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Abstract
A moving average is an average that aggregates a subset of variables from the set and moves across the sample. It is widely

used in time-series forecasting. This paper studies the use of moving averages in some representative aggregation oper-

ators. The ordered weighted averaging weighted moving averaging (OWAWMA) operator is introduced. It is a new

approach based on the use of the moving average in a unified model between the weighted average and the ordered

weighted average. Its main advantage is that it provides a parameterized family of moving aggregation operators between

the moving minimum and the moving maximum. Moreover, it also includes the weighted moving average and the ordered

weighted moving average as particular cases. This approach is further extended by using generalized aggregation operators,

obtaining the generalized OWAWMA operator. The construction of interval and fuzzy numbers with these operators

obtaining the concept of moving interval number and moving fuzzy number is also studied. The paper ends analyzing the

applicability of this new approach in some key statistical concepts such as the variance and the covariance and with a

numerical example regarding sales forecasting.

Keywords Weighted average � OWA operator � Moving average � Aggregation operators

1 Introduction

In the literature, there are a wide range of aggregation

operators (Beliakov et al. 2007; Grabisch et al. 2011; Yu

2015). The moving average is a well-known aggregation

operator that moves toward a sample (Elliot et al. 2006;

Evans 2002). From a more general context, it is possible to

consider moving aggregation operators that can be used in

the analysis providing tools for assessing the information in

a dynamic way. Another very useful technique is the

ordered weighted averaging (OWA) operator (Yager

1988). It is an aggregation operator that provides a

parameterized family of aggregation operators between the

minimum and the maximum. Since its introduction, it has

been used in a lot of problems (Emrouznejad and Marra

2014; Kacprzyk et al. 2019; He et al. 2017). Focusing on

moving averages, Yager (2008) studied the use of the

OWA operator as a moving average. He analyzed the

usefulness of this approach in time-series forecasting.

Later, Merigó and Yager (2013) developed several exten-

sions and generalizations by using induced aggregation

operators, quasi-arithmetic means and distance measures.

Recently, Yager (2013) has also studied different

methodologies when dealing with exponential smoothing

approaches. Leon-Castro et al. (2018a; b) present several

extensions with induced and heavy aggregation operators.

The OWA operator can be generalized by using gener-

alized aggregation operators (Beliakov et al. 2007; Merigó

and Gil-Lafuente 2009). Thus, the generalized OWA

(GOWA) operator (Yager 2004) by using generalized

means and the quasi-arithmetic OWA (quasi-OWA) oper-

ator is formed (Fodor et al. 1995). Since their appearance,
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they have been studied by a lot of authors (He et al. 2017).

Merigó and Gil-Lafuente suggested the use of induced

aggregation operators (Merigó and Gil-Lafuente 2009).

Zhao et al. (2010) studied the use of intuitionistic fuzzy

sets (Traneva et al. 2018). Zhou and Chen (2010 and Zhou

et al. (2015) introduced logarithmic aggregation operators

under this framework and Alfaro-Garcia et al. (2018) with

distance measures. Other authors have considered the use

of OWA operators in majority processes (Karanik et al.

2016; Peláez and Doña 2006), Bonferroni means (Blanco-

Mesa et al. 2016, 2018), prioritized aggregations (Avilés-

Ochoa et al. 2018) and other related techniques (Cabrerizo

et al. 2017; Morente-Molinera et al. 2019; Ureña et al.

2019).

However, in order to better assess real-world problems,

it is necessary to consider other concepts in the analysis

such as the use of weighted averages that represent the

subjective importance of the information being studied. In

the literature, there are several aggregation operators for

dealing with the weighted average and the OWA operator

in the same formulation. For example, we could mention

the hybrid average (Xu and Da 2003), the weighted OWA

(WOWA) operator (Torra 1997) and the immediate

weights (Merigó 2011). Recently, Merigó (2011) has sug-

gested a new aggregation operator for dealing with these

problems. He called it the ordered weighted averaging

weighted averaging (OWAWA) operator. Its main advan-

tage is that it can unify the weighted average and the OWA

operator in the same formulation and it considers the

degree of importance that each concept has in the aggre-

gation. The OWAWA operator can also be generalized by

using generalized and quasi-arithmetic means obtaining the

generalized OWAWA (GOWAWA) operator and the

quasi-arithmetic OWAWA (quasi-OWAWA) operator.

The aim of this paper is to present new moving averages

based on the use of the OWAWA operator. We introduce

the ordered weighted averaging weighted moving averag-

ing (OWAWMA) operator. It is a moving aggregation

operator that unifies the weighted moving average (WMA)

and the ordered weighted moving averaging (OWMA)

operator in the same formulation and considers the degree

of importance that each concept has in the aggregation.

Moreover, it provides a parameterized family of moving

aggregation operators between the moving minimum and

the moving maximum. Thus, it is possible to analyze the

information in a dynamic way and consider the subjective

information and the degree of or-ness (degree of optimism)

of the aggregation. Some of its main properties and par-

ticular cases are studied.

This approach is further extended by using generalized

aggregation operators obtaining the generalized

OWAWMA (GOWAWMA) operator and the quasi-arith-

metic OWAWMA (quasi-OWAWMA) operator. Their

main advantage is that they include a wide range of par-

ticular cases including the generalized weighted moving

average (GWMA), the generalized ordered weighted

moving average (GOWMA) operator, the geometric

OWAWMA (OWGAWMA) operator and the quadratic

OWAWMA (OWQAWMA) operator. Therefore, the

information can be represented in a more complete and

flexible way because it can adapt to the specific needs of

the complex environment considered.

The applicability of this approach is also studied, and we

see that it is very broad because all the previous studies that

use the moving average can be revised and extended with

this new approach. Its main advantage is that it can provide

a more realistic analysis of the problem because we can

consider the information in a dynamic way. In order to

understand numerically the new approach, a simple

numerical example is presented in sales forecasting where

we analyze the sales of a product in North America, Europe

and Asia.

This paper is organized as follows: Section 2 briefly

reviews some basic preliminaries. Section 3 presents the

OWAWMA operator. Section 4 introduces the quasi-

OWAWMA operator and Sect. 5 the construction of

interval and fuzzy numbers. Section 6 discusses the

applicability of the new approach and presents a simple

illustrative example. Section 7 summarizes the main find-

ings of the paper.

2 Preliminaries

A moving average is a usual average that moves toward

some part of the whole sample (available or to be obtained

in the future). More generally, moving averaging aggre-

gation operators are those aggregation operators that use

moving averages in the aggregation process (Merigó and

Yager 2013). This approach allows considering the results

of part of the sample and making changes toward the

partial sample selected. The moving average is a very

popular tool in time-series smoothing (Yager 2008). For

the definition of the weighted moving average (WMA),

see, for example, Elliot et al. (2006); Merigó and Yager

(2013).

Note that if wi = 1/m for all i, the WMA becomes the

simple moving average. Note that in the literature there are

a wide range of moving averaging techniques but in this

paper the focus is on these two types and those suggested

by Yager (2008) and Merigó and Yager (2013). Yager

(Yager 2008) introduced the use of the OWA operator as a

moving average. Thus, he provided a parameterized family

of moving aggregation operators between the moving

minimum and the moving maximum. The ordered
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weighted moving average (OWMA) can be formulated as

follows:

OWMA a1þt; a2þt; . . .; amþtð Þ ¼
Xmþt

j¼1þt

wjbj; ð1Þ

where bj is the jth largest of the ai, W ¼
Pmþt

j¼1þt wj ¼ 1 and

wj [ [0, 1], m is the total number of arguments considered

from the whole sample and t indicates the movement done

in the average from the initial analysis.

A fundamental issue when analyzing these moving

aggregation operators is the analysis of the weighting

vector used in the aggregation. Following the time-series

literature (Elliot et al. 2006; Evans 2002), Yager (2008)

stated that some key weighting vectors were those that

were decaying such as linear decaying weights, squarely

decaying weights and inverse sum weights.

The ordered weighted averaging weighted average

(OWAWA) operator (Merigó 2011) is an aggregation

operator that uses the weighted average and the OWA

operator in the same formulation taking into account the

importance that each of them has in the aggregation. For

the definition of the OWAWA operator, see, for example,

Merigó (2011).

Generalized aggregation operators (Beliakov et al. 2007;

Merigó and Gil-Lafuente 2009) are those aggregation

operators that use the generalized or the quasi-arithmetic

mean in its formulation. Thus, they are able to provide a

wide range of particular cases including geometric and

quadratic means. Note that this paper focuses on the quasi-

arithmetic mean because it includes the generalized mean

as a particular case. For the definition of the weighted

quasi-arithmetic average (quasi-WA), see, for example,

Beliakov et al. (2007). In addition, it is also possible to use

OWA operators forming the ordered weighted quasi-

arithmetic mean (quasi-OWA) (Beliakov et al. 2007; Fodor

et al. 1995). Furthermore, the OWAWA operator can also

be generalized by using generalized aggregation operators

forming the generalized OWAWA (GOWAWA) operator

and the quasi-arithmetic OWAWA (quasi-OWAWA)

operator (Merigó et al. 2016). The quasi-OWAWA is

defined as follows.

Definition 1 A quasi-OWAWA operator of dimension n is

a mapping QOWAWA: Rn ? R that has an associated

weighting vector W, with
Pn

j¼1 wj ¼ 1 and wj [ [0, 1], and

a weighting vector V that affects the WA, with
Pn

i¼1 vi ¼ 1

and vi [ [0, 1], such that:

QOWAWA a1; . . .; anð Þ ¼ bg�1
Xn

j¼1

wjgðbjÞ
 !

þ ð1

� bÞh�1
Xn

i¼1

vihðaiÞ
 !

; ð2Þ

where bj is the jth largest of the ai, b [ [0, 1] and g(b) and

g(h) are strictly continuous monotone functions.

Note that if b = 1, we get the quasi-OWA operator with

all its particular cases and if b = 0 the quasi-WA operator

with all its particular cases. Moreover, if g(b) = h(a) = 2,

we get the quadratic OWAWA (OWQAWA) operator and

if g(b) = h(a) ? 0 the geometric OWAWA (OWGAWA)

operator. Furthermore, note that it is possible to use dif-

ferent functions or values in g(b) and h(a) for the OWA and

the weighted average. Thus, for example, we could form

the ordered weighted quadratic averaging weighted cubic

averaging (OWQAWCA) operator by using g(b) = 2 in the

OWA aggregation and h(a) = 3 in the weighted average

aggregation.

3 Moving averages and OWAWA operators

By using OWAWA operators in the moving average

(Merigó and Yager 2013), it is possible to use weighted

moving averages (WMA) and ordered weighted moving

averages (OWMA) in the same formulation and consider

the degree of importance of each concept in the formula-

tion. We call this new approach the ordered weighted

averaging weighted moving averaging (OWAWMA)

operator. It is an aggregation operator that provides a

parameterized family of moving aggregation operators

between the minimum and the maximum. It is able to

consider the subjective importance of the available infor-

mation and the degree of or-ness (degree of optimism) of

the aggregation. Note that the degree of optimism repre-

sents the attitude of the decision maker regarding the

potential results of an uncertain or future event. It can be

defined as follows.

Definition 2 An OWAWMA operator of dimension m is a

mapping OWAWMA: Rm ? R that has an associated

weighting vector W of dimension m with W ¼
Pmþt

j¼1þt wj ¼ 1 and wj [ [0, 1], such that:

OWAWMA a1þt; a2þt; . . .; ahþt; . . .; amþtð Þ ¼
Xmþt

j¼1þt

v̂jbj;

ð3Þ

where bj is the jth largest argument of the ai, each argument

ai has an associated weight (WA) vi with
Pmþt

i¼1þt vi ¼ 1 and

vi [ [0, 1], v̂j ¼ bwj þ ð1� bÞvj with b [ [0, 1], vj is the

weight vi ordered according to bj, that is, according to the

jth largest of the ai, m is the total number of arguments

considered from the whole sample and t indicates the

movement done in the average from the initial analysis.
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Note that this formulation can also be expressed sepa-

rating the part that affects the OWA aggregation and the

part that affects the weighted average as follows:

OWAWMA a1þt; . . .; amþtð Þ ¼ b
Xmþt

j¼1þt

wjbj þ ð1

� bÞ
Xmþt

i¼1þt

viai; ð4Þ

where bj is the jth largest argument of the ai, b [ [0, 1], m is

the total number of arguments considered from the whole

sample and t indicates the movement done in the average

from the initial analysis.

Example 1 Assume that we want to forecast a variable

(for example, the prize of a product) from period 5 to 9

using the last four periods as shown in Table 1.

Assume that the weighting vector of the OWA is

W = (0.1, 0.2, 0.3, 0.4) and the weighting vector of the

weighted average V = (0.2, 0.2, 0.3, 0.3). The OWA

aggregation has a degree of importance of 40% and the

weighted average 60%. Note that the OWA weights rep-

resent the attitude of the decision maker that in this

example is underestimating the information and the

weights of the weighted average indicate the importance

that the previous periods have in the aggregation. Thus, the

following forecasts can be developed by using the

OWAWMA operator. The results are shown in Table 2.

As we can see, each particular type of OWAWMA

operator may give different results because they represent

different attitudes with respect to the forecast. Thus, the

decision maker gets a more complete representation of the

problem so he can see the different scenarios that may

occur and select the one that is in accordance with his

interests. Obviously, the more cases considered, the more

complete the information is. The objective of this table is to

represent some basic cases to see how a decision maker can

understand the uncertain or imprecise information of the

problem he is considering. Also observe that Eqs. (9) and

(10) can be seen from the point of view of the expected

value forming the moving expected value (MEV).

From a generalized perspective of the reordering step, it

is possible to distinguish between the descending

OWAWMA (DOWAWMA) and the ascending

OWAWMA (AOWAWMA) operator. Note that it is also

possible to consider a more general reordering process by

using v̂j ¼ v̂n�jþ1 and buoyancy measures (Yager 1993).

Note that if the weighting vector is not normalized, i.e.,

V̂ ¼
Pn

j¼1 v̂j 6¼ 1, the OWAWMA operator can be

expressed as:

OWAWMA a1; . . .; anð Þ ¼ b
W

Xmþt

j¼1þt

wjbj

þ ð1� bÞ
V

Xmþt

i¼1þt

viai: ð5Þ

The OWAWMA operator can be further generalized

with mixture operators (Merigó 2011). We call it the

mixture OWAWMA (MOWAWMA) operator.

Definition 3 A MOWAWMA operator of dimension m is

a mapping f: Rm ? R that has associated a vector of

weighting functions fi, fj: I ?]0, ![and s: Rl ? R, such

that:

f sy a1þtð Þ; . . .; sy amþtð Þ
� �

¼ b

Pmþt
j¼1þt fjðsyðbjÞÞsyðbjÞPmþt

j¼1þt fjðsyðbjÞÞ
þ ð1

� bÞ
Pmþt

i¼1þt fiðsyðaiÞÞsyðaiÞPmþt
i¼1þt fiðsyðaiÞÞ

;

ð6Þ

where sy(bj) is the jth largest of the sy(ai), y indicates that

each argument is formed by using a different function

where sy(bj) is the jth largest of the sy(ai), ai is the argument

variable, m is the total number of arguments considered

from the whole sample and t indicates the movement done

in the average from the initial analysis.

The choice of the measures to characterize the weight-

ing vector V̂ (V and W) is another interesting issue. Fol-

lowing a similar methodology as for the OWA operator

(Yager 1988, 1993) and the OWAWA operator (Merigó

2011), we can formulate the attitudinal character (degree of

Table 1 Set of arguments for 8 periods

1 2 3 4 5 6 7 8

P 23 26 29 25 27 24 27 28

Table 2 Forecasting by using different types of OWAWMA

operators

5 6 7 8 9

MA 25.75 26.75 26.25 25.75 26.5

WMA 26 26.6 26.1 25.7 26.7

OWMA 24.8 26.1 25.4 25.2 25.9

OWAWMA 25.52 26.4 25.82 25.5 26.3

Max-WMA 27.2 27.56 27.26 26.22 27.2

Min-WMA 24.8 25.96 25.26 25.02 25.6

Max 29 29 29 27 28

Min 23 25 24 24 24
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or-ness), the entropy of dispersion, the divergence of the

weighting vector and the balance operator.

If we extend the analysis of the or-ness—and-ness

measure to the OWAWMA operator, it is possible to use

two different interpretations as mentioned in Sect. 2.2. The

first one consists in assuming that the weighted average is

neutral independently of its weights. Thus, its or-ness

should always be 0.5 obtaining the following expression:

aðV̂Þ ¼ b
Xmþt

j¼1þt

wj

mþ t � j

m� 1

� �
þ ð1� bÞ � 0:5: ð7Þ

However, from a mathematical point of view, the or-

ness of the weighted average can be studied according to

the tendency of the aggregation to the minimum or to the

maximum. In this case, we get the following formulation

for the degree of or-ness:

aðV̂Þ ¼ b
Xmþt

j¼1þt

wj

mþ t � j

m� 1

� �
þ ð1

� bÞ
Xmþt

j¼1þt

vj
mþ t � j

m� 1

� �
: ð8Þ

Note that vj is the vi reordered according to the jth lar-

gest of the ai. As we can see, if b = 1, we get the or-ness

measure of the OWMA operator and if b = 0 we obtain the

or-ness measure of the WMA operator. It is straightforward

to calculate the and-ness measure by using the dual. That

is, Andness ðV̂Þ ¼ 1� aðV̂Þ.
In the following, we present some interesting results

obtained with this new or-ness—and-ness measure. For the

optimistic (or maximum) criteria in the OWMA, we get the

following:

aðV̂Þ ¼ bþ ð1� bÞ
Xmþt

j¼1þt

vj
mþ t � j

m� 1
: ð9Þ

Note that we can refer to this situation as the maximum

weighted moving average (Max-WMA) or weighted

moving maximum. For the pessimistic (or minimum) cri-

teria, we obtain:

aðV̂Þ ¼ ð1� bÞ
Xmþt

j¼1þt

vj
mþ t � j

m� 1
: ð10Þ

We can refer to this situation as the minimum weighted

moving average (Min-WMA) or weighted moving mini-

mum. With the arithmetic mean in the OWMA case

(arithmetic weighted moving average (A-WMA)), we get:

aðV̂Þ ¼ 0:5bþ ð1� bÞ
Xmþt

j¼1þt

vj
mþ t � j

m� 1
; ð11Þ

and in the WMA (arithmetic-OWMA), we obtain:

aðV̂Þ ¼ b
Xmþt

j¼1þt

wj

mþ t � j

m� 1

� �
þ 0:5ð1� bÞ: ð12Þ

The entropy of dispersion (Yager 1988) measures the

amount of information being used in the aggregation. If we

extend it to the OWAWMA operator, we get the following:

HðV̂Þ ¼ � b
Xmþt

j¼1þt

wj lnðwjÞ þ ð1� bÞ
Xmþt

i¼1þt

vi lnðviÞ
 !

:

ð13Þ

Note that vi is the ith weight of the WA aggregation. As

we can see, if b = 1, we get the entropy of dispersion of the

OWMA operator [very similar to the Yager entropy

(1988)], and if b = 0, the entropy of dispersion of the

WMA [very similar to the Shannon entropy (1948)].

The divergence of W (Yager 2002) measures the

divergence of the weights against the degree of or-ness

measure. If we extend the divergence of W to the

OWAWMA operator, we get the following divergence of

V̂ :

DivðV̂Þ ¼ b
Xmþt

j¼1þt

wj

mþ t � j

m� 1
� aðWÞ

� �2
 !

þ ð1

� bÞ
Xmþt

j¼1þt

vj
mþ t � j

m� 1
� aðVÞ

� �2
 !

: ð14Þ

If b = 1, we get the OWMA divergence, and if b = 0,

the WMA divergence. The highest divergence is found

when using the arithmetic mean, while the minimum

divergence when putting all the weight in one argument as

it is done with the step-OWA (Yager 1993).

The balance operator (Yager 1996) measures the bal-

ance of the weights against the or-ness or the and-ness. If

we extend the balance operator to the OWAWMA opera-

tor, we get the following expression:

BalðV̂Þ ¼ b
Xmþt

j¼1þt

nþ 1� 2j

n� 1

� �
wj

 !
þ ð1

� bÞ
Xmþt

j¼1þt

vj
nþ 1� 2j

n� 1

� � !
: ð15Þ

If b = 1, we get the classic balance operator of the

OWMA operator, and if b = 0, we obtain the balance

operator of the WMA. As we can see, Bal (V) [ [- 1, 1].

The OWAWMA is monotonic, bounded and idempotent

(Merigó 2011). It is not commutative because the

OWAWMA operator includes the weighted average that is

not commutative.

Theorem 1 (Boundary condition). Assume f is the

OWAWMA operator, then:
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Min aif g � f a1þt; a2þt; . . .; anþtð Þ � Max aif g: ð16Þ

Proof It is trivial and thus omitted.

Note that the bounded property presented in Theorem 1

is the extreme case where we only use the OWMA operator

in the aggregation of the OWAWMA operator. However,

the usual boundary conditions used in the OWAWMA

operator are more specific because they mix the OWA and

the WA so the results usually cannot be so high or so low

as in the OWA case.

Theorem 2 (Semi-boundary conditions). Assume f is the

OWAWMA operator, then:

b�Min aif g þ ð1� bÞ

�
Xmþt

i¼1þt

viai � f a1þt; a2þt; . . .; anþtð Þ

� b�Max aif g þ ð1� bÞ �
Xmþt

i¼1þt

viai:

ð17Þ

Proof Let max{ai} = c, and min{ai} = d, then

f a1þt; a2þt; . . .; anþtð Þ ¼ b
Xmþt

j¼1þt

wjbj

þ ð1� bÞ
Xmþt

i¼1þt

viai � b
Xmþt

j¼1þt

wjc

þ ð1� bÞ
Xmþt

i¼1þt

viai ¼ bc
Xmþt

j¼1þt

wj þ ð1� bÞ
Xmþt

i¼1þt

viai;

ð18Þ

f a1þt; a2þt; . . .; anþtð Þ ¼ b
Xmþt

j¼1þt

wjbj þ ð1� bÞ
Xmþt

i¼1þt

viai

� b
Xmþt

j¼1þt

wjd þ ð1� bÞ
Xmþt

i¼1þt

viai ¼ bd
Xmþt

j¼1þt

wj

þ ð1� bÞ
Xmþt

i¼1þt

viai:

ð19Þ

Since
Pmþt

j¼1þt wj ¼ 1, we get

f a1þt; a2þt; . . .; anþtð Þ� bcþ ð1� bÞ �
Xmþt

i¼1þt

viai; ð20Þ

f a1þt; a2þt; . . .; anþtð Þ� bd þ ð1� bÞ �
Xmþt

i¼1þt

viai: ð21Þ

Therefore,

b� Min aif g þ ð1� bÞ

�
Xmþt

i¼1þt

viai � f a1þt; a2þt; . . .; anþtð Þ

� b�Max aif g þ ð1� bÞ �
Xmþt

i¼1þt

viai:

j

Finally, let us study several families of OWAWMA

operators. Thus, we are able to provide a more complete

picture of the aggregation process. However, note that each

family is just a particular case useful in some special sit-

uations according to the interests of the analysis.

First, we consider the two main cases of the OWAWMA

operator found by analyzing the coefficient b. Basically, if
b = 0, we get the WMA, and if b = 1, the OWMA oper-

ator. Note that when b increases, more importance is given

to the OWMA operator, and when b decreases, vice versa.

Next, let us analyze different manifestations of the

weighting vector in the OWAWMA operator. The maxi-

mum-WMA is found when w1 = 1 and wj = 0 for all j = 1

and if b = 1 the usual moving maximum (M-Max). The

minimum-WMA is formed when wn = 1 and wj = 0 for all

j = n and if b = 1, the usual moving minimum (M-Min).

Remark 1 The arithmetic moving average-WMA (AMA-

WMA) is obtained when wj = 1/m for all j, and it can be

formulated as follows:

AMA - WMA a1þt; a2þt; . . .; amþtð Þ

¼ 1

m
bai þ ð1� bÞ

Xmþt

i¼1þt

viai: ð22Þ

If vi = 1/m, for all i, then we get the arithmetic moving

average-OWMA (AMA-OWMA). The AMA-OWMA

operator can be formulated as follows:

AMA - OWMA a1þt; . . .; amþtð Þ

¼ b
Xmþt

j¼1þt

wjbj þ ð1� bÞ 1
m
ai: ð23Þ

Note that if w1 = 1 and wj = 0 for all j = 1, the AMA-

OWMA operator becomes the AMA-Max that it is also

known in the literature as the or-like S-OWMA operator

and that if wn = 1 and wj = 0 for all j = m ? t, it becomes

the AMA-Min that is known as the and-like S-OWMA

operator (extended from static aggregations (Yager 1993)).

Finally, if vi = 1/m, for all i and wj = 1/m for all j, the

OWAWMA operator becomes the simple moving average.

Some other aggregations that could be formed following

the OWA literature (Merigó 2011; Yager 1993) are the
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median-OWAWMA, the weighted median-OWAWMA,

the centered-OWAWMA and the Olympic-OWAWMA.

The previous families satisfy that the weighting vector of

the OWA and the WA uses the same structure in order to

be the same family. However, we may find that the OWA

uses a different family than the WA. For example, the

OWA can use a median aggregation, while the WA uses an

Olympic one. And so on. Furthermore, note that here we

are assuming that the WA follows a similar pattern than the

OWA. However, we could also simply analyze the OWA

operator and leave the WA as a normal aggregation. In

other words, we analyze the classical families of OWA

operators of the weighting vector wj (Yager 1993).

4 The generalized OWAWMA operator

The OWAWMA operator can be generalized by using

generalized aggregation operators such as the generalized

mean and the quasi-arithmetic mean (Beliakov et al. 2007;

Merigó and Gil-Lafuente 2009). By using the quasi-arith-

metic mean, we get the quasi-arithmetic OWAWMA

(quasi-OWAWMA) operator. It is defined as follows.

Definition 4 A quasi-OWAWMA operator of dimension

m is a mapping QOWAWMA: Rm ? R that has an asso-

ciated weighting vector W of dimension m with

W =
Pmþt

j¼1þt wj ¼ 1 and wj [ [0, 1], and a weighting vector

V with
Pmþt

i¼1þt vi ¼ 1 and vi [ [0, 1], such that:

QOWAWMA a1þt; . . .; amþtð Þ

¼ bg�1
Xmþt

j¼1þt

wjgðbjÞ
 !

þ ð1� bÞh�1
Xmþt

i¼1þt

vihðaiÞ
 !

;

ð24Þ

where bj is the jth largest argument of the ai, b [ [0, 1], m is

the total number of arguments considered from the whole

sample, t indicates the movement done in the average from

the initial analysis and g and h are a strictly continuous

monotonic functions.

Observe that if g(b) = bk and h(a) = ak, the quasi-

OWAWMA operator becomes the GOWAWMA operator.

Moreover, it is possible to distinguish between descending

(quasi-DOWAWMA) and ascending (quasi-AOWAWMA)

orders. Furthermore, when b = 1, we get the quasi-OWMA

operator and the quasi-WMA when b = 0. The more of b
located to the top, the more importance we give to the

quasi-OWMA operator and vice versa.

Note that in this case we could also study similar

properties than the OWAWMA operator such as the use of

mixture operators and a wide range of measures for

characterizing the weighting vector. For example, the or-

ness measure can be defined as follows:

aðV̂Þ ¼ bg�1
Xmþt

j¼1þt

wjg
mþ t � j

m� 1

� � !
þ ð1

� bÞg�1
Xmþt

j¼1þt

vjg
mþ t � j

m� 1

� � !
: ð25Þ

Some other interesting particular cases are found by

analyzing the strictly continuous monotonic function g. For

example, if g(b) = b and h(a) = a, we get the OWAWMA

operator as shown in Eq. (10). If g(b) = b2 and h(a) = a2,

we get the ordered weighted quadratic moving averaging

weighted quadratic moving averaging (OWQMAWQMA)

operator. That is:

QOWAWMA a1þt; . . .; amþtð Þ ¼ b
Xmþt

j¼1þt

wjb
2
j

 !1=2

þð1

� bÞ
Xmþt

i¼1þt

via
2
i

 !1=2

:

ð26Þ

If g(b) = b3 and h(a) = a3, we get the ordered weighted

cubic moving averaging weighted cubic moving averaging

(OWCMAWCMA) operator:

QOWAWMA a1þt; . . .; amþtð Þ

¼ b
Xmþt

j¼1þt

wjb
3
j

 !1=3

þð1� bÞ
Xmþt

i¼1þt

via
3
i

 !1=3

: ð27Þ

If g(b) ? b0 and h(a) ? a0, we get the ordered

weighted geometric moving averaging weighted geometric

moving averaging (OWGMAWGMA) operator:

QOWAWMA a1þt; . . .; amþtð Þ

¼ b
Ymþt

j¼1þt

b
wj

j

 !
þ ð1� bÞ

Ymþt

i¼1þt

avii

 !
: ð28Þ

If g(b) = b-1 and h(a) = a-1, we get the ordered

weighted harmonic moving averaging weighted harmonic

moving averaging (OWHMAWHMA) operator:

QOWAWMA a1þt; . . .; amþtð Þ

¼ b
1

Pmþt

j¼1þt

wj

bj

0
BBB@

1
CCCAþ ð1� bÞ 1

Pmþt

i¼1þt

vi
ai

0
BBB@

1
CCCA: ð29Þ

Moreover, if g(b) = b! and h(a) = a!, the moving

maximum, and if g(b) = b-! and h(a) = a-!, the moving

minimum.

Furthermore, it is possible to consider situations where

g(b) and h(a) are not equal. For example, if g(b) = b2 and
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h(a) = a3, we get the ordered weighted quadratic moving

averaging weighted cubic moving averaging (OWQ-

MAWCMA) operator:

QOWAWMA a1þt; . . .; amþtð Þ

¼ b
Xmþt

j¼1þt

wjb
2
j

 !1=2

þð1� bÞ
Xmþt

i¼1þt

via
3
i

 !1=3

: ð30Þ

Another example is if g(b) = b and h(a) = a2, then we

get the ordered weighted moving averaging weighted

quadratic moving averaging (OWMAWQMA) operator.

That is:

QOWAWMA a1þt; . . .; amþtð Þ

¼ b
Xmþt

j¼1þt

wjbj þ ð1� bÞ
Xmþt

i¼1þt

via
2
i

 !1=2

: ð31Þ

Similarly, we could also study g(b) = b2 and h(a) = a.

This case is the ordered weighted quadratic moving aver-

aging weighted moving averaging (OWQMAWMA)

operator:

QOWAWMA a1þt; . . .; amþtð Þ

¼ b
Xmþt

j¼1þt

wjb
2
j

 !1=2

þð1� bÞ
Xmþt

i¼1þt

viai: ð32Þ

In a similar way, we could study a lot of other cases by

using other formulations in the function g and h. Following

Beliakov et al. (2007); Merigó and Gil-Lafuente (2009), we

could develop the trigonometric OWAWMA and the rad-

ical OWAWMA. The trigonometric OWAWMA operator

is found when g1(t) = sin((p/2) t), g2(t) = cos((p/2) t) and
g3(t) = tan((p/2) t) are the generating functions. Thus,

f a1þt; . . .; amþtð Þ ¼ b
2

p
arcsin

Xmþt

j¼1þt

wj sin
p
2
bj

� � !
þ ð1

� bÞ 2
p
arcsin

Xmþt

i¼1þt

vi sin
p
2
ai

� � !
:

ð33Þ

f a1þt; . . .; amþtð Þ ¼ b
2

p
arccos

Xmþt

j¼1þt

wj cos
p
2
bj

� � !
þ ð1

� bÞ 2
p
arccos

Xmþt

i¼1þt

vi cos
p
2
ai

� � !

ð34Þ

f a1þt; . . .; amþtð Þ ¼ b
2

p
arctan

Xmþt

j¼1þt

wj tan
p
2
bj

� � !
þ ð1

� bÞ 2
p
arctan

Xmþt

i¼1þt

vi tan
p
2
ai

� � !
:

ð35Þ

The radical OWAWMA is found if c[ 0, c = 1, and

the generating function is g(t) = c1/t. Then, the radical

OWAWMA operator is:

f a1þt; . . .; amþtð Þ ¼ b logc

Xmþt

j¼1þt

wjc
1=bj

 ! !�1

þð1

� bÞ logc

Xmþt

i¼1þt

vic
1=ai

 ! !�1

ð36Þ

5 Construction of moving interval and fuzzy
numbers with the OWAWMA operator

In this section, we analyze how to construct interval

numbers and other related structures such as fuzzy numbers

by using OWMA and OWAWMA operators.

5.1 Construction of interval numbers
with OWMA operators

The OWMA operator provides a parameterized family of

moving aggregation operators between the moving mini-

mum and the moving maximum. Thus, with the OWMA

operator we can analyze any result inside this interval. This

is worth noting because when we want to analyze some

problem, we need to collect the data and summarize it in an

efficient way so it is easy to understand. A practical way

for doing so is by constructing an interval number that at

least will include the minimum and the maximum potential

result. Moreover, a wide range of internal results can be

added depending on our particular interests in the analysis

(Merigó 2012). Particularly, we can construct triplets by

adding a central value that represents the most expected

result and quadruplets by adding an internal interval that

shows the most expected result in the form of an interval.

Assume a set of arguments A = (a1, a2, …, an). For the

construction of a 2-tuple interval number (Moore 1966), we

simply aggregate the information of the OWMA operator

in the following way: C = [M-Min{ai}, M-Max{ai}]. Thus,

we are considering an interval number that considers the

lowest and the highest result of the set of arguments

A. However, note that in the OWMA operator a dynamic

process is being carried out and these bounds may change

throughout time. Therefore, we can refer to this interval

number as a moving interval number (MIN).

If we construct a triplet, we can use the moving mini-

mum, the moving maximum and the OWMA aggregation

that is more in accordance with the interests of the decision

maker. In this case, we get a moving triplet: C = [M-

Min{ai}, OWMA, M-Max{ai}].
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In order to consider a quadruplet, two OWMA aggre-

gations are used such that one of the aggregations is closer

to the moving minimum and the other one to the moving

maximum. That is: C = [M-Min{ai}, OWMA*, OWMA*,

M-Max{ai}], where OWMA* is the OWMA aggregation

closer to the minimum and OWMA* to the maximum. This

type of interval is a moving quadruplet.

Following this methodology, we could develop moving

quintuplets, moving sextuplets and so on, by adding more

information to the moving interval with the use of other

types of OWMA aggregations. Note that this methodology

can also be connected to the concept of a box plot (Tukey

1977). Therefore, by using moving averages, we could

form moving box plots. Next, let us present a brief

numerical example on how to construct interval numbers

with the OWA operator.

Example 2 Assume the information of Example 1. Thus,

the following moving triplets are formed as shown in

Table 3.

Graphically, these results can be represented as shown in

Fig. 1.

As we can see, the triplets evolve throughout time

because they are not static and may change when we add

more information in the aggregation.

Note that we could now consider a wide range of

properties and operations with interval numbers following

the classical literature (Moore 1966). For example, we

could consider the sum, the subtraction, the multiplication

and the division of two moving intervals. Observe that a lot

of complexities may occur because we may want to operate

with moving intervals that consider different periods of

time.

Furthermore, more complex structures can also be

constructed by using OWMA operators such as moving

fuzzy numbers (MFNs). For example, once a moving triplet

is constructed with an OWMA aggregation, we can assume

that the internal information of the moving triplet can be

represented with linear functions. Thus, it is possible to

assume that the moving triplet is a moving triangular FN

(MTFN) represented in a ternary way (Dubois and Prade

1980; Kaufmann and Gupta 1985). Therefore, we can

construct the a-cut representation of the MTFN in the

following way: Ca = [M-Min{ai} ? (OWMA -

M-Min{ai}) 9 a, M-Max{ai} - (M-Max{ai} -

OWMA) 9 a]. With a moving quadruplet, a similar anal-

ysis can also be developed obtaining a moving trapezoidal

FN (MTpFN). In this case, the a-cut representation is

formed as follows: Ca = [M-Min{ai} ? (OWMA* -

M-Min{ai}) 9 a, M-Max{ai} - (M-Max{ai} –

OWMA*) 9 a]. From this, it is straightforward to con-

struct the membership function of the MTFN and the

MTpFN. Figure 2 briefly presents the MTFN formed with a

moving triplet.

As we can see, the MTFN is not static so its structure

changes over time. Therefore, throughout time we may see

an increase in the minimum, in the maximum and so on.

Figure 2 shows a general example where the MTFN

increases in all its values from period 1 to period 2. Fol-

lowing Example 2, we could form the following MTFNs:

• C5 = [23 ? 1.8a, 29 - 4.2a].
• C6 = [25 ? 1.1a, 29 - 2.9a].
• C7 = [24 ? 1.4a, 29 - 3.6a].
• C8 = [24 ? 1.2a, 27 - 1.8a].

Table 3 Moving triplets

Time period M-Min OWMA M-Max

5 23 24.8 29

6 25 26.1 29

7 24 25.4 29

8 24 25.2 27

9 24 25.9 28

20

21

22

23

24

25

26

27

28

29

30

5 6 7 8 9

M-Max

OWMA

M-Min

Fig. 1 Moving triplets with the OWMA operator

         1 

         0    M-Min1      M-Min2 OWMA1 OWMA2           M-Max1   M-Max2 x

Fig. 2 Two moving triangular fuzzy numbers constructed with the

OWMA operator

Aggregation operators with moving averages 10609

123



• C9 = [24 ? 1.9a, 28 - 2.1a].

In a similar way, more complex FNs and more complex

structures such as the linguistic variables could be studied.

Moreover, we could also construct interval numbers with a

wide range of extensions of the OWMA operator such as

the use of generalized aggregation operators, induced

aggregation operators (Merigó 2011), Choquet integrals

(Belles-Sampera et al. 2014), distance measures (Merigó

et al. 2018; Zeng et al. 2017) and norms (Merigó et al.

2014).

5.2 Construction with the OWAWMA operator

The construction of moving interval numbers and moving

fuzzy numbers can also be developed by using OWAWMA

operators. Its main advantage is that it can deal with sub-

jective information and with the attitudinal character of the

decision maker in the same formulation and considering

the degree of importance that each concept has in the

analysis. Note that this analysis could also be developed

with other models that deal with the weighted average and

the OWA operator in the same formulation such as the

weighted OWA (WOWA) operator (Torra 1997), the

hybrid average (Xu and Da 2003) and the immediate

weights (Merigó 2011). Note that with these models we

should develop a previous transformation by using moving

averages forming the weighted OWMA (WOWMA)

operator, the hybrid moving average (HMA) and the

moving immediate weights (MIW).

The interesting issue of using OWAWMA operators is

that we can introduce the subjective beliefs of the decision

maker in the interval numbers. This leads us to the sub-

jective moving interval number (SMIN) and the subjective

moving fuzzy number (SMFN). Their key advantage is that

they consider the degree of importance that each argument

has in the aggregation and in the intervals.

In the construction of the SMIN with the OWAWMA

operator, it is worth noting the construction of subjective

moving triplets, subjective moving quadruplets, subjective

moving quintuplets and subjective moving sextuplets. The

subjective moving triplet and the subjective moving

quadruplet follow the same methodology than the OWMA.

That is: C = [M-Min{ai}, OWAWMA, M-Max{ai}] and

C = [M-Min{ai}, OWAWMA*, OWAWMA*,

M-Max{ai}]. Note that if b = 1, the OWAWMA becomes

the OWMA operator, and thus, we get the same results than

Sect. 6.1. If b = 0, it becomes the WMA and thus we can

construct a moving interval number where we do not use

the OWMA but we consider a subjective importance of the

arguments. That is: C = [M-Min{ai}, WMA, M-Max{ai}]

and C = [M-Min{ai}, WMA*, WMA*, M-Max{ai}]. Note

that in Sect. 6.1., it is assumed that we do not know the

subjective importance of the arguments and we only focus

on the OWMA aggregation.

As it is stated in Theorem 2, with the OWAWMA

operator we obtain semi-boundary conditions when we use

the WMA with the OWMA bounds. Thus, the bounds can

be contracted according to the information given by the

WMA. However, it is worth noting that this reduction is

only artificial because the result can always move from the

moving minimum to the moving maximum. But sometimes

the usual bounds are too broad and it is needed to contract

them in order to reduce the uncertainty and be able to deal

with the imprecision of the available information. In these

situations, it becomes useful to consider subjective moving

quintuplets and subjective moving sextuplets in the

analysis:

• C = [M-Min{ai}, M-Min-WA, OWAWMA, M-Max-

WA, M-Max{ai}].

• C = [M-Min{ai}, M-Min-WA, OWAWMA*,

OWAWMA*, M-Max-WA, M-Max{ai}];

where M-Min-WA is the convex combination b 9 M-

Min{ai} ? (1 – b) 9 WMA, and M-Max-WMA is

b 9 M-Max{ai} ? (1 – b) 9 WMA.

Example 3 Assume the information given in Example 1.

Thus, the following subjective moving quintuplets can be

constructed as shown in Table 4.

Graphically, the results shown in Table 4 would look as

shown in Fig. 3.

As we can see, the moving minimum and the moving

maximum delimitate the extreme results that may occur.

The OWAWMA operator is the expected results according

to the beliefs and attitudes of the decision maker that are

semi-bounded by a maximum and a minimum that take into

account the weighted average in the aggregation.

With the OWAWMA operator, it is also possible to

construct subjective moving FNs (SMFNs). For subjective

moving triplets and subjective moving quadruplets, it fol-

lows the same procedure as with the OWMA operator.

Thus, we can assume the use of the a-cut representation of

the subjective moving TFN (SMTFN) and the subjective

moving TpFN (SMTpFN) as follows:

• Ca = [M-Min{ai} ? (OWAWMA - M-Min{ai}) 9 a,
M-Max{ai} - (M-Max{ai} - OWAWMA) 9 a].

• Ca = [M-Min{ai} ? (OWAWMA* - M-Min{ai})-

9 a, M-Max{ai} - (M-Max{ai} -

OWAWMA*) 9 a].

By using subjective moving quintuplets and subjective

moving sextuplets, we can also build SMFNs. However, it

is more complex to deal with these cases because several

linear functions should be introduced and there are several

ways for doing so. For example, we can construct an a-cut
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representation from the moving minimum and the moving

maximum to the OWAWMA and from the M-Min-WMA

and the M-Max-WMA to the OWAWMA forming an

interval-valued SMFN (IVSMFN). Thus, we get:

• Ca = [M-Min{ai} ? (OWAWMA - M-Min{ai}) 9 a,
M-Min-WMA ? (OWAWMA - M-Min-WMA) 9 a,
M-Max-WMA - (M-Max-WMA - OWAWMA) 9 a,
M-Max{ai} - (M-Max{ai} - OWAWMA) 9 a].

• With a moving sextuplet, the following representation

is obtained:

• Ca = [M-Min{ai} ? (OWAWMA* - M-Min{ai})-

9 a, M-Min-WMA ? (OWAWMA* - M-Min-

WMA) 9 a, M-Max-WMA - (M-Max-WMA -

OWAWMA*) 9 a, M-Max{ai} - (M-Max{ai} -

OWAWMA*) 9 a].

Note that the interval-valued SMFN formed with the

quintuplet can be represented graphically as shown in

Fig. 4.

Following Example 3, the following SMTFNs and

IVSMFNs can be formed as shown in Table 5 by using the

a-cut representation:
Finally, it is worth noting that more complex structures

could be developed by using a wide range of families of

OWAWMA operators in the analysis. Those presented here

represent a general overview of some of the most basic

ones.

6 Applicability of the OWAWMA operator
and its generalizations

This section briefly describes the applicability of the

OWAWMA operator and its different generalizations. The

OWAWMA operator can be applied in a wide range of

applications. Since it includes the simple moving average,

the weighted average and the OWA as particular cases, it

can always be reduced to these simple expressions.

Therefore, all the previous studies that have used one of

them are also applicable with the OWAWMA operator. If

there is a need for dealing dynamic information, the

OWAWMA operator becomes very useful. But it can be

reduced to the simple averages when dealing with simple

problems.

Some key areas where it could be implemented are

statistics, soft computing, business administration, eco-

nomics, decision sciences, politics, operational research,

engineering and any other discipline that uses statistical

methods based on moving averages.

Following (Merigó 2011), we could present some key

examples in statistics such as the moving variance, the

moving covariance and a moving linear regression. Addi-

tionally, it is also possible to develop the multi-person—

OWAWMA (MP-OWAWMA) operator and all of its par-

ticular cases which are equivalent to those explained in

Sect. 3.

Table 4 Subjective moving

quintuplets
Time M-Min M-Min-WMA OWAWMA M-Max-WMA M-Max

5 23 24.8 25.52 27.2 29

6 25 25.96 26.4 27.56 29

7 24 25.26 25.82 27.26 29

8 24 25.02 25.5 26.22 27

9 24 25.6 26.3 27.2 28

Fig. 3 Moving quintuplets with the OWAWMA operator

   1 

WMA         0 M-Min   M-Min- OWAWMA M-Max-WMA M-Max x

Fig. 4 Moving interval-valued fuzzy number
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Next, let us present a simple numerical example

regarding how to deal with the aggregation operators pre-

sented in the paper. The example presents a sales fore-

casting problem where the board of directors of a company

is analyzing their sales and wants to forecast the future.

They are currently selling products in North America,

Europe and Asia. Note that the example presented here is a

simple one with only three regions. However, it is possible

to consider more regions such as Africa and South Amer-

ica, and a smaller analysis by countries or provinces where

the company studies the sales in the USA, Canada, UK,

France, Germany and so on.

In order to develop the analysis, the company asks a group

of three experts to analyze the data in order to form some

representative forecasts. The sales of the product considered

are established every quarter and follows a cyclical trend.

The experts do not know the sales of the data but have some

approximations based on subjective data of the last 8 quarters

and want to forecast the next eight by always considering the

last eight available. Note that each expert has a different

opinion when forming the historical sales. The expected

sales in North America, Europe and Asia according to each

expert are presented in Table 6.

Next, the experts share their opinions and integrate their

data into a collective result. For doing so, it is assumed that

the three experts are equally important. That is, U = (1/3,

1/3, 1/3). Although the information represents approxima-

tions, this is the data that the experts will use for the cal-

culation of the forecasts. The results are presented in

Table 7.

By using the OWAWMA operator and its particular

cases, the experts can develop forecasts based on the last

eight periods. They forecast the results from today until 8

periods in the future. Note that in Tables 6 and 7, today is

period 8. Table 8 presents the forecasts of the three experts.

Each of them analyzes the M-Min, M-Max, Min-WMA,

Max-WMA, the simple moving average (MA), WMA,

OWMA, AMA-WMA, AMA-OWMA and the OWAWMA

operator. They assume the following weights: W = (0.1,

0.1, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1) and V = (0.2, 0.1, 0.1, 0.1,

0.2, 0.1, 0.1, 0.1). For this example, the experts believe that

the OWA and the weighted average are equally important.

That is, both have a weight of 0.5.

By looking to Table 8, the board of directors of the

company can get a general idea of the potential sales that

may occur in the future taking into account different sce-

narios from the most pessimistic to the most optimistic one.

Usually, the OWAWMA operator should be the final

assumption and decision. Therefore, it seems that at the

beginning the sales in Asia were quite low but they tend to

increase. North America and Europe have similar results

although Europe tends to have higher ones because there

are more people in this region. However, depending on the

scenario considered, the sales may be higher in North

America.

The evolution of the results can be studied graphically

for the three regions as shown in Fig. 5. Note that for

simplicity, only the Min-WMA, the Max-WMA and the

OWAWMA operator are considered in Fig. 5.

As we can see, the forecasted sales in Asia are much

lower than in North America and Europe. The other two

regions are quite similar although more sales are expected

in Europe although in some specific situations the sales in

North America may be higher. According to the data, the

forecasts indicate that the average result in Europe is

equivalent to the weighted maximum of North America

and the weighted minimum of Europe is a bit higher than

the average in North America.

Table 5 Construction of

SMTFN and IVSMFN
T SMTFN IVSMFN

5 [23 ? 2.52a, 29 - 3.48a] [23 ? 2.52a, 24.8 ? 0.72a, 27.2 - 1.68a, 29 - 3.48a]

6 [25 ? 1.4a, 29 - 2.6a] [25 ? 1.4a, 25.96 ? 0.44a, 27.56 - 1.16a, 29 - 2.6a]

7 [24 ? 1.82a, 29 - 3.18a] [24 ? 1.82a, 25.26 ? 0.56a, 27.26 - 1.44a, 29 - 3.18a]

8 [24 ? 1.5a, 27 - 1.5a] [24 ? 1.5a, 25.02 ? 0.48a, 26.22 - 0.72a, 27 - 1.5a]

9 [24 ? 2.3a, 28 - 1.7a] [24 ? 2.3a, 25.6 ? 0.7a, 27.2 - 0.9a, 28 - 1.7a]

Table 6 Approximations of the historical sales of the product

according to each expert

Period 1 2 3 4 5 6 7 8

Expert 1

North America 68 64 73 67 69 62 70 66

Europe 65 72 71 70 66 71 73 70

Asia 49 54 58 56 52 59 56 58

Expert 2

North America 69 65 73 66 68 62 70 66

Europe 67 71 72 69 66 70 73 70

Asia 48 53 57 58 53 58 56 59

Expert 3

North America 70 65 73 65 68 62 71 66

Europe 66 72 71 70 66 71 73 70

Asia 48 53 58 57 54 57 56 59
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7 Conclusions

This work presents the use of the moving average in a wide

range of aggregation operators. Special attention is given to

the OWAWA operator because it provides a unified

framework between the OWA operator and the weighted

average. Thus, the article presents the OWAWMA opera-

tor. It is a moving aggregation operator that provides a

parameterized family of aggregation operators between the

moving minimum and the moving maximum. It uses the

weighted average and the OWA operator in the same for-

mulation considering the degree of importance of each

concept in the formulation. Thus, it is possible to use

weighted moving averages and ordered weighted moving

averages in the same formulation being able to consider the

degree of or-ness (degree of optimism) and the subjective

Table 7 Collective results for

the historical sales
Period 1 2 3 4 5 6 7 8

Collective results

North America 69.00 64.67 73.00 66.00 68.33 62.00 70.33 66.00

Europe 66.00 71.67 71.33 69.67 66.00 70.67 73.00 70.00

Asia 48.33 53.33 57.67 57.00 53.00 58.00 56.00 58.67

Table 8 Forecasts provided by

the collective results of the three

experts

Period 9 10 11 12 13 14 15 16

North America

M-Min 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00

M-Max 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00

Min-WMA 64.84 64.24 65.16 64.36 64.59 64.16 64.88 64.46

Max-WMA 70.34 69.74 70.66 69.86 70.09 69.66 70.38 69.96

MA 67.42 67.22 67.54 66.85 66.96 66.79 67.39 67.02

WMA 67.67 66.47 68.31 66.71 67.18 66.31 67.76 66.91

OWMA 67.67 67.40 67.67 67.07 67.18 67.04 67.54 67.25

AMA-WMA 67.55 66.85 67.93 66.78 67.07 66.55 67.58 66.97

AMA-OWMA 67.55 67.31 67.61 66.96 67.07 66.92 67.47 67.14

OWAWMA 67.67 66.94 67.99 66.89 67.18 66.68 67.65 67.08

Europe

M-Min 66.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00

M-Max 73.00 73.00 73.00 73.00 73.00 73.00 73.00 73.00

Min-WMA 67.52 68.19 68.22 67.94 67.72 68.20 68.30 68.00

Max-WMA 71.02 71.69 71.72 71.44 71.22 71.70 71.80 71.50

MA 69.79 70.27 70.09 69.94 69.97 70.46 70.44 70.12

WMA 69.03 70.37 70.44 69.88 69.44 70.39 70.60 70.00

OWMA 70.03 70.44 70.23 70.07 70.11 70.52 70.51 70.26

AMA-WMA 67.90 68.14 68.05 67.97 67.99 68.23 68.22 68.06

AMA-OWMA 69.91 70.36 70.16 70.01 70.04 70.49 70.48 70.19

OWAWMA 69.53 70.41 70.34 69.98 69.78 70.46 70.56 70.13

Asia

M-Min 48.33 48.33 48.33 48.33 48.33 48.33 48.33 48.33

M-Max 58.67 58.67 58.67 58.67 58.67 58.67 58.67 58.67

Min-WMA 51.33 52.13 52.38 52.42 51.98 52.44 52.29 52.44

Max-WMA 56.50 57.30 57.55 57.59 57.15 57.61 57.46 57.61

MA 55.25 56.11 56.46 56.31 56.23 56.63 56.46 56.51

WMA 54.33 55.93 56.43 56.50 55.62 56.54 56.25 56.54

OWMA 55.67 56.40 56.71 56.52 56.42 56.76 56.64 56.71

AMA-WMA 54.79 56.02 56.45 56.41 55.93 56.59 56.36 56.53

AMA-OWMA 55.46 56.26 56.59 56.42 56.33 56.70 56.55 56.61

OWAWMA 55.00 56.17 56.57 56.51 56.02 56.65 56.45 56.63
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information in the same formulation. Moreover, this

approach permits to represent better real-world problems

because the information can be analyzed in a dynamic and

flexible way such as the use of different time series in the

analysis. The main advantage of this approach is the pos-

sibility of combining subjective data from classical models

with the specific attitudinal character that the decision

maker has in the problem.

This approach has been further extended by using gen-

eralized aggregation operators including the generalized

mean and the quasi-arithmetic mean. The quasi-

OWAWMA operator has been presented. It generalizes the

OWAWMA operator by using quasi-arithmetic means. Its

main advantage is that it includes a wide range of particular

cases such as the OWGMAWGMA and the OWQ-

MAWQMA operator.

Additionally, the paper has presented new techniques for

constructing moving interval and fuzzy numbers. The

reason is because the OWA aggregation provides a

parameterized family of aggregation operators between the

minimum and the maximum. Therefore, by using these two

extremes we get an interval from where we can analyze

central values and develop functions that could form fuzzy

numbers. For the case of moving averages, this implies the

creation of moving interval and moving fuzzy numbers.

The work has presented some representative cases with the

OWMA and the OWAWMA operators. Note that with the

OWMA operator we are forming attitudinal intervals and

fuzzy numbers where the central values are calculated

according to the attitude of the decision maker. And with

the OWAWMA operator we get subjective attitudinal

intervals and subjective attitudinal fuzzy numbers where

the central values consider the attitude of the decision

maker and some subjective information available in the

data.

The study also analyzes briefly the applicability, and we

have seen that it is very broad because all the previous

studies that use the moving average can be revised and

extended with this new approach. Some extensions when

dealing with the variance and the covariance have also

been presented. Finally, the paper has studied an illustra-

tive example of the main aggregation operators in a multi-

expert sales forecasting problem. The example focuses on a

comparative process between three regions: USA, Europe

and Asia. This approach shows how the results of different

intervals can be compared in a dynamical way.

In future research, we expect to develop further exten-

sions to this approach by using more general formulations

such as the use of induced aggregation operators, proba-

bilistic information, distance measures and norms. Several

applications in real-world problems will be also considered

including time-series forecasting, statistics, economics and

decision making (Blanco-Mesa et al. 2017).
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Zeng SZ, Merigó JM, Palacios-Marqués D, Jin HH, Gu FJ (2017)

Intuitionistic fuzzy induced ordered weighted averaging distance

operator and its application to decision making. J Intell Fuzzy

Syst 32:11–22

Zhao H, Xu ZS, Ni M, Liu S (2010) Generalized aggregation

operators for intuitionistic fuzzy sets. Int J Intell Syst 24:1–30

Zhou LG, Chen HY (2010) Generalized ordered weighted logarithm

aggregation operators and their applications to group decision

making. Int J Intell Syst 25:683–707

Zhou LG, Tao ZF, Chen HY, Liu JP (2015) Generalized ordered

weighted logarithmic harmonic averaging operators and their

applications to group decision making. Soft Comput 19:715–730

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Aggregation operators with moving averages 10615

123


	Aggregation operators with moving averages
	Abstract
	Introduction
	Preliminaries
	Moving averages and OWAWA operators
	The generalized OWAWMA operator
	Construction of moving interval and fuzzy numbers with the OWAWMA operator
	Construction of interval numbers with OWMA operators
	Construction with the OWAWMA operator

	Applicability of the OWAWMA operator and its generalizations
	Conclusions
	Acknowledgements
	References




