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Deposition of multilayer indium saving indium-tin oxide (ITO) thin films was attempted to achieve both
low volume resistivity and high transmittance. Double-layered structures consisting of very thin layer of
conventional indium tin oxide (Iny03-10 mass % SnO3) and indium saving indium-tin oxide (In,03-50
mass % Sn0-) layer were grown by DC sputtering on glass substrates preheated at 523 K. It was found
that this method can produce polycrystalline ITO thin films having volume resistivity as low as
281 pQcm, mobility 28 cm?/V-s and carrier concentration 5.32 102 cm 3, Average optical transmittances
exhibited above 85% in visible range of spectrum. Arithmetical mean height (S,) and root mean square
height (Sq) of films deposited at optimum conditions were 1.09 and 1.40 nm, respectively.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Indium tin oxide thin films have been extensively studied due to
their applications as transparent electrodes for solar cells, panel
displays and for optical solar reflectors [1—4] because of their low
resistivity and high transmittance. However, one significant
disadvantage of the use of ITO is its high cost. There is a clear need
to find a material that is more cost effective, has better or maintains
properties of conventional ITO (90 mass% In;O3 and 10 mass%
SHOz).

Indium-saving ITO thin films were manufactured and studied in
Refs. [5—15]. Utsumi et al. [5] revealed that the optimum SnO;
concentration for sputtering of ITO thin films is 15 wt % when
depositing ITO thin films with 0—100 mass% SnO, by magnetron
sputtering. Thirumoorthi et al. [6] have studied ITO thin films with
Sn concentration 0—30 mass% and found that the best electrical
parameters and high optical transmittance showed film deposited
at 20 mass% Sn. Biswas et al. [7,8] have investigated ITO thin films
with In:Sn atomic ratios as 90:10, 70:30, 50:50 and 30:70 and
showed that the lowest resistivity together with quite high
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transmittance demonstrated ITO thin films 70:30. Minami et al. [9]
found two peaks of carrier concentration at 5—10 atomic% of Sn and
at 50 atomic% of Sn and obtained ITO thin films with 50 atomic% of
Sn [9—12] that possessed both low resistivity and high trans-
mittance. The structural, electrical and optical properties of indium
saving ITO thin films with ~50 mass% of SnO, were also studied by
Li et al. [13], O’Neil et al. [14], Voisin et al. [15]. Such films with ~50
mass% of In,03 are an attractive alternative to conventional ITO (90
mass% of In,03) because of their lower cost due to reduced indium
content.

In order to improve optical and electrical properties of indium
saving ITO thin films indium saving multilayer ITO thin films can be
elaborated.

ITO multilayer (ML) thin films were deposited using different
methods [16—22]. In these works multilayer thin films were ob-
tained with high conductivity and transmittance. However, such
films consisted of three layers, two of which were relatively thick
layers of conventional ITO. Bilayer thin films containing conven-
tional ITO layer were manufactured and studied in Refs. [23—27].

ITO/Ga—Al doped ZnO [23] and RF-sputtered ITO/AZO and ITO/
ZnO thin films [24] exhibited resistivity 3.79 x 1074, 8.4 x 10~%and
1.1 x 1073 Q cm and transmittance above 90%, of 88.3 and 87.3% in
visible range, respectively. However such films also contained
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Fig. 1. Schematic diagram of the sputtering apparatus.

Table 1
Volume resistivity of ITO90 thin films deposited at optimum conditions Q(O,) = 0.2
sccm on glass substrate preheated at 523 K (PHS523).

Sputtering time, min Film thickness, nm Volume resistivity, pQ-cm

1.0 4.1 1014
1.5 6.2 479
2.0 8.2 425
2.5 103 246
3.0 123 217
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Fig. 2. Effects of oxygen flow rate on the volume resistivity of ML ITO90/ITO50 thin
films, SL ITO50 thin films [15] and ITO90 thin films.

relatively thick layer (80—100 nm) of conventional ITO. ITO layer
with thickness only of 20 nm was proposed to use for the fabrica-
tion of GaN-based light-emitting diodes [27]. Such 500-nm AZO/
20-nm ITO bilayer films demonstrate a high transmittance above
90% in the visible region, however they have high resistivity.

In present investigation ML thin films consisting of very thin layer
of conventional ITO and indium saving ITO layer were deposited
onto glass substrates preheated at 523 K by DC sputtering.

Table 2
Electrical properties of as-depo. ML ITO90/ITO50 thin films in comparison with SL
ITO50 thin film and ITO90 deposited at optimum conditions (Q(0,) = 0.2 sccm).

Sample Volume resistivity, Mobility, p/ Carrier density,
py/uQcm cm?V-'s!' pjem3

ITO90/ITO50 (ML) 281 28 5.32 10%°
Q(03) = 0.2/0.3 sccm

ITO90/ITO50 (ML) 427 19.3 7.57 10%°
Q(03) = 0.2/0.5 sccm

ITO50 (SL) 1860 129 2.66 10%°

Q(03) = 0.3 sccm

ITO50 (SL) 714 40 1.57 10%°

Q(03) = 0.5 sccm

ITO90 (SL) 110 36 1.62 10%'

Q(03) = 0.2 sccm
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Fig. 3. Optical transmittance of as-depo. ML ITO90/ITO50 thin films deposited at
Q(0,) = 0.2 sccm/0.1-0.5 sccm.
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Fig. 4. Optical transmittance of as-depo. ML ITO90/ITO50 thin films deposited at

Q(03) = 0.2 sccm/0.3 sccm and 0.2 sccm/0.5 scem and SL ITO90 thin film deposited at
Q(02) = 0.2 sccm and SL ITO50 thin film sputtered at Q(O;) = 0.3 sccm and Q(03) =
scem.
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Fig. 5. X-ray diffraction (XRD) patterns of as-depo. SL and ML thin films sputtered at Q(O,) = 0.3 and 0.5 sccm compared to ITO90 film with rhombohedral In4Sn301 and cubic In,03

reference data.

2. Experiment

ITO films were deposited by a commercial sputtering system
ULVAC, CS-200 (Fig. 1).

The indium-tin targets containing In,03 and SnO in a propor-
tion of 90:10 mass % (ITO90) and 50:50 mass % (ITO50) were used
for deposition of the first and second layers, respectively. Before
sputtering, the target was pre-sputtered for about 30 s with a
shutter covering the target in order to remove any contaminant on
the surface of the target. The DC power during the deposition was
fixed at 100 W (1.23 W/cm?). The sputtering targets dimensions
were 101.6 mm (81.07 cm?) in diameter and 5 mm in thickness.

The substrates used were the Corning EAGLE 2000 glasses
(surface: 50 mmx50 mm, thickness: 0.7 mm). The process chamber
was evacuated down to a pressure of 10~ Pa. Total experimental
pressures were resulted to be between 0.67 and 0.69 Pa. The argon

gas flow introduced into the chamber was fixed at 50 sccm. The
flow rate of oxygen reactive gas was set at 0.2 and 0.1—0.6 sccm for
sputtering of the ITO90 and the ITO50 layer, respectively.

It is well known that ITO films deposited at a high substrate
temperature show improved electrical and optical properties
[28,29]. The substrate temperature was set at 523 K. The substrate
holder rotated with 40 rpm in order to achieve the homogeneous
deposition. Sputtering time was calculated using data for deposi-
tion rate of ITO90 and ITO50 thin films. Sputtering time for thin
films was set 3 min for ITO90 as the first layer in order to obtain
thickness of 12 nm and 30 min for ITO50 to get the second layer
with thickness 138 nm. Thus total thickness of films was 150 nm.
ITO50(0.5) (Q(Ar)/Q(02) = 50 sccm/0.5 sccm), and IT090(0.2)
(Q(Ar)/Q(02) = 50 sccm/0.2 sccm) thin films were sputtered during
32 and 37 min respectively to get thickness of 150 nm to make it
possible to compare optical transmittance (t) of SL and ML thin
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Fig. 6. Surface morphology of (a) SL ITO50 thin film deposited at Q(O2) = 0.3 sccm, (b) SL ITO50 thin film deposited at Q(O,) = 0.5 sccm, (c) SL ITO90 thin film deposited at
Q(03) = 0.2 sccm [15], (d) ML thin films deposited at Q(0,) = 0.3 and (e) ML thin films deposited at Q(O;) = 0.5 sccm.

films since © depends on films thickness [30].

The volume resistivity of ITO films was measured by a four-point
probe with a resistivity meter (Mitsubishi chemical analytech,
Loresta GP Model MCP-T610). Optical ttransmittance was measured
in the spectral range from 200 to 2500 nm with a Hitachi High-
Tech, U-4100 spectrophotometer.

The crystallinities of the ITO films were obtained from XRD
measurements using Rigaku Rint-2000 difractometer with CuKa.
(1.5418 A) radiation.

Surface properties were investigated by a scanning probe mi-
croscope (SPM, SII L-trace II) under the DFM.

The transmission electron microscopy TEM characterization of
ML ITO90/ITO50 thin films was carried out using a transmission
electron microscope (Hitachi High Technology, H-9000NAR) oper-
ated at 300 kV.

It is well known that substrate plays important role in film
growth and is one of the factors determined the thin film proper-
ties. To improve thin film properties it is important to choose the
first layer material with high transmittance and conductivity. Such
material is conventional ITO (InyO3 -10 mass % SnO,). At the opti-
mum conditions Q(Ar)/Q(02) = 50/0.2 sccm ITO90 deposited onto
preheated at 523 K glass substrate showed p, = 116 pQcm and
transmittance higher than 85%. In order to decrease usage of
expensive ITO90 it was necessary to decrease the first layer thick-
ness. To choose the optimum thickness for this layer ITO90 was
sputtered during 1—3 min in order to obtain very thin films with
high transmittance (of about 92%) and low resistivity (Table 1).

As can be seen from Table 1, volume resistivity decreases with
increasing film thickness. As a result highly transparent and
conductive layers were obtained with 12 nm thickness deposited
3 min.

3. Results and discussion
3.1. Optical and electrical properties

Fig. 2 shows volume resistivity of ML ITO90/ITO50 thin films
sputtered under different flow rates. Volume resistivity of ML

ITO90/ITO50 thin films decreased with increasing oxygen flow rate
to 0.3 sccm and then increased. It is well known that free electrons

Table 3
Root mean square height (S;) and arithmetical mean height (S,) of ML ITO90/ITO50,
SL ITO90 and SL ITO50 thin films.

Sample Oxygen flow Root mean square Arithmetical mean
Q(05)/sccm height, S;/nm height, S;/nm
ITO90/ITO50 0.2/0.3 1.09 1.40
(ML) 0.2/0.5 1.16 1.59
ITO50 (SL) 0.3 0.86 1.09
ITO50 (SL) 0.5 0.88 1.12
ITO90 (SL) 0.2 12.8 15.7

in ITO films arise from oxygen vacancies or tin ions on substitu-
tional sites of indium ions [31]. Therefore, resistivity has to increase
by filling of oxygen vacancies through penetration of oxygen in the
ITO films [32] at oxygen flow rate higher than optimum. Actually
resistivity of multilayer ITO90/ITO50 thin films increased with
increasing oxygen flow rate from 0.3 sccm to 0.5 sccm. However,
even multilayer thin films with ITO50 layer deposited at Q(03) = 0.5
sccm showed lower volume resistivity in comparison to that of
single layer ITO50.

Lower resistivity of ML ITO90/ITO50(0.3) thin films than that of
SL ITO50(0.5) thin film is connected with higher carrier density of
the multilayer films (Table 2) which result from the film crystalli-
zation [33].

Resistivity of ML ITO90/ITO50 thin film is somewhat higher than
that of SL ITO90 thin film due to lower carrier density of the
multilayer film.

Transmittance spectral measurements for ML ITO90/ITO50 thin
films sputtered at different oxygen flow rates are shown in Fig. 3.

Fig. 3 shows that the transmittance in both visible and IR range
noticeably increases with increasing oxygen flow rate up to 0.3
sccm. At Q(02) = 0.2 sccm/0.4 sccm T increased noticeably only at
A > 1300 nm and keeps almost the same value under Q(0O;) = 0.2
sccm/0.5 scem.

Optical transmittance t© was measured for the as-depo. SL
IT090(0.2), SL ITO50 and ML ITO90/ITO50 thin films sputtered at
Q(02) = 0.3 sccm and Q(03) = 0.5 sccm (Fig. 4).

Transmittance of ML ITO90/ITO50 thin films deposited at
Q(03) = 0.2 sccm/0.3 sccm and 0.2 sccm/0.5 sccm reaches 98.3 and
97.1% at \ = 550 nm, respectively. T of ML ITO90/ITO50 thin films
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Fig. 7. Cross-sectional TEM images of (a) SL ITO50 thin film deposited at Q(0;) = 0.3
sccm and (b) ML ITO90/ITO50 thin film deposited at Q(0,) = 0.3 sccm. The dashed
straight lines show approximate boundary between different regions.

deposited at Q(0;) = 0.2 sccm/0.3 sccm is higher than that of SL
ITO50 sputtered at Q(02) = 0.3 sccm at A < 1700 nm, whereas
transmittance of ML ITO90/ITO50 thin films sputtered at
Q(02) = 0.2 sccm/0.5 sccm is higher than that of SL ITO50 thin film
at 600<A < 1000 nm. Transmittance of ITO90 is much lower than
that of ML ITO90/ITO50 thin films at A > 1100 nm so ITO90 thin
films are opaque in this wavelength range. High transmittance in
the infrared range is optional for example in new transparent
electrodes for QD-LED.

3.2. Structural properties

X-Ray 20 scans were carried out from 10 to 70° (Fig. 5) and the
results of those scans reveal that both as-depo. ML ITO90/ITO50
thin films and SL ITO50 thin film sputtered at Q(Ar)/Q(0,) = 50/0.3
sccm show polycrystalline structure, whereas SL ITO50 thin film
deposited at Q(Ar)/Q(02) = 50/0.5 sccm was amorphous. Thus

ITO50

Glass

ITO90 layer promoted hetero-epitaxial growth of ITO50.

As shown in Fig. 5 the results indicate that the ML (Q(0O;) = 0.3
and 0.5 sccm) and SL (Q(0,) = 0.3 sccm) films have peaks at 30.2°,
30.5°, 35.3°, 50.7°, 51°, 60.1°, 60.4° corresponding to rhombohedral
phase IngSn301, (JCPDS # 88—773, referred as R(hkl)) at orientation
planes (003), (12-1), (21-2), (12-4), (140), (502) and (143), respec-
tively. The peaks corresponding to reflections from atomic planes
(003) and (12-1), (12-4) and (140), (502) and (143) overlap because
locate very close to each other and therefore merge into three wide
peaks. The presence of the rhombohedral phase InsSn301; phase
has been confirmed in our previous articles [15,34]. The compara-
tive ITO90 film has main peaks at 21.4°, 30.5°, 35.4°, 45.6°, 50.9°
and 60.5° corresponding to cubic Iny03 (JCPDS # 71—-2194, referred
as C (hkl)) at orientation planes (211), (222), (400), (431), (440),
(622), respectively. We didn’t observe the rhombohedral phase
In,03 (JCPDS # 22—0336) which has previously been observed in
thin films deposited on flexible polymer substrates in the work of
Jeong et al. [35], who used an electron beam evaporator; and in
transparent rhombic/cubic ITO nanocomposite thin films [36]
which were deposited on glass using pulsed nebulization CVD. It
can be explained by different methods and special conditions for
the preparation of films. Usually the cubic InyO3 phase occurs more
often unlike more conductive rhombohedral phase In03 in ITO
films with tin compositions less than 10 mass %. Moreover the
rhombohedral phase is rarely observed without applying high
pressure [36].

Fig. 6 shows surface analyses taken for the as-depo. ML ITO90/
ITO50(0.3, 0.5) thin films in comparison with SL ITO90(0.2) and SL
ITO50(0.5) [15] by using SPM under the DFM.

Both root mean square height (S4) and arithmetical mean height
(Sq) slightly increased with increasing Q(O;) during sputtering of SL
ITO50 and the second ITO50 layer of ML ITO90/ITO50 thin films
(Table 3). Sq and Sg of ML ITO90/ITO50 thin films are larger than
those of SLITO50 thin films due to crystallization of multilayer films
in contrast to single layer amorphous films since as it was stated
above inserting an ultrathin ITO90 layer promoted crystallization of
ITO50 layer.

However root mean square height (Sq) and arithmetical mean
height (S;) of ML ITO90/ITO50 are much lower than that of SL ITO90
thin film with the same thickness.

Fig. 7 shows cross-sectional TEM images of the ML ITO90/

Fig. 8. (a) Cross-sectional HRTEM image of SL ITO50 thin film deposited at Q(O ;) = 0.3 sccm. (b) and (c) The enlarged high resolution images of the crystalline (b) and amorphous

(c) regions surrounded by the dashed rectangles 1 and 2 in Fig. 8(a), respectively.
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(003) (12-1)

(003) (12-1)

+

Fig. 9. Cross-sectional HRTEM image and FTT patterns of ML ITO90/ITO50 thin film
deposited at Q(0,) = 0.3 sccm. The digital diffractograms computed by Fast Fourier
Transformation of the areas surrounded by dashed rectangles and the enlarged high
resolution image of crystal lattice.

ITO50(0.3) thin film with 150 nm thickness compared to SL
ITO50(0.3) thin film. From these results it is clear that single layer
ITO50(0.3) thin film consists of two regions (Figs. 7a and 8a). The
first one near glass substrate possesses most likely to be amorphous
structure (Fig. 8c) with thickness is about 30 nm, which can be
explained by addition stress of the first atomic layers of the
deposited film. The second region consists of the individual crys-
talline columns (Fig. 8b).

Two layers in the multilayer film are clearly seen in Fig. 7b: the
first layer is about 14 nm thick, while the second layer shows the
columnar vertical growth and thickness is about 136 nm. Fig. 9
shows HRTEM image of ML ITO90/ITO50(0.3) thin film deposited
onto preheated at 523 K substrate. It was performed the detailed
investigation of the film in two regions — near the glass substrate
and region of individual columns using Fast Fourier Transformation
(FFT). The FFT analysis of high resolution image from the crystalline
layers of films in Figs. 5b and 6 showed the sequence of diffraction
spots from crystal planes with the lattice d-spacings of about
0.3 nm. This interlayer distance can corresponds to the standard
value of 0.29205 nm (222) for the bcc lattice of indium oxide In;03
(JCPDS card # 71—2194) [37] of the first IT090(0.2) layer and the
standard values of 0.2923 nm (12-1), 0.29528 nm (003) for the
rhombohedral lattice of indium-tin oxide IngSn304 (JCPDS card #
88—773) of the second ITO50(0.3) layer [38]. Thereby high-
resolution TEM investigations confirmed the XRD analysis results
and both methods showed a high crystallinity of as-deposited ML
ITO90/ITO50 films.

4. Conclusions

In summary, we have reported a simple technique for preparing
multilayer ITO90/ITO50 thin films. In order to reduce indium usage
in ITO films, an amount of indium oxide in the target was decreased
from 90 to 50 mass%. DC sputtering onto preheated at 523 K glass
substrates at different oxygen flow rates was used with the absence
of any post-deposition heat treatment.

The optimum oxygen flow rate was found to be 0.2 sccm and 0.3
sccm for deposition of ITO90 and ITO50 layers, respectively. At the
optimum oxygen flow rate as-deposited ML ITO90/ITO50 films
exhibit decrease of the volume resistivity (281 pQcm) in compari-
son with that of SL ITO50 films (714 puQcm). This effect can be
associated with good crystallinity of the as-deposited ML ITO90/
ITO50 thin films and therefore more than threefold increase of
carrier density in comparison with the as-deposited SL ITO50 thin

films. Transmittance at A = 550 nm of ML ITO90/ITO50 thin film
sputtered at optimum oxygen flow rate is 98.3%. ML ITO90/ITO50
thin films show polycrystalline structure. Roughness of ML ITO90/
ITO50 thin films increased with increasing Q(03) during sputtering
of the second ITO50 layer. Arithmetical mean height (S;) and root
mean square height (Sg) of ML ITO90/ITO50 films deposited at
optimum conditions were 1.09 and 1.40 nm, respectively that is
significantly lower than roughness of SL ITO90 thin film with the
same thickness.

The material costs for multilayer ITO90/ITO50 films offer an
economical advantage over the use of conventional ITO.
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