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a b s t r a c t 

In this paper, we propose three novel profit-driven strategies for churn prediction. Our proposals extend 

the ideas of the Minimax Probability Machine, a robust optimization approach for binary classification 

that maximizes sensitivity and specificity using a probabilistic setting. We adapt this method and other 

variants to maximize the profit of a retention campaign in the objective function, unlike most profit- 

based strategies that use profit metrics to choose between classifiers, and/or to define the optimal clas- 

sification threshold given a probabilistic output. A first approach is developed as a learning machine that 

does not include a regularization term, and subsequently extended by including the LASSO and Tikhonov 

regularizers. Experiments on well-known churn prediction datasets show that our proposal leads to the 

largest profit in comparison with other binary classification techniques. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Churn prediction is a well-known business analytics task, that

s aimed at detecting customers that are likely to leave a com-

any voluntarily ( Baesens, 2014; Baumann, Lessmann, Coussement,

 Bock, 2015 ). Once a company has identified potential churners,

 customized retention campaign can be designed for enhancing

ustomer loyalty. Loyalty is extremely beneficial since engaged cus-

omers generate more revenue than other customers, and it re-

uces operational costs and the misspending of money caused by

nefficient marketing effort s ( Farquad, Ravi, & Raju, 2014; Fleming

 Asplund, 2007 ). 

Customer retention has often been approached by researchers

nd practitioners via machine learning methods for binary clas-

ification, taking profit measures for assessing which classifier

chieves the best predictive performance into account ( Verbeke,

ejaeger, Martens, Hur, & Baesens, 2012 ). Unlike traditional eval-

ation metrics, such as accuracy or AUC, profit metrics focus on

he actual benefits and costs of implementing the solution ob-

ained by the classifiers, yielding better decision-making ( Hand,

009; Verbraken, Verbeke, & Baesens, 2012 ). In churn prediction,

rofit metrics estimate the average profit of a retention campaign
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 Baumann et al., 2015; Maldonado, Flores, Verbraken, Baesens, &

eber, 2015; Verbeke et al., 2012 ). 

The study of robust optimization approaches have been re-

orted widely in the machine learning literature. Robustness is an

mportant virtue in classification since it guarantees adequate pre-

ictive performance in changing environments ( Huang, Yang, King,

yu, & Chan, 2004; López, Maldonado, & Carrasco, 2018 ). The use of

obust optimization methods in classification usually translates to

uperior predictive performance ( Huang et al., 2004; López et al.,

018 ). 

Notice that predicting churners in sectors such as telecommu-

ications or finance is a task that is constantly evolving for several

easons. First, technology evolves and the competition among the

ifferent actors varies according to the emerging technologies. Ad-

itionally, retention campaigns also change over time, based on the

ew technologies and the competition. Finally, the impact of a re-

ention campaign on the customers is time-dependent ( Verbraken,

aesens, & Bravo, 2017 ). Therefore, a robust framework for binary

lassification can be very useful for improving performance in such

hanging environments. 

In this work, we extend the Minimax Probability Machine

MPM) method ( Lanckriet, Ghaoui, Bhattacharyya, & Jordan, 2003 ),

he Minimum Error Minimax Probability Machine (MEMPM)

ethod ( Huang et al., 2004 ), and their regularized versions ( López

t al., 2018 ) to the domain of profit measures. These techniques

re adapted to maximize the profit of a retention campaign while

chieving adequate classification performance. Three variants are

roposed: the direct extension to the MEMPM strategy, called

https://doi.org/10.1016/j.ejor.2019.12.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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Profit-based MEMPM (ProfMEMPM), which does not include a reg-

ularization term; and the profit-driven, � p -regularized MPM and

MEMPM extensions ( � p -ProfMPM and � p -ProfMEMPM, respectively,

with p = { 1 , 2 } being the LASSO - Least Absolute Shrinkage and

Selection Operator- and the Tikhonov regularization). Our experi-

ments demonstrate that the proposed methods perform better on

average when compared with alternative classifiers in terms of ex-

pected profit. 

To the best of our knowledge, reports of profit-driven classifiers

that optimize profit are scarce in the machine learning literature,

and limited to extensions of logistic regression (ProfLogit, Stripling,

vanden Broucke, Antonio, Baesens, & Snoeck, 2018 ) or decision

trees (ProfTree, Höppner, Stripling, Baesens, vanden Broucke, & Ver-

donck, 2018 ). Therefore, our proposals represent a valuable contri-

bution to the state of the art on business analytics. Furthermore,

the proposed strategies are novel and elegant machine learning

methods based on robust optimization, which are solved using ad-

hoc optimization strategies for fractional programming ( Schaible,

1981 ) and second-order cone programming ( Alizadeh & Goldfarb,

2003 ). Given this fact, they represent relevant contributions not

only for the practice of analytics and Customer Relationship Man-

agement (CRM), but also novel developments in the machine learn-

ing and optimization domain. 

Our proposals present a robust strategy whose goal is maxi-

mizing a profit function while guaranteeing an adequate classifi-

cation, even for the worst data distribution of the churners and

non-churners. This robust framework has been shown to be very

effective for enhancing predictive performance in a wide variety

of domains, including pattern recognition ( Ma, Yang, Wen, & Sun,

2020 ) and credit scoring ( López & Maldonado, 2019 ). 

The remainder of the paper is organized as follows:

Section 2 describes profit metrics in the context of customer

retention. Section 3 presents the robust machine learning for-

mulations that are relevant for this study. The proposed robust

classification approaches for profit-driven churn prediction are

presented in Section 4 . Section 5 provides experimental results

obtained by using real-world churn datasets. Finally, the main

conclusions are provided in Section 6 , which also addresses future

developments. 

2. Profit-driven framework for robust churn prediction 

In this section, we present the profit-based frameworks pro-

posed in Verbeke et al. (2012) and Verbraken et al. (2012) , and in-

troduce the notation for our robust framework, as well as relevant

literature related to this task. 

Customer attrition can be predicted either with single period

future predictions, or with time-dependent strategies ( Blattberg,

Kim, & Neslin, 2008 ). The first approach is the most common

one encountered in the scientific literature, and aims at predict-

ing whether a customer will leave in the next period ( Blattberg

et al., 2008 ). Binary classification techniques, such as logistic re-

gression ( Burez & Van den Poel, 2009; Neslin, Gupta, Kamakura, Lu,

& Mason, 2006 ), k -nearest neighbors ( Datta, Masand, Mani, & Li,

20 0 0 ), decision trees ( Wei & Chiu, 2002 ), and other machine learn-

ing techniques such as random forest, artificial neural networks

and support sector machines ( Chen, Fan, & Sun, 2012; Farquad

et al., 2014; Verbeke, Martens, & Baesens, 2014 ) can be used. We

refer the reader to the review presented in Verbeke et al. ( Verbeke,

Martens, Mues, & Baesens, 2011 ). 

The proposed profit-based framework is discussed next. A

trained classifier C would produce a probabilistic output s ∈ [0, 1],

which can be interpreted as the probability of attrition for a new

customer x . The decision rule follows: if s ≤ t then x is classified as

non-churner ( y = −1 ), otherwise x is classified as churner ( y = 1 ). 
The dynamics of a retention campaign can be described as fol-

ows: A fraction of the customers with the highest risk of churning

s contacted, incurring an individual cost of f . An incentive is of-

ered to this group, which leads to a monetary cost d only if it is

ccepted. It is assumed that a fraction γ of the would-be churn-

rs accept this incentive and stay with the company, together with

ll false would-be churners since they never had the intention to

hurn ( Verbraken et al., 2012 ). The benefit of retaining a would-

e churner is its Customer Lifetime Value ( CLV ), which is usually

ignificantly larger than d and f . There is no benefit for retaining

alse would-be churners, nor with the fraction (1 − γ ) that effec-

ively leaves despite the incentive, nor with the fraction of cus-

omers which is not contacted ( Verbraken et al., 2012 ). 

Formally, the average profit of a classifier follows: 

 C (t;γ ,CLV, δ, φ) = CLV ( γ (1 − δ) − φ) π1 F 1 (t) 

−CLV (δ + φ) π−1 F −1 (t) , (1)

here δ = 

d 
CLV and φ = 

f 
CLV . The parameters π−1 and π1 are the

rior probabilities of a given customer to belong to class −1 (non-

hurner) or 1 (churner), respectively, while F −1 (t) and F 1 ( t ) are the

umulative density functions for non-churners and churners for a

iven threshold t , respectively. 

The Maximum Profit Criterion (MPC) ( Verbeke et al., 2012 ) and

he Expected Maximum Profit Criterion (EMPC) ( Verbraken et al.,

012 ) measures are relevant for our study. The first metric assumes

hat all information in the average profit equation (cf. Eq. (1) ) is

nown and deterministic, in contrast to the EMPC, which assumes

hat γ , the probability of a would-be churner accepting the incen-

ive, is a random variable that follows a Beta distribution. The MPC

easure selects the threshold that maximizes the average profit: 

PC = max 
t 

P C (t;γ , CLV, δ, φ) . (2)

Subsequently, the fraction of the customers to be contacted η
iven the optimal threshold t ∗ is given by: 

= π−1 F −1 (t ∗) + π1 F 1 (t ∗) . (3)

Alternatively, the EMPC measure is obtained as follows: 

MPC = 

∫ 
γ

P C (t ∗(γ ) ;γ , CLV, δ, φ) · h (γ ) dγ , (4)

ith t ∗( γ ) being the optimal threshold and h ( γ ) the probability

ensity function for γ . We used the values proposed by Verbraken

t al. (2012) for the parameters α and β related to the Beta dis-

ribution. Finally, the fraction η of the targeted customers is given

y: 

= 

∫ 
γ

[ π−1 F −1 ( T (γ ) ) + π1 F 1 (T ( γ ) ) ] · h (γ ) dγ . (5)

The MPC and EMPC metrics were originally developed for se-

ecting the best performing classification strategies among various

pproaches ( Verbeke et al., 2012; Verbraken, Bravo, Weber, & Bae-

ens, 2014; Verbraken et al., 2012 ). However, some studies go be-

ond that strategy. For example, Maldonado et al. (2015) proposed

sing these metrics for model and feature selection with SVM clas-

ifiers. The authors proposed a backward elimination strategy that

emoves those features whose removal maximizes the profit of the

lassifier. Alternatively, Höppner et al. (2018) proposed a profit-

ased extension for decision trees, in which the branching process

s guided by profit measures using genetic algorithms ( Sivanandam

 Deepa, 2006 ). Along the same line, Stripling et al. (2018) devel-

ped ProfLogit, which follows the same reasoning behind Höppner

t al. (2018) and maximizes the profit of a logistic regression

odel instead of a maximum likelihood function. 

Inspired by the studies of Stripling et al. (2018) and Höppner

t al. (2018) , we aim at maximizing a profit measure during the
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odel training. In contrast to these other approaches that use ge-

etic algorithms, we propose three robust optimization approaches

hich are solved to optimality via ad-hoc techniques. 

The proposed methods are inspired by the MPM and MEMPM

lgorithms ( Huang et al., 2004; Lanckriet et al., 2003 ), which

onsiders a robust framework for maximizing the two class accura-

ies. Our assumption is that business analytics tasks such as churn

rediction can be benefited from robust optimization. These tasks

sually present small changes in the distribution due to evolving

etention campaign policies and the intrinsic noise that affect cus-

omer data. 

. Robust classification via Minimax Probability Machines 

The methods that are relevant for our proposal, namely the

inimax Probability Machine ( Lanckriet et al., 2003 ) and the Min-

mum Error Minimax Probability Machine ( Huang et al., 2004 ), are

ormalized in this section. 

.1. Minimax Probability Machine (MPM) 

The Minimax Probability Machine (MPM) is a robust optimiza-

ion approach that minimizes the worst-case probability of mis-

lassification ( Lanckriet et al., 2003 ). This model assumes that the

amples of the two classes are generated by random variables X 1 

nd X 2 , both having known mean and covariance matrices ( μk ,

k ) for k = 1 , 2 . Based on this assumption, a separating hyper-

lane of the form w 

� x + b = 0 , with w ∈ R 

n \ { 0 } and b ∈ R , is

onstructed in such a way that the two classes must be classified

orrectly with maximal probability with respect to all distributions

 Lanckriet et al., 2003 ). 

The MPM formulation can be written as a chance-constrained

roblem, as follows: 

max 
w ,b,α

α

s.t. inf 
X 1 ∼( μ1 , 
1 ) 

Pr { w 

� X 1 + b ≥ 0 } ≥ α, 

inf 
X 2 ∼( μ2 , 
2 ) 

Pr { w 

� X 2 + b ≤ 0 } ≥ α, 

(6) 

here X ∼ ( μ, 
) represents the family of distributions which have

 common mean and covariance matrix, and α ∈ (0, 1) is the worst-

ase class accuracy, i.e., the lower bound for the sensitivity and

pecificity. 

The chance-constrained optimization model presented in For-

ulation (6) can be cast into a second-order cone programming

SOCP) problem ( Alizadeh & Goldfarb, 2003 ) by using the Cheby-

hev inequality (Lanckriet et al., 2003, Lemma 1) , which is pre-

ented next. 

emma 3.1 (Chebyshev inequality) . Let x be a n-dimensional ran-

om variable with mean μ and covariance matrix 
. Given a vector

 ∈ R 

n \ { 0 } , and scalars b ∈ R and α ∈ (0, 1) such that a � μ + b ≥ 0 ,

he condition 

inf 
 ∼( μ, 
) 

Pr { a � x + b ≥ 0 } ≥ α

olds if and only if a � μ + b ≥ κ(α) 
√ 

a � 
a 1 , where κ(α) = 

√ 

α
1 −α . 

Then, the use of Lemma 3.1 allows us to reformulate the MPM

odel as the following SOCP problem (see Lanckriet et al., 2003 ,

heorem 2, for details): 

in 

w 

{ √ 

w 

� 
1 w + 

√ 

w 

� 
2 w : w 

� ( μ1 − μ2 ) = 1 

} 

. (7) 
1 For a given α ∈ (0, 1), this expression is called linear second-order cone (SOC) 

onstraint ( Alizadeh & Goldfarb, 2003 ). An SOC constraint on the variable x ∈ R n has 

he form ‖ D x + b ‖ 2 ≤ c � x + d, where d ∈ R , c ∈ R n , b ∈ R m , D ∈ R m ×n are given. 

‖
w

his problem can be reduced to a linear SOCP problem, which can

e solved efficiently via interior point algorithms ( Alizadeh & Gold-

arb, 2003 ). 

emark 1. In practice, the mean and the covariance matrix are not

vailable. Therefore, their respective empirical estimations are used

nstead. Formally, let us denote by m 1 (resp. m 2 ) the cardinality of

he positive (resp. negative) class, by A 1 ∈ R 

m 1 ×n (resp. A 2 ∈ R 

m 2 ×n )

he data matrix related to the positive (resp. negative) class. The

mpirical estimates of the mean and covariance are given by 

ˆ k = 

1 

m k 

A 

� 
k e m k 

, ˆ 
k = 

1 

m k 

A 

� 
k 

(
I m k 

− 1 

m k 

e m k 
e � m k 

)
A k , 

here e k denotes a vector de ones of dimension m k and I m k 
the

dentity matrix of size m k . 

.2. Minimum Error Minimax Probability Machine (MEMPM) 

The main disadvantage of MPM is that it assumes that the two

lasses are equally important for decision-making ( Huang et al.,

004 ), which is usually not the case in business analytics tasks

 Baesens, 2014; Baumann et al., 2015; Hand, 2009; Maldonado

t al., 2015; Verbraken et al., 2014 ). In order to overcome this issue,

he Minimum Error Minimax Probability Machine (MEMPM) uses

wo bounds α1 and α2 for the worst-case accuracies instead of a

ingle one ( Huang et al., 2004 ). Let us define θ ∈ (0, 1) and 1 − θ
s the prior probabilities of classes 1 and 2 respectively. After ap-

lying the Chebyshev inequality, the MEMPM formulation follows:

max 
w ,b,α1 ,α2 

θα1 + (1 − θ ) α2 

s . t . w 

� μ1 + b ≥ κ(α1 ) 
√ 

w 

� 
1 w , 

−(w 

� μ2 + b) ≥ κ(α2 ) 
√ 

w 

� 
2 w , 

(8) 

here κ(αk ) = 

√ 

αk 
1 −αk 

, for k = 1 , 2 . This formulation is a nonlinear

OCP problem, since it contains a linear objective function with

wo nonlinear SOC constraints 2 . 

Using the same reasoning as that behind MPM, Formulation

8) can be cast into a fractional programming problem Schaible

1981) . In order to solve this formulation, Huang et al. (2004) pro-

osed an iterative algorithm, which stems from the Quadratic In-

erpolation (QI) method ( Bertsekas, 1999 ). First, variable α1 is set

o a fixed value. Then, the QI method is used for updating variables

2 and w iteratively. Finally, α1 can be obtained by a relation that

olds for α1 , α2 , and w when this strategy is used ( Huang et al.,

004 ). The optimization strategy is formalized and extended to our

roposal in Section 4 . 

Notice that both the MPM and MEMPM methods can be ex-

ended as kernel methods (see Lanckriet et al., 2003 and Huang

t al., 2004 , respectively). Furthermore, some relevant extensions

ave been proposed. For example, the Biased Minimax Probabil-

ty machine (BMPM) ( Huang, H.Yang, King, & Lyu, 2006 ) biases the

redictions towards one class, assuming a fixed value β0 for the

ensitivity. Another relevant extension is the regularized MEMPM

odel proposed in Maldonado, Carrasco, and López (2019) , which

as the following form: 

min 

w ,b,κ1 ,κ2 

1 
2 
‖ w ‖ 

2 + C 1 
1 

κ2 
1 
+1 

+ C 2 
1 

κ2 
2 
+1 

s.t. w 

� μ1 + b ≥ κ1 ‖ S � 1 w ‖ , κ1 ≥ 0 , 

−w 

� μ2 − b ≥ κ2 ‖ S � 2 w ‖ , κ2 ≥ 0 , 

w 

� μ1 + b ≥ 1 , 

−w 

� μ2 − b ≥ 1 , 

(9) 
2 A nonlinear SOC constraint ( Canelas, Carrasco, & López, 2019 ) has the form 

 ̄g (x ) ‖ 2 ≤ g 1 (x ) , where g : R n → R 
m is a function defined by g(x ) = (g 1 (x ) , ̄g (x )) , 

ith g 1 : R 
n → R and ḡ : R n → R 

m −1 . 
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where 
k = S k S 
� 
k 
, for k = 1 , 2 , C 1 , C 2 > 0. Formulation (9) is a non-

linear smooth SOCP problem since it contains a nonconvex smooth

objective function with two nonlinear SOC constraints and four lin-

ear constraints. 

Another interesting approach, called Structural Minimax Prob-

ability Machine (SMPM), improves MEMPM by replacing the prior

probabilities with two mixture models ( Gu, Sun, & Sheng, 2017 ).

Finally, the DR-MEMPM method ( Song, Gong, Zhang, Huang, &

Huang, 2017 ) performs embedded dimensionality reduction for

multi-class learning. 

4. Proposed profit-based formulations for robust churn 

prediction 

We propose three novel robust classification approaches for

profit-driven churn prediction in this section. Our proposals extend

the MPM and MEMPM models (cf. formulations (6) and (8) ) to the

profit-based framework. The MEMPM method is a natural choice

for base model of our proposal since it maximizes the two class

accuracies independently in the objective function, given a robust

setting that translates into two conic constraints. This model can

be extended by replacing the weighted sum of the two class accu-

racies with a profit function. This extension, called ProfMEMPM, is

presented in Section 4.1 . 

One issue with the MPM and MEMPM models is that they

do not include any regularization term, which can boost predic-

tive performance by reducing the complexity of robust classifiers

( Saketha Nath & Bhattacharyya, 2007 ). Therefore, we extend our

framework to regularized learning machines by considering the � 1 
and � 2 norms. The profit-based extensions of the regularized MPM

and MEMPM methods are proposed in Section 4.2 and 4.3 , respec-

tively. We refer to this models as � p -ProfMPM and � p -ProfMEMPM,

respectively. 

This study not only contributes with profit-driven extensions

of existing robust models. The � p -ProfMPM and � p -ProfMEMPM

are novel machine learning approaches, and therefore they re-

quire ad-hoc optimization strategies. Section 4.4 presents the op-

timization strategies used for solving the three proposals. Finally,

Section 4.5 discusses the relationship between the proposed meth-

ods and existing profit-driven techniques and robust machine

learning models. 

4.1. Profit-based Minimum Error Minimax Probability Machine 

Let us assume that X −1 ( X 1 ) represents the random variable re-

lated to the non-churners (churners). It holds that θ = π−1 , 1 −
θ = π1 , α1 = 1 − F −1 (t) , and α2 = F 1 (t) . Based on these relations,

the objective function θα1 + (1 − θ ) α2 related to the MEMPM

model can be replaced by the following profit measure: 

P rof it(α1 , α2 ) = −c −1 θ (1 − α1 ) + b 1 (1 − θ ) α2 , (10)

where b 1 = CLV ( γ (1 − δ) − φ) and c −1 = CLV (δ + φ) (see Eq. (1) ).

Notice that maximizing Eq. (10) is equivalent to: 

P rof it(α1 , α2 ) = c −1 θα1 + b 1 (1 − θ ) α2 , (11)

since the first term ( −c −1 θ ) is constant with respect to the deci-

sion variables. Therefore, the larger the values for 0 ≤α1 , α2 ≤ 1,

the larger the profit. Then, the proposed profit-based model fol-

lows: 

max 
w ,b,α1 ,α2 

c −1 θα1 + b 1 (1 − θ ) α2 

s.t. w 

� μ1 + b ≥ κ(α1 ) 
√ 

w 

� 
1 w , 

−(w 

� μ2 + b) ≥ κ(α2 ) 
√ 

w 

� 
2 w , 

(12)

where κ(αk ) = 

√ 

αk 
1 −αk 

, for k = 1 , 2 . We refer to this proposal

as the Profit-Based Minimum Error Minimax Probability Machine

(ProfMEMPM). 
Following the guidelines in Huang et al. (2004) , Formula-

ion (12) can be rewritten as a fractional programming problem

chaible (1981) in order to ease the optimization process. First,

ariable b can be removed by combining the two nonlinear con-

traints in Eq. (12) , leading to the following problem: 

max 
α1 ,α2 , w � = 0 

c −1 θα1 + b 1 (1 − θ ) α2 

s.t. w 

� ( μ1 − μ2 ) ≥ κ(α1 ) 
√ 

w 

� 
1 w + κ(α2 ) 
√ 

w 

� 
2 w . 

(13)

Let us define β = α2 . Since α1 = 

κ2 (α1 ) 

κ2 (α1 )+1 
and the maximum

alue of c −1 θα1 + b 1 (1 − θ ) β under the constraint given in (13) is

chieved when the right hand side is equal to w 

� ( μ1 − μ2 ) , For-

ulation (13) can be rewritten as follows: 

max 
β, w � = 0 

{ f prof it (w , β) : w 

� ( μ1 − μ2 ) = 1 } , (14)

here 

f prof it (w , β) = 

c −1 θγ 2 (w , β) 

γ 2 (w , β) + 1 

+ b 1 ( 1 − θ ) β, (15)

ith 

(w , β) = 

1 − κ(β) 
√ 

w 

� 
2 w √ 

w 

� 
1 w 

. (16)

In order to solve Problem (14) , we propose using the Quadratic

nterpolation (QI) method Bertsekas (1999) , which solves this for-

ulation for a fixed β iteratively. The inner problem that results

y fixing β is a relatively simple fractional problem which can be

olved efficiently using gradient projection strategies, for example.

he optimization scheme is discussed in Section 4.4 . 

.2. Regularized profit-based Minimax Probability Machine 

A novel formulation can be derived by incorporating an � p -

orm regularizer for the weight vector w in the ProfMEMPM for-

ulation. This inclusion, however, leads to a model that is complex

o solve to optimality. In order to simplify the optimization pro-

ess, we first impose that α1 = α2 = α, extending the MPM model

o profit-driven classification (the � p -ProfMPM approach). In the

ext section, we derive the case when α1 � = α2 , which results in

he � p -ProfMEMPM method. 

The inclusion of the � p -norm in the MPM model leads to the

ollowing problem: 

max 
α, w � = 0 ,b 

P rof it(α, α) − λρp (w ) 

s.t. w 

� μ1 + b ≥ κ(α) 
√ 

w 

� 
1 w , 

−(w 

� μ2 + b) ≥ κ(α) 
√ 

w 

� 
2 w , 

(17)

here ρp ( w ) can be either the Tikhonov ( ρ2 (w ) = 

1 
2 ‖ w ‖ 2 ) or

ASSO ( ρ1 (w ) = ‖ w ‖ 1 = 

∑ n 
i =1 | w i | ) regularization, λ> 0 is a pa-

ameter designed to balance the profit and regularization, and

(α) = 

√ 

α
1 −α . The profit function becomes P rof it(α, α) = �α −

 1 (1 − θ ) , with � = b −1 θ + c 1 (1 − θ ) . 

Let us define β = κ(α) . Since α = 

κ2 (α) 

κ2 (α)+1 
, Formulation (17) can

e rewritten as 

max 
β, w � = 0 ,b 

f prof it (w , β) 

s.t. w 

� μ1 + b ≥ β
√ 

w 

� 
1 w , 

−(w 

� μ2 + b) ≥ β
√ 

w 

� 
2 w , 

(18)

here the (nonconcave) objective function is given by 

f prof it (w , β) = �
β2 

β2 + 1 

− λρp (w ) . (19)
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Similar to the ProfMEMPM method, we propose solving Prob-

em (18) with the QI algorithm. However, the inner problem that

esults from fixing β is a very different one when compared to

rofMEMPM. A linear and a quadratic SOCP problem are derived

rom Formulation (18) when p = 1 and p = 2 , respectively, and

eta fixed. The optimization process is formalized in Section 4.4 . 

.3. Regularized profit-based Minimum Error Minimax Probability 

achine 

The � p -ProfMEMPM formulation can be derived by introducing

he � p -regularizer ρp ( w ) in the ProfMEMPM model, and a trade-off

arameter λ, as follows: 

max 
α1 ,α2 , w � = 0 ,b 

P rof it(α1 , α2 ) − λρp (w ) 

s.t. w 

� μ1 + b ≥ κ(α1 ) 
√ 

w 

� 
1 w , 

−(w 

� μ2 + b) ≥ κ(α2 ) 
√ 

w 

� 
2 w , 

(20) 

here Profit ( α1 , α2 ) is defined in Eq. (11) . Formulation (20) can

e rewritten in order to ease the optimization process. Since αi =
κ2 (αi ) 

κ2 (αi )+1 
, for i = 1 , 2 , the objective function in Eq. (20) can be

ewritten as 

f (α1 , α2 , w , b) = c −1 θ
κ2 (α1 ) 

κ2 (α1 ) + 1 

+ b 1 (1 − θ ) 
κ2 (α2 ) 

κ2 (α2 ) + 1 

− λρp (w ) 

= c −1 θ
(

1 − 1 

κ2 (α1 ) + 1 

)
+ b 1 (1 − θ ) 

(
1 − 1 

κ2 (α2 ) + 1 

)
− λρp (w ) . 

Let us denote by βi = κ2 (αi ) , for i = 1 , 2 . Then, Problem

20) can be rewritten as 

min 

β1 ,β2 , w � = 0 ,b 
λρp (w ) + 

c −1 θ
β1 +1 

+ 

b 1 (1 −θ ) 
β2 +1 

s.t. w 

� μ1 + b ≥
√ 

β1 w 

� 
1 w , β1 > 0 , 

−(w 

� μ2 + b) ≥
√ 

β2 w 

� 
2 w , β2 > 0 , 

(21) 

hich has a convex objective function. Problem (21) adapted fur-

her by considering the the arithmetic mean-geometric mean in-

quality: 

 

βi w 

� 
i w ≤ 1 

2 

(
βi t i + 

w 

� 
i w 

t i 

)
, i = 1 , 2 , (22)

eading to the following minimization problem: 

min 

β1 ,β2 , w � = 0 
b,t 1 ,t 2 

λρp (w ) + 

c −1 θ
β1 +1 

+ 

b 1 (1 −θ ) 
β2 +1 

s.t. 1 
2 

(
β1 t 1 + 

w 

� 
1 w 

t 1 

)
≤ w 

� μ1 + b, β1 , t 1 > 0 , 

1 
2 

(
β2 t 2 + 

w 

� 
2 w 

t 2 

)
≤ −(w 

� μ2 + b) , β2 , t 2 > 0 . 

(23) 

It is easy to prove that problems (21) and (23) are equivalents. 

As previously mentioned, solving this formulation directly is

omplex. Hence, a two-step iterative method is proposed in the

ext section. This strategy is tailored for this particular approach,

nd differs from the QI algorithm considered by the MEMPM,

rofMEMPM, and � p -ProfMPM methods. 

.4. Optimization approach for solving the proposed methods 

First, we propose an optimization framework based on the QI

lgorithm used for solving the ProfMEMPM and � p -ProfMPM meth-

ds. If β remains fixed within (0,1), the inner problem solved by

he QI algorithm is derived in Remarks 2 and 3 for the ProfMEMPM

nd � p -ProfMPM models, respectively. 
emark 2. Formulation (14) becomes the following concave-

onvex fractional programming problem Schaible (1981) with β
xed: 

ax 
w � = 0 

{ 

1 − κ(β) 
√ 

w 

� 
2 w √ 

w 

� 
1 w 

: w 

� ( μ1 − μ2 ) = 1 

} 

. (24) 

Following the MEMPM approach, we propose solving this prob-

em via the Rosen’s gradient projection method Bertsekas (1999) . 

emark 3. For β fixed within (0,1), Problem (18) becomes: 

min 

w � = 0 ,b 
ρp (w ) 

w 

� μ1 + b ≥ β
√ 

w 

� 
1 w , 

−(w 

� μ2 + b) ≥ β
√ 

w 

� 
2 w . 

(25) 

ote that this formulation reduces to a quadratic SOCP problem

ith two linear SOC constraints when p = 2 ( � 2 -ProfMPM), while

he � 1 -ProfMPM approach ( p = 1 ) reduces to a non-smooth SOCP

roblem with two linear SOC constraints because of the inclusion

f absolute values. The � 1 -ProfMPM formulation can be cast into a

inear SOCP problem with two linear SOC and 2 n linear constraints.

oth models can be solved efficiently via interior point algorithms

 Alizadeh & Goldfarb, 2003 ) using, for instance, the SeDuMi tool-

ox ( Sturm, 1999 ). 

As mentioned before, sequential optimization strategy is ap-

lied for solving the ProfMEMPM and � p -ProfMPM methods. The

dea of this approach is to set β to a specific value within inter-

al (0,1), and then solve the resulting inner problem (Formulation

24) or (25) ) for obtaining w and the profit function f profit ( w , β). 

In the next step, β is updated via the Quadratic Interpolation

QI) method ( Bertsekas, 1999 ). The idea of the QI method is to find

he maximum point by updating a three-point pattern ( β1 , β2 , β3 )

epeatedly. The new β denoted by β̄k is given by the quadratic

nterpolation from the three-point pattern. Then, the whole pro-

ess is repeated until convergence. This process is presented in

lgorithm 1 . 

emark 4. It follows from (Sun & Yuan, 2006, Theorem 2.4.3) that

he sequence { ̄βk } generated from Algorithm 1 converges to the

olution of formulation (14) (resp. formulation (18) ). Moreover, this

onvergence is superlinear. 

Once the modified QI algorithm reaches convergence, the vari-

ble α1 of the formulation (13) is computed as 

∗
1 = 

[ γ (w 

∗, β∗)] 2 

[ γ (w 

∗, β∗)] 2 + 1 

, (26) 

here γ ( w 

∗, β∗) is given by Eq. (16) , and ( w 

∗, β∗) is the solution

uple obtained by the QI algorithm. Similarly, the variable α of the

ormulation (17) is computed as 

∗ = 

β∗2 

β∗2 + 1 

. (27) 

Finally, the optimal intercept b ∗ associated to the ProfMEMPM

Formulation (13) ) and � p -ProfMPM (Formulation (17) ) methods is

iven by 

 

∗ = −w 

∗� μ1 + κ(α∗
1 ) 

√ 

w 

∗� 
1 w 

∗

= −w 

∗� μ2 − κ(β∗) 
√ 

w 

∗� 
2 w 

∗ (28) 

nd 

 

∗ = −w 

∗� μ1 + β∗
√ 

w 

∗� 
1 w 

∗

= −w 

∗� μ2 − β∗
√ 

w 

∗� 
2 w 

∗, (29) 

espectively. 
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Algorithm 1 Modified Quadratic Interpolation for solving ProfMEMPM and � p -ProfMPM. 

Input: Let θ ∈ (0 , 1) , λ > 0 , ε > 0 be a tolerance sufficiently small, β1 , β2 , β3 ∈ (0 , 1) with β1 < β2 < β3 , ˆ β = 10 99 , c −1 , b 1 , dataset and 

labels, and p ∈ { 1 , 2 } . Set k = 0 . 

1: repeat 

2: Find w by solving Formulation (24) (resp. Formulation (25)) for β = βi , and compute f prof it (w , βi ) via Eq. (15) (resp. Eq. (16)), for 

i = 1 , 2 , 3 . 

3: until f prof it (w , β1 ) < f prof it (w , β2 ) and f prof it (w , β2 ) > f prof it (w , β3 ) . 

4: Compute 

β̄k = 

1 

2 

(β2 
2 − β2 

3 ) f prof it (w , β1 ) + (β2 
3 − β2 

1 ) f prof it (w , β2 ) + (β2 
1 − β2 

2 ) f prof it (w , β3 ) 

(β2 − β3 ) f prof it (w , β1 ) + (β3 − β1 ) f prof it (w , β2 ) + (β1 − β2 ) f prof it (w , β3 ) 
. 

5: Find w by solving Formulation (24) (resp. Formulation (25)) for β = β̄k , and compute f prof it (w , β̄k ) via Eq. (15) (resp. Eq. (19)). 

6: if | ̄βk − ˆ β| < ε then 

7: return ( ̄βk , w ) and stop . 

8: end if 

9: if β̄k < β2 then 

10: if f prof it (w , β̄k ) ≤ f prof it (w , β2 ) then 

11: β1 ← β̄k , f prof it (w , β1 ) ← f prof it (w , β̄k ) . 

12: else 

13: (β2 , β3 ) ← ( ̄βk , β2 ) , 

( f prof it (w , β2 ) , f prof it (w , β3 )) ← ( f prof it (w , β̄k ) , f prof it (w , β2 )) . 

14: end if 

15: end if 

16: if β̄k > β2 then 

17: if f prof it (w , β̄k ) ≤ f prof it (w , β2 ) then 

18: β3 ← β̄k , f prof it (w , β3 ) ← f prof it (w , β̄k ) . 

19: else 

20: (β1 , β2 ) ← (β2 , β̄
k ) , 

( f prof it (w , β1 ) , f prof it (w , β2 )) ← ( f prof it (w , β2 ) , f prof it (w , β̄k )) . 

21: end if 

22: end if 

23: ˆ β = β̄k , k = k + 1 , and repeat from Step 4. 
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Algorithm 2 Two-step algorithm for solving � p -ProfMEMPM. 

Input: Let θ ∈ (0 , 1) , λ > 0 , ε > 0 be a tolerance sufficiently small, 

c −1 , b 1 , dataset and labels, and p ∈ { 1 , 2 } . Let t 0 
1 
, t 0 

2 
> 0 be an 

initial point. Set k = 0 . 

1: repeat 

2: Compute (w 

k , b k , βk 
1 
, βk 

2 
) by solving problem (30). 

3: Compute t k +1 
1 

, t k +1 
2 

by equation (31). 

4: k = k + 1 . 

5: until Stopping criterion is reached 

6: return (w 

k , b k , βk 
1 
, βk 

2 
) and stop . 

4
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Next, the optimization procedure for solving � p -ProfMEMPM is

formalized. We propose two-step coordinate descent approach for

solving Formulation (23) (see Bertsekas, 2015 , section 6.5 for de-

tails). The first step consists in fixing t 1 , t 2 and obtaining the

optimal values for { w , b , β1 , β2 } by solving the following inner

problem: 

min 

β1 ,β2 , w � = 0 ,b 
λρp (w ) + 

c −1 θ
β1 +1 

+ 

b 1 (1 −θ ) 
β2 +1 

s.t. 1 
2 

(
β1 t 1 + 

w 

� 
1 w 

t 1 

)
≤ w 

� μ1 + b, β1 > 0 , 

1 
2 

(
β2 t 2 + 

w 

� 
2 w 

t 2 

)
≤ −(w 

� μ2 + b) , β2 > 0 . 

(30)

Formulation (30) is a convex optimization problem given the

convexity of both the objective function and the feasible region.

We solve this problem using the CVX solver ( Grant & Boyd, 2014 )

for convex optimization. 

The next step of the coordinate descent algorithm consist in ob-

taining t 1 and t 2 for { w , b , β1 , β2 } fixed. In order to do this, the

right-hand side of the mean inequality discussed in the previous

section (see Eq. (22) ) should be equal to the left-hand side. This

equality leads to the following result: 

 i = 

√ 

w 

� 
i w 

βi 

, i = 1 , 2 . (31)

The two-step iterative process is summarized in Algorithm 2 . 

Proposition 4.1. The coordinate descent method proposed in

Algorithm 2 converges to the optimal solution of Problem (23) . 

The proof for Proposition 4.1 is provided in Appendix A . 
.5. Comparative analysis of related methods 

As profit maximization techniques for churn prediction, our

roposals are strongly related with ProfLogit ( Stripling et al., 2018 )

nd ProfTree ( Höppner et al., 2018 ). These two methods consider

omplex nonlinear optimization problems in the sense that achiev-

ng global optimality requires intractable computational effort. As

 consequence, the search space is usually limited by heuristics,

uch as evolutionary algorithms. ProfLogit and ProfTree are solved

sing genetic algorithms (GA), aimed at finding a good solution

n a fixed number of iterations rather than focusing on optimal-

ty ( Sivanandam & Deepa, 2006 ). Our proposals, in contrast, solve

ptimization problems that converge to the optimal solution (see

un & Yuan, 2006 for details). Therefore, they are of a completely

ifferent nature when compared to our proposals, which do not

verlap with the existing in the literature on profit metrics. 
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Table 1 

Number of observations, variables, and churn rate for all datasets. 

ID Name Region # Obs. # Att. % Churn 

K1 Korean1 East Asia 14490 20 23.11 

K2 Korean2 East Asia 3283 18 40.6 

K3 Korean3 East Asia 4574 14 38.54 

K4 Korean4 East Asia 5327 47 46.72 

K5 Korean5 East Asia 3441 14 38.68 

K6 Korean6 East Asia 44942 12 43.63 

D1 Duke1 North America 93893 50 49.75 

D2 Duke2 North America 20406 73 1.99 

O1 Operator1 North America 47761 47 3.69 

e  

d  

d
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Next, we would like to clarify the relationship between our pro-

osals and the robust model proposed in López and Maldonado

2019) . This approach was especially tailored for credit scoring and,

n particular, for a project that with expensive variable collection

osts. 

The first model proposed in López and Maldonado (2019) ,

alled � p -PSOCP, is inspired by the work by Saketha Nath and

hattacharyya (2007) , which considers variables α1 and α2 as

reviously-specified parameters to be tuned via crossvalidation.

herefore, the profit is not directly optimized in the objective func-

ion, in contrast to our three proposals. It also defines a three-term

rofit metric that consider the benefits and costs of granting credit,

ut also the variable acquisition costs. Formally, this model solves

he following second-order cone programming (SOCP) problem: 

min 

w � = 0 ,b, z 
λ1 

∑ J 
j=1 

c ∗
j 
z j + λ2 ρp (w ) 

w 

� μ0 − b ≥ κ(η0 ) 
√ 

w 

� 
0 w , 

−w 

� μ1 + b ≥ κ(η1 ) 
√ 

w 

� 
1 w , 

−z j ≤ w l ≤ z j , l ∈ I j , j = 1 , . . . , J. 

(32) 

ith c ∗
j 

denoting the variable acquisition cost of group j estimated

t a borrower level. The first term in the objective function in Eq.

32) and the last set of constraints are related with the � ∞ 

-norm

enalty ( Zou & Yuan, 2008 ), which is defined by 

( w ) = 

J ∑ 

j=1 

|| w 

( j) || ∞ 

, (33)

here || w 

( j) || ∞ 

= max l∈I j {| w l |} , i.e., the greatest weight (in mag-

itude) for each group of attributes j = 1 , . . . , J is minimized. The

ptimization strategy is also very different when compared to the

hree proposals. 

The second model studied in López and Maldonado (2019) is

he following optimization problem: 

max 
w � = 0 ,b,η1 , z 

�η1 − λ1 

∑ J 
j=1 

c ∗
j 
z j − λ2 ρp (w ) 

w 

� μ0 − b ≥ κ(η0 ) 
√ 

w 

� 
0 w , 

−w 

� μ1 + b ≥ κ(η1 ) 
√ 

w 

� 
1 w , 

−z j ≤ w l ≤ z j , l ∈ I j , j = 1 , . . . , J, 

(34) 

here we assume that only the parameter η0 ∈ (0, 1) is fixed.

ere, the profit metric is optimized which only depends on the

ariable η1 , that is, P rof it(η1 ) = �η1 + c, with � = c 1 π1 and c =
 0 π0 η0 − c 1 π1 . This model contains a concave objective function

ith a linear SOC, a nonlinear SOC and 2 n linear constraints. 

Notice that these models are very different when compared

ith our regularized proposals because (1) these formulations con-

ider a very different profit measure that includes the variable ac-

uisition costs, (2) they are tailored for credit scoring, and (3) they

x either one or the two class recall variables η, treating them as

uning parameters. Notice that none of our proposals fix the class

ecalls. 

Finally, the regularized MEMPM model proposed in Maldonado

t al. (2019) (cf. Eq. (9) ) is a smooth nonlinear SOCP problem,

hich was designed to be optimized via an interior point algo-

ithm called FDIPA ( Canelas et al., 2019 ). This approach is com-

letely different when compared to our proposals. Additionally, the

ontribution of the model proposed in Maldonado et al. (2019) is

urely methodological in binary classification, in contrast with the

urrent study, which has an hybrid positioning in business analyt-

cs. 

. Experimental results 

In this section, we report experiments on nine churn prediction

atasets previously used for benchmarking in similar studies (see
.g. Stripling et al., 2018; Verbeke et al., 2012; Zhu, Baesens, & van-

en Broucke, 2017 ). The relevant information for each benchmark

ataset is summarized in Table 1 . 

The experimental setting used in Zhu et al. (2017) was applied

or all datasets and methods. Two-fold crossvalidation was per-

ormed five times (5x2 CV), and the average value for the AUC,

PC, and EMPC metrics were computed. The EMPC is the main

etric for this study since it incorporates the distribution of the

andom variable gamma (the fraction of the would-be churners

hat accept the incentive) in the modeling process, and, is there-

ore more complete than MPC and AUC ( Verbraken et al., 2012;

hu et al., 2017 ). 

The following classification methods were studied: 

• k -nearest neighbors ( k -NN). Parameter k was set to 5. 
• Standard logistic regression (Logit). No parameter tuning is re-

quired for this approach. 
• Naïve Bayes (N. Bayes). No parameter tuning is required for this

approach. 
• Soft-margin SVM ( � 2 -SVM). The following values were explored

for the parameter C : { 2 −7 , 2 −6 , . . . , 2 6 , 2 7 } . 
• The ProfLogit and ProfTree strategies. For ProfTree, the maximal

depth was set to 3. For ProfLogit, the number of iterations for

the GA was set to 50. The default configurations of the imple-

mentations made by the authors of these methods were consid-

ered for the regularization parameters included in both meth-

ods. 
• Minimax Probability Machine (MPM). No parameter tuning is

required for this approach. 
• Biased Minimax Probability Machine (BMPM). The following

values were explored for the parameter β0 (fixed value for the

sensitivity): {0.2, 0.4, 0.6, 0.8}. 
• Minimum Error Minimax Probability Machine (MEMPM). No

parameter tuning is required for this approach since θ is the

prior probability for class −1 , as suggested in Huang et al.

(2004) . 
• The proposed profit-driven approaches. The following val-

ues were explored for the parameters θ and λ: θ ∈ { 2 −7 ,

2 −6 , . . . , 2 −1 , 1 − 2 −1 , . . . , 1 − 2 −6 , 1 − 2 −7 } , λ ∈ { 2 −8 , 2 −6 ,

2 −4 , . . . , 2 4 , 2 6 } . 
Following the studies by Verbeke et al. (2012) and Zhu et al.

2017) , dummy encoding was considered for categorical variables.

ata resampling was performed for the datasets that exhibit the

lass-imbalance problem. In particular, random undersampling was

pplied on the datasets with more than 20,0 0 0 samples. The Fisher

core was used to filter out irrelevant variables for those datasets

hat have more than 30 features. The dimensionality was reduced

o 30 variables for those datasets, as suggested in Zhu et al. (2017) .

or a given variable j , the Fisher score has the following formula

 Duda, Hard, & Stork, 2001 ): 

 isher( j) = 

| μ+ 
j 

− μ−
j 
| 

(σ+ 
j 
) 2 + (σ−

j 
) 2 

, (35) 
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Table 2 

Predictive performance summary for the various classification methods. EMPC mea- 

sure. 

EMPC( €) K1 K2 K3 K4 K5 

method mean std mean std mean std mean std mean std 

k -NN 4.89 0.03 16.3 0.02 15.1 0.04 21.0 0.07 16.8 0.15 

Logit 2.68 0.20 14.7 0.29 14.3 0.21 20.9 0.09 10.0 0.23 

N. Bayes 2.73 0.14 12.7 0.22 14.2 0.39 20.3 0.15 13.9 0.46 

� 2 -SVM 2.38 0.28 14.0 0.58 14.5 0.20 20.5 0.17 9.6 0.23 

ProfLogit 4.02 0.23 17.3 5.42 16.7 2.37 21.6 2.29 28.0 0.49 

ProfTree 4.18 0.19 18.6 0.20 23.1 0.12 23.9 0.05 65.8 0.19 

MPM 2.73 0.22 12.8 0.47 14.0 0.24 20.9 0.12 9.8 0.31 

BMPM 1.66 0.21 11.5 0.21 14.2 0.23 21.0 0.11 9.7 0.24 

MEMPM 4.99 0.31 16.4 0.29 18.0 0.29 21.8 0.18 15.2 0.15 

ProfMEMPM 4.99 0.31 16.4 3.27 18.0 0.35 21.9 0.14 15.2 0.13 

� 2 -ProfMPM 5.10 0.18 16.5 0.37 17.9 0.36 22.0 0.19 15.2 0.19 

� 1 -ProfMPM 5.02 0.25 16.4 0.39 18.0 0.34 21.2 0.29 15.2 0.11 

� 2 -ProfMEMPM 5.23 0.05 16.56 0.09 18.03 0.22 21.39 0.15 15.19 0.05 

� 1 -ProfMEMPM 5.21 0.04 16.56 0.11 18.12 0.21 21.20 0.17 15.17 0.06 

Table 3 

Predictive performance summary for the various classification methods. EMPC mea- 

sure. 

EMPC( €) K6 D1 D2 O1 

method mean std mean std mean std mean std 

k -NN 18.30 0.01 22.34 0.00 0.000 0.00 0.000 0.00 

Logit 18.94 0.03 22.34 0.00 0.000 0.02 0.068 0.07 

N. Bayes 18.45 0.04 22.34 0.00 0.000 2.74 0.005 0.97 

� 2 -SVM 15.30 0.05 22.34 0.14 −0.066 0.02 0.010 0.03 

Proflogit 13.76 6.23 21.46 0.58 0.000 0.17 0.006 0.54 

Proftree 8.86 0.06 22.30 0.00 0.000 0.00 0.002 0.00 

MPM 15.18 0.06 13.85 0.06 −0.191 0.03 0.001 0.01 

BMPM 15.15 0.04 11.61 0.18 −0.191 0.03 −0.005 0.01 

MEMPM 18.65 1.50 22.34 0.16 0.000 0.09 0.059 0.01 

ProfMEMPM 18.71 0.13 22.34 0.03 0.003 0.09 0.058 0.01 

� 2 -ProfMPM 18.30 0.10 22.34 0.06 0.003 0.05 0.031 0.26 

� 1 -ProfMPM 18.56 0.07 22.34 0.04 0.004 0.03 0.070 0.27 

� 2 -ProfMEMPM 20.64 2.17 22.42 0.09 11.28 11.89 11.35 11.88 

� 1 -ProfMEMPM 20.76 2.13 22.42 0.09 11.27 11.88 11.37 11.91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Predictive performance summary for the various classification methods. AUC mea- 

sure. 

AUC K1 K2 K3 K4 K5 

method mean std mean std mean std mean std mean std 

k -NN 0.60 0.00 0.65 0.01 0.72 0.01 0.85 0.00 0.84 0.00 

Logit 0.62 0.01 0.83 0.01 0.85 0.01 0.90 0.00 0.68 0.01 

N. Bayes 0.60 0.01 0.77 0.01 0.84 0.01 0.87 0.01 0.81 0.01 

� 2 -SVM 0.58 0.02 0.79 0.01 0.85 0.01 0.88 0.01 0.67 0.01 

ProfLogit 0.62 0.01 0.80 0.01 0.81 0.02 0.77 0.07 0.64 0.01 

ProfTree 0.64 0.01 0.81 0.02 0.89 0.01 0.82 0.02 0.94 0.00 

MPM 0.62 0.01 0.75 0.01 0.85 0.01 0.90 0.00 0.67 0.01 

BMPM 0.55 0.01 0.70 0.01 0.85 0.01 0.90 0.00 0.66 0.01 

MEMPM 0.55 0.01 0.68 0.01 0.85 0.01 0.90 0.00 0.65 0.01 

ProfMEMPM 0.55 0.01 0.68 0.12 0.85 0.01 0.90 0.00 0.65 0.01 

� 2 -ProfMPM 0.58 0.01 0.71 0.01 0.85 0.01 0.90 0.00 0.66 0.01 

� 1 -ProfMPM 0.57 0.01 0.69 0.01 0.84 0.01 0.87 0.00 0.66 0.01 

� 2 -ProfMEMPM 0.61 0.00 0.70 0.01 0.86 0.01 0.88 0.01 0.66 0.01 

� 1 -ProfMEMPM 0.61 0.01 0.70 0.01 0.86 0.01 0.87 0.01 0.66 0.01 

Table 5 

Predictive performance summary for the various classification methods. AUC mea- 

sure. 

AUC K6 D1 D2 O1 

method mean std mean std mean std mean std 

k -NN 0.68 0.00 0.54 0.00 0.53 0.01 0.60 0.01 

Logit 0.79 0.00 0.60 0.00 0.55 0.01 0.73 0.02 

N. Bayes 0.72 0.01 0.57 0.00 0.53 0.01 0.69 0.04 

� 2 -SVM 0.80 0.00 0.59 0.00 0.52 0.01 0.71 0.02 

ProfLogit 0.75 0.21 0.56 0.02 0.54 0.05 0.56 0.03 

ProfTree 0.68 0.04 0.59 0.01 0.53 0.02 0.58 0.02 

MPM 0.78 0.00 0.61 0.00 0.50 0.01 0.73 0.05 

BMPM 0.78 0.00 0.53 0.01 0.51 0.01 0.72 0.03 

MEMPM 0.75 0.06 0.51 0.01 0.51 0.05 0.70 0.01 

ProfMEMPM 0.77 0.01 0.57 0.00 0.53 0.04 0.70 0.02 

� 2 -ProfMPM 0.64 0.00 0.57 0.00 0.55 0.01 0.68 0.01 

� 1 -ProfMPM 0.77 0.00 0.57 0.00 0.56 0.01 0.70 0.03 

� 2 -ProfMEMPM 0.75 0.00 0.58 0.00 0.56 0.05 0.71 0.01 

� 1 -ProfMEMPM 0.77 0.00 0.59 0.00 0.53 0.05 0.72 0.01 
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where μ+ 
j 

and μ−
j 

are the means of the two classes, and σ+ 
j 

and

σ−
j 

are their respective standard deviations. 

Following the framework of Verbeke et al. (2012) , the fol-

lowing values were used for the parameters related to the MPC

and EMPC measures: CLV = 200 , δ = 

d 
CLV = 

10 
200 , and φ = 

f 
CLV = 

1 
200 .

These metrics are reported in Euro per customer. Parameter γ is

set to 0.3 for the MPC measure, while it is assumed to follow a

Beta distribution for the EMPC metric, with α = 6 and β = 14 as

shape parameters. 

Notice that the use of a single CLV value instead of individual

CLVs is an important limitation of the framework by Verbeke et al.

(2012) . The use of this framework is due mainly to lack of data

availability since the datasets used in this study do not include the

information required to estimate individual CLVs. However, there

are several studies that overcome this issue by taking individual

CLVs into account; see Bahnsen, Aouada, and Ottersten (2015) , and

Oskarsdottir, Baesens, and Vanthienen (2018) . 

The average EMPC and AUC are reported in Tables 2–5 for all the

methods and datasets. The largest value for these metrics among

the eleven methods is highlighted in bold type for all the datasets.

The performances in terms of the MPC, F1, precision, and recall

metrics are presented in the Appendix A . 

On Tables 2 and 3 , we observe that the proposed methods

achieve very good performance in general, being the best method

or close to it in most cases, when considering EMPC as perfor-

mance metrics. ProfTree achieves excellent performance on some

datasets (K2 to K5), but it is not as consistent as our proposals in
erms of performance. In contrast, there is no clear best approach

hen the performance is studied using AUC ( Tables 4 and 5 ), and

he choice of the best method for each dataset is clearly not con-

istent with the results in Tables 2 and 3 . A similar conclusion can

e drawn from the metrics MPC, F1, precision, and recall, which

re presented in the tables in Appendix A . 

In order to confirm that our approach has the best overall

erformance, the Friedman test and Holm test were used to as-

ess statistical significance. This approach was suggested in Demšar

2006) for comparing classification performance among various

achine learning methods, and it was used in Zhu et al. (2017) in

he context of churn prediction. The first step consists of comput-

ng the average rank for each method based on EMPC. Next, the

riedman test with Iman-Davenport correction is applied for as-

essing whether or not all the average ranks are statistically simi-

ar ( Demšar, 2006 ). The Holm post-hoc test is used in case the null

ypothesis of equal ranks is rejected. This test performs pairwise

omparisons between each method and the one with the best per-

ormance ( Demšar, 2006 ). 

The result for the F statistic obtained with the Friedman test is

 = 63 . 61 , with a p value below 0.001, rejecting the null hypothe-

is of equal ranks. The results for the Holm test are presented in

able 6 . For each model, we present the average rank, the aver-

ge EMPC, the p value obtained with the Holm test, the signifi-

ance threshold defined for the test, and the result of the pairwise

est. This result is ‘reject’ when the p value is below the signifi-

ance threshold α/ ( j − 1) , with α = 5% and j = 2 , . . . , 14 being the

verall ranking for a given technique. This outcome implies that
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Table 6 

Holm post-hoc test for pairwise comparisons. 

Method Mean Rank Avg. EMPC p value α/ ( j − 1) Action 

� 1 -ProfMEMPM 3.0000 15.7878 – – Not reject 

� 2 -ProfMEMPM 3.1667 15.7867 0.9326 0.0500 Not reject 

ProfMEMPM 5.3889 13.0701 0.2257 0.0250 Not reject 

MEMPM 5.7222 13.0521 0.1675 0.0167 Not reject 

� 1 -ProfMPM 6.0000 12.9816 0.1282 0.0125 Not reject 

� 2 -ProfMPM 6.0000 13.0349 0.1282 0.0100 Not reject 

ProfTree 6.0000 18.5269 0.1282 0.0083 Not reject 

ProfLogit 7.2222 13.6496 0.0323 0.0071 Not reject 

k -NN 8.3333 12.7333 0.0068 0.0062 Not reject 

Logit 8.5000 11.5520 0.0053 0.0056 Reject 

N. Bayes 10.0000 11.6206 0.0004 0.0050 Reject 

� 2 -SVM 10.6111 10.9538 0.0001 0.0045 Reject 

MPM 12.2778 9.8945 0.0000 0.0042 Reject 

BMPM 12.7778 9.4038 0.0000 0.0038 Reject 
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his method is statistically outperformed by the one with the best

ank. 

On Table 6 , it can be seen that � 1 -ProfMEMPM achieves the best

verage performance (best average ranking considering the nine

atasets), outperforming BMPM, MPM, logistic regression, � 2 -SVM,

nd Naïve Bayes statistically. However, there are no significant dif-

erences among � 1 -ProfMEMPM and the remaining methods. The

verage ranks for our proposals are 3.00 ( � 1 -ProfMEMPM), 3.16

 � 2 -ProfMEMPM), 5.39 (ProfMEMPM), 6.00 ( � 1 -ProfMPM), and 6.00

 � 2 -ProfMPM), being in the top six performances together with

EMPM (mean rank = 5.72). The most sophisticated approaches in

ur proposal ( � 2 -ProfMEMPM and � 1 -ProfMEMPM) achieve clearly

he best mean performances. The ProfTree and ProfLogit meth-

ds achieved very good performance in terms of average EMPC,

ut they also showed a high variance and therefore, they are not

ell-ranked consistently on all the datasets, unlike our proposed

ethods. 

It can be concluded from these experiments that it is of utmost

mportance to select the best method using profit metrics. Using

tatistical measures such as AUC may lead to more accurate classi-

ers, but those are not as profitable as the one chosen by a profit

easure. Additionally, profit metrics can be optimized directly in

he model training, and those models can be more profitable than

tandard classification approaches evaluated with profit measures.

n our case, the proposed profit-driven approaches based on ro-

ust optimization achieved the best overall performance among

he eleven methods. 

Finally, the average training times for all methods and datasets

re presented in Table 7 . These experiments were performed

n an HP Envy dv6 with 16 gigabyte RAM (750 GB SSD), and

n i7-2620M processor with 2.70 gigahertz. All classification
Table 7 

Running times, in seconds, for all datasets and methods. 

Method K1 K2 K3 K4 

k -NN 0”.022 0”.044 0”.028 0”.003 

Logit 0”.141 0”.191 0”.028 0”.356 

N. Bayes 0”.025 0”.013 0”.013 0”.025 

� 2 -SVM 1”.922 0”.497 0”.909 1”.538 

ProfLogit 30”.17 17”.78 15”.04 55”.07 

ProfTree 680”.2 170”.0 228”.1 254”.5 

MPM 2”.438 1”.053 1”.094 1”.519 

BMPM 0”.784 0”.188 0”.047 0”.097 

MEMPM 0”.066 1”.122 0”.494 0”.669 

ProfMEMPM 0”.028 6”.294 0”.381 0”.309 

� 2 -ProfMPM 31”.84 16”.88 22”.31 26”.67 

� 1 -ProfMPM 31”.49 20”.91 20”.10 28”.38 

� 2 -ProfMEMPM 29”.62 30”.71 9”.93 38”.94 

� 1 -ProfMEMPM 13”.25 15”.30 14”.70 61”.57 
trategies were implemented on Matlab R2014a and Microsoft

indows 8.1 Operating System (64-bits), with the exception of

rofTree and ProfLogit that were implemented in R and Python,

espectively. 

It can be seen in Table 7 that all running times are tractable

nd under one minute for most methods and datasets. The pro-

osed ProfMEMPM method shows similar running times when

ompared to the alternative robust approaches, being also com-

arable with the standard classification approaches. The proposed

 p -ProfMPM and � p -ProfMEMPM methods are relatively slow when

ompared with ProfMEMPM, being similar to the ProfLogit method

n terms of running times. This is because ProfMEMPM solves a

oncave-convex fractional problem (cf. Formulation (24) ) as the

nner model of the QI algorithm using the Rosen’s gradient pro-

ection method, while � p -ProfMPM and � p -ProfMEMPM deal with

ore complex inner formulations. On the one hand, � p -ProfMPM

olves a SOCP problem with two second-order cone constraints,

hich requires larger training times since a generic SOCP solver

uch as SeDuMi is used. On the other hand, � p -ProfMEMPM ap-

lies a solves a convex optimization problem iteratively. A generic

olver is also used for solving this problem; in this case the CVX

olver ( Grant & Boyd, 2014 ). 

Regarding the alternative approaches, � 2 -SVM shows very large

unning times for Korea 6 and Telecom 2, while the profit-based

trategies ProfTree and ProfLogit tend to be slower than the re-

aining methods, mostly due to the optimization strategy used for

raining (Genetic Algorithms). 

. Conclusions and future research 

Three novel approaches for profit-driven classification is pre-

ented in this work. The robust framework presented in Huang

t al. (2004) was adapted for direct profit maximization via math-

matical programming. A pessimistic approach is assumed in this

ramework, in which each training pattern needs to be classified

orrectly even for the worst data distribution for a given mean and

ovariance matrix. The robustness conferred by this pessimistic ap-

roach has proven to be very effective in improving predictive per-

ormance in classification tasks ( Gu et al., 2017; Huang et al., 2006;

ópez, Maldonado, & Carrasco, 2017 ). 

Our proposal is tailored for the churn prediction task, using the

xpected average profit per customer given a retention campaign

s objective function. This strategy is inspired in previous studies

hat evaluate models using profit measures instead of the tradi-

ional statistical metrics, such as accuracy or AUC (see e.g. Hand,

009; Maldonado et al., 2015; Neslin et al., 2006; Verbeke et al.,

012 ). The proposed method goes one step further and aims at

ptimizing the profit during the model training. This approach has
K5 K6 D1 D2 O1 

0”.028 0”.009 0”.019 0”.012 0”.000 

0”.156 0”.234 2”.791 0”.348 0”.069 

0”.013 0”.053 1”.013 0”.020 0”.038 

0”.703 13”.12 378”.4 4”.918 1”.250 

14”.92 31”.01 295”.1 88”.38 44”.82 

177”.2 1610”.8 4804”.0 75”.16 197”.8 

1”.022 2”.297 8”.747 1”.278 1”.253 

0”.288 0”.469 0”.016 0”.219 0”.503 

2”.778 3”.522 0”.422 0”.013 1”.491 

0”.138 3”.084 0”.450 0”.000 1”.194 

20”.87 37”.56 142”.3 20”.17 16”.32 

21”.61 53”.82 139”.8 23”.22 24”.90 

10”.21 7”.45 15”.62 21”.62 42”.54 

14”.34 2”.84 16”.93 31”.0 21”.62 
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shown very positive results ( Höppner et al., 2018; Stripling et al.,

2018 ). 

Experiments were performed on churn prediction datasets, and

the proposed profit-based methods achieved superior performance

in average compared to well-known classification techniques. This

result confirms the importance of using profit metrics both for

evaluating various classification approaches and for calibrating

models. Since ProfMEMPM also performs better than MEMPM in

terms of profit, we also confirm that our strategy for profit-based

parameter selection is a better alternative than the strategy sug-

gested in Huang et al. (2004) in business analytics tasks, such

as churn prediction. Finally, the complexity analysis shows that

ProfMEMPM is usually faster than ProfLogit and ProfTree, having

similar running times when compared to fast standard classifica-

tion approaches. 

Regarding future developments, several opportunities can be

identified from this work. First, we would like to assess the hy-

pothesis that robust optimization schemes are able to account for

small changes in the data distribution, i.e., are able to construct

robust predictors considering an adequate out-of-time validation

framework. Unfortunately, the datasets used in this study do not

include timestamps or information about retention campaigns, and

therefore proving this hypothesis requires a completely new study

based on simulated and real-world data. Additionally, the pro-

posed robust framework can be used in multiclass classification

tasks. The MPM method was extended to multiclass learning in

Hoi and Lyu (2004) , providing a good starting point for this avenue

of future work. Finally, churn prediction and other business ana-

lytics tasks usually face the class-imbalance issue, and this prob-

lem can be tackled via cost-sensitive learning. In this work, we

deal with the class-imbalance problem via random undersampling,

but there are several alternatives that can be explored (see Zhu

et al. (2017) for a very detailed benchmark and discussion). Cost-

sensitive classification based on a different robust framework was

studied in Maldonado and López (2014) , providing a starting point

for this research opportunity. 
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Appendix A. Proof of Proposition 4.1 

Proof. We denote by J k = J k (w 

k , b k , βk 
1 
, βk 

2 
) the optimal value

of the objective function evaluated at the optimal solution

(w 

k , b k , βk 
1 
, βk 

2 
) in the k -th iteration. Let us define 

h i (t i , w , b, βi )= 

1 

2 

(
βi t i + 

w 

� 
i w 

t i 

)
−(−1) i +1 (w 

� μi + b) , i = 1 , 2 .

It holds that h i (t k 
i 
, w , b, βi ) ≤ 0 and h i (t k 

i 
, w 

k , b k , βk 
i 
) ≤ 0 , for i =

1 , 2 . It also holds that h i (t k +1 
i 

, w , b, βi ) ≤ 0 at iteration k + 1 , for

i = 1 , 2 , where 

 

k +1 
i 

= 

√ 

w 

k � 
i w 

k 

βk 
i 

, i = 1 , 2 . 

Subsequently, the use of this equality leads to the following rela-

tion: 

βk 
i t 

k +1 
i 

+ 

w 

k � 
i w 

k 

t k +1 
= 2 

√ 

βk 
i 

w 

k � 
i w 

k ≤ βk 
i t 

k 
i + 

w 

k � 
i w 

k 

t k 
i 

, 
i 
here the above relation is derived from the arithmetic mean-

eometric mean inequality. For each class i = 1 , 2 , it follows

rom this relation that h i (t k +1 
i 

, w 

k , b k , βk 
i 
) ≤ h i (t k 

i 
, w 

k , b k , βk 
i 
) . This

mplies that the optimal solution (w 

k , b k , βk 
1 
, βk 

2 
) is a feasible

olution of Problem (30) at iteration k + 1 . Since J k +1 is the opti-

al value of the objective function at iteration k + 1 , it holds that

 k +1 ≤ J k . Moreover, since the objective function is always positive,

lgorithm 2 converges to the solution of problem (23) . �

ppendix B. Performance summary in terms of various 

lassification measures 

Tables B.1–B.8 . 

able B.1 

redictive performance summary for the various classification methods. MPC mea-

ure. 

MPC K1 K2 K3 K4 K5 

method mean std mean std mean std mean std mean std 

k -NN 4.49 0.00 16.20 0.01 14.82 0.02 20.31 0.03 16.68 0.19 

Logit 2.68 0.21 14.67 0.29 14.32 0.21 20.93 0.09 9.99 0.23 

N. Bayes 2.73 0.15 12.70 0.22 14.23 0.39 20.25 0.15 13.88 0.46 

� 2 -SVM 2.38 0.28 13.97 0.58 14.48 0.20 20.52 0.17 9.62 0.23 

ProfLogit 4.31 0.18 17.27 5.40 16.74 2.37 21.56 2.29 28.00 0.30 

ProfTree 4.49 0.39 18.58 0.23 23.13 0.13 23.86 0.10 65.82 0.35 

MPM 2.74 0.22 12.84 0.47 13.97 0.24 20.86 0.12 9.85 0.31 

BMPM 1.66 0.21 11.53 0.21 14.21 0.23 20.97 0.11 9.70 0.24 

MEMPM 4.64 0.31 16.24 0.29 18.00 0.29 21.66 0.18 15.07 0.15 

ProfMEMPM 4.64 0.31 16.26 3.27 18.00 0.35 21.78 0.14 15.07 0.13 

� 2 -ProfMPM 4.76 0.18 16.38 0.37 17.87 0.36 21.80 0.19 15.11 0.19 

� 1 -ProfMPM 4.64 0.25 16.30 0.39 18.03 0.34 20.91 0.29 15.07 0.11 

� 2 -ProfMEMPM 4.86 0.05 16.46 0.11 18.02 0.22 21.11 0.20 15.06 0.05 

� 1 -ProfMEMPM 4.83 0.04 16.46 0.13 18.10 0.21 20.82 0.33 15.03 0.07 

able B.2 

redictive performance summary for the various classification methods. MPC mea-

ure. 

MPC K6 D1 D2 O1 

method mean std mean std mean std mean std 

k -NN 18.23 0.00 22.34 0.00 0.00 0.00 0.00 0.00 

Logit 18.83 0.04 22.34 0.00 0.00 0.02 0.04 0.07 

N. Bayes 18.32 0.06 22.34 0.00 0.00 3.45 0.00 1.86 

� 2 -SVM 15.30 0.05 22.34 0.14 −0.09 0.02 0.01 0.04 

ProfLogit 17.66 8.20 21.49 0.56 0.00 1.65 0.01 2.11 

ProfTree 11.37 0.39 22.34 0.00 0.00 0.00 0.00 0.00 

MPM 15.18 0.06 13.85 0.06 −0.19 0.03 0.00 0.01 

BMPM 15.15 0.04 11.61 0.18 −0.19 0.03 −0.01 0.01 

MEMPM 18.54 1.50 22.34 0.16 0.00 0.09 0.04 0.01 

ProfMEMPM 18.58 0.13 22.34 0.03 0.00 0.09 0.04 0.01 

� 2 -ProfMPM 18.27 0.10 22.34 0.06 0.00 0.05 0.03 0.27 

� 1 -ProfMPM 18.36 0.07 22.34 0.04 0.00 0.03 0.05 0.35 

� 2 -ProfMEMPM 20.54 2.19 22.42 0.09 11.28 11.89 11.31 11.87 

� 1 -ProfMEMPM 20.64 2.15 22.42 0.09 11.26 11.87 11.33 11.90 
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Table B.3 

Predictive performance summary for the various classification methods. F1 measure. 

F1 K1 K2 K3 K4 K5 

method mean std mean std mean std mean std mean std 

k -NN 0.27 0.11 0.49 0.10 0.52 0.14 0.63 0.21 0.59 0.22 

Logit 0.04 0.03 0.57 0.14 0.58 0.17 0.63 0.22 0.37 0.09 

N. Bayes 0.14 0.07 0.44 0.12 0.46 0.13 0.58 0.21 0.49 0.22 

� 2 -SVM 0.04 0.01 0.66 0.02 0.74 0.02 0.84 0.00 0.13 0.02 

ProfLogit 0.01 0.02 0.62 0.26 0.70 0.04 0.67 0.09 0.00 0.00 

ProfTree 0.00 0.00 0.77 0.02 0.84 0.01 0.73 0.04 0.91 0.01 

MPM 0.05 0.00 0.60 0.03 0.74 0.01 0.84 0.00 0.43 0.02 

BMPM 0.00 0.00 0.46 0.02 0.60 0.04 0.84 0.00 0.42 0.03 

MEMPM 0.00 0.00 0.24 0.04 0.72 0.02 0.84 0.00 0.39 0.03 

ProfMEMPM 0.00 0.00 0.37 0.07 0.72 0.02 0.84 0.00 0.39 0.03 

� 2 -ProfMPM 0.00 0.00 0.51 0.02 0.71 0.01 0.81 0.01 0.46 0.04 

� 1 -ProfMPM 0.00 0.00 0.49 0.02 0.71 0.01 0.68 0.01 0.00 0.00 

� 2 -ProfMEMPM 0.04 0.01 0.26 0.06 0.73 0.02 0.77 0.01 0.43 0.03 

� 1 -ProfMEMPM 0.05 0.01 0.26 0.11 0.71 0.02 0.77 0.01 0.40 0.05 

Table B.4 

Predictive performance summary for the various classification methods. F1 measure. 

F1 K6 D1 D2 O1 

method mean std mean std mean std mean std 

k -NN 0.65 0.00 0.54 0.00 0.11 0.00 0.03 0.01 

Logit 0.70 0.00 0.56 0.00 0.13 0.00 0.04 0.00 

N. Bayes 0.64 0.01 0.63 0.00 0.07 0.00 0.04 0.01 

� 2 -SVM 0.71 0.00 0.54 0.00 0.13 0.00 0.04 0.01 

ProfLogit 0.26 0.27 0.51 0.06 0.00 0.00 0.00 0.00 

ProfTree 0.68 0.02 0.61 0.03 0.09 0.01 0.04 0.00 

MPM 0.69 0.00 0.58 0.00 0.01 0.00 0.00 0.00 

BMPM 0.68 0.00 0.38 0.00 0.00 0.00 0.00 0.00 

MEMPM 0.63 0.08 0.38 0.00 0.00 0.00 0.00 0.00 

ProfMEMPM 0.66 0.08 0.48 0.00 0.00 0.00 0.00 0.00 

� 2 -ProfMPM 0.65 0.00 0.53 0.00 0.00 0.00 0.00 0.00 

� 1 -ProfMPM 0.67 0.00 0.48 0.00 0.00 0.00 0.00 0.00 

� 2 -ProfMEMPM 0.68 0.03 0.52 0.01 0.27 0.30 0.32 0.34 

� 1 -ProfMEMPM 0.69 0.03 0.54 0.01 0.26 0.34 0.26 0.33 

Table B.5 

Predictive performance summary for the various classification methods. Recall mea- 

sure. 

Recall K1 K2 K3 K4 K5 

method mean std mean std mean std mean std mean std 

k -NN 0.21 0.08 0.49 0.10 0.51 0.13 0.60 0.20 0.60 0.21 

Logit 0.02 0.01 0.58 0.14 0.61 0.17 0.59 0.21 0.30 0.08 

N. Bayes 0.10 0.05 0.37 0.15 0.38 0.11 0.51 0.18 0.46 0.25 

� 2 -SVM 0.02 0.01 0.68 0.06 0.82 0.05 0.79 0.00 0.07 0.01 

ProfLogit 0.00 0.01 0.79 0.38 0.79 0.10 0.56 0.10 0.00 0.00 

ProfTree 0.00 0.00 0.92 0.07 0.98 0.00 0.63 0.08 0.88 0.01 

MPM 0.03 0.00 0.56 0.06 0.82 0.01 0.78 0.01 0.35 0.03 

BMPM 0.00 0.00 0.36 0.03 0.51 0.05 0.78 0.01 0.34 0.04 

MEMPM 0.00 0.00 0.15 0.03 0.69 0.02 0.78 0.00 0.31 0.04 

ProfMEMPM 0.00 0.00 0.29 0.11 0.69 0.02 0.78 0.01 0.31 0.03 

� 2 -ProfMPM 0.00 0.00 0.45 0.02 0.81 0.00 0.74 0.01 0.40 0.06 

� 1 -ProfMPM 0.00 0.00 0.41 0.04 0.81 0.00 0.54 0.02 0.00 0.00 

� 2 -ProfMEMPM 0.02 0.00 0.16 0.05 0.72 0.03 0.65 0.01 0.35 0.03 

� 1 -ProfMEMPM 0.03 0.01 0.17 0.09 0.68 0.03 0.65 0.01 0.32 0.06 
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Table B.6 

Predictive performance summary for the various classification methods. Recall mea- 

sure. 

Recall K6 D1 D2 O1 

method mean std mean std mean std mean std 

k -NN 0.69 0.01 0.54 0.00 0.58 0.01 0.15 0.05 

Logit 0.79 0.00 0.55 0.01 0.63 0.01 0.54 0.05 

N. Bayes 0.81 0.01 0.82 0.02 1.00 0.01 0.48 0.31 

� 2 -SVM 0.79 0.00 0.51 0.01 0.61 0.02 0.38 0.16 

ProfLogit 0.22 0.24 0.51 0.14 0.00 0.00 0.00 0.00 

ProfTree 0.88 0.06 0.67 0.08 0.75 0.21 0.89 0.05 

MPM 0.70 0.00 0.57 0.00 0.01 0.00 0.00 0.00 

BMPM 0.70 0.00 0.28 0.00 0.00 0.00 0.00 0.00 

MEMPM 0.63 0.11 0.28 0.00 0.00 0.00 0.00 0.00 

ProfMEMPM 0.68 0.11 0.42 0.00 0.00 0.00 0.00 0.00 

� 2 -ProfMPM 0.65 0.01 0.50 0.00 0.00 0.00 0.00 0.00 

� 1 -ProfMPM 0.69 0.00 0.43 0.00 0.00 0.00 0.00 0.00 

� 2 -ProfMEMPM 0.70 0.05 0.47 0.02 0.30 0.35 0.31 0.32 

� 1 -ProfMEMPM 0.71 0.05 0.51 0.01 0.37 0.48 0.25 0.32 

Table B.7 

Predictive performance summary for the various classification methods. Precision 

measure. 

Precision K1 K2 K3 K4 K5 

method mean std mean std mean std mean std mean std 

k -NN 0.36 0.16 0.50 0.09 0.53 0.15 0.67 0.22 0.58 0.22 

Logit 0.39 0.23 0.56 0.13 0.56 0.16 0.68 0.24 0.47 0.10 

N. Bayes 0.31 0.10 0.55 0.14 0.58 0.17 0.68 0.25 0.54 0.17 

� 2 -SVM 0.64 0.23 0.65 0.03 0.67 0.05 0.90 0.00 0.64 0.05 

ProfLogit 0.07 0.21 0.61 0.05 0.64 0.04 0.85 0.12 0.00 0.00 

ProfTree 0.09 0.27 0.67 0.03 0.74 0.02 0.88 0.07 0.95 0.01 

MPM 0.52 0.03 0.65 0.01 0.68 0.01 0.91 0.00 0.56 0.02 

BMPM 0.00 0.00 0.63 0.03 0.75 0.01 0.91 0.00 0.55 0.03 

MEMPM 0.00 0.00 0.80 0.08 0.74 0.01 0.91 0.00 0.52 0.03 

ProfMEMPM 0.00 0.00 0.80 0.08 0.74 0.01 0.91 0.00 0.53 0.03 

� 2 -ProfMPM 0.00 0.00 0.60 0.01 0.63 0.01 0.89 0.01 0.57 0.02 

� 1 -ProfMPM 0.00 0.00 0.60 0.01 0.62 0.01 0.94 0.01 0.00 0.00 

� 2 -ProfMEMPM 0.64 0.07 0.78 0.10 0.74 0.01 0.95 0.00 0.55 0.02 

� 1 -ProfMEMPM 0.58 0.05 0.81 0.14 0.74 0.01 0.95 0.00 0.55 0.02 

Table B.8 

Predictive performance summary for the various classification methods. Precision 

measure. 

Precision K6 D1 D2 O1 

method mean std mean std mean std mean std 

k -NN 0.62 0.00 0.54 0.00 0.06 0.00 0.02 0.00 

Logit 0.63 0.00 0.57 0.00 0.07 0.00 0.02 0.00 

N. Bayes 0.54 0.00 0.51 0.00 0.04 0.00 0.02 0.00 

� 2 -SVM 0.64 0.00 0.56 0.00 0.08 0.00 0.02 0.01 

ProfLogit 0.44 0.26 0.53 0.02 0.00 0.00 0.00 0.00 

ProfTree 0.55 0.04 0.56 0.01 0.05 0.01 0.02 0.00 

MPM 0.67 0.00 0.58 0.00 0.34 0.12 0.00 0.00 

BMPM 0.67 0.00 0.58 0.00 0.50 0.36 0.00 0.00 

MEMPM 0.63 0.05 0.58 0.00 0.25 0.35 0.00 0.00 

ProfMEMPM 0.65 0.04 0.58 0.00 0.18 0.24 0.00 0.00 

� 2 -ProfMPM 0.64 0.00 0.56 0.00 0.00 0.00 0.00 0.00 

� 1 -ProfMPM 0.66 0.00 0.55 0.00 0.10 0.32 0.00 0.00 

� 2 -ProfMEMPM 0.66 0.01 0.57 0.00 0.27 0.28 0.55 0.29 

� 1 -ProfMEMPM 0.67 0.01 0.57 0.00 0.23 0.25 0.42 0.29 
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