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In this paper, we analyze different mathematical formulations for general Stackelberg games (GSGs) and 

Stackelberg security games (SSGs). We consider GSGs in which a single leader commits to a utility maxi- 

mizing strategy knowing that p possible followers optimize their own utility taking the leader’s strategy 

into account. SSGs are a type of GSG that arise in security applications where the strategies of the leader 

consist of protecting a subset of targets and the strategies of the p followers consist of attacking a sin- 

gle target. We compare existing mixed integer linear programming (MILP) formulations for GSGs, ranking 

them according to the tightness of their linear programming (LP) relaxations. We show that SSG formu- 

lations are projections of GSG formulations and exploit this link to derive a new SSG MILP formulation 

that (i) has the tightest LP relaxation known among SSG MILP formulations and (ii) has an LP relaxation 

that coincides with the convex hull of feasible solutions in the case of a single follower. We present com- 

putational experiments empirically comparing the difficulty of solving the formulations in the general 

and security settings. The new SSG MILP formulation remains computationally efficient as problem size 

increases. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Stackelberg games model situations where players strive to op-

imize their individual objectives in a single sequential encounter.

hese models assume a player, referred to as the leader, can com-

it to a strategy that optimizes his utility function and then

layers that respond to the leader’s decision, referred to as fol-

owers, take this decision into account when deciding how to

ptimize their own utility functions. Stackelberg games were in-

roduced to model market competition ( von Stackelberg, 2011 ) and

ave been used in diverse applications since, such as traffic equi-

ibrium ( Krichene, Reilly, Amin, & Bayen, 2014 ), network toll set-

ing ( Labbé, Marcotte, & Savard, 1998 ), preventing election control

 Yin, Vorobeychik, An, & Hazon, 2018 ), and defense ( Brown, Carlyle,

almerón, & Wood, 2006; Jiang & Liu, 2018 ). 

In this work, we consider normal form Stackelberg games with

nite sets of actions for the leader and followers. We refer to these

s general Stackeblerg games (GSG). The utility functions of GSGs

re described by matrices, where each combination of actions for

he leader and follower gives a reward value for each participant.

electing a single action corresponds to a pure strategy, while a
∗ Corresponding author at: Département d’Informatique, Université Libre de Brux- 
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ixed strategy corresponds to a probability distribution over the

et of actions for the player. Therefore, the utility functions for

SGs are bilinear functions of the players’ mixed strategies. 

Stackelberg games can be expressed as bilevel optimization

roblems, where the top level represents the leader’s decision

roblem and includes the followers’ responses as the optimal so-

ution to the second level problem ( Colson, Marcotte, & Savard,

007 ). Mixed integer formulations of GSGs have been devised by

ncorporating bilinear functions and linearizing second level opti-

ality conditions using integer variables ( Bard, 1998 ). The manner

n which the bilinear objectives and second level problem optimal-

ty conditions are linearized leads to the different mixed integer

inear programming (MILP) formulations considered in this work.

or instance, using big M constraints to linearize both the leader’s

bjective and the second level optimality conditions gives rise to

he (D2) formulation ( Kiekintveld et al., 2009 ). The (DOBSS) formu-

ation considers a single big M constraint but introduces new vari-

bles representing the product of the leader and follower strate-

ies, Paruchuri et al. (2008) . Finally, (MIP- p -G) is a formulation

ithout big M constraints ( Yin & Tambe, 2012 ). Which of these

ILP formulations of the bilevel stackelberg game problem is more

onvenient for computational efficiency is an underlying question

f this work. When the leader in a GSG faces a single follower,

he problem can be solved in polynomial time, see Conitzer and

andholm (2006) . The authors also show that if there are multiple

https://doi.org/10.1016/j.ejor.2019.05.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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followers, then the problem is NP-hard. A solution for the multi-

ple followers problem can be obtained by using the algorithm for

the single follower instance on a Harsanyi transformation of the

problem, Harsanyi and Selten (1972) , which combines the multi-

ple adversaries into a single adversary with exponentially many

actions. Solution methods based on mixed integer formulations of

the multiple follower problem have been presented, for example,

by Jain, Kiekintveld, and Tambe (2011) and Yang, Jiang, Tambe, and

Ordóñez (2013) . 

Recent work has applied Stackelberg games in security settings

where a leader has a limited budget to protect a set of targets

while a follower aims to attack a single target. In this domain,

the payoff matrices are structured with only two payoff values

for every participant depending on whether or not the defender

strategy protects the target attacked. We refer to problems that

have this structure as Stackelberg security games (SSGs), which

are introduced in detail in Section 2 . Some SSG applications have

included assigning Federal Air Marshals to transatlantic flights

( Jain et al., 2010 ), determining randomized port and waterways

patrols for the U.S. Coast Guard ( Shieh et al., 2012 ), preventing

fare evasion in public transport systems ( Yin et al., 2012 ), pro-

tecting endangered wildlife ( Yang, Ford, Tambe, & Lemieux, 2014 ),

and patrolling applications to protect networked infrastructure

( Karwowski & Ma ́ndziuk, 2019; Li, Qiao, Deng, & Wu, 2019 ). The

SSG models considered are closely related to the interdiction

games literature, McMasters and Mustin (1970) , specifically when

there is a fortification step. Such fortification-interdiction problems

are multi-level optimization problems where a defender decides a

limited fortification of a network, so that an interdictor (attacker)

blocks a number of edges in the network and an operator tries

to maximize flow or minimize a path over the network. If the

optimal operation response can be subsumed in the interdictor’s

decision problem, then the problem has the structure of a Stack-

elberg security game. There are many variants and extensions of

such fortification-interdiction games that allow multiple/sequential

interdictions and problem specific formulations and algorithms.

For instance, a class of generalized interdiction problems and an

optimization-based heuristic to solve them are studied in Fischetti,

Monaci, and Sinnl (2018) . For additional material on fortification-

interdiction games see the reviews in Smith and Lim (2008) ,

Snyder et al. (2016) and Fischetti, Ljubic, Monaci, and Sinnl (2019) .

To the best of our knowledge, however, there is no polyhedral

study of different mixed integer optimization formulations that

arise due to the bilevel nature of the interaction between the

defender and the attacker. 

In this paper we focus on the polyhedral analysis of differ-

ent mixed integer formulations for GSGs and SSGs. In particular,

we provide the following four key contributions. First, we provide

an exhaustive comparative study of existing MILP formulations for

Stackelberg games. Starting from the natural bilevel representa-

tion of Stackelberg games, we use well-known integer program-

ming techniques such as Fourier-Motzkin elimination ( Dantzig &

Eaves, 1973 ) and Reformulation Linearization Technique ( Sherali &

Adams, 1994 ) to derive known MILP formulations. Our study leads

to a ranking of these MILP formulations in terms of the strength

of their linear programming (LP) relaxations. Second, we explic-

itly show the relation between the GSG and the SSG formulations

by using variable projections from the polyhedra of their LP relax-

ations. This allows us to extend our study of GSG formulations to

the security setting, leading to a comparison of SSG MILP formula-

tions. Third, we derive (SDOBSS q , y , s ) and (MIP- p -S q , y ), two new SSG

MILP formulations. We show that (MIP- p -S q , y ) is the MILP formu-

lation with the tightest linear relaxation among SSG formulations.

We further show that if we restrict (MIP- p -S q , y ) to a single attacker

type, its LP relaxation provides a complete linear description of the

convex hull of its feasible solutions. Fourth, we provide computa-
ional experiments that compare solution times of the MILP for-

ulations in both settings. Our experiments show that the formu-

ations with the tightest LP relaxations have faster solution times

s problem size increases. In particular (MIP- p -S q , y ) scales better

han competing formulations, being able to tackle larger-sized in-

tances. 

The remainder of this paper is organized as follows. In

ection 2 , we define general and security Stackelberg games. In

ection 3 , we derive GSG formulations from the literature. We pro-

ide theoretical results comparing the formulations presented. In

ection 4 , we describe and analyze computational experiments for

he formulations in Section 3 . In Section 5 , we present SSG formu-

ations using projections, in the appropriate space of variables, of

he formulations in Section 3 , and derive (SDOBSS q , y , s ) and (MIP- p -

 q , y ), new MILP formulations for SSGs. We then extend our theo-

etical comparisons of the general formulations to the security for-

ulations. In Section 6 , we describe and analyze the computational

xperiments for the security formulations. We conclude with some

losing remarks in Section 7 . 

. Notation and definition of the problem 

In this section, we provide a formal definition of the two types

f problems we study. 

.1. General Stackelberg games – GSGs 

Let K be the set of p followers. We denote by I the set of leader

ure strategies and by J the set of follower pure strategies. The

eader has a known probability of facing follower k ∈ K , denoted

y π k ∈ [0, 1]. We denote the n -dimensional simplex by S n = { a ∈
0 , 1] n : 

∑ n 
h =1 a h = 1 } . A mixed strategy for the leader consists in

 vector x ∈ S 
| I| such that for i ∈ I , x i is the probability with which

he leader plays pure strategy i . Analogously, a mixed strategy for

 follower k ∈ K is a vector q k ∈ S 
| J| such that, q k 

j 
is the probabil-

ty with which follower k replies with pure strategy j ∈ J . The re-

ards or payoffs for the leader and each follower, resulting from

heir choice of strategy, are encoded in a different matrix for each

ollower. These payoff matrices are denoted by ( R k , C k ), where

 

k ∈ R 

| I|×| J| is the leader’s reward matrix when facing follower k ∈ K

nd C k ∈ R 

| I|×| J| is the reward matrix for follower k . The expected

eward of the leader and follower k , respectively, can be expressed

s follows: 
 

i ∈ I 

∑ 

j∈ J 

∑ 

k ∈ K 
π k R 

k 
i j x i q 

k 
j , (1)

 

i ∈ I 

∑ 

j∈ J 
C k i j x i q 

k 
j , ∀ k ∈ K. (2)

or all k ∈ K , we define the function B 

k : S | I| −→ S 
| J| as the function

hat, given the leader’s mixed strategy x , returns a best response

 

k for each follower k . The solution concept used in these games

s the Strong Stackelberg Equilibrium (SSE), introduced in Leitman

1978) and defined below. 

efinition 1. A profile of mixed strategies (x, {B 

k (x ) } k ∈ K ) form an

SE if: 

1. The leader always plays a payoff-maximizing strategy: 

x T R 

k B 

k (x ) ≥ x ′ T R 

k B 

k (x ′ ) ∀ x ′ ∈ S 
| I| , ∀ k ∈ K. 

2. Each follower always plays a best-response, B 

k (x ) ∈ F k (x ) ,

where ∀ k ∈ K , 

F k (x ) = arg max 
q k 

{ x T C k q k : q k ∈ S 
| J| } 

is the set of best responses for each follower. 
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Table 1 

Payoff structure in an SSG when target j is 

attacked by an attacker k . 

Protected Unprotected 

Defender D k ( j | p ) D k ( j | u ) 

Attacker A k ( j | p ) A k ( j | u ) 
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3. Each follower breaks ties optimally in favor of the leader: 

x T R 

k B 

k (x ) ≥ x T R 

k q k ∀ q k ∈ F k (x ) . 

An SSE assumes that the follower breaks ties in favor of the

eader by choosing, when indifferent between different follower

trategies, the strategy that maximizes the payoff of the leader.

n SSE is in practice always achievable as the leader can always

nduce one by selecting a sub-optimal mixed strategy arbitrarily

lose to the equilibrium, causing the follower to prefer the desired

trategy ( von Stackelberg, 2011 ). 

Proposition 1 below, shows that we can restrict the follower’s

est response only to pure strategies, as done in Paruchuri et al.

2008) , without influencing the SSE solution concept. 

roposition 1. For any leader strategy x and any k ∈ K , there is a

est response to the kth follower’s problem that is given by a vector

 

k ∈ {0, 1} | J | such that 
∑ 

j∈ J q k j = 1 . 

roof. Assume that B k (x ) = q̄ k �∈ { 0 , 1 } | J| . We show that any

anonical vector e jk such that q̄ k 
j 
> 0 , is also a best re-

ponse vector, i.e. , e jk ∈ F k ( x ) and x T R k e jk ≥ x T R k q k for all q k ∈ F k ( x ).

ince q̄ k = 

∑ 

j∈ J q̄ k j e 
jk , with e jk ∈ S 

| J| , and x T C k e jk ≤ x T C k q̄ k for all

 ∈ J , we have that x T C k q̄ k = 

∑ 

j∈ J q̄ k j (x T C k e jk ) ≤ ∑ 

j∈ J q̄ k j (x T C k q̄ k ) =
 

T C k q̄ k . This implies that for any q̄ k 
j 
> 0 we have x T C k e jk = x T C k q̄ k ,

iving e jk ∈ F k ( x ). A similar argument shows that for any j such

hat q̄ k 
j 
> 0 we have x T R k e jk = x T R k q̄ k ; Hence, e jk is a best response

ector. �

In mathematical optimization, Stackelberg games are formu-

ated as bilevel programming (BP) problems ( Bracken & McGill,

973 ). In BP, the optimization problems have two levels where the

op level problem considers some variables that are the optimal so-

ution to another, second level optimization problem. Important BP

urveys are those by Kolstad (1985) , Savard (1989) , Anandalingam

nd Friesz (1992) and Labbé and Violin (2016) . In our setting,

he first level problem corresponds to the leader’s decision prob-

em and the nested problem corresponds to the follower’s decision

roblem. The following model, (BIL- p -G x , q ), is a bilevel program for

he general Stackelberg game problem: 

BIL- p-G x,q ) Max x,q 

∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

k ∈ K 
π k R 

k 
i j x i q 

k 
j (3) 

.t. x ∈ S 
| I| (4) 

q k ∈ arg max r k 

{ ∑ 

i ∈ I 

∑ 

j∈ J 
C k i j x i r 

k 
j 

} 

∀ k ∈ K, (5) 

r k j ∈ { 0 , 1 } ∀ j ∈ J, ∀ k ∈ K, (6) 

∑ 

j∈ J 
r k j = 1 ∀ k ∈ K. (7) 

The objective function maximizes the leader’s expected reward.

ondition (4) characterizes the mixed strategies considered by the

eader. The second level problem defined by (5) –(7) indicates that

he follower maximizes his own payoff by giving a best response

ith a pure strategy to the leader’s mixed strategy. Recall that such

 pure strategy always exists as shown in Proposition 1 . If there are

ultiple optimal strategies for the follower, the main level problem

elects the one that benefits the objective of the leader. 

.2. Stackelberg security games – SSGs 

In a Stackelberg security game (SSG) the defender allocates se-

urity resources to protect a subset of targets. Let J be the set of
 targets that could be attacked and assume there are security re-

ources to protect up to m < n of these targets. The set I of de-

ender pure strategies is composed by all 
∑ m 

i =1 

(
n 
i 

)
subsets of at

ost m targets of J that the defender can protect simultaneously.

ith a slight abuse of notation, we refer to i ∈ I in this context as

oth the index running through the set of defender pure strategies

 and as i ⊂ J the corresponding subset of J with at most m targets

hat are protected by security resources. Similar to GSGs, the ele-

ents j ∈ J constitute the pure strategies of each attacker, which for

SG represents the single target attacked by the follower. In SSGs,

ayoffs for the players only depend on whether the target attacked

s protected or not. This means that many of the strategies have

dentical payoffs. The authors in Kiekintveld et al. (2009) use this

act to construct a compact representation of the payoffs. 

We denote by D 

k the utility of the defender when facing an

ttacker k ∈ K and by A 

k the utility of attacker k . Associated with

ach target and each player there are two payoffs depending on

hether or not the target is protected, see Table 1 . Kiekintveld

t al. (2009) take advantage of the aforementioned compact rep-

esentation to define a protection vector c whose components, c j ,

epresent the frequency with which target j is protected. The com-

onents of the vector c satisfy 

 j = 

∑ 

i ∈ I: j∈ i 
x i ∀ j ∈ J, (8)

.e. , the frequency with which target j is protected is expressed as

he sum of all probabilities of the strategies that protect that tar-

et. Variables q k 
j 

indicate whether an attacker k strikes a target j . 

The defender’s and attacker k ’s expected rewards, are, respec-

ively: 
 

j∈ J 

∑ 

k ∈ K 
π k q k j { c j D 

k ( j| p) + (1 − c j ) D 

k ( j| u ) } , (9)

 

j∈ J 
q k j { c j A 

k ( j| p) + (1 − c j ) A 

k ( j| u ) } , ∀ k ∈ K. (10)

s with GSGs, such a game can be modeled by means of bilevel

rogramming. 

BIL- p-S x,c,q ) 

ax 
∑ 

j∈ J 

∑ 

k ∈ K 
π k q k j { c j D 

k ( j| p) + (1 − c j ) D 

k ( j| u ) } 

.t. (4) , (8) , 

q k ∈ arg max r k 

{ ∑ 

j∈ J 
r k j (c j A 

k ( j| p) + (1 − c j ) A 

k ( j| u ) 

} 

∀ k ∈ K,

r k j ∈ { 0 , 1 } ∀ j ∈ J, ∀ k ∈ K, ∑ 

j∈ J 
r k j = 1 ∀ k ∈ K. 

he objective function maximizes the defender’s expected reward.

onstraints (4) and (8) characterize the exponentially many mixed

trategies considered by the defender and relate them to the fre-

uencies with which targets are protected. The remaining con-

traints constitute the second level optimization problem which

nsures that the attacker maximizes his profit by attacking a single

arget that is the best response to the defender’s selected strategy.
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Notice that a more compact formulation – one involving a polyno-

mial number of variables and constraints–can be obtained if pro-

jecting out the exponentially many x variables does not lead to ex-

ponentially many constraints. This would give a polynomial size

formulation involving only the c and the q variables. Given an op-

timal solution to this compact formulation – an optimal protection

vector c and an optimal attack vector q – a probability vector x , so-

lution to this game in extensive form, can be obtained by solving

the system of linear inequalities defined by conditions (4) and (8) .

As this system involves n + 1 equalities, there exists a solution in

which the number of variables x i with a positive value is not larger

than n + 1 , i.e. , the output size of an SSG, under extensive form, is

polynomial in the input size. See Section 5 for more details. 

3. General Stackelberg games – GSGs 

In Section 3.1 , we present equivalent MILP formulations for the

p follower GSG. In Section 3.2 we compare the polyhedra of the LP

relaxations for the different formulations. 

3.1. General Stackelberg games: single level formulations 

Paruchuri et al. (2008) tackle the problem of solving the bilevel

formulation presented earlier, (BIL- p -G x , q ) by using a MILP refor-

mulation. They replace the second level nested optimization prob-

lem, described by (5) –(7) , by the following set of constraints: ∑ 

j∈ J 
q k j = 1 ∀ k ∈ K, (11)

q k j ∈ { 0 , 1 } ∀ j ∈ J, ∀ k ∈ K, (12)

0 ≤ (s k −
∑ 

i ∈ I 
C k i j x i ) ≤ (1 − q k j ) · M ∀ j ∈ J, ∀ k ∈ K, (13)

where s k ∈ R for all k ∈ K and M is an arbitrarily large positive con-

stant. The two inequalities in constraints (13) ensure that q k 
j 
= 1

only for a pure strategy that maximizes the follower’s payoff. The

problem defined by (3) and (4) and (11) –(13) is referred to as

(QUAD x , q , s ). It is possible to eliminate the nonlinearity in the ob-

jective function of (BIL- p -G x , q ) by adding additional variables that

represent the product between x and q . To be more precise, use

z k 
i j 

= x i q 
k 
j 

for all i ∈ I , j ∈ J and k ∈ K . This gives rise to formulation

(DOBSS q , z , s ) introduced in Paruchuri et al. (2008) : 

(DOBSS q,z,s ) Max 
∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

k ∈ K 
π k R 

k 
i j z 

k 
i j 

s.t. (11) , (12) , ∑ 

j∈ J 
z k i j = 

∑ 

j∈ J 
z 1 i j ∀ i ∈ I, ∀ k ∈ K, (14)

∑ 

i ∈ I 
z k i j = q k j ∀ j ∈ J, ∀ k ∈ K, (15)

z k i j ≥ 0 ∀ i ∈ I, ∀ j ∈ J, ∀ k ∈ K, (16)

0 ≤ s k −
∑ 

i ∈ I 

∑ 

j ′ ∈ J 
C k i j z 

k 
i j ′ 

≤ (1 − q k j ) · M ∀ j ∈ J, ∀ k ∈ K, (17)

s ∈ R 

| K| . 

Alternatively the quadratic term in the objective of (BIL- p -G x , q ) can

be addressed by adding | K | new variables and introducing a second
amily of constraints involving a big M constant. This gives rise to

ormulation (D2 x , q , s , f ) below (a DOBSS variant with 2 big M con-

traints that appears in ( Kiekintveld et al., 2009 ): 

D2 x,q,s, f ) Max 
∑ 

k ∈ K 
π k f k (18)

.t. (4) , (11) − (13) , 

f k ≤
∑ 

i ∈ I 
R 

k 
i j x i + (1 − q k j ) · M ∀ j ∈ J, ∀ k ∈ K, (19)

s, f ∈ R 

| K| ∀ k ∈ K. 

dditionally, we project the real variables s k in constraints (13) and

17) out by using Fourier–Motzkin elimination ( Dantzig & Eaves,

973 ). This gives rise to constraints: 
 

i ∈ I 
(C k i j − C k i� ) x i ≤ (1 − q k � ) · M ∀ j, � ∈ J, ∀ k ∈ K, (20)

 

i ∈ I 

∑ 

j ′ ∈ J 
(C k i j − C k i� ) z 

k 
i j ′ ≤ (1 − q k � ) · M ∀ j, � ∈ J, ∀ k ∈ K. (21)

eplacing (13) by (20) in (D2 x , q , s , f ) and (17) by (21) in (DOBSS q , z , s )

ields (D2 x , q , f ) and (DOBSS q , z ). We analyze the behavior of these

ast two new formulations compared to that of (D2 x , q , s , f ) and

DOBSS q , z , s ) to see if removing variables s at the expense of adding

onstraints is worthwile. 

Another equivalent MILP formulation for the p -follower GSG can

e obtained by replacing constraints (17) with the following set of

onstraints: 
 

i ∈ I 
(C k i j − C k i� ) z 

k 
i j ≥ 0 ∀ j, � ∈ J, ∀ k ∈ K. (22)

hese constraints are derived by multiplying constraints (20) by

 

k 
� , reorganizing and replacing the nonlinear terms x i q 

k 
j 

by z k 
i j 

. This

eads to (MIP- p -G q , z ): 

MIP- p-G q,z ) Max 
∑ 

i ∈ I 

∑ 

j∈ J 

∑ 

k ∈ K 
π k R 

k 
i j z 

k 
i j 

s.t. (11) , (12) , (14) − (16) , (22) . 

he linear relaxation of (MIP- p -G q , z ) appears in Yin and Tambe

2012) . The MILP formulation is a p -follower extension to the

ingle follower formulation (MIP-1-G q , z ), due to Conitzer and

orzhyk (2011) . Formal proofs that the formulations seen thus far

re equivalent MILP formulations, i.e. , that they are valid for the p -

ollower GSG, appear in Paruchuri et al. (2008) for (DOBSS q , z , s ) and

aruchuri et al. (2008) and Kiekintveld et al. (2009) for (D2 x , q , s , f ).

hese proofs show that each of them is equivalent to (QUAD x , q , s ).

he equivalence of (DOBSS z , q ) and (D2 x , q , f ) is obtained from the

ourier-Motzkin elimination procedure ( Dantzig & Eaves, 1973 ).

he equivalence proof for (MIP- p -G q , z ) is analogous to the proof

sed to show the equivalence for (DOBSS q , z , s ) and is omitted here. 

Paruchuri et al. (2008) state that the big M constants used are

rbitrarily large. To be as computationally competitive as possible,

e provide the tightest value for each big M constant in the for-

ulations discussed thus far. 

roposition 2. The tightest values for the positive constants M are: 

1. In (19) , M = max i ∈ I { max � ∈ J R k i� 
− R k 

i j 
} ∀ j ∈ J, ∀ k ∈ K. 

2. In (13) and (17) , M = max i ∈ I { max � ∈ J C k i� 
− C k 

i j 
} ∀ j ∈ J, ∀ k ∈ K. 

3. In (20) and (21) , M = max i ∈ I { C k i j 
− C k 

i� 
} , ∀ j, � ∈ J, ∀ k ∈ K. 

.2. Comparison of the formulations 

Given a formulation F, we denote by F its linear (continuous)

elaxation and by P( F ) the polyhedral feasible region of F . Fur-

her, let Q = { (x, z) ∈ R 

n × R 

m : Ax + Bz ≤ d} . Then the projection
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f Q into the x -space, denoted Proj x Q , is the polyhedron given

y P roj x Q = { x ∈ R 

n : ∃ z ∈ R 

m for which (x, z) ∈ Q} , see Pochet and

olsey (2006) . 

First, we introduce an additional formulation which we denote

y (DOBSS x , q , z , s , f ). This formulation is equivalent to (DOBBS q , z , s ),

n the sense that the values of their LP relaxations coincide. In

his formulation, we introduce variables f k for all k ∈ K to rewrite

he objective function so that it matches the objective function

f (D2 x , q , s , f ). We also add variables x i for all i ∈ I by rewriting

14) as
∑ 

j∈ J z k i j 
= x i for all i ∈ I and all k ∈ K . Using this last condi-

ion, we can simplify (17) –(13) . The formulation (DOBSS x , q , z , s , f ) is as

ollows. 

DOBSS x,q,z,s, f ) Max 
∑ 

k ∈ K 
π k f k 

s.t. (11) − (13) , (15) , (16) , 

f k = 

∑ 

i ∈ I 

∑ 

j∈ J 
R 

k 
i j z 

k 
i j ∀ k ∈ K, (23) 

∑ 

j∈ J 
z k i j = x i ∀ i ∈ I, ∀ k ∈ K, (24) 

s ∈ R 

| K| . 

urther, note that from the Fourier Motzkin elimination procedure

e have that 

( D2 x,q, f ) = P roj x,q, f P( D2 x,q,s, f ) and, 

( DOBSS q,z ) = P roj q,z P( DOBSS q,z,s ) . 

roposition 3. P roj x,q,s, f P( DOBSS x,q,z,s, f ) ⊆ P( D2 x,q,s, f ) . Further,

here exist instances for which the inclusion is strict. 

roof. Note that all the constraints of P( D2 x,q,s, f ) can be found in

he description of P( DOBSS x,q,z,s, f ) except for constraints (4) and

19) . Constraints (4) are implied by constraints (11), (15), (16) and

24) . 

Further, the projection of P( DOBSS x,q,z,s, f ) on the ( x , q , s , f )-

pace can be obtained by applying Farkas’ Lemma Farkas (1902) .

onstraints (15), (16), (23) and (24) are the only ones involving

ariables z k 
i j 

and are separable by k ∈ K . For a fixed k ∈ K the pro-

ection is given by: 

 

k = { (x, q, f ) : α f k + 

∑ 

i ∈ I 
βi x i + 

∑ 

j∈ J 
γ j q 

k 
j ≥ 0 ∀ (α, γ , β) : 

R 

k 
i j + βi + γ j ≥ 0 ∀ i ∈ I, ∀ j ∈ J} (25)

or a fixed j ∈ J , define α = −1 , βi = R k 
i j 

for all i ∈ I , γ j = 0 and

� = max i ∈ I (R k 
i� 

− R k 
i j 
) for all � ∈ J with � � = j . This definition of the

arameters satisfies αR k 
i j 

+ βi + γ j ≥ 0 for all i ∈ I , j ∈ J . Substituting

hese parameters in the generic constraints of A 

k yields 

f k ≤
∑ 

i ∈ I 
R 

k 
i j x i + 

∑ 

� ∈ J: � � = j 
max 

i ∈ I 
(R 

k 
i� − R 

k 
i j ) q 

k 
� ∀ j ∈ J, ∀ k ∈ K. (26)

onstraints (26) imply constraints (19) for the tight value of M pro-

ided in Proposition 2 since for all j ∈ J and k ∈ K , 

∑ 

� ∈ J: � � = j 
max 

i ∈ I 
(R 

k 
i� − R 

k 
i j ) q 

k 
� ≤ max 

i ∈ I 

{
max 

� ∈ J 
R 

k 
i� − R 

k 
i j 

}
∑ 

� ∈ J: � � = j 
q k � = max 

i ∈ I 

{
max 

� ∈ J 
R 

k 
i� − R 

k 
i j 

}
(1 − q k j ) . 

his proves the inclusion. To show that the inclusion may be strict,

onsider the following example where | I| = | J| = 3 and | K| = 1 . Let
he payoff matrix for the game be 

(R, C) = 

( 

(1 , 0) (0 , 0) (0 , 0) 
(0 , 0) (1 , 0) (0 , 0) 
(0 , 0) (0 , 0) (0 , 0) 

) 

nd consider the point defined by x = (1 , 0 , 0) t , q = ( 1 3 , 
1 
3 , 

1 
3 ) 

t ,

 = 10 and f = 2 / 3 . Such a point is feasible for ( D2 x,q,s, f ) but vi-

lates constraints (26) for j = 2 and is therefore infeasible for

 roj x,q,s, f P( DOBSS x,q,z,s, f ). �

Next, we compare the polyhedra P( MIP- p-G q,z ) and

 roj q,z P( DOBSS q,z,s ) . 

heorem 1. P( MIP- p-G q,z ) ⊆ P( DOBSS q,z ) = P roj q,z P( DOBSS q,z,s ).

urther, there exist instances for which the inclusion is strict. 

roof. The description of P( DOBSS q,z ) differs from that of

( MIP- p-G q,z ) by only one set of constraints: (21) must hold in-

tead of (22) . Hence, the remainder of the proof consists in show-

ng that (21) are implied by (11), (14) –(16), (22) and the nonnega-

ivity of the q variables. The LHS of (21) can be rewritten as: ∑ 

i ∈ I 
(C k i j − C k i� ) z 

k 
i� + 

∑ 

i ∈ I 

∑ 

j ′ ∈ J: j ′ � = � 
(C k i j − C k i� ) z 

k 
i j ′ 

≤
∑ 

i ∈ I 

∑ 

j ′ ∈ J: j ′ � = � 
(C k i j − C k i� ) z 

k 
i j ′ , using (22) , 

≤ max 
i ∈ I 

{ C k i j − C k i� } 
∑ 

j ′ ∈ J: j ′ � = � 

∑ 

i ∈ I 
z k i j ′ 

≤ M 

∑ 

j ′ ∈ J: j ′ � = � 
q k j ′ , given Proposition 2 and (15) 

 M(1 − q k � ) , by (11) . 

o show that the inclusion may be strict consider the p -follower

SG between a leader and a fixed follower k ∈ K where the payoff

imatrix is: 

(R 

k , C k ) = 

(
(0 , 1) (1 , 0) 
(0 , 0) (0 , 0) 

)
he point with coordinates x = ( 1 / 2 , 1 / 2 ) t , q k = ( 1 / 2 , 1 / 2 ) t and 

 

k = 

(
1 / 4 1 / 4 

1 / 4 1 / 4 

)
as an objective value of 1/4 and is feasible in P( DOBSS q,z ). How-

ver it is not a feasible point in P( MIP- p-G q,z ) as it does not verify

onstraints (22) when j = 2 and � = 1 . �

From an interpretation point of view, (MIP- p -G q , z ) can be seen

s the result of applying Reformulation Linearization Technique

RLT) Sherali and Adams (1994) to (DOBSS q , z ). Indeed, by multiply-

ng both sides of constraints (20) by variable q k � and noticing that

 

k 
� (1 − q k � ) = 0 since q is binary, one obtains 

∑ 

i ∈ I (C k i j 
− C k 

i� 
) x i q 

k 
� ≤ 0

hich, once linearized by introducing variables z k 
i� 
, yields (22) . 

For a given formulation F, we denote its optimal value by v ( F )
nd the optimal value of its LP relaxation by v ( F ) . Since (D2 x , q , s , f )

nd (DOBSS x , q , s , f ) and (DOBSS q , z ) and (MIP- p -G q , z ) have the same

bjective function, the following corollary holds. 

orollary 1. v ( MIP- p-G q,z ) ≤ v ( DOBSS q,z ) = v ( DOBSS x,q,s, f ) ≤
 ( D2 x,q,s, f ) . 

Finally, when (MIP- p -G) is restricted to a single follower type,

onitzer and Korzhyk (2011) showed that the integrality costraints

re redundant, i.e. , the remaining constraints in (MIP-1-G) pro-

ide a complete linear description of the convex hull of feasible

olutions. 
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Fig. 1. GSGs: | I | ∈ {10, 20, 30}, | J | ∈ {10, 20, 30}, | K | ∈ {2, 4, 6} – without variability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

b  

r  

c  

i  

t  

m

 

(  

p  

a

 

t  

c  

G  

b  

f  

o  

(  

c  

t  

t  

a  

O  

t  

i  

t  

v

 

r  

t  

(  
4. Computational experiments for GSGs 

Here, we present computational experiments for the formula-

tions in Section 3 . The machine used for these experiments is an

Intel Core i7-4930K CPU, 3.40 gigahertz, equipped with 64 giga-

bytes of RAM, 6 cores, 12 threads and running the Ubuntu oper-

ating system release 12.10 (kernel Linux 3.5.0-41-generic). The ex-

periments were coded in the programming language Python and

GUROBI version 6.5.1 was the optimization solver used with a 3

hour solution time limit. 

The instances solved in the computational experiments are ran-

domly generated. We consider two different ways of randomly

generating the payoff matrices for the leader and the different fol-

lower types. First, we consider matrices where all the elements are

randomly generated between 0 and 10 and second, we consider

matrices where 90% of the values are between 0 and 10 but we

allow for 10% of the data to deviate between 0 and 100. In the

first case we say that there is no variability in the payoff matrices,

in the sense that all the data is uniformly distributed, whereas in

the second case, we refer to the payoff matrices as matrices with

variability. 

A general Stackelberg game instance is defined by three param-

eters: | I |, the number of leader pure strategies, | J |, the number of

follower pure strategies and | K |, the number of follower types. For

the purpose of these experiments, we have considered instances

where | I | ∈ {10, 20, 30}, | J | ∈ {10, 20, 30} and | K | ∈ {2, 4, 6}. For each

instance size, 5 instances are generated without variability in the

payoff matrices and 5 are generated with variability. In total, we

consider 135 instances without variability and 135 instances with

variability. 

Performance profiles summarize our results, with respect to the

following 4 measures: total running time employed to solve the

integer problem, running time employed to solve the linear relax-
 c  
tion of the integer problem, total number of nodes explored in the

ranch and bound (B&B) tree and percentage optimality gap at the

oot node. The percentage optimality gap at the root node is cal-

ulated by comparing the optimal values of the formulation and of

ts LP relaxation: v ( F ) −v (F ) 
v (F ) 

· 100 . A performance profile graph plots

he total percentage of problems solved for each value of these

easures. 

We study the behavior of (D2 x , q , s , f ), (D2 x , q , f ), (DOBSS q , z , s ),

DOBSS q , z ) and (MIP- p -G q , z ). Figs. 1 and 2 compare the performance

rofiles when the payoff matrices are generated without variability

nd with variability, respectively. 

We observe that the instances where variability is introduced in

he payoff matrices solve faster than those where no variability is

onsidered. When there is no variability, (DOBSS q , z , s ) and (MIP- p -

 q , z ) are the two most competitive formulations. (D2 x , q , s , f ) can also

e solved efficiently for the mid-range instances but slows down

or the more difficult instances. Introducing variability in the pay-

ff matrices, however, leads to a dominance of (MIP- p -G q , z ) with

DOBSS q , z , s ) coming in a close second and (D2 x , q , s ) becoming non-

ompetitive for these instances. Regarding the time spent solving

he linear relaxation of the problems, formulation (MIP- p -G q , z ) is

he hardest to solve due to the fact that is has the most vari-

bles and constraints, O(| K|| J| 2 ) . On the other hand, (D2 x , q , s , f ), with

(| K|| J| ) variables and constraints, is the fastest. With respect to

he number of nodes and gap percentage, our theoretical find-

ngs are corroborated: (MIP- p -G q , z ) is the tightest formulation and

herefore uses the fewest nodes. This is even more the case when

ariability is introduced. 

Table 2 summarizes the mean percentage optimality gap at the

oot node obtained across the instances solved. Finally, note that

he formulations obtained through Fourier-Motzkin, (D2 x , q , f ) and

DOBSS q , z ), explore slightly less nodes in the B&B tree than their

ounterparts, (D2 x , q , s , f ) and (DOBSS q , z , s ), but because of the increase
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Fig. 2. GSGs: | I | ∈ {10, 20, 30}, | J | ∈ {10, 20, 30}, | K | ∈ {2, 4, 6} – with variability. 

Table 2 

Mean percentage optimality gap at the root node recorded for GSG formulations. 

(D2 x , q , s , f ) (DOBSS q , z , s ) (MIP- p -G q , z ) 

Mean % opt. gap (no variability) 117.68 23.01 9.94 

Mean % opt. gap (with variability) 103.44 40.74 5.17 

Total mean % opt. gap 110.56 31.88 7.56 

i  

l  

F

5

 

d  

W  

t  

s  

s  

t  

t  

s  

p

R

C

 

a  

e  

a  

e

5

 

(  

t  

u

(

M

s

0

s

 

e  

v

 

a  

s  

a  

t  

n  

x  

(

P

A

n the number of constraints, the time to solve each linear re-

axation increases. This increases the overall solution time of the

ourier–Motzkin formulations. 

. Stackelberg security games-SSGs 

In this section, we derive three SSG formulations: (ERASER c , q , s , f ),

ue to Kiekintveld et al. (2009) , and (SDOBSS q , y , s ) and (MIP- p -S q , y ).

e derive these formulations by exploring the inherent link be-

ween the general setting, considered up to now and the security

etting, defined in Section 2.2 . In this setting, the defender pure

trategies i ∈ I correspond to the different ways in which up to m

argets can be protected simultaneously. With a slight abuse of no-

ation, i ∈ I refers both to the index running through the set of pure

trategies I and to the subset of at most m targets protected by

ure strategy i ∈ I . Recall that the payoff matrices of SSGs satisfy: 

 

k 
i j = 

{
D 

k ( j| p) if j ∈ i 

D 

k ( j| u ) if j / ∈ i 
(27) 

 

k 
i j = 

{
A 

k ( j| p) if j ∈ i 

A 

k ( j| u ) if j / ∈ i 
(28) 

The payoff for the leader that commits to a pure strategy i ∈ I

nd a follower of type k ∈ K responds by selecting strategy j ∈ J is

ither a reward if pure strategy i ∈ I protects attacked target j ∈ J , or,

 penalty if strategy i does not protect target j . The same argument

xplains the link between payoffs for the attackers. 
.1. Stackelberg security games: single level formulations 

The first formulation we derive is based on (D2 x , q , s , f ). Consider

D2 c , x , q , s , f ), an extended description of (D2 x , q , s , f ) where we introduce

he c variables through constraints (8) (see Section 2.2 ). We further

se relations (27) and (28) to adapt the payoff structure: 

D2 c,x,q,s, f ) 

ax 
∑ 

k ∈ K 
π k f k 

.t. (4) , (8) , (11) , (12) , 

 ≤ s k − A 

k ( j| p) c j − A 

k ( j| u )(1 − c j ) ≤ (1 − q k j ) · M 

∀ j ∈ J, ∀ k ∈ K, (29) 

f k ≤ D 

k ( j| p) c j + D 

k ( j| u )(1 − c j ) + (1 − q k j ) · M ∀ j ∈ J, ∀ k ∈ K, 

(30) 

, f ∈ R 

K . 

This extended formulation is equivalent to (D2 x , q , s , f ), because,

ven though they are defined in different spaces of variables, the

alue of their LP relaxations coincide. 

The formulation above has a large number of non-negative vari-

bles since in the security setting, the set I of all defender pure

trategies is exponential in the number of targets as it contains

ll subsets of at most m targets of J that the defender can pro-

ect simultaneously. In order to avoid having exponentially many

on-negative variables in our formulation, we project out variables

 i , i ∈ I , from the formulation. Note that only constraints (4) and

8) involve said variables. 

roposition 4. Consider the following two sets: 

 = P roj c 
{
(x, c) ∈ R 

| I| × R 

| J| : (4) , (8) 
}
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B = 

{ 

c ∈ R 

| J| : 
∑ 

j∈ J 
c j ≤ m, c j ∈ [0 , 1] ∀ j ∈ J 

} 

Then, A = B . 

Proof. Observe first that using Farkas’ Lemma Farkas (1902) : 

A = 

{ 

c ∈ R 

| J| : 
∑ 

j∈ J 
α j c j + α| J| +1 ≥ 0 ∀ α ∈ R 

| J| +1 : 

∑ 

j ∈ J: j ∈ i 
α j + α| J| +1 ≥ 0 ∀ i ∈ I : | i | ≤ m and α| J| +1 ≥ 0 

} 

, 

Thus A ⊆B . Indeed, the following 2 | J| + 1 vectors in R 

| J| +1 : 

∀ j ∈ J, e j ∈ R 

| J| +1 : e j 
j 
= 1 , e j 

k 
= 0 ∀ k ∈ J : k � = j and e j | J| +1 

= 0 , 

∀ j ∈ J, f j ∈ R 

| J| +1 : f j 
j 

= −1 , f j 
k 

= 0 ∀ k ∈ J : k � = j 

and f j | J| +1 
= 1 and 

g ∈ R 

| J| +1 : g j = −1 ∀ j ∈ J and g | J| +1 = m, 

satisfy 
∑ 

j ∈ J: j ∈ i α j + α| J| +1 ≥ 0 and α| J| +1 ≥ 0 . Additionally, when we

substitute the above vectors into the generic constraints defining A ,

they yield all the constraints defining B . 

To show that A = B, it remains to show that any other inequal-

ity ∑ 

j∈ J 
α j c j + α| J| +1 ≥ 0 (31)

such that α satisfies ∑ 

j ∈ J: j ∈ i 
α j + α| J| +1 ≥ 0 ∀ i ∈ I : | i | ≤ m and α| J| +1 ≥ 0 , (32)

is dominated by some nonnegative linear combination of the con-

straints defining B . 

First, note that we can restrict our attention to constraints such

that αj ≤ 0 for all j ∈ J . If there exists ˆ j ∈ J such that α ˆ j 
> 0 , since

α must satisfy (32) and | i \ { ̂  j }| ≤ | i | ≤ m, it follows that ᾱ with

ᾱ ˆ j 
= 0 and ᾱ j = α j for all j ∈ J \ { ̂  j } also satisfies (32) and since

c ≥ 0, we have that ∑ 

j∈ J 
ᾱ j c j + ᾱ| J| +1 ≤

∑ 

j∈ J 
α j c j + α| J| +1 . 

Therefore, the constraint defined by α is dominated by the con-

straint defined by ᾱ. We thus distinguish two cases of α satisfying

(32) : 

Case 1. |{ j : α j < 0 }| = k ≤ m, and 

Case 2. |{ j : α j < 0 }| = k > m . 

In Case 1, by considering a linear combination of inequali-

ties c j ≤ 1 for 1 ≤ j ≤ k with respective weights −α j ≥ 0 , we obtain

that: 

0 ≤
k ∑ 

j=1 

α j c j −
k ∑ 

j=1 

α j ≤
∑ 

j∈ J 
α j c j + α| J| +1 , 

since α j = 0 for all j > k and α satisfies (32) for i = { 1 , . . . , k } . 
For Case 2, assume w.l.o.g that α1 ≤α2 ≤ ��� ≤αk < 0 and α j =

0 for all j > k . Then, build a linear combination of inequality

�j ∈ J c j ≤ m with weight −αm 

≥ 0 and inequalities c j ≤ 1 for 1 ≤ j ≤ m
ith respective weights αm 

− α j ≥ 0 . The valid inequality thus ob-

ained is: 

0 ≤
m ∑ 

j=1 

α j c j + 

∑ 

j>m 

αm 

c j −
m ∑ 

j=1 

α j ≤
∑ 

j∈ J 
α j c j 

−
m ∑ 

j=1 

α j , since α j ≥ αm 

for all j > m 

∑ 

j∈ J 
α j c j + α| J| +1 , 

ince α satisfies (32) for i = { 1 , . . . , m } . �

Proposition 4 leads to the following formulation based on

D2 c , x , q , s , f ): 

ERASER c,q,s, f ) 

ax 
∑ 

k ∈ K 
π k f k 

.t. (11) , (12) , (29) , (30) , ∑ 

j∈ J 
c j ≤ m, 

0 ≤ c j ≤ 1 ∀ j ∈ J, 

s, f ∈ R 

K . 

he above formulation involves a polynomial number of variables

nd constraints and was presented in Kiekintveld et al. (2009) . The

ext result is also an immediate consequence of Proposition 4 . 

orollary 2. P roj c,q,s, f P( D2 c,x,q,s, f ) = P( ERASER c,q,s, f ) . 

We now derive new SSG formulations based on (DOBSS q , z , s ) and

MIP- p -G q , z ). We first present extended descriptions of both formu-

ations by considering y k 
� j 

variables satisfying: 

 

k 
� j = 

∑ 

i ∈ I: � ∈ i 
z k i j ∀ j, � ∈ J, ∀ k ∈ K. (33)

e use (27) and (28) to adapt the payoffs to the security setting

eading to: 

DOBSS q,z,y,s ) 

ax 
∑ 

j∈ J 

∑ 

k ∈ K 
{ π k (D 

k ( j| p) y k j j + D 

k ( j| u )(q k j − y k j j )) } (34)

.t. (11) , (12) , (14) − (16) , (33) , 

0 ≤ s k − A 

k ( j| p) 
∑ 

j ′ ∈ J 
y k j j ′ −

A 

k ( j| u )(1 −
∑ 

j ′ ∈ J 
y k j j ′ ) ≤ (1 − q k j ) · M ∀ j ∈ J, ∀ k ∈ K, (35)

s ∈ R 

| K| . (36)

MIP- p-G q,z,y ) Max 
∑ 

j∈ J 

∑ 

k ∈ K 
π k (D 

k ( j| p) y k j j + D 

k ( j| u )(q k j − y k j j )) 

s.t. (11) , (12) , (14) − (16) , (33) , 

A 

k ( j| p) y k j j + A 

k ( j| u )(q k j − y k j j ) 

− A 

k (� | p) y k 
� j − A 

k (� | u )(q k j − y k 
� j ) ≥ 0 

∀ j, � ∈ J, ∀ k ∈ K. (37)

urther, consider the following constraints: 
 

j∈ J 
y k 

� j = 

∑ 

j∈ J 
y 1 � j ∀ � ∈ J, ∀ k ∈ K, (38)
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nd let us define the following polyhedra C and D : 

 := { (q, z, y, s ) ∈ [0 , 1] | K|| J| × [0 , 1] | K|| I|| J| × [0 , 1] | K|| J| 2 × R 

| K| : 

(11) , (15) , (16) , (33) , (35) , (36) , (38) } 

 : = { (q, z, y ) ∈ [0 , 1] | K|| J| × [0 , 1] | K|| I|| J| × [0 , 1] | K|| J| 2 : (11) , (15) , 

(16) , (33) , (35) , (36) , (38) } 
emma 1. C ⊇ P( DOBSS q,z,y,s ) and D ⊇ P( MIP- p-G q,z,y ) 

roof. Consider constraints (14) and sum over all i ∈ I such that

 ∈ i : 
 

i ∈ I: 
� ∈ i 

∑ 

j∈ J 
z k i j = 

∑ 

i ∈ I: 
� ∈ i 

∑ 

j∈ J 
z 1 i j ∀ � ∈ J, ∀ k ∈ K. (39)

pplying (33) –(39) yields (38) and the result follows. �

We now project the z variables from the larger polyhedra C and

 . Said variables only appear in constraints (15), (16) and (33) . 

emma 2. Consider the following two sets; 

 = P roj q,y 

{
(q, z, y ) ∈ R 

| K || J| 2 + | K || J| + | I|| J|| K | : (15) , (16) , (33) 
}

 = { (q, y ) ∈ R 

| K || J| 2 + | K || J| : 
∑ 

� ∈ J 
y k 

� j ≤ mq k j ∀ j ∈ J,∀ k ∈ K, 

 ≤ y k 
� j ≤ q k j ∀ j, � ∈ J, ∀ k ∈ K} 

Then, X = Y . 

roof. Note that constraints (15), (16) and (33) can be treated in-

ependently for each k ∈ K and each j ∈ J . First consider the case

here q 
ˆ k 
ˆ j 
= 0 for ˆ j ∈ J and 

ˆ k ∈ K. Constraints (15) then imply that

or all i ∈ I , z 
ˆ k 

i ̂ j 
= 0 and constraints (33) force y 

ˆ k 

� ̂ j 
= 0 for all � ∈ J

nd the result holds. For all j ∈ J , k ∈ K such that q k 
j 
� = 0 , con-

ider x i = z k 
i j 
/q k 

j 
and c � = y k 

� j 
/q k 

j 
and apply Proposition 4 . The result

ollows. �

Consider Proj q , y , s C and Proj q , y D as the feasible regions of the

inear relaxations of two MILP formulations–(SDOBSS q , y , s ) and

MIP- p -S q , y )–where we maximize the objective function (34) un-

er the additional requirement that the q variables be binary.

ence, we present (SDOBSS q , y , s ), a security formulation based on

DOBSS q , z , y , s ), 

SDOBSS q,y,s ) 

ax 
∑ 

j∈ J 

∑ 

k ∈ K 
π k (D 

k ( j| p) y k j j + D 

k ( j| u )(q k j − y k j j )) 

.t. (11) , (12) , (35) , (38) ∑ 

� ∈ J 
y k 

� j ≤ mq k j ∀ j ∈ J, ∀ k ∈ K, (40) 

 ≤ y k 
� j ≤ q k j ∀ j, � ∈ J, ∀ k ∈ K, (41) 

 ∈ R 

| K| . 
nd we also present (MIP- p -S q , y ), a security formulation based on

MIP- p -G q , z , y ), 

MIP- p-S q,y ) Max 
∑ 

j∈ J 

∑ 

k ∈ K 
π k (D 

k ( j| p) y k j j + D 

k ( j| u )(q k j − y k j j )) 

s.t. (11) , (12) , (35) , (38) 

he following corollaries are an immediate consequence of

emmas 1 and 2 . 
orollary 3. P roj q,y,s P( DOBSS q,z,y,s ) ⊆ P( SDOBSS q,y,s ) . 

orollary 4. P roj q,y P( MIP- p-G q,z,y ) ⊆ P( MIP- p-S q,y ) . 

In addition, note that if we restrict (MIP- p -G q , z , y ) to a single

ype of follower, constraints (14) disappear and one thus obtains

he following corollary. 

orollary 5. P roj q,y P( MIP-1-G q,z,y ) = P( MIP-1-S q,y ) 

The above corollary immediately leads to the following

heorem. 

heorem 2. ( MIP-1-S q,y ) is a linear description of the convex hull of

easible solutions for the Stackelberg security game with a single type

f attacker. 

roof. The result follows from Corollary 5 and from Conitzer and

orzhyk (2011) showing that ( MIP-1-G q,z ) is a linear description for

eneral games. �

As in general games, we use Fourier–Motzkin elimination on

onstraints (29) and (35) to project out the s variables from for-

ulations (ERASER c , q , s , f ) and (SDOBSS q , y , s ), respectively. This leads

o the following two families of inequalities: 

(A 

k ( j| p) − A 

k ( j| u )) c j + (A 

k (� | u ) − A 

k (� | p)) c � + A 

k ( j| u ) 

− A 

k (� | u ) ≤ (1 − q k � ) · M ∀ j, � ∈ J, ∀ k ∈ K, (42) 

(A 

k ( j| p) − A 

k ( j| u )) 
∑ 

h ∈ J 
y k jh + (A 

k (� | u ) − A 

k (� | p)) 
∑ 

h ∈ J 
y k 

�h 

+ A 

k ( j| u ) − A 

k (� | u ) ≤ (1 − q k � ) · M ∀ j, � ∈ J, ∀ k ∈ K, (43) 

eplacing constraints (29) by (42) in (ERASER c , q , s , f ) and (35) by

43) in (SDOBSS q , y , s ) leads to (ERASER c , q , f ) and (SDOBSS q , y ). 

In the same spirit as Proposition 2 , we present the following

roposition, establishing the tightest values for the big M constants

n the formulations seen so far: 

roposition 5. The tightest values for the positive constants M are: 

1. In (30) , M = max � ∈ J { D 

k (� | p) , D 

k (� | u ) } − min { D 

k ( j| p) , D 

k ( j| u ) } ,
∀ j ∈ J, k ∈ K. 

2. In (29) , (35) , M = max � ∈ J { A 

k (� | p) , A 

k (� | u ) } − min { A 

k ( j| p) ,

A 

k ( j| u ) } , ∀ j ∈ J, k ∈ K. 

3. In (42) , (43) , M = max { A 

k ( j| p) , A 

k ( j| u ) } − min { A 

k (� | p) ,

A 

k (� | u ) } , ∀ j, � ∈ J, k ∈ K. 

.2. Comparison of the formulations 

First, we introduce an additional formulation which we denote

y (SDOBSS c , q , y , s , f ). This formulation is equivalent to (SDOBSS q , y , s ),

n the sense that the value of their LP relaxations coincide. In

his formulation, we introduce variables f k for all k ∈ K to rewrite

he objective function so that it matches the objective function

f (ERASER c , q , s , f ). We also add variables c � for all � ∈ J and rewrite

onstraints (38) as 
∑ 

j∈ J y k � j 
= c � for all � ∈ J and all k ∈ K . Using

his last condition we can simplify (35) to (29) . The formulation

SDOBSS c , q , y , s , f ) is as follows. 

SDOBSS c,q,y,s, f ) Max 
∑ 

k ∈ K 
π k f k 

s.t. (11) , (12) , (29) , (40) , (41) , 

f k = 

∑ 

j∈ J 
{ y k j j (D 

k ( j| p) − D 

k ( j| u ))+ 

q k j D 

k ( j| u ) } ∀ k ∈ K (44) 
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b  

b  

c  
∑ 

j∈ J 
y k 

� j = c � ∀ � ∈ J, ∀ k ∈ K, (45)

s ∈ R 

| K| . 

Note that 

P( ERASER c,q, f ) = P roj c,q, f P( ERASER c,q,s, f ) and 

P( SDOBSS q,y ) = P roj q,y P( SDOBSS q,y,s ) . 

Proposition 6. P roj c,q,s, f P( SDOBSS c,q,y,s, f ) ⊆ P( ERASER c,q,s, f ) . Fur-

ther, there exist instances for which the inclusion is strict. 

Proof. The projection of P( SDOBSS c,q,y,s, f ) onto the ( c , q , s , f )-

space is obtained by applying Farkas’ Lemma. Constraints (40) - (41)

and (44) - (45) are the only ones involving variables y k 
� j 

and are sep-

arable by k ∈ K . For a fixed k ∈ K , the projection is given by: 

A 

k = { (c, q, f ) : α( f k −
∑ 

j∈ J 
D 

k ( j| u ) q k j ) + 

∑ 

� ∈ J 
β� c � 

+ m 

∑ 

j∈ J 
γ j q 

k 
j + 

∑ 

j∈ J 

∑ 

� ∈ J 
δ� j q 

k 
j ≥ 0 

∀ (α, β, γ , δ) : γ , δ ≥ 0 , β� + γ j + δ�, j ≥ 0 ∀ �, j ∈ J : � � = j, and 

α(D 

k ( j| c) − D 

k ( j| u )) + β j + γ j + δ� j ≥ 0 ∀ j ∈ J} (46)

Consider, for each k ∈ K , the following set B k : 

B 

k = { (c, q, f ) : c � ≤
∑ 

j∈ J 
q k j , ∀ � ∈ J, (47)

c � ≥ 0 , ∀ � ∈ J, (48)

∑ 

� ∈ J 
c � ≤ m 

∑ 

j∈ J 
q k j , (49)

f k ≤ c j (D 

k ( j| p) − D 

k ( j| u )) 

+ 

∑ 

� ∈ J: � � = j 
q k � D 

k (� | p) + q k j D 

k ( j| u ) ∀ j ∈ J, (50)

q k j ≥ 0 ∀ j ∈ J, ∀ k ∈ K. } 
Let us see that A 

k ⊆B k for all k ∈ K . First note that if we set α = 0 ,

the following definitions of the parameters β , γ and δ comply with

the conditions in (46) : 

β = e h , γ = { 0 } j∈ J , δ = { 0 } �, j∈ J , ∀ h ∈ J, 

β = −e � , γ = { 0 } j∈ J , δ� = { 1 } j∈ J , ∀ � ∈ J, 

β = {−1 } � ∈ J , γ = { 1 } j∈ J , δ = { 0 } �, j∈ J , 

β = { 0 } � ∈ J , γ = { 0 } j∈ J , δ1 = { e j } , ∀ j ∈ J. 

Substituting these valid parameters in the generic constraints in A 

k ,

produces all of the constraints in B k except (50) . Further, for a fixed

j ∈ J , consider α = −1 , β� = 0 and γ� = 

1 
m 

(D 

k (� | p) − D 

k (� | u )) for all

� ∈ J such that � � = j , β j = D 

k ( j| p) − D 

k ( j| u ) and γ j = 0 . Finally, set

δ� j = 0 for all � , j ∈ J . This definition of parameters is valid as it sat-

isfies the conditions in (46) . Substituting in the generic constraints

in A 

k yields (50) . 

It remains to show that for all k ∈ K , constraints (50) imply

(30) for the tight value of M shown in Proposition 5 . The impli-

cation holds because 
∑ 

� ∈ J: � � = j 
q k � D 

k (� | p) ≤ max 
� ∈ J 

{ D 

k (� | p) } ∑ 

� ∈ J: � � = j 
q k � 

= (1 − q k j ) max 
� ∈ J 

{ D 

k (� | p) } ∀ j ∈ J, ∀ k ∈ K. 

ence, P roj c,q,s, f P( SDOBSS c,q,y,s, f ) ⊆ P( ERASER c,q,s, f ) . To show that

he inclusion may be strict, consider the following example where

 = 1 , | J| = 3 and | K| = 1 . Let the reward and penalty matrices for

he defender and attacker be D (·| p) = [1 , 0 , 0] , D (·| u ) = [0 , 0 , 0] ,

 (·| p) = [0 , 0 , 0] and A (·| u ) = [0 , 0 , 0] . Consider the point defined

y q = ( 1 3 , 
1 
3 , 

1 
3 ) 

t , c = (1 , 0 , 0) t , s = 10 and f = 2 / 3 . Such a point is

easible for ( ERASER c,q,s, f ) but violates constraints (50) when j = 2

nd is therefore infeasible for P roj c,q, f,s P( SDOBSS c,q,y,s, f ). �

Based on Theorem 1 we can present the following theorem

omparing the polyhedra P( MIP- p-S q,y ) and P roj q,y P( SDOBSS q,y,s ) : 

heorem 3. P ( MIP- p-S q,y ) ⊆P ( SDOBSS q,y )= Proj q,y P ( SDOBSS q,y,s ) . 

roof. The inclusion is a consequence of Theorem 1 , the relations

etween the payoffs described in (27) and (28) and the relation

etween the z and y variables described in (33) . 

To show that the inclusion may be strict, consider the

ollowing game. We set m = 2 , | J| = 2 and | K| = 1 . The re-

ard and penalty payoff matrices for both the defender and

he attacker are given by D (·| p) = [1 , 0] , D (·| u ) = [0 , 0] , A (·| p) =
0 , 0] and A (·| u ) = [0 , 1] . Additionally, the point with coordinates 

 

t = (1 / 2 , 1 / 2) , q t = (1 / 2 , 1 / 2) and y k = 

(
1 / 4 1 / 4 

1 / 4 1 / 4 

)
as an objective value of 1/4 and is a valid feasible solution of

( SDOBSS q,y ). However, it is not feasible in P( MIP- p-S q,y ) as it

oes not verify constraints (37) when j = 1 and � = 2 . �

Observe that (MIP- p -S q , y ) can be obtained by applying RLT

herali and Adams (1994) to (SDOBSS q , y ). Multiplying both sides

f constraints (42) by variable q k � and noticing that q k � (1 − q k � ) = 0 ,

ince q k � is binary, one obtains constraints that once linearized, by

ntroducing variables y k 
� j 

, yield (37) . 

Since (ERASER c , q , s , f ) and ( f -SDOBSS c , q , s , f ) and (SDOBSS q , y ) and

MIP- p -S q , y ) have the same objective function, the following corol-

ary holds. 

orollary 6. v ( MIP- p-S q,y ) ≤ v ( SDOBSS q,y ) = v ( SDOBSS c,q,s, f ) ≤
 ( ERASER c,q,s, f ) . 

. Computational experiments for SSGs 

Our security experiments are run on randomly generated in-

tances. For each instance, four payoff matrices have to be gen-

rated that satisfy D 

k ( · | p ) ≥ D 

k ( · | u ) and A 

k ( · | u ) ≥ A 

k ( · | p ). We con-

ider two ways of generating these matrices. First, we generate

atrices where the values for the penalty matrices ( D 

k ( · | u ) and

 

k ( · | p )) are randomly generated between 0 and 5 and all values

or the reward matrices ( D 

k ( · | p ) and A 

k ( · | u )) are randomly gen-

rated between 5 and 10. We refer to these as matrices with no

ariability. Second, we consider an alternative where 90% of the

alues for the penalty matrices are randomly generated between 0

nd 5 (between 5 and 10 for the reward matrices) and 10% of the

alues for the penalty matrices are randomly generated between

 and 50 (between 50 and 100 for the reward matrices). We re-

er to these as matrices with variability. We use a solution limit of

 hours. 

A Stackelberg security game instance is defined by | J |, the num-

er of targets, | K | the number of attacker types and m , the num-

er of security resources available to the defender. Recall from the

omputational experiments for GSGs that using payoff matrices



C. Casorrán, B. Fortz and M. Labbé et al. / European Journal of Operational Research 278 (2019) 855–868 865 

! !

! !

Fig. 3. SSGs: K = { 6 , 8 , 10 , 12 } , J = { 30 , 40 , 50 , 60 , 70 } – with variability. 
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ith variability, amounts to endowing the game with more struc-

ure, thus making it somewhat easier to solve. We have encoun-

ered the same phenomenon in SSGs. For games whose payoff ma-

rices have variability, we have considered J = { 30 , 40 , 50 , 60 , 70 } ,
 = { 6 , 8 , 10 , 12 } and we have allowed m to be either 25%, 50% or

5% of the number of targets. For games whose payoff matrices do

ot have variability we have had to be less ambitious in order to

olve all instances to optimality within the stipulated time limit

nd have considered J = { 10 , 20 , 30 , 40 , 50 } , K = { 2 , 4 , 6 , 8 } while

till considering m to be either 25%, 50% or 75% of the number

f targets. In either case, for each instance size, we generate 5 ran-

om instances as described above. In total, we consider 300 ran-

omly generated instances. 

We study the behavior of (ERASER c , q , s , f ), (SDOBSS q , y , s ) and (MIP-

 -S q , y ). For the sake of clarity, we no longer consider the Fourier-

otzkin formulations (ERASER c , q , f ) and (SDOBSS q , y ). Performance-

ise, (ERASER c , q , s , f ) and (SDOBSS q , y , s ) compare to their Fourier-

otzkin formulations in a similar way to how (D2 x , q , s , f ) and

DOBSS q , z , s ) compared to theirs in Section 4 (results not shown).

e plot performance profile graphs in Figs. 3 and 4 . Note that for

he experiments with variability, (ERASER c , q , s , f ) is the fastest for-

ulation for most of the instances. However, we see that for the

ore difficult instances, its solution time increases significantly,

ventually surpassing the solution time of (MIP- p -S q , y ). This indi-

ates that for these instances (ERASER c , q , s , f ) ceases to be competi-

ive and (MIP- p -S q , y ) is the formulation that solves the fastest. As

or the instances whose payoff matrices have no variability, and are

hus harder to solve, we observe that (ERASER c , q , s , f ) outperforms

he running time of the other two formulations for 80% of the in-

tances. However, for the most difficult instances, (MIP- p -S q , y ) is

aster than the other two formulations. For the last 5% of the in-

tances, (ERASER c , q , s , f ) is the worst formulation. In terms of size of

he formulations, (ERASER c , q , s , f ) is the formulation with the least

umber of constraints and variables: O(| J|| K| ) . Observe that (MIP-
 -S q , y ) and (SDOBSS q , y , s ) have O(| J| 2 | K| ) constraints and variables.

hus, these formulations have larger LP relaxations and thus take

onger time to solve than (ERASER c , q , s , f ) does. However, Figs. 3 and

 confirm our theoretical findings: (MIP- p -S q , y ) has the tightest LP

elaxation and this translates into a clear dominance with respect

o node usage in the B&B tree. 

Based on our results, we observe a trend that indicates that for

ifficult instances, particularly in the case of payoff matrices with

o variability, one could expect (ERASER c , q , s , f ) and (SDOBSS q , y , s ) to

erform very poorly compared to (MIP- p -S q , y ). To analyze this,

e consider instances where the payoff matrices have no vari-

bility and where K = { 6 , 8 , 10 , 12 } , J = { 30 , 40 , 50 , 60 , 70 } and m

s 25%, 50% and 75% of the targets. We generate 5 random in-

tances for each size. In addition, for practical reasons, we con-

ider a time limit of 30 minutes. The computational results for

hese instances are shown in Fig. 5 . Note that (MIP- p -S q , y ) is able

o solve 95% of the 300 instances within the stipulated time limit,

utperforming (SDOBSS q , y , s ) and (ERASER c , q , s , f ), which are only able

o solve 56% and 45% of the instances, respectively, within the

ame time frame. For the 45% of instances which can be solved

y the three formulations, we observe that (MIP- p -S q , y ) offers a

uch tighter percentage optimality gap than the other two for-

ulations. Because of this, the node usage in the B&B tree is sig-

ificantly smaller in (MIP- p -S q , y ) compared to (ERASER c , q , s , f ) and

SDOBSS q , y , s ). Table 3 records the mean percentage optimality gap

t the root node across all the instances for the three formulations

nder study. Observe that ( MIP- p-S q,y ) is significantly tighter than

he LP relaxations of the other formulations. We may thus con-

lude that for the payoff matrices without variability, (MIP- p -S q , y )

s the fastest formulation for the most difficult instances. On the

ther hand, (ERASER c , q , s , f ) is the fastest formulation when we en-

ow the security game with further structure by allowing matrices

o experience variability. Even then, (ERASER c , q , s , f ) looses ground

o (MIP- p -S q , y ). This is due to the fact that (MIP- p -S q , y ) has the
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Fig. 4. SSGs: K = { 2 , 4 , 6 , 8 } , J = { 10 , 20 , 30 , 40 , 50 } – without variability. 

Fig. 5. SSGs: K = { 6 , 8 , 10 , 12 } , J = { 30 , 40 , 50 , 60 , 70 } – without variability. 
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Table 3 

Meanpercentage optimality gap at the root node recorded for SSG formulations. 

(ERASER c , q , s , f ) (SDOBSS q , y , s ) (MIP- p -S q , y ) 

Mean % opt. gap (no 

variability) 

241.26 38.87 3.09 

Mean % opt. gap (with 

variability) 

168.37 18.66 0.35 

Total mean % opt. gap 204.82 28.76 1.72 
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ightest LP relaxation. The quality of the upper bound obtained

rom ( MIP- p-S q,y ) translates into a smaller B&B tree and this trans-

ates into reaching optimality of the integer problem faster in many

ases. 

. Conclusions and future work 

In this paper, we consider Stackelberg games in two different

ettings. We first analyze the general Stackelberg setting, which

odels a hierarchical competitive game between different agents,

nd the specific Stackelberg security setting, where an agent must

ecure subsets of targets from attackers. 

In the general setting, we have studied known MILP formula-

ions and have ordered them with respect to the strength of their

inear relaxations. We have presented a formal theoretical link be-

ween GSG formulations and SSG formulations involving the pro-

ection of variables. Exploiting this link has allowed us to i) de-

ive two new SSG MILP formulations (SDOBSS q , y , s ) and (MIP- p -S q , y );

nd ii) extend our study of GSG formulations to SSG formula-

ions, leading to a ranking of the security formulations with re-

pect to the strength of their linear relaxations, where (MIP- p -S)

as been shown to be the strongest SSG formulation. Further, we

ave shown its single type of attacker restriction, (MIP-1-S q , y ), to

e an ideal formulation. 

Our computational studies have shown that (MIP- p -G q , z ) and

MIP- p -S q , y ), the tightest formulations in each setting, are highly

ompetitive with respect to solving time. Further, in the case of

MIP- p -S), we have seen it scales significantly better than com-

eting formulations when tackling instances with no variability in

heir payoff structure. Formulation (MIP- p -S) represents a signifi-

ant theoretical and practical improvement over previously exist-

ng SSG formulations. 

However, the obvious bottleneck, at this time, is solving the

ighter but larger LP relaxations for (MIP- p -G q , z ) and (MIP- p -S q , y ).

he main challenge is to provide an efficient way of solving

hese tight formulations. It is our contention that this can be

one by exploiting the inherent problem structure in the Stackel-

erg paradigm to develop either decomposition or cutting plane

pproaches. 

While this paper focuses on the polyhedral analysis of general

ormal form Stackelberg games and Stackelberg security games,

imilar polyhedral analyses could be carried out on specific bilevel

ecurity problems in order to develop efficient algorithms for such

roblems. In particular, extensions to problems that consider mul-

iple attacks by followers, dynamic settings, imperfect informa-

ion, or non-rational response would be interesting lines of future

esearch. 
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