
J. Pseudo-Differ. Oper. Appl. (2019) 10:535–555
https://doi.org/10.1007/s11868-019-00297-z

Berezin-type operators on the cotangent bundle of a
nilpotent group
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Abstract
We define and study coherent states, a Berezin–Toeplitz quantization and covariant
symbols on the product Ξ :=G× g� between a connected simply connected nilpotent
Lie group and the dual of its Lie algebra. The starting point is aWeyl system codifying
the natural canonical commutation relations of the system. The formalism is meant
to complement the quantization of the cotangent bundle T �G ∼= G × g� by pseudo-
differential operators, to which it is connected in an explicit way. Some extensions are
indicated, concerning τ -quantizations and variable magnetic fields.

Keywords Nilpotent group · Lie algebra · Coherent states · Pseudo-differential
operator · Symbol · Berezin quantization

Mathematics Subject Classification Primary 22E25 · 47G30; Secondary 22E45 ·
46L65

1 Introduction

Trying to assign global pseudo-differential operators to large classes of locally compact
groupsG, in [22] second countable, type I unimodular groups have been treated, using
operator-valued symbols defined on the product G×̂G, where the unitary dual̂G is the
family of equivalence classes of irreducible representations of G. Much more can be
said in particular cases: (a) for compact Lie groups [27] and (b) for graded nilpotent
Lie groups [10]. Actually the number of papers treating these two particular classes in
great detail is growing fast. Keeping the same general framework as in [22], in [20] the
related Berezin-type quantization has been explored. The operator-valuedness of the
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symbols and the fact that different irreducible representations act in different Hilbert
spaces made the theory technically challenging.

In particular cases at least, one hopes for a simpler-looking quantization in terms
of scalar-valued symbols. This is possible for connected simply connected nilpotent
groups, due to some special properties, allowing finally to define a well-behaved
Fourier transformation from functions (or distributions) defined on G to function (or
distributions) definedong�, the dual of theLie algebrag. There is a drawback, however:
this Fourier transformation does not intertwine multiplication with convolution (and
this is due to the fact that, while being a diffeomorphism, the exponential map does
not have good algebraic properties).

Agraded structure on theLie algebra surely helps.Wemention somepreviousworks
[2,11–13,18,19,24–26], mainly dedicated to particular types of nilpotent groups or to
invariant symbols (depending only on ξ ∈ g�). In [22,23] quantization formulas for
the general nilpotent case has been mentioned and connections with the operator-
valued calculus on G × ̂G have been indicated. Actually the connection consists in
combining together two different partial Fourier transformations. In the case of groups
having (generic) square integrable irreducible representations modulo the center, the
connection becomes nice and effective, involving Kirillov’s theory and the Weyl–
Pedersen pseudo-differential calculus on coadjoint orbits [23].

Anyhow, it is natural to introduce and study the generalization of the Berezin–
Toeplitz (also called anti-Wick) formalism in the setting of the phase-space Ξ :=G×
g� ∼= T �G. The vector group G = R

n is a guiding particular case. In spite of the
mentioned connection between the pseudo-differential quantizations on G × ̂G and
G × g�, via a composition of partial Fourier transformations, the Berezin–Toeplitz
formalisms on the two “phase spaces” are not equivalent. The reason is that their
(weak) definitions involve in both cases products of two Fourier–Wigner functions
(see (11) for instance), and one of the two Fourier transformations behaves badly with
respect to multiplication. So there is no isomorphism between the objects from the
present article and the analog ones from [20].

After fixing in Sect. 2 some notations and conventions about groups and Hilbert
spaces, in Sect. 3 we proceed to describe the basic operators acting in H := L2(G)

that will be the building blocks of our theory. They can be understood as global or as
infinitesimal operations verifying the canonical commutation relations inherent to the
pair (G, g�).

From such building blocks, in Sect. 4 we construct the Weyl system, a highly non-
commutative version of the usual one (phase-space shifts) inRn . Due to the complexity
of the canonical commutation relations, it is not even a projective representation of
the group G × g�. So one cannot invoke directly results and techniques from the
existing theory in group-form. The “matrix coefficients” of this Weyl system lead
to a Fourier–Wigner transform, coherent states, the Bargmann transform, reproducing
kernelHilbert spaces, etc. (Weuse a certain terminology, especially by analogywith the
R

n-case; but even in this commutative case there are so many different denominations.
So we do not expect all the readers to be satisfied with our choices.)

In Sect. 5 one defines the Berezin quantization and study its basic properties. It
is positive-preserving, it sends L p spaces of symbols into Schatten–von Neumann
classes of order p on L2(G) and gets a Toeplitz form in the Bargmann representations.
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Some simple examples are included. Other more refined results are postponed to a
future publication, mainly because they need first to establish a suitable coorbit (and
modulation space) theory on G × g�.

The matrix elements of a bounded operator between coherent states define the
covariant (lower) symbol. It is studied in Sect. 6. Among others, it provides some
lower bounds for certain Schatten–von Neumann norms. Kernels of regular operators
may be expressed in terms of the covariant symbols and the coherent states. Hopefully,
this will be used in a future paper to prove a Beals-type criterion for pseudo-differential
operators with scalar-valued symbols on T �G.

Then we compute the pseudo-differential symbol of a Berezin operator; the corre-
spondence is no longer given by a convolution, as in the standard case.

In a final section, we briefly indicate two extensions. First we treat τ -quantizations
related to ordering issues. We show how this may be implemented at the level of the
basic objects. Then we describe what happens when a variable magnetic field is also
present. For pseudo-differential operators this has been done in [3]. Here we put into
evidence the changes needed in the Berezin theory.

Up to our knowledge, the results in this article are not contained in the existing lit-
erature. In particular, projective group representation methods do not apply. However,
the constructions and proofs are inspired by other, different situations.Weweremainly
guided by the book [29]. The related but not isomorphic theory from [20] has also
been valuable. The literature on coherent states, Berezin type (or localization) opera-
tors and related topics is huge; we only cite some references [1,4–7,14,15,28–30]. As
said above, modulation spaces will be studied in such a framework subsequently and
this will bring to our attention the expanding literature on time–frequency methods.
Actions in L p-spaces will also be investigated.

2 Framework

The scalar products in a Hilbert space are linear in the first variable. For a given
(complex, separable) Hilbert space H, one denotes by B(H) the C∗-algebra of all
linear bounded operators inH and by Bp(H) the bi-sided ∗-ideal of all Schatten–von
Neumann operators of exponent p ≥ 1. In particular K(H) ≡ B

∞(H) is the C∗-
algebra of all the compact operators in H. The unitary elements of B(H) form the
group U(H).

Let G be a connected simply connected nilpotent Lie group with unit e, Haar
measure dx and unitary dual̂G. Let g be the Lie algebra of G and g� its dual. If X ∈ g
and ξ ∈ g� we set 〈X | ξ 〉:= ξ(X). We also denote by exp : g → G the exponential
map, which is a diffeomorphism. Its inverse is denoted by log : G → g. Under these
diffeomorphisms the Haar measure on G corresponds to a Haar measure d X on g
(normalized accordingly). For each p ∈ [1,∞], one has an isomorphism

L p(G)
Exp−→ L p(g), Exp(u) := u ◦ exp
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with inverse

L p(g)
Log−→ L p(G), Log(ν) := ν ◦ log .

The Schwartz spaces S(G) and S(g) are defined as in [9, A.2]; they are isomorphic
Fréchet spaces.

For X , Y ∈ g we set

X • Y := log[exp(X) exp(Y )]
= X + Y + 1

2
[X , Y ] + 1

12

([X , [X , Y ]] + [Y , [Y , X ]]) + · · ·

It is a group composition law on g, given by a polynomial expression in X , Y (the
Baker–Campbel–Hausdorff formula). The unit element is 0 and X• ≡ −X is the
inverse of X with respect to •.

There is a Fourier transformation, given by the duality
(

g, g�
)

, defined essentially
by

(Fh
)

(ξ) :=
∫

g
e−i〈X |ξ〉h(X) d X .

It is a linear topological isomorphism F : S(g) → S(g�) and a unitary map F :
L2(g) → L2(g�). Composing with the isomorphisms Exp and Log one gets Fourier
transformations

F :=F ◦ Exp : S(G) → S(g�), F−1:=Log ◦ F−1 : S(g�) → S(G),

(Fu)(ξ) =
∫

g
e−i〈X |ξ〉u(exp X)d X =

∫

G
e−i〈log x |ξ〉u(x)dx,

(

F−1w
)

(x) =
∫

g�

ei〈log x |ξ〉w(ξ)dξ.

These maps also define unitary isomorphisms of the corresponding L2-spaces.

3 Canonical commutation relations

One has the (strongly continuous) unitary representation M : (g�,+) → U
[

L2(G)
]

given by
[Mζ (u)](x) := ei〈log x |ζ 〉u(x).

If we denote by Mult(ψ) the operator of multiplication by functions ψ defined on G,
one has

Mζ = Mult(εζ ) = Mult
(

eiλζ
)

,

where we introduced the function

λζ : G → R, λζ (x) := 〈log x |ζ 〉
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and its imaginary exponential

εζ : G → T ⊂ C, εζ (x) := ei〈log x |ζ 〉. (1)

For each ζ ∈ g� one has a 1-parameter subgroup

R  t → Mtζ = eitΛζ ∈ U
[

L2(G)
]

,

with infinitesimal generator

Λζ :=Mult
(

λζ

) = Mult(〈log(·) |ζ 〉).

One also has the left and the right unitary representations

L, R : (G, ·) → U
[

L2(G)
]

,

defined by
[

Lz(u)
]

(x) := u
(

z−1x
)

,
[

Rz(u)
]

(x) := u(xz).

For fixed Z ∈ g, there are 1-parameter subgroups

R  t → Lexp(t Z) = eit(i DL
Z ), R  t → Rexp(t Z) = eit(−i DR

Z ),

where

[

DL
Z (u)

]

(x) := d

dt

∣

∣

∣

t=0
u
(

exp[t Z ]x)

,
[

DR
Z (u)

]

(x) := d

dt

∣

∣

∣

t=0
u
(

x exp[t Z ]).

Note the “multiplication relations”

LyLz = Lyz, MηMζ = Mη+ζ , LzMζ = ei〈log(z−1·)−log(·)|ζ 〉Mζ Lz .

and the “commutation relations” (on the Schwartz space S(G), for instance)

[

DL
Y , DL

Z

] = DL[Y ,Z ],
[

DR
Y , DR

Z

] = DR[Y ,Z ],
[

DL
Z ,Λζ

] = Mult
(

DL
Zλζ

)

,
[

DR
Z ,Λζ

] = Mult
(

DR
Zλζ

)

. (2)

For concreteness, let us set adX (Z) := [X , Z ] and compute (in the BCH formula, only
the terms that are linear in t Z contribute):

(

DL
Zλζ

)

(exp X) = d

dt

∣

∣

∣

t=0
〈log(exp[t Z ] exp X) |ζ 〉

= d

dt

∣

∣

∣

t=0
〈 [t Z ] • X |ζ 〉

=
〈

Z − 1

2
adX (Z) + 1

12
ad2X (Z) + · · · ∣

∣ ζ
〉

. (3)
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The sum is finite. Let us define the infinitesimal coadjoint action

γ : G → Aut(g�), γx (ζ ) ≡ ad�
− log x (ζ ) := ζ ◦ ad− log x .

Then (3) may be rewritten

(

DL
Zλζ

)

(x) =
〈

Z
∣

∣ ζ + 1

2
γx (ζ ) + 1

12
γ 2

x (ζ ) + · · ·
〉

.

This is a function of x , which becomes a constant 〈Z |ζ 〉 precisely when the group G
is Abelian. There is a similar formula for DR

Zλζ .

4 Weyl systems, the Fourier–Wigner transform and coherent states

Definition 4.1 For (z, ζ ) ∈ G × g� one defines a unitary operator W(z, ζ ) :=Mζ Lz in
L2(G) by

[W(z, ζ )u](x) := ei〈log x |ζ 〉u(z−1x), (4)

with adjoint
[

W(z, ζ )∗u
]

(y) := e−i〈log(zy)|ζ 〉u(zy).

This extends the notion of Weyl system (or time–frequency shifts) from the case
G = R

n . These operators also act as isomorphisms of the Schwartz space S(G) and
can be extended to isomorphisms of the space S ′(G) of tempered distributions. Note
that they also define isometries in any L p(G) space.

Lemma 4.2 For (z, ζ ), (y, η) ∈ G × g� one has

W(z, ζ )W(y, η) = Γ
[

(z, ζ ), (y, η)
]

W(zy, ζ + η),

where Γ
[

(z, ζ ), (y, η)
]

is the operator of multiplication by the function

x �→ γ
[

(z, ζ ), (y, η); x
] = exp

{ − i〈 log x − log(z−1x) | η 〉}.

Thus the Weyl system is very far from being a projective representation.

Definition 4.3 For u, v ∈ H := L2(G) one sets Wu,v ≡ Wu⊗v : G × g� → C by

Wu,v(z, ζ ) := 〈W(z, ζ )u, v〉 =
∫

G
ei〈log y|ζ 〉u(z−1y)v(y)dy. (5)

and call it the Fourier–Wigner transform.

Lemma 4.4 The Fourier–Wigner transform extends to a unitary map

W : H ⊗ H ∼= L2(G × G) → L2(G × g�).
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It also defines isomorphisms

W : S(G)⊗S(G) ∼= S(G × G) → S(G × g�).

W : S ′(G)⊗S ′(G) ∼= S ′(G × G) → S ′(G × g�).

Proof The mapW = (id ⊗F−1) ◦C is composed of a partial Fourier transform and
a unitary change of variables (x, y) → C(x, y) := (

x−1y, y
)

, and this leads easy to a
proof of all the assertions. ��

In particular, one has the orthogonality relations:

〈

Wu,v,Wu′,v′
〉

L2(G×g�)
= 〈u, u′〉〈v′, v〉. (6)

Definition 4.5 For some fixed L2-normalized ω ∈ S(G) ⊂ L2(G) ≡ H and for every
(z, ζ ) ∈ G × g�, we define the coherent state ωz,ζ :=W(z, ζ )∗ω ; explicitly

ωz,ζ (x) = e−i〈log(zx)|ζ 〉ω(zx).

The associated rank one projector is given by

Ωz,ζ (u) := 〈

u, ωz,ζ
〉

ωz,ζ = Wu,ω(z, ζ ) ωz,ζ , ∀ u ∈ H. (7)

It is an integral operator with kernel �z,ζ := ωz,ζ ⊗ωz,ζ ∈ S(G×G) [or in L2(G×G)

more generally for ω in L2(G)].
The canonical (or modulation) mapping associated to the vector ω (or the gener-

alized Bargmann transformation)

Bω : H → L2(G × g�), Bω(u) :=Wu,ω

is an isometry with adjoint

B†
ω : L2(G × g�) → H, B†

ω(h) :=
∫

G

∫

g�

h(z, ζ ) ωz,ζ dzdζ.

The isometry condition may be seen as an inversion formula:

u =
∫

G

∫

g�

〈

u, ωz,ζ
〉

ωz,ζ dzdζ. (8)

The final projection Pω:=BωB†
ω is an integral operator with kernel

pω(z, ζ ; z′, ζ ′) := 〈

ωz,ζ , ωz′,ζ ′
〉

. (9)

One also have the reproducing formula Bω(u) = (

BωB†
ωBω

)

(u) = Pω[Bω(u)],
i.e.

[Bω(u)] (x, ξ) =
∫

G

∫

g�

〈ωx,ξ , ωz,ζ 〉 [Bω(u)](z, ζ ) dzdζ.
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ThusPω

[

L2(G × g�)
]

is a reproducing kernel Hilbert space with reproducing kernel
pω, composed of bounded continuous functions on G × g�.

5 The Berezin quantization

Occasionally, we are going to use notations as X := (x, ξ),Y := (y, η),Z:= (z, ζ ) ∈
Ξ :=G × g�, with product measure dX := dxdξ . Actually, both types of notations
will be used alternatively. We denote by 〈·, ·〉(Ξ) both the L2(Ξ)-inner product and
the various related duality forms (as S(Ξ) × S ′(Ξ) → C for example). The precise
meaning will be specified or will be obvious from the context.

Definition 5.1 Let ω ∈ S(G) be a fixed L2-normalized vector. We define formally the
operator in L2(G)

Berω( f ) :=
∫

G

∫

g�

f (x, ξ)Ωx,ξ dxdξ =
∫

Ξ

f (X )ΩX dX , (10)

where ΩX is defined in (7), and call it the Berezin operator associated to the symbol
f and the vector ω.

This should be taken in weak sense: taking (5) and (7) into account, for any u, v ∈
L2(G) one gets

〈

Berω( f )u, v
〉 :=

∫

G

∫

g�

f (x, ξ)
〈

Ωx,ξ (u), v
〉

dxdξ

=
∫

G

∫

g�

f (x, ξ)Wu,ω(x, ξ)Wv,ω(x, ξ) dxdξ

= 〈

f ,Wu,ω Wv,ω

〉

(Ξ)
. (11)

This allows many different (but compatible) interpretations, based on the properties
of the Fourier–Wigner transform. For instance, if u, v ∈ S(G), the last term of (11)
makes sense for f ∈ S ′(G × g�) and one gets a linear continuous operator

Berω( f ) : S(G) → S ′(G), f ∈ S ′(G × g�).

For similar reasons, Berω( f ) : S ′(G) → S(G) is well-defined, linear and continuous if
f ∈ S(G× g�). If u, v ∈ L2(G), thenWu,ω,Wv,ω ∈ L2(Ξ), thusWu,ωWv,ω ∈ L1(Ξ)

and one gets
Berω( f ) ∈ B

[

L2(G)
]

, f ∈ L∞(G × g�).

It is obvious that Berω( f )∗ = Berω( f ) and that Berω( f ) is a positive operator in
L2(G) if f ∈ L∞(Ξ) is (almost everywhere) positive. By the orthogonality relations
(6) one may write

〈

Berω(1)u, v
〉 =

∫

Ξ

Wv,ω(X )∗ Wu,ω(X )dX = 〈

Wu,ω(X ),Wv,ω(X )
〉

(Ξ)
= 〈u, v〉,
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implying that Berω(1) = 1L2(G).
We gather other important properties of the Berezin operators in connection with

the Schatten–von Neumann classes in the next result.

Theorem 5.2 For every s ∈ [1,∞] one has a linear bounded map Berω : Ls(Ξ) →
B

s
[

L2(G)
]

satisfying

‖Berω( f )‖Bs [L2(G)] ≤ 41/s ‖ f ‖Ls (Ξ) . (12)

In particular, if f ∈ L1(Ξ), then Berω( f ) is a trace-class operator with

Tr
[

Berω( f )
] =

∫

G

∫

g�

f (x, ξ) dxdξ.

Proof For s = ∞ we write using the definitions, an obvious L1 − L∞ estimate, the
Cauchy–Schwartz inequality and the orthogonality relation

‖Berω( f )‖B[L2(G)] = sup
‖u‖=1=‖v‖

∣

∣

〈

Berω( f )u, v
〉∣

∣

= sup
‖u‖=1=‖v‖

∣

∣

〈

f ,Wu,ω Wv,ω

〉

(Ξ)

∣

∣

≤ ‖ f ‖L∞ sup
‖u‖=1=‖v‖

‖Wu,w Wv,ω ‖L1

≤ ‖ f ‖L∞ sup
‖u‖=1

‖Wu,ω ‖L2 sup
‖v‖=1

‖Wv,ω ‖L2

= ‖ f ‖L∞ .

There is a version of the computation above showing that Berω( f ) is in fact also
bounded if f ∈ Ls(Ξ). It is based on complex interpolation, the Hölder inequality
and improved properties of the Fourier–Wigner transformation, having as starting
point the simple estimate

|Wu,v(X )| = |〈W(X )u, v〉| ≤ ‖u ‖‖v ‖, ∀ X ∈ Ξ.

But one needs the finer result (12), in terms of Schatten–von Neumann classes.
We deal first with the trace class properties of the Berezin operator, assuming that

f ∈ L1(Ξ) is positive. The connected simply connected nilpotent group G is second
countable, so the Hilbert space L2(G) is separable. If {wk}k∈N is an orthonormal basis
in L2(G), one has by (11), (7) and the Parseval identity

Tr
[

Berω( f )
] =

∑

k

〈

Berω( f )wk, wk
〉

=
∑

k

∫

Ξ

f (X )
〈

ΩX (wk), wk
〉

dX
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=
∑

k

∫

Ξ

f (X )
〈

ωX , wk
〉 〈

wk, ωX
〉

dX

=
∫

Ξ

f (X )
∑

k

〈

ωX , wk
〉 〈

wk, ωX
〉

dX

=
∫

Ξ

f (X )
〈

ωX , ωX
〉

dX

=
∫

Ξ

f (X ) dX .

If f is positive, we already know that Berω( f ) is also positive and its trace norm is
computed above:

‖Berω( f )‖B1[L2(G)] = Tr
[

Berω( f )
] =‖ f ‖L1 .

One obtains the s = 1 case of (12) for general f by writing f = Re[ f ]+ −Re[ f ]− +
i Im[ f ]+ − i Im[ f ]−.

The general case in (12) then follows by interpolation of order θ = 1/s from

the cases s = 1 and s = ∞, because one has
[

L∞(Ξ), L1(Ξ)
]

1/s
= Ls(Ξ) and

[

B
[

L2(G)],B1
[

L2(G)
]

]

1/s
= B

s
[

L2(G)
]

. ��

One can improve the constant 41/s to 1 by imitating arguments from [29, Ch.14]
or from [8].

Besides the compactness results following directly from Theorem 5.2, one also gets
by approximation

Corollary 5.3 If f ∈ C0(G × g�), then Berω( f ) is a compact operator in L2(G).

Proof This is true for continuous compactly supported functions, by the result above,
and then follows for every continuous function small at infinity, by uniform approxi-
mation and the case s = ∞ of (12). ��
Example 5.4 Theorem 5.2 supplies plenty of compact Berezin operators with symbols
not belonging to L∞(Ξ). In addition, we have ΩX = Berω(δX ) [if (10) seems too
formal, one can easily compute with (11)], and this is a rank one projection defined
by a distribution.

Example 5.5 For f := ϕ ⊗ 1, where ϕ : G → C, a short computation shows that
Berω(ϕ ⊗ 1) is the operator of multiplication by the function
x → (

ϕ̌�|ω|2)(x) := ∫

G ϕ(z)|ω(zx)|2dz, where ϕ̌(y) := ϕ(y−1).

Example 5.6 For f := 1 ⊗ ψ , where ψ : g� → C, a short computation shows that
Berω(1 ⊗ ψ) is an integral operator with kernel

[

hω(ψ)
]

(x, y) :=
∫

G
ψ̃ [log(zx) − log(zy)] ω(zx)ω(zy) dz,

written in terms of the usual Fourier transform ψ̃ of ψ attached to the duality (g, g�).
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Proposition 5.7 For any z ∈ G and (for example) f ∈ L∞(G × g�), one has

L∗
zBerω( f )Lz = Berω

[

f (·z−1, ·)].

Proof One computes

L∗
zBerω( f )Lzu =

∫

G

∫

g�

f (x, ξ) L∗
z Ωx,ξLzu dxdξ

=
∫

G

∫

g�

f (x, ξ)
〈

u, L∗
zW(x, ξ)∗ω

〉

L∗
zW(x, ξ)∗ω dxdξ

=
∫

G

∫

g�

f (x, ξ)
〈

u,W(xz, ξ)∗ω
〉

W(xz, ξ)∗ω dxdξ

=
∫

G

∫

g�

f (x, ξ)Ωxz,ξ (u) dxdξ,

and then a change of variables leads to the result. ��
The formula forW(z, ζ )∗Berω( f )W(z, ζ ) is rather involved, due to Lemma 4.2.
We provide now a Toeplitz-like form of the operator Tpω( f ):=Bω ◦Berω( f )◦B†

ω

living in L2
(

G × g�
)

.

Proposition 5.8 One has

Tpω( f ) = Pω ◦ Mult( f ) ◦ Pω, (13)

where Mult( f ) is the point-wise multiplication by f ∈ L∞(Ξ).

Proof Clearly (13) is equivalent to Berω( f ) = B†
ω◦Mult( f ) ◦Bω. For u, v ∈ L2(G)

we have

〈

Berω( f )u, v
〉 = 〈

f ,Bω(u)Bω(v)
〉

(Ξ)

=
∫

Ξ

[

Bω(u)
]

(X ) f (X )
[

Bω(v)
]

(X ) dX

=
∫

Ξ

(

Mult( f )
[

Bω(u)
]

)

(X )
[

Bω(v)
]

(X ) dX

=
〈

Mult( f )
[

Bω(u)
]

,Bω(v)
〉

(Ξ)

=
〈

[

B†
ω◦ Mult( f ) ◦ Bω

]

u, v
〉

(Ξ)

and the Proposition is proved. ��
It follows immediately that Tpω( f ) is an integral operator with kernel

[

tω( f )
]

(X ,Y) :=
∫

Ξ

f (Z)〈ωX , ωZ 〉〈ωZ , ωY 〉dZ. (14)
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6 The covariant symbol and the Berezin transform

Definition 6.1 The covariant symbol covω(T ) : Ξ × Ξ → C of an operator T ∈
B

[

L2(G)
]

is

[

covω(T )
]

(X ,X ′) := 〈

T ωX , ωX ′
〉 = 〈

W(X ′)TW(X )∗ω,ω
〉

.

For the diagonal version we are also going to use the notation

[

Covω(T )
]

(X ) := [

covω(T )
]

(X ,X ) = Tr
[

T ΩX
]

.

Clearly covω : B[

L2(G)
] → L∞(Ξ × Ξ) is a linear contraction and any covω(T )

is actually a continuous function. Under further requirements on ω, it might have
further regularity properties. For instance, if ω ∈ S(G) (as we usually assume), then
covω(T ) is smooth, with bounded derivatives.

Recall the composition of integral kernels

(F � G)(X ,Y) :=
∫

Ξ

F(X ,Z)G(Z,Y)dZ

and the adjoint
F�(X ,Y) = F(Y,X ).

Proposition 6.2 One has

covω(ST ) = covω(T )� covω(S), covω(T ∗) = covω(T )�.

Proof By using the definitions and the inversion formula (8) one gets

[

covω(ST )
]

(X ,Y) = 〈

T ωX , S∗ωY
〉

=
∫

Ξ

〈

T ωX , ωZ
〉〈

ωZ , S∗ωY
〉

dZ

=
∫

Ξ

〈

T ωX , ωZ
〉〈

SωZ , ωY
〉

dZ

=
∫

Ξ

[

covω(T )
]

(X ,Z)
[

covω(S)
]

(Z,Y)dZ
= [

covω(T )� covω(S)
]

(X ,Y).

The formula for the adjoint is obvious. Taking diagonal values one gets

Covω(T ∗) = Covω(T ).

��
The diagonal covariant symbol provides lower bounds for the operator trace norm.
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Proposition 6.3 If T ∈ B
1
[

L2(G)
]

then

‖Covω(T )‖L1(G) ≤ ‖T ‖B1 .

Proof The trace-class operator T admits the strongly convergent representation

T =
∞
∑

k=1

sk(T )〈·, ϕk〉ψk,

in terms of the (positive) singular values of T and two orthonormal families. For every
X ∈ Ξ we have

∣

∣

[

Covω(T )
]

(X )
∣

∣ = ∣

∣〈T ωX , ωX 〉∣∣

=
∣

∣

∣

∞
∑

k=1

sk(T )〈ωX , ϕk〉〈ψk, ωX 〉
∣

∣

∣

≤ 1

2

∞
∑

k=1

sk(T )
(

|〈ωX , ϕk〉|2 + |〈ψk, ωX 〉|2
)

,

implying

‖Covω(T )‖L1(G)≤
1

2

∞
∑

k=1

sk(T )

(∫

Ξ

|〈ωX , ϕk〉|2dX +
∫

Ξ

|〈ψk, ωX 〉|2dX
)

.

By the inversion formulas and by the normalization of the vectors, the two integrals
equal 1, and the remaining factor is the trace norm of the operator. ��

By interpolation one readily gets

Corollary 6.4 If T ∈ B
p
[

L2(G)
]

, with p ∈ [1,∞], then

‖Covω(T )‖L p(G) ≤ ‖T ‖Bp .

Proposition 6.5 If T is a compact operator, Covω(T ) ∈ C0(Ξ), i. e. it is a continuous
function converging to zero at infinity.

Proof Continuity has already been mentioned. One still has to show that

lim
X→∞

〈TW(X )ω,W(X )ω〉 = 0.

The operator T being compact, it turns weak convergence into norm convergence.
Also using the density of S(G) in L2(G) and the unitarity of the Weyl system, we are
thus reduced to showing that

Wω,v(X ) = 〈W(X )ω, v〉 −→
X→∞

0, ∀ v ∈ S(G).
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This is obvious from the fact that ω ∈ S(G) and that W is the composition between
a change of variables and a partial Fourier transform. If ω is only square integrable,
one can still finish the proof by density and approximation. ��
Proposition 6.6 For every f ∈ L1(G × g�) one has in terms of the kernel (14) of the
Toeplitz operator

covω

(

Berω( f )
) = tω( f ), (15)

with the particular case (the Berezin transform)

[

BTω( f )
]

(X ) := [

Covω

(

Berω( f )
)]

(X ) =
∫

Ξ

f (Z)
∣

∣

〈

ωX , ωZ
〉∣

∣

2
dZ, (16)

and
∫

Ξ

[

BTω( f )
]

(X ) dX =
∫

Ξ

f (X ) dX . (17)

Proof Checking (15) [and thus (16)] is an easy direct verification. Then proving (17)
relies on the formula

∫

Ξ

|〈ωX , ωZ 〉|2dX = 1, ∀Z ∈ Ξ. (18)

Recalling the kernel (9) of the projection P(ω) and the normalization of ω, (18)
becomes obvious. One may also use (8) directly. ��

Let us say that the operator T ∈ B
[

L2(G)
]

is regularizing if it extends to a contin-
uous operator T : S ′(G) → S(G) ; then it will have a kernel belonging to S(G × G).
This kernel may be expressed in terms of the covariant symbol and the coherent states.

Proposition 6.7 The kernel KT : G × G → C of the regularizing operator T is given
through the formula

KT (x, y) =
∫

Ξ

∫

Ξ

[

covω(T )
]

(Z,Z ′) ωZ ′(x) ωZ (y) dZ dZ ′.

Proof Computing for u ∈ S(G) (for instance), we are going to use the inversion
formula twice:

(T u)(x) =
∫

Ξ

〈

T u, ωZ ′
〉

ωZ ′(x) dZ ′

=
∫

Ξ

〈

u, T ∗ωZ ′
〉

ωZ ′(x) dZ ′

=
∫

Ξ

〈

u,

∫

Ξ

〈T ∗ωZ ′ , ωZ
〉

ωZ dZ 〉

ωZ ′(x) dZ ′

=
∫

Ξ

∫

Ξ

〈T ∗ωZ ′ , ωZ
〉〈

u, ωZ
〉

ωZ ′(x) dZdZ ′
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=
∫

G

∫

Ξ

∫

Ξ

〈

T ωZ , ωZ ′
〉

ωZ ′(x) ωZ (y) u(y)dy dZ dZ ′

=
∫

G
KT (x, y)u(y)dy = [

Int(KT )u
]

(x).

��

7 Connection with pseudo-differential operators

One defines the pseudo-differential operator with symbol a : G × g� → C by the
formula

[

Op(a)u
]

(x) :=
∫

G

∫

g�

ei〈log(xy−1)|ξ〉a(x, ξ)u(y) dydξ. (19)

It is an integral operator with kernel Ka(x, y) := ∫

g�ei〈log(xy−1)|ξ〉a(x, ξ)dξ . The struc-
ture of this kernel (obtained from the symbol a by a partial Fourier transform and a
change of variables) allows various types of interpretation of the formula (19) and
leads to the properties of the quantization Op, that we do not discuss here in detail.
Examining this kernel, one sees for instance that (19) defines a unitary mapping
Op : L2

(

G× g�
) → B

2
[

L2(G)
]

. Versions involving Schwartz spaces are also easy to
obtain. Note that the Weyl system (4) can be recuperated as

W(z, ζ ) = Op(εz,ζ ), where εz,ζ (x, ξ) := ei〈log x |ζ 〉e−i〈log z|ξ〉

[see also (1)] and that the Fourier–Wigner transform (5) may also be involved in the
definition of Op. If a only depends on x then Op is a multiplication operator, while if
a only depends on ξ , Op becomes a (left) convolution operator.

Proposition 7.1 Suppose (say) that f ∈ S(G × g�). The Berezin operator Berω( f ) is
a pseudo-differential operator with symbol

[

aω( f )
]

(x, ξ) :=
∫

G

∫

G

∫

g�

e−i〈log y|ξ〉 ei〈log(zy−1x)−log(zx)|ζ 〉

f (z, ζ ) ω(zx) ω(zy−1x) dydzdζ. (20)

Remark 7.2 In the Abelian case G = R
n (20) simply reduces to a convolution:

[

aω( f )
]

(x, ξ) =
∫

Rn

∫

Rn

∫

Rn
f (z, ζ ) e−i〈y|ζ+ξ〉ω(z + x) ω(z − y + x) dydzdζ

=
∫

Rn

∫

Rn

[

∫

Rn
e−i〈y|η〉ω(s) ω(s − y) dy

]

f (s − x, η − ξ)dsdη.

Proof As said above,Op(a) is an integral operator with kernel Ka : G×G → C given
by

Ka(x, y) =
∫

g�

ei〈log(xy−1)|ξ〉a(x, ξ)dξ = [(

id ⊗ F−1)a
](

x, xy−1).
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The symbol may be recovered from the kernel by means of the formula

a(x, ξ) =
∫

G
e−i〈log y|ξ〉Ka

(

x, y−1x
)

dy. (21)

On the other hand, a short computation shows that Berω( f ) is an integral operator in
L2(G) with kernel

κω( f ) :=
∫

G

∫

g�

f (z, ζ ) ωz,ζ ⊗ ωz,ζ dzdζ.

Hence one will have Berω( f ) = Op
[

aω( f )
]

if and only if

[

aω( f )
]

(x, ξ) =
∫

G

∫

G

∫

g�

e−i〈log y|ξ〉 f (z, ζ ) ωz,ζ (x) ωz,ζ (y−1x) dydzdζ

=
∫

G

∫

G

∫

g�

e−i〈log y|ξ〉 f (z, ζ ) e−i〈log(zx)|ζ 〉ω(zx)

ei〈log(zy−1x)|ζ 〉 ω(zy−1x) dydzdζ.

��
Remark 7.3 Wecan compute the pseudo-differential symbol of the (regularizing) oper-
ator T in terms of the covariant symbol and the coherent states, using Proposition 6.7
and formula (21). This means, at least formally, that T = Op

(

aT
)

, with

aT (x, ξ) =
∫

G
e−i〈log y|ξ〉KT

(

x, y−1x
)

dy

=
∫

G

∫

G

∫

g�

∫

G

∫

g�

e−i〈log y|ξ〉[covω(T )
]

(z, ζ ; z′, ζ ′)

ωz′,ζ ′(x) ωz,ζ
(

y−1x
)

dy dzdζ dz′dζ ′.

8 Other versions

8.1 �-quantizations

Let τ : G → G be any continuous map, that does not need to be a group morphism or
to commute with inversion. The model is x → τ x with τ ∈ [0, 1] from the Abelian
case G = R

n , but even in this simple case one can master much more than scalar
transformations. In [22] such a parameter has been used in the global quantization
involving the unitary dual ̂G of the group. In a final section, for nilpotent groups, it
also appeared involved in generalizing the quantization (19) of symbols onΞ = G×g�,
that may be replaced with
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[

Opτ(a)u
]

(x) =
∫

G

∫

g�

ei〈log(y−1x)|ξ〉a
(

τ(xy−1)−1x, ξ
)

u(y) dydξ. (22)

Among other results, one can show the formula for the adjoint

Opτ(a)∗ = Opτ̃(a), where τ̃ (x) := τ(x−1)x .

Note that τ(·) = e corresponds to the identity map τ̃ (x) = x , switching from the left
to the right quantization, and vice versa. [For the right quantization a(y, ξ) appears in
(22)]. Thus the Hilbert space adjoint corresponds to complex conjugation of symbols
if and only if τ = τ̃ . If G = R

n (with addition) the number τ = 1/2 solves this and
corresponds to the Weyl quantization.

In [22, Sect. 4] the existence problem of such a symmetric parameter τ has been
tackled for very general groups. In particular, a natural solution has been found for
our nilpotent case, based on the vector structure of the Lie algebra on the fact that the
group and the Lie algebra are diffeomorphic. Explicitly, one sets

τ(x) :=
∫ 1

0
exp[s log x]ds.

Keeping τ arbitrary, we briefly (and formally) indicate in the sequel some of the
modifications needed in the present paper to accommodate the quantization parameter
τ .

Instead of (4), one can start with the family of unitary operators in L2(G)

[

Wτ(z, ζ )u
]

(x) := ei〈log[τ(z)−1x]|ζ 〉u(z−1x), (z, ζ ) ∈ G × g�,

coinciding with those from (4) if τ(·):= e. We recall the formula W(z, ζ ) ≡
We(z, ζ ) = Mζ Lz (multiplications are placed to the left). For τ = id one has the
opposite ordering Wid(z, ζ ) = LzMζ .

Then the τ -Fourier–Wigner transform will be

W τ
u,v(z, ζ ):= 〈

Wτ(z, ζ )u |v〉 =
∫

G
ei〈log[τ(z)−1y]|ζ 〉u

(

z−1y
)

v(y)dy

=
∫

G
ei〈log x |ζ 〉u(z−1τ(z)x)v(τ (z)x)dx .

It consists of a partial Fourier transformation composed with a τ -depending change
of variable.

Computing the adjoint of Wτ(z, ζ ) leads to coherent states built upon ω ∈ S(G)

and depending on τ :

ωτ
z,ζ (x) := [

Wτ(z, ζ )∗ω
]

(x) = e−i〈log[τ(z)−1zx]|ζ 〉ω(zx).
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This releases a sequence of τ -analogs of many of the notions and formulas above,
with similar properties. For instance, a (slightly formal) expression for the τ -Berezin
quantization is

[

Berτω( f )u
]

(x)

=
∫

G

∫

G

∫

g�

ei〈log[τ(z)−1zy]−log[τ(z)−1zx]|ζ 〉 f (z, ζ ) ω(zy) ω(zx) u(y) dydzdζ.

The reader may formulate other results in the setting of the τ -Berezin quantization.
We only indicate another covariance result, valid for τ(x) = x , that is different from
Proposition 5.7 (in a very non-commutative setting ordering issues do matter if one
wants simple formulas).

Proposition 8.1 For any ζ ∈ g� and f ∈ L∞(G × g�), one has

M∗
ζBer

id
ω ( f )Mζ = Beridω

[

f (·, · − ζ )
]

.

Proof Using notations from Sect. 3, one has

M∗
ζ Ber

id
ω ( f )Mζ u =

∫

G

∫

g�

f (x, ξ)M∗
ζ Ω id

x,ξMζ u dxdξ

=
∫

G

∫

g�

f (x, ξ)
〈

u,M∗
ζW

id(x, ξ)∗ω
〉

M∗
ζW

id(x, ξ)∗ω dxdξ

=
∫

G

∫

g�

f (x, ξ)
〈

u,M∗
ζM

∗
ξL

∗
xω

〉

M∗
ζM

∗
ξL

∗
xω dxdξ

=
∫

G

∫

g�

f (x, ξ)
〈

u,M∗
ζ+ξL

∗
xω

〉

M∗
ζ+ξL

∗
xω dxdξ

=
∫

G

∫

g�

f (x, ξ)
〈

u,Wid(x, ζ + ξ)∗ω
〉

Wid(x, ζ + ξ)∗ω dxdξ

=
∫

G

∫

g�

f (x, ξ)Ω id
x,ζ+ξ u dxdξ

=
∫

G

∫

g�

f (x, η − ζ )Ω id
x,η(u) dxdη.

��

8.2 Magnetic quantization

In the same setting of a connected simply connected nilpotent group G, we consider
a magnetic field B, i. e. a closed 2-form on G. It can be written as B = d A for some
1-form (vector potential). Any other vector potential Ã satisfying B = d Ã is related
to the first by Ã = A + dψ , where ψ is a smooth function on G ; it would lead to a
unitarily equivalent formalism (gauge covariance).
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For x, y ∈ G one defines the smooth function [x, y] : R → G by

[x, y]s := exp[(1 − s) log x + s log y] = exp[log x + s(log y − log x)].

Its range [[x, y]] := { [x, y]s | s ∈ [0, 1] } is the segment in G connecting x to y. The
circulation of the 1-form A through the segment [[x, y]] is

Γ A[[x, y]] ≡
∫

[[x,y]]
A :=

∫ 1

0

〈

log y − log x
∣

∣ A
([x, y]s

)〉

ds.

This leads to the following magnetic modification of the quantization (19)

[OpA(a)u](x) =
∫

G

∫

g�

ei
∫

[[x,y]] A ei〈log(xy−1)|ξ〉a
(

x, ξ
)

u(y) dydξ,

that has been introduced in [3, Sect. 4]. One finds in [3] more general constructions,
consisting in twisting by 2-cocycles pseudo-differential formalisms attached to type
I unimodular locally compact groups. The Abelian case G = R

n is deeply studied in
[16,17,21], mainly in connection with magnetic Schrödinger operators.

At a basic level, the key modification is to replace the left regular representation
L : G → B[L2(G)] with the family of left magnetic translations

[

LA
z (u)

]

(x) := ei
∫

[[x,z−1x]] A u
(

z−1x
)

. (23)

They do not even form a projective representation. By using Stokes’ Theorem one
checks that

LA
y L

A
z = Ω B(y, z)LA

yz, ∀ y, z ∈ G, (24)

with Ω B(y, z) the operator of multiplication by the function x → eΓ B (x;y,z), where
Γ B(x; y, z) is the flux of the magnetic field B through the “triangle” in Gwith corners
x, y−1x and z−1y−1x , defined by “segments” of the form [[a, b]] as defined above. So
there is a magnetic contribution to the canonical commutation relations.

Consequently, one defines the family of unitary operators WA(z, ζ ) :=Mζ LA
z in

L2(G) (the magnetic Weyl system, labeled by Ξ = G × g�) by

[

WA(z, ζ )u
]

(x) := ei〈log x |ζ 〉ei
∫

[[x,z−1x]] A u(z−1x).

This leads to magnetic coherent states

ωA
z,ζ (x) := [

WA(z, ζ )∗ω
]

(x) = e−i〈log(zx)|ζ 〉e−i
∫

[[zx,x]] A
ω(zx), (25)

and the magnetic Fourier–Wigner transform

W A
u,v(z, ζ ) := 〈

WA(z, ζ )u, v
〉 =

∫

G
ei〈log y|ζ 〉ei

∫

[[y,z−1 y]] A u(z−1y) v(y) dy. (26)
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The output is a magnetic Berezin quantization

[

BerA
ω( f )u

]

(x) =
∫

G

∫

G

∫

g�

ei〈log(zy)−log(zx)|ζ 〉 exp
{

i

(∫

[[zy,y]]
A −

∫

[[zx,x]]
A

)}

f (z, ζ ) ω(zy) ω(zx) u(y) dydzdζ.

The reader can easily extend the results of the main body of this article to the
magnetic case. The τ -quantizations are also possible in this set up.
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