utes to the adjustment of the operating cycle through MAC protocols,
preventing the battery to be depleted below safety levels. The design
of MAC protocols with dynamic operating cycles is one of the tech-
niques implemented for the conservation of energy in WSNs. Several
MAC protocols incorporate information from the battery [2, 3], where
two different techniques can be used to estimate the amount of energy
remaining in the battery. The SOC can be defined as the amount of
energy that a battery can deliver until it reaches its End-of-Discharge
(EoD) time [4]. The SOC estimation provides information of great
importance to the MAC protocol, since it creates awareness of which
sensor nodes have less energy. With this information, the protocol
prioritises the transmission of information while it does not exceed
the battery’s operating safety level (that is, it reaches the level at
which the battery suffers irreversible damage to its chemistry). Hence
the selection of the SOC estimation method is relevant.

Methodology: Currently, various models have been proposed to charac-
terise the battery behaviour when discharging, as physical, empirical,
abstract, electrochemical, electrical, and stochastic. The first step of
the proposed methodology is to simplify the empirical battery model
presented in [3, 5]. This model uses the open circuit voltage (OCV)
curve to establish the measurement equation, which is the equation
that allows updating the voltage values to adjust the SOC estimation.
In this work, to simplify the model, it is proposed to avoid the zone
of the OCV curve in which the voltage has an abrupt drop. Removing
this area ensures that the battery remains within its safety levels.
The OCV curve is defined between 3.6 ≤ V ≤ 4.2, where 4.2V is the
maximum battery voltage (see Fig. 1).
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Fig. 1 OCV curve during the discharge process

The state-space model is defined according to (1)–(3). Since the
voltage is constrained, the measurement equation proposed in [3, 5] is
simplified, and it is defined according to (3). In this state-space
model, x1 is associated to an unknown parameter related to the internal
impedance of the battery, x2 corresponds to the SOC measurement, i(k)
and v(k) refer to the current and voltage of the battery, v1(k) and v2(k)
are the process noises, and n(k) is the observation noise. The parameter
vo is the OCV when the battery is fully charged, vl is the y-intercept
of the extrapolation of the zone defined for 0.25 ≤ SOC ≤ 0.70. The
variables g and a are configurable design model parameters and Ecrit

is the total energy delivered by the battery.
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State transition equations:

x1(k + 1) = x1(k)+ v1(k) (1)

x2(k + 1) = x2(k)− v(k)i(k)Dt E−1
crit + v2(k) (2)

Measurement equation:

v(k) = vl + (vo − vl)e
g[x2(k)−1] + avl[x2(k)− 1]

− i(k)x1 + n(k)
(3)

The second step is to estimate the SOC of the battery. In this work,
two methodologies are used to estimate the SOC based on the OCV
curve. The first methodology was presented in [3, 5] and in this article
is referred as M1(although the OCV curve is constrained as explained
previously). In M1 the SOC estimation is based on the Particle Filter
and it uses the model described in (1)–(3) to characterise the battery
behaviour. The second methodology used, M2 [2], defines the voltage
as a function of time using a polynomial expression. To estimate the
SOC it is necessary to determine the amount of energy consumed in
an operating cycle. In this article, an operating cycle is defined by the
alternation between two current levels (22 and 14 mA) (see Fig. 2). In
addition, for comparison purposes, a third methodology,M3, is incorpor-
ated in this article. M3 is similar to M1 and with the exception that the
entire OCV curve is used, this means there are no restrictions.
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Fig. 2 Definition of operation cycle

The last step is to compare the methodologies (M1, M2, M3) to esti-
mate the SOC, and use this result to quantify both the root-mean-square
error (RMSE) and the processing time to obtain the estimation. In
addition, these methodologies are studied to observe their behaviour
when changing the battery usage profile. In this case, the current
profile required by the battery during a time period is modified using
a Markov chain method.

Results: The database used corresponds to the voltage and current data
obtained from the complete discharge of a rechargeable lithium-ion
battery type LIR2032 (nominal values of 45 mA and 3.6 V) [4].
In this work, M1 and M2 are used to estimate the SOC of the battery.
It is imperative that the first step is to determine the equation and
model parameters of both methodologies. ForM1, the model parameters
are determined off-line to fit the variables of the state-space model of
(1)–(3), which describe the OCV curve of Fig. 1. The results are
shown in Table 1.

Table 1: Model parameters for battery LIR2032
Battery
No.
vo
3 pp
vl
. 161
a

–163
g
 Ecrit
LIR2032
 4.0487
 3.894
 0.08353
 7.635
 534
M2 defines the voltage of the battery according to (4). The amount of
energy consumed in an operating cycle (Ecycle) is defined by (5), where
Ptx and Prx are the powers associated with the transmission and recep-
tion mode of the sensor node, respectively, and V (t) is the voltage
measured in the corresponding time intervals

V (t) = 4.446e−9t2 − 8.517e−9t + 4.023 (4)

Ecycle =
∫t1
t0

Ptx

V (t)
dt +

∫t2
t1

Prx

V (t)
dt (5)

Once the equations and parameters of the model are defined, the
algorithms are executed to estimate the SOC. Both methodologies
use the restriction Voc ≥ 3.65. The first results obtained correspond to
the voltage and SOC estimation of the battery using the three models
(M1, M2, M3) (see Figs. 3 and 4). In both figures it is observed that
M1 and M3 achieve a better estimation of the voltage and SOC than M2.
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Fig. 3 Voltage estimation using the three methodologies
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Fig. 4 SOC estimation using the three methodologies

Table 2 shows the RMSE and the processing time obtained for three
iterations of each of the methodologies M1, M2, and M3. When M1 is
compared to M2, it can be clearly noted that M2 has a faster processing
time. Regarding the accuracy,M1 presents a better performance thanM2,
due to a smaller RMSE. These two facts are supported with the results of
all three iterations. Furthermore, after 50 iterations of each methodology,
results for M1 show a mean value for the RMSE of 0.0092 and a
standard deviation of 0.0061. Note that the RMSE of M2 does not
change and the variations in the processing time are minimal. On the
other hand, if the SOC estimation is implemented according to M3,
the performance of the method is similar with M1, since M1 is just a
simplification of M3. Hence, the processing time is almost the same
between M1 and M3, although the RMSE is smaller with the use of
the simplified model. In other words, the accuracy obtained is better
when M1 and M3 are used even though the processing time remains
approximately seven times greater than the obtained with M2.

Table 2: Comparison metrics
Iterations
 Methods
 RMSE
 Processing time, ms
1
 M1
 0.0078
 834
1
 M2
 0.0153
 101
1
 M3
 0.0122
 832
2
 M1
 0.0098
 825
2
 M2
 0.0153
 105
2
 M3
 0.0097
 825
3
 M1
 0.0044
 823
3
 M2
 0.0153
 101
3
 M3
 0.0052
 824
The adaptability of both methods is studied changing the usage
profile. Using a Markov chain method, two different current profiles
are generated. To create the two-state Markov chain, the methodology
proposed in [6] and the current levels mentioned in Fig. 2 are used.
Also, the corresponding transition matrix is estimated through the
maximum likelihood estimator [6], and it is defined as follows:

MT = 0.9933 0.0320

0.0067 0.9680

( )
(6)

Table 3 shows the results obtained when executing the algorithms
with the current profiles obtained with the Markov chain method.
Analysing the RMSE obtained for each of the cases, it is confirmed
that M2 cannot adjust to the changes in the current profile because the
equation that defines the voltage is a function of time, so the model
depends on the discharge current used. On the other hand, method
M1, which is similar to M3, has the capability to make the future oper-
ation of the battery independent from the past.

From the information obtained above, several considerations can be
made for the design of the MAC protocols. The selection of the SOC
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estimation method will depend on the type of application where the
MAC protocol is used and the processing capacity of the network
sensor nodes. For example, if the MAC protocol implemented in the
WSN involves a large computational overhead, it is possible to opt
for a lower processing SOC estimation algorithm like M1 considering
the error margin present when determining the battery EoD time. On
the other hand, if the computational overhead contained in the sensor
node is high, it is possible to implement, within the MAC protocol,
an algorithm for SOC estimation, for instance M1. The more accuracy
on the SOC estimation results in a better assessment of the amount of
energy available in the battery.

Table 3: RMSE changing the usage profile
7

Iterations
th Feb
Methods
ruary
RMSE
2019
Processing time, ms
1
 M1
 0.0063
 827
1
 M2
 0.0153
 101
1
 M3
 0.0091
 832
2
 M1
 0.0086
 831
2
 M2
 0.0153
 105
2
 M3
 0.0115
 831
Conclusion: In this work, a simplified model of the battery is proposed to
estimate the SOC of a lithium-ion type LIR2032 rechargeable battery. The
simplification of the model does not represent a reduction of the proces-
sing time, but an improvement in the accuracy of the SOC estimation.
This aspect is important to be able to determine with greater accuracy
the EoD time of the battery. The decision-making process to adjust the
operation cycle of a sensor node is improved when the MAC protocols
take into account the battery SOC estimation. This is possible by
having knowledge of the amount of remaining energy in the battery.
The SOC estimation is carried out by means of two methods with differ-
ent processing time and accuracy, thus establishing metrics that collabor-
ate in the design of the MAC protocols for WSN. The selection of the
SOC estimation method of the battery is subject to the type of application
and the technological resources that the sensor nodes have.
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