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Nonuniform spatial distributions of vegetation in scarce environments consist of either gaps, bands often
called tiger bush or patches that can be either self-organized or spatially localized in space. When the
level of aridity is increased, the uniform vegetation cover develops localized regions of lower biomass.
These spatial structures are generically called vegetation gaps. They are embedded in a uniform vege-

MSC: tation cover. The spatial distribution of vegetation gaps can be either periodic or randomly distributed.
00-01 We investigate the combined influence of the facilitative and the competitive nonlocal interactions be-
99-00 tween plants, and the role of crow/root allometry, on the formation of gapped vegetation patterns. We
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bifurcation diagram.

characterize first the formation of the periodic distribution of gaps by drawing their bifurcation diagram.
We then characterize localized and aperiodic distributions of vegetation gaps in terms of their snaking

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

When the level of the aridity increases, vegetation popula-
tions exhibit two-phase structures where high biomass areas are
separated by sparsely covered or even bare ground. The spatial
fragmentation of landscapes leading to the formation of vegeta-
tion patterns in semi- and arid-ecosystems is attributed to the
symmetry-breaking instability that occurs even under strictly ho-
mogeneous and isotropic environmental conditions [1]. On-site
measurements supported by theoretical modeling showed indeed
that vegetation patterns are formed thanks to the facilitation
and competition plant-to-plant interactions [2-5]. The periodic
vegetation patterns that emerge at the onset of this instability
are characterized by a well-defined wavelength. Generally speak-
ing, symmetry-breaking instability requires two opposite feedbacks
that act on different spatial scales. The positive feedback consists
of the facilitative plant-to-plant interaction such as shadow and
shelter effect. This feedback operates on a small spatial scale com-
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parable to the size of the plant crown and tends to improve the
water budget in the soil [6], which thus favors the increase of veg-
etation biomass in arid-zones. The negative feedback by competi-
tive plant-to-plant interaction for resources such as water and nu-
trients which on the contrary operates on a longer space scale cor-
responding to the plant lateral root length. The roots of a given
plant tend to deprive its neighbors’ resources such as water [7].
The balance of competition and facilitation interactions within
plant communities allow for the stabilization of vegetation pat-
terns. This symmetry-breaking instability is characterized by an
intrinsic wavelength that is solely determined by dynamical pa-
rameters such as the structural parameter (the ratio between the
size of the crown and the rhizosphere) and the vegetation com-
munity cooperatively parameter or other internal effects [8,9]. The
morphologies of these states follow the generic sequence gaps <
bands or labyrinth & spots as the level of the aridity is increased
[10,11]. This generic scenario has been recovered for other mathe-
matical models that incorporate water transport by below ground
and/or above ground run-off [12-15].

Vegetation patterns are not necessarily periodic. They can be
aperiodic and localized in space in the form of more or less circu-
lar patches surrounded by a bare soil [16,17]. Localized vegetation
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Fig. 1. Field observations of gapped vegetation patterns. (a) North western Africa (Kenya, 042'16.61”N, 4022'19.06"E). (b) North west Australia (c,d) Pro-Namibia zone of the
west coast of Southern Africa (c) Aerial photography: courtesy of Norbert Juergen. (d) Photography: courtesy of Johnny Vergeer.

structures is a patterning phenomenon that occurs under the same
condition as symmetry-breaking instability. However, for a moder-
ate level of aridity, they tend to spread and to invade the whole
space available in a given landscape. This bifurcation is referred to
as curvature instability that deforms the circular shape of local-
ized patches and provokes a self-replication phenomenon that can
take place even in strictly isotropic environmental conditions [18-
20]. This curvature instability may lead to the formation of another
type of morphologies, such as arcs and spiral like vegetation pat-
terns [5].

We investigate the formation of gapped vegetation patterns un-
der a strictly homogeneous environmental conditions. They con-
sist either periodic or aperiodic distribution of spots of bare soil
embedded in a uniform vegetation cover (see Fig. 1). By taking
into account the effect of the crown/root allometry together with
the facilitative and the competitive plant-to-plant interactions, we
show that the homogeneous cover exhibits a symmetry-breaking
instability leading the formation of spatially periodic distribution
of gaps. We characterize first the formation of periodic gaps by
drawing their bifurcation diagram. Then, we identify the range
of the parameter where landscapes exhibit stable localized gaps.
These structures are characterized by an exponentially decaying
oscillatory tails, which stabilize a large number of gaps and clus-
ters of them [21]. We establish a snaking bifurcation diagram as-
sociated with localized gaps. From the theory of dynamical sys-
tems point of view, the bifurcation diagram associated with gaps
localized structure consists of two snaking curves: one describes
gaps localized vegetation patterns within an odd number of gaps,
the other corresponds to even a number of gaps. This type of
gaps self-organization is often called homoclinic snaking bifurca-
tion and have been intensively studied in the framework of the
Swift-Hohenberg equation [22-24], see also a review paper [25] in
the theme issue [26]. A paradigmatic Swift-Hohenberg equation
has been derived in the context of plant ecology in vicinity of the
critical point associated with bistability by Lefever and collabora-
tors [3]. This model undergoes snaking bifurcations for both local-
ized patches and gaps [27,28].

The paper is organized as follows: In Section 2, we present the
model and analyze the uniformly covered states. In Section 3, we
analyzed and characterize the formation of gapped vegetation pat-
terns in one and two-dimensions. In Section 4 we study localized
gaps, and analyze them in terms of the homoclinic snaking bifur-
cation in one dimension.

2. Interaction-redistribution model for the biomass evolution:
nonlocal interactions and crown/roots allometry

During more than two decades, several models have been pro-
posed to investigate the formation of vegetation patterns and the
associated self-organization phenomenon. These approaches can be
classified into three categories. The first is the generic interaction-
redistribution model based on the relationship between the struc-
ture of individual plants and the facilitation-competition plant-to-
plant interactions existing within plant communities. This model-
ing considers a single biomass variable [1]. The second is based
on reaction-diffusion type of modeling. This approach focuses on
the influence of water transport by below ground diffusion and/or
above ground run-off [12-14,29,30]. The third modeling approach
is based on the stochastic processes that take into account the role
of environmental randomness as a mechanism of noise induced
symmetry-breaking transitions [31,32]. In what follows, let us con-
sider the first modeling approach, the interaction-redistribution
model [33],

0cb = Fy(b+dFy)(1 - ) — b, (1)

where b = b(r, t) is the biomass density at the position r = (x,y)
and the time t. The functions Fy, F, and F; account for facilitation,
competition, and seed dispersion mechanisms of the plant-to-plant
feedbacks, respectively. The parameter p models the aridity, that
is, the plant mortality, which is mostly attributed to adverse envi-
ronmental conditions. The explicit forms of the nonlocal functions
Fycq, are

']
Fr =exp (Cll/ehb(r+r’,t) dr’),

r
Je b4, dr
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fe & dr
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2
Fy = l/e % b(r +r,t) dr.
@
Normalization factors are C; =2L,, and C;=7wL; for one-
dimensional systems, and C; =272, and C4=ml2 for two-
dimensional systems. Lq is the effective radius of the surface that
occupies a mature plant. However, ecosystems not only comprise
mature plants but also classes of different ages. Indeed, the age,
the crown size, and root sphere are different from each plant. Ma-
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Fig. 2. Homogeneous steady states solutions of Eq. (3), for d = 0.02. The barren state by = 0 is unstable for © < 1+d; stable for i > 1 +d. Depending on the allometric
exponent p, the spatial dimensions n, and the ratio I', the branch of vegetated solutions may or may not have an unstable part and a second section of stability. (left top
panel) 1-d, no allometric effect p = 0; (left bottom panel) 2-d, no allometric effect p = 0; (right top panel) 1-d, allometric effect p = 1/3; and (right bottom panel) 2-d,
allometric effect p = 1/3. Stability to sinusoidal perturbations is analyzed in another section.

ture and bigger plants require a higher amount of water and nutri-
ents. Young and smaller plants explore through their roots smaller
territories for the uptake of water and nutrients. In other words,
the allometric factor plays an important role in phyto-societal be-
haviors that governs the range of facilitative and competitive inter-
actions during development of plants. For a given spatial point, the
effective ranges of the facilitative and the competitive interactions
depend on the biomass density. The range of influence of young
plants (associated with lower biomass) must be smaller than the
influence range of the older ones (associated with higher biomass).
The allometric factor is a statistical constant that has been estab-
lished to be p =1/3 by measuring the relative size of the above-
ground (crown) and below-ground (rhizosphere) structures for the
plant C. micranthum in Neger [2,3]. The effective ranges of interac-
tion take the form [14,34]

Lo =L9,b? (2)

where p is the allometric factor and L?_z are constants. In the ab-
sence of the allometry, i.e., p = 0 the effective ranges of both facili-
tative and competitive interactions are independent of the biomass
density. However as we shall see, when p # 0, the allometry modi-
fies the position of the critical point associated with bistability and
induces a new branch of low biomass [3,33].

The homogeneous steady states, b(r,t) = by, corresponding to
the homogenous covers are solution of Eq. (1). The trivial solu-
tion is the bare state by = 0, represents a territory totally devoid
of vegetation. The barren state obviously exists for all values of the
parameters. Homogeneous covers satisfy the following equation

= exp (T"bgP*") (1 +d) (1 — by). (3)

where I' = L1/l and n is the dimension of the system (n=1
corresponds to 1D and n =2 corresponds to 2D). The dimension
of the system and the allometric factor impact the homogeneous
steady state curves. Depending on the parameter values, one can
find monostable and bistable regimes, between these spatially ho-
mogeneous states. The coordinates of this second-order critical
point marking the onset of a hysteresis loop is obtained by sat-
isfying simultaneously the conditions

ou 02u

Tby and Tbg =0, (4)
with u satisfies Eq. (3). The two conditions Eq. (4) allow to esti-
mate the coordinate of the critical point associated with bistability
(Ce, e be).

In the absence of the allometry p =0, i.e.,, when all plants are
mature, two regimes must be distinguished according to the value
of the I' = L; /L, parameter. If ' < 1 (monostable regime), the uni-
formly vegetated cover exists only in the range 0 < u < 1. In this
parameter range, the biomass decreases monotonously with aridity
and vanishes at u =1 +d. For larger aridity levels, i.e, uw>1+d
only the barren state exists as shown in Fig. 2(a). If ' > 1 (bistable
regime), the state of the uniformly vegetated cover extends up to
the tipping point (saddle-node bifurcation) as shown in Fig. 2(a,b).
This means that when increasing the facilitative interaction range,
vegetation community can survive while individual plants can not.
This situation corresponds to the vegetation systems presented in
Fig. 2(a) in a one-dimensional system and in Fig. 2(b) for two-
dimensional settings. If I' =1, the system reaches the second-
order critical point marking the onset of a hysteresis loop. The co-
ordinate of this critical point is ¢ = 1+d and b. = 0. In this case,
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spatial oscillations around b. = 0 are physically excluded. When,
however, we take into account the allometry, the coordinate of the
critical point associated with the nascent bistability occurs with a
finite biomass (b # 0), as shown in Figs. 2(c,d). Another important
consequence of the allometry is that a new stable state with low
biomass density is possible as shown in Fig. 2(d). Therefore, there
is a parameter range where the system exhibits tristability. Besides
the stable barren state, the high and low biomass covers can coex-
ist for the same values of system parameters. From Figs. 2, we in-
fer that all curves, in the (i, bg)-plane, coincide at the same point
(u=1+d,bg =0). The slope at this point is explicitly given by
du/dbg = —(1 +d), which is independent of the other parameter
values. Dashed curves correspond to unstable solutions, while con-
tinuous curves denote solutions that are stable with respect to spa-
tially homogeneous perturbations. In the next section, we will per-
form the linear stability analysis of the homogeneous covers with
respect to spatially inhomogeneous perturbations.

3. Linear stability analysis and vegetation pattern formation
3.1. Linear stability analysis

We perform the linear stability analysis of the homogeneous
steady state solutions of Eq. (3) with respect to small spatially in-
homogeneous fluctuations around the homogeneous steady states;
bg; of the form

b(r,t) = by + 8b(r, t), (5)

with 8b(r, t) « 1. Replacing Eq. (5) into Eq. (1), and linearizing
with respect to &b(r, t), one obtains a linear equation of the form
0¢8b(r, t) = L8b(r, t). If all the eigenvalues of operator £ have a
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negative real part, the homogeneous state by is stable, otherwise, it
is unstable. Since the system is invariant under spatial translations,
the linear operator £ is diagonal in the Fourier basis £Lexp (ik - r) =
A(k)exp (ik - r). The function A(k), often called the spectrum, is al-
ways real for the approach based on the interaction-redistribution
model Eq. (1) and therefore time oscillations around the homoge-
neous covers are therefore excluded. The spectrum only depends
on the modulus of the wavevector k. This is because the system is
isotropic in both x and y direction, and then there is no preferred
direction in the plane (x, y). This spectrum can be computed an-
alytically but the obtained expressions for both the threshold as
well for the most unstable wavelength at the symmetry breaking
instability are cumbersome. The plot of the spectrum as a function
of the wavenumber is shown in Fig. 3 for p=1/3.

It shows the spectrum for the upper branches (left panels), that
is, the higher density state, and the lower branches (right panels),
that is, the lower density state. These spectra have been computed
in one (top panels) and two (bottom panels) dimensions and for
p=1/3. As we see, from Fig. 3, there exist a range of aridity pa-
rameter, (L1 < U < e, Where the homogeneous cover is unstable
and gives rise to the formation of a periodic vegetation pattern.

3.2. Vegetation pattern formation

To analyze the formation of vegetation patterns that are spon-
taneously triggered by the symmetry-breaking instability, we first
compute the spatially periodic structure in one spatial dimension
(n = 1). For this purpose we use a continuation method. More pre-
cisely, we numerically determine the branches of nonlinear solu-
tions of Eq. (1). The stability analysis of these solutions is per-
formed with continuation software (AUTO), which is based on
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Fig. 3. Stability of uniformly vegetated state to the introduction of small sinusoidal modulation, as parameter p is varied, one (n = 1) and two (n = 2) spatial dimensions. An
allometric factor p=1/3 and a ratio I' = 5/8 were used in all the figures, so there is a range defined by two turning points where three vegetated homogeneous solutions
exist. (left panels) Along the upper solution there is a bifurcation point . at which a critical mode exp (ikx) becomes unstable and its growth exponent A(k) becomes
positive. (right panels) Along the lower solution there is also a bifurcation point (., at which a mode becomes unstable. Other parameters are L, = 5/4, L; = 2, L, = 2.8125,

Ly =2.5 and d = 0.02.
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computed with finite differences and pseudo-arclength continuation algorithm. (b) Heterogeneous solutions for different values of aridity . As parameter p decreases, the
amplitude of the stable periodic profile grows. Other parameters are L, = 5/4, Ly =2, L, = 2.8125, L; = 2.5, and d = 0.02.
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Fig. 5. (left panel) Branches of solutions with hexagonal symmetry computed with a Fourier expansion and a pseudo-arclength continuation algorithm. Parameter values:
p=1/3,La=5/4, L =2, L, =2.8125, L; = 2.5 and d = 0.02. (right panel) Stable hexagonal pattern of gaps for © = 1.11 (indicated with black dot in left panel).

the pseudo-arclength method [35]. The results are summarized in
Fig. 4, where the spatially periodic profiles of the biomass are plot-
ted for different values of the level of aridity u. From this figure,
we see that as parameter p is decreased, the biomass grows. The
bifurcation diagrams associated with these solutions are plotted as
a function of the level of the aridity in Fig. 4b. When increasing
the level of aridity the high biomass cover is stable in the range
0 < i < Me1- At = [4¢q, the homogeneous high biomass cover
becomes unstable with respect to spatially symmetry-breaking in-
stability. From this bifurcation point @ = ¢, a periodic solution
emerges spontaneously as shown in Fig. 4b. When increasing fur-
ther the aridity, the homogeneous lower biomass state stabilizes
due to the second spatial symmetry instability at u = uo (see
Fig. 4b). The periodic solutions in the vicinity of u = o appear
supercritical with small amplitude. However, the bifurcation at u =
1 is subcritical. In this case, namely in the range u* < ;< W,
the system exhibits a coexistence between a periodic gapped pat-
terns and the homogeneous high biomass cover. As we will see in
the next section, the coexistence is prerequisite conditions for the
formation of localized gaps. For u > i, the low biomass cover is
stable until the system reaches the barren state at =1+ d. For
i >1+d, only the barren state is stable.

In the two-dimensional system (n =2), when increasing the
aridity parameter, the first vegetation pattern that appears is the
periodic distribution of gaps forming a hexagonal structure as
shown in Fig. 5. The bifurcation diagram associated with these
two-dimensional solutions is plotted in Fig. 5. The results are ob-
tained by using the continuation method in [35] that consist of

Fig. 6. Generic sequence of vegetation patterns obtained from model Eq. (1). Aridity
parameter is increases from left to right. other parameters are d =0.5, p=0, L, =
5/4, Ly =2, L, = 2.8125, and Ly = 2.5.

assuming that the biomass is distributed in a periodic manner and
the wavevectors define a finite hexagonal lattice that is conjugated
to the spatial lattice generated from the basic hexagon.

After having fully characterized the formation of periodic dis-
tribution of gaps as a function of the aridity parameter, we recover
the generic sequence gaps & stripes < spots as shown in Fig. 6.
These ecological states in arid landscapes possess an overlap do-
main of stability as shown analytically in weak gradient approxi-
mation [11].

4. Localized gaps and snaking bifurcation

Localized structures and localized patterns are a well docu-
mented phenomenon, concerning almost all fields of natural sci-
ence including chemistry, biology, ecology, physics, fluid mechan-
ics, and optics [36-41]. Localized vegetation patches and gaps
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Fig. 7. (left panel) Branch of localized solutions with odd number of gaps, born at the bifurcation point of the upper homogeneous branch. The vertical coordinate is the
norm of the solution with respect to the homogeneous solution for that value of . (right panel) Localized solution with a single gap. This solution is stable and corresponds
to 1 = 0.972 (black dot in left panel). Other parameters are L, = 5/4, L; = 2, L, = 2.8125, L; = 2.5, and d = 0.02.
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Fig. 8. (left panel) Branch of localized solutions with even number of gaps, born at the bifurcation point of the upper homogeneous branch. The vertical coordinate is the
norm of the solution with respect to the homogeneous solution for that value of . (other three panels) Localized solutions with two, three and four gaps. These solutions
are stable and correspond to p = 0.9754, = 0.9673, and p = 0.9704 (dots in left panel). Other parameters are L, = 5/4, Ly = 2, L, = 2.8125, L; = 2.5, and d = 0.02.

belong to the class of stationary and spatially localized patterns.
They consist either of localized vegetation patches distributed on
bare soil [16,42] or, on the contrary, of localized spots of bare soil
embedded in an otherwise uniform vegetation cover [21]. Localized
patches or localized bare soil spots (often called fairy circles) can
be either spatially independent, self-organized, or randomly dis-
tributed.

It is worth mentioning that fairy circles are striking examples
attributed to this category of localized vegetation patterns [43]. Al-
though, the mechanisms leading to their formation are still sub-
ject of debate among the scientific community. They have been
interpreted as the result of a pinning front between a uniform
plant distribution and a periodic hexagonal vegetation pattern [21].
Recent investigations support this interpretation [44-46]. On the
other hand, fairy circles formation may result from front dynamics
connecting a bare state and uniform plant distributions [47-49].

In all these works, the origin of fairy circle formation is intrin-
sic to the dynamics of the system. This means that the diameter
of the fairy circle is determined rather by the parameters of the
system and not by external effects, such as the presence of social
insects or anisotropy. However, another theory based on external
effects, such as termites or ants has been suggested [50-53]. More
recently, Tarnita and collaborators have shown that a combination
of intrinsic and extrinsic effects could explain the origin of fairy
circles [54].

The bifurcation theory of localized structures developed for
other extended models indicates that they are born at the same
critical point as vegetation gapped periodic patterns, and they are
unstable, gaining stability only after a fold. For instance a local-
ized solution born at the bifurcation point of the upper branch will
look like a small region of smaller density surrounded by a uni-
form region of density equal to the upper branch for that value of
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the aridity, essentially a gap. A localized gap pattern born at the
lower branch will look like a bump surrounded by high biomass
density (see Fig. 7).

Subsequent folds of the branch of localized solutions make
them switch stability and add extra gaps or bumps. The complete
bifurcation diagram, plotted using p and the spatial average of
b(x), shows a complicated snaking diagram with an infinite num-
ber of folds as the patterns becomes more and more similar to
the periodic solution. Note that there are two basic branches: one
with an odd number of gaps, and other with an even number of
gaps. We draw only the branch corresponding to odd number of
gaps. We find numerically the first few folds of these two branches.
These branches are displayed in Fig. 7 for single gap and Fig. 8 for
clusters of odd number of gaps.

5. Conclusions

By using the generic interaction-redistribution model Eq. (1),
we have analyzed ecological state transitions in stressed land-
scapes. We have shown that the allometry affects the homoge-
neous covers by : (i) shifting the critical point associated with
bistability to a finite biomass density and (ii) by inducing a new
branch of stable low biomass cover. We have shown that gaps are
the first self-organized structure that appears when the level of the
aridity is increased. We have attributed their formation to facili-
tative and competitive interactions between individual plants. We
have recovered the generic sequence gaps < bands or labyrinth
& spots. We have established the two-dimensional bifurcation di-
agram associated with periodic gapped vegetation patterns. To per-
form the analysis, we have used the continuation method based
on the pseudo-arclength technique. Furthermore, we have fully an-
alyzed the formation of localized gaps, and we have shown that
they undergo a homoclinic snaking bifurcation.
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