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Abstract
This paper examines a normal form game of network formation due toMyerson (Game
theory: analysis of conflict, Harvard University Press, Cambridge, 1991). All players
simultaneously announce the links they wish to form. A link is created if and only
if there is mutual consent for its formation. The empty network is always a Nash
equilibrium of this game. We define a refinement of Nash equilibria that we call trial
perfect. We show that the set of networks which can be supported by a pure strategy
trial perfect equilibrium coincides with the set of pairwise-Nash equilibrium networks,
for games with link-responsive payoff functions.
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14 R. İlkılıç, H. İkizler

1 Introduction

To understand which networks can emerge when players strategically decide with
whom to establish links, a model of network formation needs to specify the process
through which players set up links, together with a notion for network equilibrium
compatible with this process. We will analyze a normal form game of network forma-
tion due to Myerson (1991). All players simultaneously announce the links they wish
to form, and a link is formed if and only if there is mutual consent for its formation.

The mutual consent requirement of the Myerson game creates coordination prob-
lems. Nash equilibrium does not lead to sharp predictions. The empty network can
always be supported by a Nash equilibrium, when nobody announces any link, and
in general the game has a multiplicity of Nash equilibria. To address this multiplicity,
pairwise-Nash equilibrium is commonly used in the literature.1 It requires that, on top
of the standard Nash equilibrium conditions, any mutually beneficial link be formed at
equilibrium,2 without specifying any process through which players might coordinate
such a deviation.

The aim of this paper is to redefine pairwise-Nash equilibrium as a non-cooperative
refinement. If the concept can be rephrased without referring to any implicit cooper-
ation, then its use in non-cooperative games would be justified.

One thing needs to be cleared before one begins to talk about non-cooperative
“equilibriumnetworks”. In this game, there usually existsmanypure strategy equilibria
that support the same network.3 So, when we refer to the set, for example, of “Nash
equilibrium networks”, we mean the set of networks for which there exists a pure
strategy Nash equilibrium that leads to that network structure. Hence, the existence of
one Nash equilibrium for the network qualifies it as a Nash equilibrium network.

We define a new non-cooperative equilibrium, trial perfect equilibrium. In a trial
perfect equilibrium players best respond to trembles of their opponents, where all best
responses are given a strictly positive probability and trembles are ordered so that more
costly mistakes are made with less or zero probability. Hence it is a non-cooperative
equilibrium in the spirit (and an extension) of Myerson’s (1978) proper equilibrium
and does not presume any coordination between players.

We show that trial perfect equilibria coincide with pairwise-Nash equilibria for net-
work formation games with link-responsive payoffs. This shows that it is unnecessary
to refer to any bilateral coordination to eliminate networks where players fail to form
mutually beneficial links.

Link responsiveness requires that a change in the network changes the payoffs of
the players whose links change. It is generically satisfied by network payoffs with
some exogenous parameters (such as a constant marginal link cost).

1 Pairwise-Nash equilibrium was used, among others, in Bloch and Jackson (2007), Calvó-Armengol
(2004), Goyal and Joshi (2006), Buechel and Hellmann (2012) and Joshi and Mahmud (2016).
2 But, this is not demanding robustness to bilateral moves, as pairwise-Nash equilibrium does not allow
pairs of players to coordinate fully in their strategies.
3 Any network, except the complete network and networks where all absent links are beneficial to both
parties involved, can be supported by multiple pure strategy Nash equilibria.
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Equilibrium refinements for the network formation… 15

Section 2 introduces the model and describes the network formation game and the
equilibrium concepts. The main result is provided in Sect. 3. Section 4 concludes with
a discussion of our contribution. The proofs are in Sect. 5.

2 Themodel

2.1 Networks

N = {1, . . . , n} is the set of players who may be involved in a network. A network4

g is a list of pairs of players who are linked to each other. We denote the link between
two players i and j by i j , so i j ∈ g indicates that i and j are linked in the network.
Let gN be the set of all subsets of N of size 2. The network gN is referred to as the
complete network. The set G = {

g ⊆ gN
}
denotes the set of all possible networks

on N . The set of i’s direct links in g is Li (g) = { jk ∈ g : j = i or k = i} and
Li (gN\g) = {i j : j �= i and i j /∈ g} is the set of i’s direct links not in g. That is,
i j /∈ g is equivalent to i j ∈ Li (gN\g).

We let g + i j denote the network obtained by adding the link i j to the network g
and g − i j denote the network obtained by deleting the link i j from the network g.
More generally, given i ∈ N , for every collection of links � ⊆ Li (g), g − � is the
network obtained from g by eliminating all the links in �, while for every collection
of links � ⊆ Li (gN\g), g + � is the network obtained from g by adding all the links
in �.

2.2 Network payoffs

A network payoff function is a mapping u : G → R
N that assigns to each network g

a payoff ui (g) for each player i ∈ N .

2.3 Linkmarginal payoffs

Let g ∈ G. For all i, j ∈ N such that i j ∈ g:

mi jui (g) = ui (g) − ui (g − i j)

is the marginal payoff to i from the link i j in g. More generally, consider a set of links
� ⊆ Li (g). The joint value to i of � is:

m�ui (g) = ui (g) − ui (g − �).

Consider now some link i j /∈ g. Then,mi jui (g+i j) is themarginal payoff accruing
to i from the new link i j being added to g. More generally, consider a collection of
i’s links absent from g, � ⊆ Li (gN\g). The joint value to i of these new links added
to g is m�ui (g + �) = ui (g + �) − ui (g).

4 We adopt the network and link notation from Bloch and Jackson (2006).
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16 R. İlkılıç, H. İkizler

Definition 1 (link-responsiveness) The network payoff function u is link-responsive
on g if and only if we have ui (g + �′ − �) − ui (g) �= 0, for all i ∈ N , and for all
� ⊆ Li (g) and �′ ⊆ Li

(
gN\g) such that g + �′ − � �= g.

Link-responsiveness requires that no player is indifferent to a change in her set of
direct links, whether due to formation, link removal, or a combination of both.

A positive theory of network formation needs to specify the process through which
players set up links, together with a notion for network equilibrium compatible with
this process. We formulate a simultaneous move game of network formation due to
Myerson (1991), defined originally in the context of cooperative games with com-
munication structures.5 This game is simple and intuitive, but generally displays a
multiplicity of Nash equilibria.

2.4 A simultaneousmove game of network formation

The set of players is N . All players i ∈ N individually and simultaneously announce
the direct links they wish to form. Formally, Si = {0, 1}n is the set of pure strategies
available to i and let si = (si1, . . . , sin) ∈ Si with the restriction that sii = 0. Then,
si j = 1 if and only if i wants to set up a direct link with j �= i (and thus si j = 0,
otherwise). The game due to Myerson (1991) assumes that mutual consent is needed
to create a direct link, that is, the link i j is created if and only if si j .s ji = 1.6

A pure strategy profile s = (s1, . . . , sn) induces an undirected network g (s) where
i j ∈ g(s) if and only if si j .s ji = 1. The set of pure strategy profiles are denoted by
S = S1 × · · · × Sn and by � = �1 × · · · × �n the set of mixed strategy profiles,
where �i is the set of the mixed strategies available to player i . For n = 2, a mixed
strategy for a player is simply a binomial distribution, the probability of announcing
the single possible link, and the probability of not announcing it. For more players,
a mixed strategy profile becomes a multivariate binomial probability distribution. A
mixed strategy profile generates a probability distribution over G. Thus, like the result
of a pure strategy profile is a single network, the outcome of a mixed strategy profile
is a random graph.7

For a network g ∈ G, let D(g) = {s ∈ S|g(s) = g} be the set of pure strategy
profiles that induce g. Given σ ∈ �, let pσ (s) be the probability that s is played under
the mixed strategy profile σ . Then the probability, pσ (g), that σ induces a network
g ∈ G is

pσ (g) =
∑

s∈D(g)

pσ (s)

5 To quote Myerson: “ Now consider a link-formation process in which each player independently writes
down a list of players with whom she wants to form a link (…) and the payoff allocation is (…) for the
graph that contains a link for every pair of players who have named each other” (p. 448).
6 Although this is a very simple game, the number of pure strategies of a player, 2n−1, increases exponen-
tially with the number of players. Baron et al. (2008) shows that it is NP-hard to check whether there exists
a Nash equilibrium that guarantees a minimum payoff to all players.
7 Jackson and Rogers (2004) deals with random graphs in strategic network formation, though in a different
context.
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Equilibrium refinements for the network formation… 17

and the expected utility of player i is:

Eui (σ ) =
∑

g∈G
ui (g).pσ (g)

2.5 Pairwise-Nash equilibrium

A pure strategy profile s∗ = (
s∗
1 , . . . , s

∗
n

)
is a Nash equilibrium of the simultaneous

move game of network formation if and only if ui (g (s∗)) ≥ ui
(
g

(
si , s∗−i

))
, for all

si ∈ Si , i ∈ N . The Nash equilibrium, though, is too weak an equilibrium concept
to single out equilibrium networks. For instance, the empty network is always a Nash
equilibrium.8 To remedy this, following Goyal and Joshi (2006), we define pairwise-
Nash equilibrium,9 which has a coalitional flavor as players are allowed to deviate
by pairs.10 Beyond the standard Nash equilibrium conditions it further requires that
any mutually beneficial link be formed at equilibrium. Pairwise-Nash equilibrium net-
works are robust to bilateral and commonly agreed one-link creation, and to unilateral
multi-link severance.

Formally,

Definition 2 A network g ∈ G is a pairwise-Nash equilibrium network with respect to
the network payoff function u if and only if there exists a Nash equilibrium strategy
profile s∗ that supports g, that is, g = g(s∗), and, for all i j /∈ g, if mi jui (g + i j) > 0,
then mi ju j (g + i j) < 0, for all i ∈ N .

For a given network payoff function u, we denote by PN (u) the set of pairwise-
Nash equilibrium networks with respect to u.

2.6 Trial perfect equilibrium

We now define trial perfect equilibrium which requires that players best respond to
their opponents trials of other than equilibrium best responses. Moreover their costly
mistakes, like in proper equilibrium (Myerson 1978), are ordered so that more costly
mistakes aremadewith less probability. The set of trial perfect equilibria, by definition,
includes the set of proper equilibria.11

Definition 3 A strategy profile σ ∈ � is a trial perfect equilibrium if there exists a
sequence of strategy profiles {σεt }t∈N with limit σ and a sequence of strictly positive
reals {εt }t∈N with limit 0 such that, for all i ∈ N , s′

i , s
′′
i ∈ Si , and t ∈ N:

(i) s′
i ∈ argmaxsi∈Si ui (si , σ

εt−i ) implies that σεt
i (s′

i ) �= 0, and

8 When nobody announces any link.
9 See also, Calvó-Armengol (2004) for an application of this equilibrium notion.
10 See Dutta and Mutuswami (1997) and Jackson and van den Nouweland (2005) for alternatives to
pairwise-Nash equilibrium that allow for coalitional moves.
11 SeeCalvó-Armengol and İlkılıç (2009) for a characterization of proper equilibria of theMyerson network
formation game.
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18 R. İlkılıç, H. İkizler

(ii) Eui (s′
i , σ

εt−i ) > Eui (s′′
i , σ

εt−i ) implies that σεt
i (s′′

i ) ≤ εt · σ
εt
i (s′

i ).

A trial perfect equilibrium is the limit of mixed strategies where a positive probabil-
ity is assigned to all the best responses, but unlike a proper equilibrium, those strategies
which are not best responses need not be assigned a positive probability. We call a
network g′ ∈ G a trial perfect equilibrium network, if there exists a pure strategy trial
perfect equilibrium s ∈ S such that g(s) = g′. For a given network payoff function u,
we denote by T PE(u) the set of trial perfect equilibrium networks with respect to u.

3 Result

Theorem 1 If the network payoff u is link-responsive, then PN (u) = T PE(u).

The equivalence between pairwise-Nash equilibrium and trial perfect equilibrium
qualifies the first as a non-cooperative equilibrium concept. It is attainable without
assuming any implicit cooperation between players.

Link-responsiveness is enough to show that a network g is a pairwise-Nash equilib-
rium network if and only if it is also a trial perfect equilibrium network. We separate
the equivalence into two inclusion relations, which are given as Propositions 1 and
2, in Sect. 5, where the proof of Theorem 1 is. Proposition 1 declares the set of trial
perfect equilibrium networks as a subset of pairwise-Nash equilibrium networks.12

Proposition 2, vice versa.
To prove Proposition 1, first consider a network g which is not a pairwise-Nash

equilibrium network, then either, g is not a Nash equilibrium network, or there exists
i j /∈ g, which would have benefited both parties had it been formed. If the first of
these conditions hold, then g is not a trial perfect equilibrium network. So assume the
first holds and it is the latter that fails to hold. Then, it must be the case that neither i
nor j has announced this link. We show that this cannot be a trial perfect equilibrium.
In a Nash equilibrium profile, if neither i nor j announces the link i j , then for both i
and j , there exists a best response, where they announce this link. Hence, there cannot
be a sequence of equilibria that converges to this strategy profile, where each player
uses all her best responses with positive probability.

To prove Proposition 2 we first define the minimal strategy profile that supports
g. This is the profile where players announce only their existing links in g. Then we
provide a sequence of profiles. In those profiles all players always announce all their
existing links in g. Plus, if a player gains from the formation of a non-existing link,
with probabilities that converge to zero, she announces these links.

Next, we index the players from 1 to n. For those links which are not in g due to the
fact that the linkmarginal returns are negative for both parties, we let the lower indexed
player involved in such a link announce the linkwith probabilities that converge to zero.
This announcement is not to be reciprocated in a best response by the other party, as
the formation of the link would have harmed. Hence, none of the extra announcements
incorporated into the converging sequence of equilibria are reciprocated, making the

12 Though the technique used in the proof is similar to that of Proposition 3 of Calvó-Armengol and İlkılıç
(2009), in fact, the result in this paper is stronger and implies that proposition.
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Equilibrium refinements for the network formation… 19

network g the only possible outcome of any realization of the strategy profiles that
constitute the sequence.

We show that this sequence satisfies the conditions of the definition of trial perfect
equilibrium. Hence the strategy profile it converges is a trial perfect equilibrium. So,
any pairwise-Nash equilibriumnetwork can be supported by a trial perfect equilibrium.

4 Discussion

Pairwise-Nash equilibria, although a strict subset of Nash equilibria, is not a non-
cooperative equilibrium refinement. It is a conceptual drawback to use this notion
for a non-cooperative game. We remedy this by defining a non-cooperative equilib-
rium refinement, trial perfect equilibrium. We show that this new equilibrium notion
coincides with pairwise-Nash equilibrium for games of network formation with link
responsive payoffs. Adding pairwise-Nash equilibrium (trial perfect equilibrium) to
the list of non-cooperative equilibrium concepts justifies its use in non-cooperative
analysis of network formation.

Calvó-Armengol and İlkılıç (2009) and this paper introduce mixed strategies to the
analysis of the network formation game. Although the results are for pure strategy
equilibria, the analysis can not do without mixed strategies. As each mixed strategy
profile gives a probability distribution over the set of possible networks, the use of
mixed strategies brings into focus the formation of random graphs, which arise natu-
rally via players whose best responses are mixed strategies.

5 The proofs

Proposition 1 If the network payoff u is link-responsive, then T PE(u) ⊆ PN (u).

Proof Let u be link-responsive. We show that g /∈ PN (u) implies that g /∈ T PE(u).
If g∗ is not a Nash equilibrium network, then g /∈ PN (u) and g /∈ T PE(u). Let g∗

be a Nash equilibrium outcome of the simultaneous move game of network formation
such that mi jui (g∗ + i j) > 0 and mi ju j (g∗ + i j) > 0, for some i j /∈ g∗. Then,
g∗ /∈ PN (u). Suppose that g∗ ∈ T PE(u), and let s∗ be a pure strategy trial perfect
equilibrium that supports g∗. Then, g∗ = g(s∗). Let {σεt }t∈N be a sequence of ε-trial
equilibria such that limt→+∞ σεt (s∗) = 1.

Given that s∗ is also a Nash equilibrium strategy and that i j /∈ g∗, necessarily,
s∗
i j = s∗

j i = 0.
As {σεt }t∈N is a sequence of ε-trial equilibria, for all t ∈ N, either, there exists

si ∈ Si such that si j = 1 and σ
εt
i (si ) > 0, or there exists s j ∈ S j such that s ji = 1

and σ
εt
j (s j ) > 0. Given a t ∈ N, w.l.o.g., assume the latter holds.

For all j �= i , define e(i j) = (0, . . . , si j = 1, 0, . . . , 0). With the pure strategy
e(i j), player i only announces the link with j . Let s′

i = s∗
i ∨ e(i j). With s′

i , player i
announces exactly the same links announced in the pure equilibrium strategy s∗

i plus
an extra link with player j . This extra link is not reciprocated by player j in s∗.
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20 R. İlkılıç, H. İkizler

For all t ∈ N, define:

�i (s
′
i , s

∗
i ; σ

εt−i ) = Eui (g(s
′
i , σ

εt−i )) − Eui (g(s
∗
i , σ

εt−i ))

=
∑

s̃−i∈S−i

σ
εt−i (̃s−i ).�i (s

′
i , s

∗
i ; s̃−i ), (1)

where

�i (s
′
i , s

∗
i ; s̃−i ) = ui (g(s

′
i , s̃−i )) − ui (g(s

∗
i , s̃−i )).

For all s̃−i such that s̃ j i = 0, we have g(s′
i , s̃−i ) = g(s∗

i , s̃−i ), and�i (s′
i , s

∗
i ; s̃−i ) = 0.

Therefore,

�i (s
′
i , s

∗
i ; σ

εt−i ) =
∑

s̃−i∈S−i : s̃ j i=1

σ
εt−i (̃s−i ).�i (s

′
i , s

∗
i ; s̃−i ).

Let s̃−i ∈ S−i such that s̃ j i = 1. Define g̃ = g(s∗
i , s̃−i ). Note that i j /∈ g̃, and that

g(s′
i , s̃−i ) = g̃ + i j . Also, sik = 0 implies that ik /∈ g̃. Define

G(s∗
i ) = {g ∈ G : s∗

ik = 0 ⇒ gik = 0}.

It is readily checked that

G(s∗
i ) = {g(s∗

i , s̃−i ) : s̃−i ∈ S−i , s̃ j i = 1}.

Therefore, we can write:

�i (s
′
i , s

∗
i ; σ

εt−i ) =
∑

g̃∈G(s∗i )

μεt (g̃).mi jui (g̃ + i j),

where

μεt (g̃) =
∑

s̃−i∈S−i : s̃ j i=1
g(s∗i ,̃s−i )=g̃

σ
εt−i (̃s−i ).

Given that {σεt }t∈N be a sequence of ε-trial equilibria that converges to s∗, there
exists T ∈ N such that, for all t ≥ T , μεt (g

∗) > 0. Therefore, �i (s′
i , s

∗
i ; σ

εt−i ) > 0 is
equivalent to

mi jui (g
∗ + i j) +

∑

g̃∈G(s∗i ) , g̃ �=g∗

μεt (g̃)

μεt (g
∗)

.mi jui (g̃ + i j) > 0.

Since �i (s′
i , s

∗
i ; σ

εt−i ) is continuous in σ
εt−i , and given that mi jui (g∗ + i j) > 0, it

suffices to show that limt→+∞ μεt (g̃)/μεt (g
∗) = 0, for all g̃ ∈ G(s∗

i ), for g̃ �= g∗.
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Note that limt→+∞ σ
εt−i (̃s−i ) = 0, for all s̃−i ∈ S−i such that s̃ j i = 1. Therefore,

limt→+∞ μεt (g̃) = 0, for all g̃ ∈ G(s∗
i ), including g̃ = g∗.

Establishing that

lim
t→+∞

μεt (g̃)

μεt (g
∗)

= 0, for all g̃ ∈ G(s∗
i ), g̃ �= g∗,

is thus equivalent to showing that the rate of convergence of μεt (g̃), g̃ �= g∗ is at
least one order of magnitude higher than that of μεt (g

∗). This will be implied by the
definition of an ε-trial equilibrium, as detailed below.

For each player k ∈ N , we partition the strategy set Sk into two disjoint sets S+
k

and S−
k defined as follows:

{
S+
k = {sk ∈ Sk : uk(g(sk, s∗−k)) ≥ uk(g∗)}
S−
k = {sk ∈ Sk : uk(g(sk, s∗−k)) < uk(g∗)} .

It is plain that Sk = S+
k ∪ S−

k and that S+
k ∩ S−

k = ∅. Given that u is link-responsive
together with the fact that s∗ is a Nash equilibrium strategy supporting g∗ implies
that g(s′

k, s
∗−k) = g∗, for all s′

k ∈ S+
k . Moreover, as limt→+∞ σεt = s∗, and given

that each player’s expected payoff is continuous in the vector of other players’ mixed
strategies, there exists some tk such that, for all t ≥ tk , we have uk(g(s

+
k , σ

εt−k)) >

uk(g(s
−
k , σ

εt−k)), for all s
+
k ∈ S+

k and s−
k ∈ S−

k . Given that {σεt }t∈N is a sequence of
εt -trial equilibria, this implies that, for all t ≥ tk , s

+
k ∈ S+

k and s−
k ∈ S−

k we have:

σ
εt
k (s−

k ) ≤ εt .σ
εt
k (s+

k ).

Note, also, that s′
j ∈ S+

j .

We assumed w.l.o.g that there exists s j ∈ S j such that s ji = 1 and σ
εt
j (s j ) > 0.

Now, let’s show that there exists some T ∈ N such that, for some t ≥ T , there
exists s+

j ∈ S+
j such that s+

j i = 1 and σ
εt
j (s+

j ) > 0. Assume not, then there exists

s−
j ∈ S−

j such that s−
j i = 1 and σ

εt
j (s−

j ) �= 0, and for all s+
j ∈ S+

j such that s+
j i = 1

and σ
εt
j (s+

j ) = 0. But this contradicts with the result above that there exists some t j
such that, for all t ≥ t j , s

+
k ∈ S+

k and s−
k ∈ S−

k we have σ
εt
j (s−

j ) ≤ εt .σ
εt
j (s+

j ).

Hence, there exists s+
j ∈ S+

j such that s+
j i = 1 and σ

εt
j (s+

j ) > 0. Fix s j , as the

strategy such that s+
j i = 1 implies σ

εt
j (s j ) � σ

εt
j (s+

j ). The strategy s j is well defined

as S+
j is finite.

Define,

G−1(g) = {(s∗
i , s̃−i ) = s ∈ S : g(s) ∈ G(s∗

i )},

as the set of strategy profiles that support the networks in G(s∗
i ).
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22 R. İlkılıç, H. İkizler

We now define

G−1
1 (g) = {(s∗

i , s̃−i ) = s ∈ S : g(s) = g∗}
G−1
2 (g) = {(s∗

i , s̃−i ) = s ∈ S : s = (̃s j , s∗− j ), s
∗− j ∈ S j , s̃ j i = 1, and g(s) �= g∗}

G−1
3 (g) = {(s∗

i , s̃−i ) = s ∈ S : s = (s∗
i , s̃−i ), s̃−i ∈ S−i , s̃ j i = 1, s̃k �= s∗

k for some
k �= j and g(s) �= g∗}

In words, the profiles in G−1
1 (g) always lead to g∗, where only player j makes a

mistake (including always the announcement of the link i j , in particular (s j , s∗− j ) ∈
G−1
1 (g)), whereas the profiles in G−1

2 (g) are the ones where only player j makes a
mistake, but this mistake changes the network structure, and G−1

3 (g) corresponds to
the set of profiles where additional mistakes by at least one other player is committed.
Clearly, G−1(g) = G−1

1 (g) ∪ G−1
2 (g) ∪ G−1

3 (g).
But, for all s̃ j ∈ S j such that s̃ = (̃s j , s∗− j ) ∈ G−1

2 (g), necessarily, s̃ j ∈ S−
j (since

s∗ is a Nash equilibrium strategy), implying in turn that σ
εt
j (̃s j ) ≤ εt .σ

εt
j (s j ), for all

t ≥ t j . Therefore, for all t ≥ t j , we have:

σ
εt−i (̃s−i ) ≤ εt .σ

εt−i (s j , s
∗−i− j ).

Hence, for all s̃ ∈ G−1
2 (g), limt→+∞

σ
εt−i (̃s−i )

σ
εt
j (s j ,s∗−i− j )

= 0.

Let now s̃ ∈ G−1
3 (g). Define L = {

k �= j : s̃k �= s∗
k

}
. By definition, L �= ∅. Now,

σ
εt−i (̃s−i ) = σ

εt
j (̃s j ).σ

εt
L (̃sL).σ

εt−i− j−L(s∗−i− j−L),

and, thus,

lim
t→+∞

σ
εt−i (̃s−i )

σ
εt−i (s j , s

∗−i− j )
= lim

t→+∞
σ

εt
j (̃s j ).σ

εt
L (̃sL).σ

εt−i− j−L(s∗−i− j−L)

σ
εt
j (s j ).σ

εt
L (s∗

L).σ
εt−i− j−L(s∗−i− j−L)

= lim
t→+∞

σ
εt
j (̃s j )

σ
εt
j (s j )

. lim
t→+∞

σ
εt
L (̃sL)

σ
εt
L (s∗

L)

Now, since for all t ≥ t j , σ
εt
j (s j ) � σ

εt
j (̃s j ) if s̃ j ∈ S+

j and σ
εt
j (̃s j ) ≤ εt .σ

εt
j (s j ) if

s̃ j ∈ S−
j )

lim
t→+∞

σ
εt
j (̃s j )

σ
εt
j (s j )

� 1

and since limt→+∞ σ
εt
L (̃sL) = 0 and limt→+∞ σ

εt
L (s∗

L) = 1

lim
t→+∞

σ
εt
L (̃sL)

σ
εt
L (s∗

L)
= 0,
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then

lim
t→+∞

σ
εt−i (̃s−i )

σ
εt−i (s j , s

∗−i− j )
= 0.

Then, since there exists only a finite set of strategy profiles s ∈ S that supports a
g ∈ G, and for g̃ ∈ G(s∗

i ), μεt (g̃) = ∑
s̃−i∈S−i : s̃ j i=1
g(s∗i ,̃s−i )=g̃

σ
εt−i (̃s−i ), limt→+∞

μεt (g̃)
μεt (g

∗) = 0,

for all g̃ ∈ G(s∗
i ), g̃ �= g∗.

But then, given that σεt is an εt -trial equilibrium, there exists some T ∈ N, such
that σ

εt
i (s∗

i ) ≤ εt .σ
εt
i (s′

i ), for all t ≥ T , implying that limt→+∞ σ
εt
i (s∗

i ) �= 1, which
is a contradiction. ��
Proposition 2 If the network payoff u is link-responsive, then PN (u) ⊆ T PE(u).

Proof Let u be link-responsive. Let g∗ ∈ PN (u), let s0 ∈ S be a strategy that supports
g∗, that is g∗ = g(s0), such that i j /∈ g∗ implies s0i j = s0j i = 0. As g∗ is a pairwise-

Nash equilibrium network, s0 is a Nash equilibrium.
Fix a labeling of players with positive integers, from 1 to n.
For each i ∈ N , define,

Si (s
0) = {si ∈ Si : for j ∈ N , j �= i, [s0i j = 1 ⇒ si j = 1]

and [[mi jui (g
∗ + i j) < 0 and mi ju j (g

∗ + i j) > 0] implies si j = 0]
and [[mi jui (g

∗ + i j) < 0 and mi ju j (g
∗ + i j) < 0 and j < i] implies si j = 0]}

Define, {σεt }t∈N, so that, for all i ∈ N :

(i) σ
εt
i (s0i ) = 1 − (#Si (s0) − 1).εt , and

(ii) for si ∈ Si (s0), si �= s0i , σ
εt
i (si ) = εt .

As there exists only a finite number of strategies in Si (s0), the above sequence of
strategies is well-defined.

Now, let’s show that {σεt }t∈N has a subsequence of ε-trial equilibria that converges
to s0.

By definition, as εt → 0, {σεt }t∈N converges to s0.
For g ∈ G, given a mixed strategy profile σ , define,

μ(g, σ ) =
∑

s∈S
g(s)=g

σ(s),

as the probability of g being formed when σ is played.
Then, by definition, for all t ∈ N, μ(g∗, σ εt ) = 1.
To show that {σεt }t∈N has a subsequence of ε-trial equilibria that converges to s0,

we will establish that there exists T ∈ N such that for all t � T , for all i ∈ N ,

si /∈ Si (s0), implies Eui (g(si , σ
εt−i )) − Eui (g(s0)) < 0.

Take i ∈ N , take si /∈ Si (s0), then:
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(i) there exists j ∈ N such that s0i j = 1 and si j = 0, or
(ii) there exists j ∈ N such that mi jui (g∗ + i j) < 0 and mi ju j (g∗ + i j) > 0 and

si j = 1, or
(iii) there exists j ∈ N such that j < i andmi jui (g∗+i j) < 0 andmi ju j (g∗+i j) < 0

and si j = 1.

If (i) holds, then si ∈ S−
i , as Eui (g(si , σ

εt−i )) is continuous in σ
εt−i , there exists

T ∈ N such that for all t � T , Eui (g(si , σ
εt−i )) − Eui (g(s0)) < 0, and we are done.

Suppose (i) does not hold, then there exist { j1, . . . , jl} ⊆ N such that, for all jp ∈
{ j1, . . . , jl} there exists s jp ∈ S jp , s jpi = 1, σ

εt
jp

(s jp ) = εt and mi jui (g∗ + i j) < 0.
For this { j1, . . . , jl} ⊆ N , let:

G0 = {g∗},
G1 = {g ∈ G : g = g∗ + i jp, for some jp ∈ { j1, . . . , jl}},
G2 = {g ∈ G : g = g∗ + i jp + i jq , for some jp, jq ∈ { j1, . . . , jl}, jp �= jq},

. . .

Gl = {g ∈ G : g = g∗ + i j1 + · · · + i jl}.

Then, for p ∈ {1, . . . , l}, for g ∈ Gp, μ(g, (si , σ
εt−i )) = ε

p
t .(1 − εt )

l−p. Hence,

Eui (g(si , σ
εt−i )) − Eui (g(s

0)) =
∑

g∈G0∪...∪Gl

μ(g, (si , σ
εt−i )).(ui (g) − ui (g

∗))

=
∑

g∈G1∪...∪Gl

μ(g, (si , σ
εt−i )).(ui (g) − ui (g

∗))

For g ∈ G1, μ(g, (si , σ
εt−i )) = εt .(1 − εt )

l−1.

Then, for l ≥ p > 1, gp ∈ Gp implies limt→+∞
μ(g,(si ,σ

εt−i ))

εt .(1−εt )l−1 = 0.

Hence, there exists T ∈ N such that for all t � T , for all i ∈ N , si /∈ Si (s0),

∑

g∈G1∪...∪Gl

μ(g, (si , σ
εt−i )).(ui (g) − ui (g

∗))

is equivalent to

∑

g∈G1

(ui (g) − ui (g
∗)).

But g ∈ G1 implies ui (g) − ui (g∗) < 0. So,

∑

g∈G1

(ui (g) − ui (g
∗)) < 0.
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Hence, there exists T ∈ N such that for all t � T , for all i ∈ N , si /∈ Si (s0),
Eui (g(si , σ

εt−i )) − Eui (g(s0)) < 0.
Then, there exists T ∈ N such that for all t � T , for all i ∈ N , si ∈ Si (s0) implies

Eui (g(si , σ
εt−i ) = Eui (g∗) � Eui (g(s′

i , σ
εt−i )), for all s

′
i ∈ Si , and si /∈ Si (s0) implies

Eui (g(si , σ
εt−i )) < Eui (g∗).

Accordingly, in {σεt }t∈N, si ∈ Si (s0) implies σ
εt
i (si ) � εt , and si /∈ Si (s0) implies

σ
εt
i (si ) = 0.
Hence, {σεt }t∈N has a subsequence of ε-trial equilibria that converges to s0, mean-

ing s0 is a trial perfect equilibrium. ��
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