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Abstract

Detection, classification, and characterization of Space Objects (SOs) are important tasks in many areas of research. Detection of SOs
is important in predicting collisions with debris that could become hazards for satellites or space missions in Near Earth orbits. This
paper describes a flexible pipeline able to detect sunlit SOs automatically in images acquired using an all-sky camera with a large field
of view (FoV). The proposed pipeline includes the following main steps: image distortion correction, filtering for noise reduction, gen-
eration of a background model for subtraction, star elimination using a star catalog, local-based contrast enhancement, and, finally, for
automatic SO detection, two methodologies were developed to detect line segments. The first one uses a Canny edge detector and a Pro-
gressive Probabilistic Hough Transform, and the second is based on the Radon Transform for detecting line segments. The method was
applied to a dataset of 22 � 3 images obtained from the Omnidirectional Space Situational Awareness (OmniSSA) Array at the Georgia
Institute of Technology in downtown Atlanta. The OmniSSA array has 3 sensors that capture high-resolution images simultaneously
(3352 � 2532 pixels) using a wide FoV for each camera. An intensity scaled by noise (ISN ) signal was defined and measured to show
improvement in SO detection objectively. Fusing images from the three OmniSSA sensors after the background subtraction step
improved both the ISN and visualization during the detection stage. Ground-truth data were extracted from a Space-Track catalog
and marked by human experts to validate the results of the pipeline, considering information from Astrometry.net. Results showed that
almost all the SOs were correctly detected by the pipeline.
� 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The study of Space Objects (SOs) is an active research
field in which groups around the world have designed
and built specialized hardware and algorithms for detec-
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tion, classification, and characterization of these objects.
This field is important because it can contribute to predict-
ing collisions in space and to analyzing their consequences
(Pardini and Anselmo, 2011). Space missions and satellites
produce space debris that increases the probability of new
mission failures due to impacts (Krag et al., 2017; Landgraf
et al., 2004), making the detection of SOs very important
(Klinkrad, 2010).

Since SOs move fast, they fall into the time-domain
Astronomy category, with several differences with respect
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to classical Astronomy, especially in terms of hardware
because the field of view (FoV) and cadence requirements
are distinct. Given these differences, new systems have been
developed to search for SOs, including the following:
Canadian Automated Meteor Observatory (CAMO)
(Weryk et al., 2013), Spanish Meteor Network (SPMN)
(Trigo-Rodriguez et al., 2008), Croatian Meteor Network
(CMN) (Gural, 2008), TAROT (Laas-Bourez et al.,
2009), Southern Ontario All-Sky Meteor Camera Network
(Weryk et al., 2008) and OmniSSA (Grøtte et al., 2016).

In addition to the development of new specialized hard-
ware, it is important to have methods that can process the
acquired data and detect SOs efficiently. In this context,
Torteeka et al. (2017) used a track-before-detect approach
to detect transient objects. In another approach, Trigo-
Rodriguez et al. (2008) developed the SPanish Fireball Net-
work (SPFN), and captured images with 90 s of exposure
time. The method compared two consecutive frames and
applied a variant of the Hough Transform to detect SOs.
Similarly, in Laas-Bourez et al. (2009) the researchers used
a variant of the Hough Transform, but with single images.
Zimmer et al. (2013) developed a strategy using a variant of
the Radon Transform, and took advantage of dedicated
hardware, a GPU, to run the algorithm faster. Matched fil-
ter strategies also have been developed (Murphy et al.,
2016), and machine learning techniques to detect SOs have
been applied as well (Virtanen et al., 2016).

In this paper, we present a flexible pipeline for auto-
matic detection of SOs. The proposed method increases
the Intensity Scaled by Noise (ISN ) measure in the pro-
cessed images using image enhancement algorithms for
later detection of SOs in the image sequences. The pro-
posed pipeline includes the following main steps applied
to the input image: image distortion correction, filtering
for noise reduction, generation of a background model
from data to subtract it from the filtered image, star elim-
ination using a star catalog, and local-based contrast
enhancement. The star elimination step using a star catalog
to eliminate only the brighter stars for SOs detection was
recently reported in Zimmer et al. (2018). A similar
approach has been used for NEOs or by using frame differ-
ing, although in the latter all the information present in the
image is subtracted instead of selectively brighter stars.
Finally, two methodologies were developed for automatic
SO detection. The first one uses a Canny edge detector
and a Progressive Probabilistic Hough Transform segment
detector. The second method is based on the Radon Trans-
form to detect SOs. The proposed pipeline was tested using
a dataset of images obtained from the Omnidirectional
Space Situational Awareness (OmniSSA) Array dataset
(Grøtte et al., 2016) and the ground-truth was marked
using the Space-Track catalog. Since the OmniSSA has
three sensors capturing three images simultaneously, an
image fusion step was added to the pipeline after the back-
ground subtraction step. Results show that the proposed
pipeline produces significant improvement in the processed
ISN images, and can automatically detect almost all SOs in
the marked ground-truth dataset.

2. Methods

The proposed method consists of several steps that are
divided into two main stages: image enhancement, and
automatic SO detection. The image enhancement pipeline
includes the following steps: correction of image distortion,
median filtering for noise reduction, generation of a back-
ground model to be subtracted from the filtered image,
image fusion using data from the three OmniSSA sensors,
star removal using a star catalog, and enhancement of
local-zone contrast. Two alternative approaches were
developed for the Automatic SO Detection stage. The first
uses a Canny edge detector and a Progressive Probabilistic
Hough Transform segment indicator, and the second one
makes use of the Radon Transform for SOs detection.

2.1. Image enhancement

2.1.1. Correction of image distortion
Camera lenses generate a geometric distortion of the

captured images, which can be corrected using camera cal-
ibration parameters (Grøtte et al., 2016). We use the distor-
tion proposed by Fryer and Brown (1986), which considers
radial and tangential distortion. This model is given by
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where �ð Þd are the distorted coordinates, �ð Þu are the undis-
torted coordinates, K1;K2;K3 are the radial distortion
parameters and P1; P2 are the tangential distortion param-
eters. This step is commonly used in computer vision tasks,
and is crucial in this problem for the astrometric calibra-
tion making a comparison of the processed image with
the corresponding image of the star catalog possible.

For the same sensors, a distortion analysis and image
distortion correction was performed by Grøtte et al.
(2016). We used their results to develop our system.

2.1.2. Median filtering

With the purpose of eliminating extreme-valued noise
from the captured images, a 3 � 3 spatial median filter
(Huang et al., 1979) is applied to each image. The median
is computed for each window of 3� 3 pixels in every pixel
of the image. The median filter is widely used in image pro-
cessing and astronomy (Mellinger, 2009) to reduce arti-
facts, including hot pixels, and noise that is characterized
as salt-and-pepper noise.
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2.1.3. Background subtraction

Using the filtered images from Section 2.1.2., a back-
ground model was generated by computing the median
image from the dataset images (Cheung and Kamath,
2005; Cucchiara et al., 2003). To compute the background
model, a temporal median filter was applied using the med-
ian value for each pixel of the stack. In this case the stack is
composed of 22 images and therefore the median of 22 pix-
els is computed for each pixel of the image. Next, the back-
ground model was subtracted from each filtered image.
Background subtraction is generally used to improve pho-
tometry and detection (Blanton et al., 2011) by eliminating
both the CCD noise, and that provoked by the lighting
conditions on the lens. In our particular case, the large field
of view causes substantial distortion, meaning that pixels in
the center of the field of view have a different amount of
background light than those close to the edges. Hot pixels,
that may persist after applying the median filter, are also
removed by background subtraction.
2.1.4. Image fusion

Because the OmniSSA array captures three images
simultaneously, it is possible to fuse them to generate an
image with reduced noise. To do so, it is necessary to reg-
ister the three images using the brighter stars as references.
The registration among the three images was performed
using the 100 most brilliant stars, and a Projective Trans-
form was used to correct deformations (Hartley and
Zisserman, 2003). Since the three cameras keep their posi-
tion fixed, the transform is computed only once, and the
same transform is useful to all captures. We apply a projec-
tive transform to rectified images, thus we expect that all
images have the same higher order distortion coefficients.
Grøtte et al. (2016) made a detailed description of the hard-
ware used to develop the OmniSSA device, which has three
identical cameras and lenses. The temperature change in
the CCD between the first and last capture is less than
0.71�C. Therefore, we considered the sensor and lens
parameters constant during the capture time (Podbreznik
and Potočnik, 2012).
2.1.5. Star removal
For the problem of SO detection, stars impede proper

contrast stretching because of their natural high brightness.
Therefore, most bright stars were removed from the image
sequence. To accomplish the star removal, bright areas
were detected in each image and compared to the same area
of the Tycho-2 star catalog using the Astrometry.net soft-
ware (Lang et al., 2010). The pixels corresponding to the
stars were replaced by the median value of a neighborhood
surrounding each star. Astrometry.net also finds the iner-
tial right-ascension and declination coordinates in which
each image is located. Considering the size of the most
bright stars that were candidates to be removed, a fixed cir-
cle with radius of 10 pixels was used as star excision neigh-
borhood. The process of star removal is crucial because it
allows targeting the contrast enhancement on the rest of
the gray levels, once the bright stars are removed.
2.1.6. Image division into zones

Contrast enhancement needs to be performed adapted
to different zones of the image because the field of view
of all-sky cameras is wide, and image brightness varies sig-
nificantly from one zone to another. The image brightness
has significant variations across the FOV because of celes-
tial bodies such as the North America Nebula that appear
at varying spatial positions in different frames. Therefore,
these sources of brightness are not eliminated by back-
ground subtraction. As the FOV is very wide, there are sig-
nificant differences in brightness among various zones. To
enhance contrast locally, the image was divided into zones.
Edges were detected in each zone, but an overlap of 20%
among neighboring zones was allowed to avoid detecting
artificial edges around zone boundaries while applying
the edge detector.
2.1.7. Adaptive contrast enhancement for zones

Contrast enhancement changes the pixel value distribu-
tion to cover a wider range. Adaptive contrast enhance-
ment allows adjusting changes in the pixel value
distribution to the local brightness of the image in different
zones. Contrast enhancement is required to separate SOs
from the background as has been described in many appli-
cations with low contrast (Xie and Lam, 2006; Perez et al.,
2010; Cament et al., 2015). For this purpose, a contrast
stretching method was used (Lim, 1990), which was applied
locally to each zone producing a saturation of dark and
bright pixels between 1% and 97% of the image brightness.
In this way, contrast stretching was adapted to the content
of the image in the different zones.

Contrast stretching methods are useful for improving
the results of the image processing algorithms, especially
when involves a non-linear transformation in the distribu-
tion of pixel values (Xie and Lam, 2006; Castillo et al.,
2014). Illumination compensation has proven to be crucial
in many machine vision applications including object
detection, and face recognition (Perez et al., 2010;
Cament et al., 2015; Perez et al., 2011). This is especially
important in non-controlled scenarios where illumination
is not homogeneous and algorithms for line detection, such
as Canny edge detection, Progressive Probabilistic Hough
Transform and Radon Transform, are being applied (Xie
and Lam, 2006; Perez et al., 2010; Cament et al., 2014).
In our present paper, because the extreme values in the
images are saturated, we use a non-linear transformation.
Additionally, with our data no object detection is obtained
if the contrast stretching is not performed previous to
Canny edge detection, Progressive Probabilistic Hough
Transform and Radon Transform. Figure 8 shows the
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results of the edge detection step if no contrast stretching is
applied previously for the Canny edge detection method.
2.2. Automatic space object detection stage

2.2.1. Edge and streak detector based on the Hough

transform
A moving object is observed as a line segment (streak) in

captured images from a synoptic survey telescope. A
Canny edge detector (Canny, 1986) was used to find these
line segments through a procedure applied to each zone to
avoid detecting artificial edges generated along neighboring
zones (Cament et al., 2014, 2015; Tapia et al., 2016). After
applying the Canny Edge Detector, we obtain a binary
image from each zone of the image. As there is an overlap
between adjacent zones, it is necessary to merge detections.
Thus, we apply an OR operator among detections from dif-
ferent zones.

Since SOs are observed as line segments in the images, a
Progressive Probabilistic Hough Transform Segment
Detector (Galamhos et al., 1999; Cament et al., 2015;
Castillo et al., 2014) was applied after the Canny edge
detector. This transform is widely used to detect objects
with known geometry.
2.2.2. Radon transform for streak detection

An alternative method was implemented to detect
streaks (line segments) based on the Radon Transform
(Radon, 1986; Zimmer et al., 2013). This transform is sim-
ilar to the Hough Transform, but uses the real value of
each pixel without having to binarize the input image, thus
allowing the detection of fainter streaks. The Radon Trans-
form was applied in each zone of the image using the same
zones defined for the adaptive contrast enhancement.
Then, the local peaks were found in the parameter space
(sinogram), and the streaks were detected by applying the
Inverse Radon Transform to those peaks with values
greater than a threshold. The threshold was automatically
chosen as the sinogram mean plus three times its standard
deviation. An overlap of 50% among neighboring zones
was also allowed to generate redundant detections to facil-
itate the elimination of false positives generated by noise.

To validate our method, the Radon transform was
implemented using Python 3 on an Intel (R) Core (TM)
i7-7700 3.6 GHz, with 64 GB RAM. The computational
time for one image was 163.47 s. However, this time could
be reduced significantly by using C++ and a GPU imple-
mentation, as was shown by Zimmer et al. (2013).
2.3. Omnidirectional Space Situational Awareness

(OmniSSA) Array dataset

The proposed method was evaluated on a dataset
obtained from the OmniSSA Array at the Georgia Institute
of Technology (Grøtte et al., 2016). Using the OmniSSA
Array dataset, synoptic survey imaging activities with an
ultra wide FoV could be investigated. Three simultane-
ously captured wide FoV images are available to improve
both detection (photometric) and angular measurement
(astrometric) properties. The OmniSSA array has three
sensors equipped with a Rokinon 10 mm F/2.8 ED AS
IF NCS lens, an SBIG FW5-8300 5-position filter wheel,
and an SBIG STF-8300 M CCD that can take high-
resolution images (3352 � 2532 pixels) with a bit-depth of
16 bits. It also has a wide FoV of 66� � 82� for each
camera.

The dataset is composed of 22 images captured by each
sensor, 66 images in total, with an exposure time of 30 s.
These images were taken on August 30, 2016 between
01:11:05 UT and 02:32:34 UT. The OmniSSA was the
one located at Georgia Tech in downtown Atlanta, specif-
ically at 33.777468� N, 84.398969� W.

All images used in this research have an exposure time
of 30 s. The star trailing is approximately 6 pixels, consid-
ering both the FOV and exposure time. The largest star
diameter is approximately 14 pixels. Therefore, the star
excision of 20 pixels in diameter assures that the star trail-
ing does not produce a problem. The OmniSSA has three
sensors located at a distance of less than 50 cm among
them, in a triangular arrangement as described in Grøtte
et al. (2016).
2.4. Evaluation metric

2.4.1. Image enhancement

To evaluate image enhancement, the Intensity Scaled by
Noise (ISN ) measure was defined as

ISN ¼ S
rn

ð3Þ

where S is the intensity of a group of pixels and rn is the
standard deviation of noise, since there are only few objects
relative to the background, rn ¼ r where r is the standard
deviation of the whole image.

We measure the mean of the standard deviation for each
zone in an image as 0.0159 without contrast stretching.
After applying contrast stretching, this value was reduced
to 0.0012. Therefore, it is sufficiently small to assume a uni-
form standard deviation across the focal plane.

This definition makes direct comparisons among ISN
measures from images at various stages of the pipeline dif-
ficult since they have very different means and STDs.

Therefore, we use the ISN � ISN to compare ISN measures

from different stages of the pipeline, where ISN is the mean
of the ISN .

We use Eq. (3) to compare results at various processing
steps. By selecting a group of rows of pixels, e.g., five rows
in an image, the ISN can be computed and plotted. It is



Fig. 1. Image Using an example to show results. (Left) Original Image with contrast stretching, (Right) Zoom of the image in the area marked in red. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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expected that ISN will peak while computing pixels that
belong to SOs.
2.4.2. Detection stage

Information extracted from Space-Track Database1 was
used to determine the ground-truth for evaluating the accu-
racy of the proposed methods detection capacity. However,
due to the hardware employed, and environment limita-
tions, the OmniSSA array reached only a few hundred kilo-
meters of depth into space (the atmosphere). Therefore,
only SOs within this range are visible in the images. A total
of 16 SOs were identified and marked on the ground-truth.
In addition, there are some streaks on the images that were
identified as airplanes, and are not counted as correct SOs
detections. Using the defined ground-truth, Precision,
Recall and f-score measurements can be calculated
(Olson and Delen, 2008).
3. Experimental results

In the following sections, the results of the main steps
from the proposed pipeline are presented. A cross-
validation protocol (Geisser, 2017) was used to adjust the
system’s hyperparameters, using each image with presence
of SOs, generating 9 folds in total. The test set was defined
as another 21 captures. Therefore, in each fold, a single
capture was used to train, and the remaining 21 captures
were used to test the pipeline. The pipeline has several
parameters that must be adjusted. For this purpose, we
used a cross-validation procedure. Each parameter was
adjusted using a single image (training) and the results were
evaluated in the remaining set (test). Then, the single image
was changed for another one and the adjustment/test pro-
cedure was repeated. Cross validation is widely used in
machine learning, neural networks and image processing.
To show a qualitative analysis, an image was used as an
example. This image is shown in Fig. 1 and a zone of inter-
est was marked by a rectangle. After that, the ISN and the
1 www.space-track.org
ISN � ISN are plotted to compare improvements. Finally,
the automatic SO detection is analyzed using Precision,
Recall and f-score measurements.

3.1. Image enhancement

3.1.1. Background subtraction

The background model for each of the three sensors of
the OmniSSA dataset images was obtained and is shown
in Fig. 2 for sensor 1. The background was subtracted from
each image. After this background subtraction, the mean
for all images was reduced from 12652.93 to 50.73, and
the standard deviation was reduced by a factor of 3.78,
from 1151.49 to 304.12 on average. Fig. 3 shows the results
of background subtraction applied to the example image. It
can be observed that the contrast improved significantly
after background subtraction, making objects, such as
stars, more visible.

3.1.2. Image fusion

Through a geometric transformation found among the
three cameras, an image stack was generated for each cap-
ture time. The geometric transformation is a projective
transformation that allows us to align the images captured
simultaneously. A fused image was obtained by adding the
images from the three sensors. Fig. 4 shows the fused image
from the three sensors.

3.1.3. Star removal
After executing the process for image fusion, further

reduction in the standard deviation of brightness was intro-
duced because many bright stars appeared as outliers on
the background, and thus prevented further contrast
stretching to enhance SOs trajectories. Fig. 5 shows the
fused image with stars removed. The improvement in visu-
alization is worth noting.

3.1.4. Contrast enhancement
Contrast stretching allows better viewing of SOs as

shown in Fig. 6, but the enhancement is not optimal due

http://www.space-track.org


Fig. 2. Background model generated from the set of 23 OmniSSA images
from sensor 1.

342 F.I. San Martı́n et al. / Advances in Space Research 65 (2020) 337–350
to pixels with high level intensity in the image. In Fig. 6
contrast stretching also enhances the presence of the North
America Nebula, which may interfere with detecting possi-
ble SOs in that area of space.
Fig. 3. Result of background subtraction on one image from the dataset. (L
Zoomed image in the area marked in red. (For interpretation of the references
this article.)

Fig. 4. (Left) Fused image by adding the images from the three sensors, (Rig
references to colour in this figure legend, the reader is referred to the web ver
3.1.5. Zone division for adaptive contrast stretching

Fig. 7 shows that contrast stretching adapted to each
zone of the image improves the contrast enhancement. This
improvement can be seen when Fig. 7 is compared to Fig. 6
in which contrast stretching was applied directly to the
original image. Fig. 7 shows that contrast stretching
adapted to different zones of the sky yields improved
results in terms of SO detection, especially by the greater
contrast among SOs and backgrounds. In this case, con-
trast enhancement is better within the area of the North
America Nebula compared to the contrast of the detected
SOs.

Contrast stretching algorithms improve the results of
other image processing algorithms applied afterwards in
cascade. The results of our pipeline without the contrast
stretching step, increases the false alarm rate significantly.
In Fig. 8 we show that the Canny Edge Detector applied
directly without contrast stretching, does not detect any
of the SO edges. The Canny Edge Detector first step is a
Gaussian smoothing which virtually erases all SOs since
their contrast is small. Therefore, SOs should be previously
eft) Image with background subtraction with improved contrast, (Right)
to colour in this figure legend, the reader is referred to the web version of

ht) Zoomed Image in the area marked in red. (For interpretation of the
sion of this article.)



Fig. 5. (Left) Fused image with stars removed using results from Astrometry.net as the reference for star location, (Right) Zoomed Image in the area
marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. (Left) Contrast Stretching on fused image with stars removed, (Right) Zoomed Image in the area marked in red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (Left) Contrast Stretching applied to various zones, (Right) Zoomed Image in the area marked in red. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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contrast enhanced before applying Canny Edge Detector.
Fig. 8 shows the edge detection with no contrast stretching,
where only the most brilliant stars could be detected.

3.1.6. ISN measurement

The lower left section of Fig. 9 shows a group of five
rows within the image, randomly chosen within the zone
of detected SOs, in which the ISN was measured using Eq.
3. These rows intersect two SOs in the image as is shown
in the lower left part of Fig. 9 which is a zoom of the upper
right part of Fig. 7. At the top-right of Fig. 9 the ISN is plot-
ted along the chosen rows showing the first peak between 8
and 15 pixels, and a second one, that is more diffuse,
between 35 and 40 pixels. The ISN was computed for differ-
ent combinations of background subtraction (BS), image
fusion (FU), star removal (SR), contrast stretching (CS),



Fig. 8. Results of applying Canny Edge Detector without contrast
stretching. Only the brighter stars were detected and airplane streaks,
but does not detect any of the SO edges.
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and adaptive contrast stretching per zone (CSZ). The Raw
case indicates that the ISN was computed on an image with
no image enhancement.

A second example of ISN is shown in Fig. 10 at the
bottom-left in which five rows are marked in the center part
of image N� 13 of the dataset. Similarly to the previous case
of Fig. 9, the upper-right of Fig. 10 shows the ISN plot and
the peak around pixel 18. The ISN was also computed for
different combinations of background subtraction (BS),
image fusion (FU), star removal (SR), contrast stretching
(CS), and adaptive contrast stretching per zone (CSZ).
The Raw case indicates that the ISN was computed in an
image with no image enhancement. In this example, the
SO is located in the periphery of the image. The bottom-

right of Fig. 10 shows the ISN � ISN that allows a better
Fig. 9. (Left-top) Image of Fig. 7-right with the area to measure the ISN and th
right), showing five randomly chosen rows to measure the ISN and the ISN � I
result of the ISN � ISN computed on the five rows marked on left-bottom figu
including: background subtraction (BS), image fusion (FU), star removal (SR),
The case, Raw, indicates no image enhancement was performed. (For interpret
to the web version of this article.)
visualization of the improvements produced at different
stages of the pipeline. The magnitude of the individual

peaks of the ISN and the ISN � ISN are maxima for the com-
bination BS-FU-SR-CSZ, and coincide with the SO loca-
tion. It is worth noting that because the SO in this case is
fainter, and its shape is more irregular, it is more difficult
to detect.
3.2. Results of the detection stage

3.2.1. Canny edges and progressive probabilistic Hough

transform

The largest peaks of the ISN and the ISN � ISN are
obtained for the combination BS-FU-SR-CSZ. This shows
the benefits of the proposed pipeline compared to the Raw
case with no image enhancement. Figs. 11 and 12 show
detection of SOs validated with the ground truth after
applying the Canny method and the Progressive Proba-
bilistic Hough Transform segment detector to the BS-
FU-SR-CSZ image. The image enhancement per zones
allows more uniform edge detection along the image, espe-
cially when there is an element with high brightness.

After proceeding with cross-validation, this methodol-
ogy does not obtain great results, especially due false pos-
itives and low detection rates. Table 1 summarizes results
of detection stage, showing Precision, Recall and f-score
measurements.
3.2.2. Radon transform streak detection

The Radon Transform was applied to each zone, and
streaks could be detected using the local maxima in the
parameters space (sinogram). After that, the Inverse
Radon Transform was applied to the local maxima and
the streaks could be obtained. In the left part of Fig. 13
e ISN � ISN marked in red. (Left-bottom) Zoom on image left-top (Fig. 7-

SN . (Right-top) Shows the result of the ISN and (Right-bottom) shows the
re. The results show different combinations of preprocessing of the image
contrast stretching (CS), and adaptive contrast stretching per zone (CSZ).
ation of the references to colour in this figure legend, the reader is referred



Fig. 10. (Left-top) Image N� 13 with the area of zoom marked in red. (Left-bottom) Zoom on the center part of image N� 13 of the dataset and processed
with the pipeline, showing five randomly chosen rows to measure the ISN and the ISN � ISN . (Right-top) Shows the result of the ISN and (Right-bottom)
shows the result of the ISN � ISN computed on the five rows marked on left-bottom figure. The results show different combinations of preprocessing of the
image including: background subtraction (BS), image fusion (FU), star removal (SR), contrast stretching (CS), and adaptive contrast stretching per zone
(CSZ). The case, Raw, indicates no image enhancement was performed. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 11. Example of two positive SO detections. (Left) Original input
image with SO. (Middle) Processed image with BS-FU-SR-CSZ. (Right)
Canny edges.

Fig. 12. Second example of SO detection (image N� 14, sensor 1 of
dataset). (Left) Original input image with SO. (Middle) Processed image
with BS-FU-SR-CSZ. (Right) Canny edges.

Table 1
Detection measurements using both methodologies (Canny + Hough
Transform and Radon Transform).

Method Precision Recall f-score

Canny + PPHT 0.77 � 0.028 0.69 � 0.035 0.73 � 0.026
Radon Transform 1.00 � 0.000 0.94 � 0.022 0.97 � 0.012
RT without Fusion 1.00 � 0.000 0.63 � 0.038 0.77 � 0.029
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an input image zone is shown; in the middle of Fig. 13 the
Randon Transform is shown, and the local maxima are
marked. Finally, the right section of Fig. 13 shows the
Inverse Radon Transform of the local maxima neighbor-
hood that allows detecting the streaks correctly. Moreover,
to avoid false positives, the local maxima must exceed a
threshold (determined on the training images) defined by

T R ¼ lS þ C � rS ð4Þ
where lS is the sinogram’s mean and rS is the sinogram’s
STD. The constant C was adjusted with a training image
to each cross-validation fold.

After applying this methodology to all the zones, the
SOs were detected and marked, as is shown in Fig. 14.
Fainter streaks were detected using this approach as is
shown in Fig. 15 an example of a detection of a very faint
streak.

Using this methodology, the detection results improved
with no false positives, as summarized in Table 1. It can be
observed in Fig. 16 that the object not detected is very
faint, difficult to identify by visual inspection, and it was
located on the top border of the image. That is why it is
not possible to obtain the necessary redundancy in the
Radon Transform methodology.

3.3. Results without image fusion

To show the benefit of image fusion, we applied the
pipeline without including the fusion step. Fig. 17-left



Fig. 13. Example of two positive SO detections using Radon Transform. (Left) Original input image with SO. (Middle) Randon Transform (sinogram).
(Right) Inverse Radon Transform of peaks neighborhood.

Fig. 14. Example of results of Radon Transform methodology applied to
whole image.

Fig. 17. Result of fusing the images from 3 sensors. (Left) Image from
Camera 1, (Right) Fused Image using three Cameras.
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shows the image from camera 1, and Fig. 17-right shows
the fused image from the three sensors. It can be seen in
the fused image that the noise was reduced while the
Fig. 15. Very faint space object detected u

Fig. 16. False Negative SO (Left) Processed Image, (Right) Zoom in the area
legend, the reader is referred to the web version of this article.)
objects, such as stars and SOs, were brighter and sharper.
Also, some of the SOs were not visible without image
fusion, as is shown in Fig. 18.

Results of computing the ISN , and ISN � ISN for the fused
image are shown in Fig. 19. It can be observed that the ISN
and the ISN � ISN improved in the case of SOs using the
sing Radon Transform methodology.

marked in red. (For interpretation of the references to colour in this figure



Fig. 18. Very faint Image of space object. (Left) Image from Camera 1, (Right) Fused Image using three cameras.

Fig. 19. (Top-left) Fusion of image N� 15 from the three sensors. The area of zoom is marked in red. (Bottom-left) Zoom on top-left image showing five
randomly chosen rows to measure the ISN , and the ISN � ISN . The (Top-right) shows the result of the ISN and (Bottom-right) shows the result of the
ISN � ISN computed on the five rows marked on the bottom-left figure. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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fused image compared to the ISN and the ISN � ISN from
only one image. The average ratio between the ISN from
the fused image and the Camera 1 image was 1.26 in the
peaks for detected SOs, while, theoretically, the ISN can

improve by a factor of
ffiffiffi
3

p
. Image registration and calibra-

tion errors conspire to reduce the effective improvement
from fusing images. This effect can be observed in
Fig. 19, where the streaks are wider, in addition to having
larger ISN values, and the ISN values are lower in back-
ground zones.

Image fusion allows detection of SO that are not visible
using only a single image. The Recall measurement decays
using a single image, as can be observed in Table 1.
3.4. Streak detection results

Our method focuses on the accurate space object detec-
tion and in determining their trajectory. Due the fusion
step of the three simultaneous captures, the streak visual-
ization was significantly improved. We determined the
time-stamping of the detected streaks and compared them
to the ground-truth extracted from Space-Track.org with
NORAD ID as shown in Table 2. In average, the error
among the detected streaks matching the length of the
ground-truth was 0�380, while the position error was in
average of 2�10, considering all detected streaks.

Comparing the results with and without image fusion,
Table 3 shows how the estimated length of the streaks
changed. This is significant especially in those cases where
a faint streak was detected. The fusion improved the length
detection. In average, the error of the detected streaks
matching the length of the ground-truth was 4.84%
(0�540) without fusion, while this error was reduced to
3.45% (0�380) with fusion.

Table 4 shows all streaks detected in the images with
their respective NORAD ID. There are no new objects,
but the positions were corrected respect to those of the
catalog.

The contrast stretching step generates saturation in the
pixel values and therefore the determination of the visual
magnitude for the detected objects changes. Nevertheless,
knowing the position and length of the detected objects,
the visual magnitude can be obtained from the original
image. Additionally, based on the magnitude of the stars
present in the catalog and the area that each space object



Table 3
Measured SO length on the ground-truth, with and without using the fusion step.

NORAD ID Name GT length w/o fusion w/ fusion

19650 SL-16 R/B 13�180 12�440 12�430
28931 Alos 18�180 18�150 18�420
3598 Atlas Centaur R/B 19�410 17�340 20�490
3598 Atlas Centaur R/B 22�210 20�160 20�060
18586 SL-8 R/B 14�070 13�560 14�090
20663 Cosmos 2084 23�230 22�000 23�050
33500 H-2A R/B 18�520 19�450 19�500
33500 H-2A R/B 16�200 15�180 15�540
9023 SL-8 R/B 14�020 13�200 13�380
9023 SL-8 R/B 14�570 15�290 15�150
27386 Envisat 16�030 15�450 16�170

Table 2
Space Objects coordinates extracted from Space-Track.org. Those coordinates were used as ground-truth. (–) means that this point is outside the FOV of
the image.

NORAD ID t0 RA DEC tf RA DEC

19650 01:23:16 – – 01:23:46 298�12’ 7�0’
19650 01:24:28 307�370 22�220 01:24:58 315�500 32�500
31211 01:24:28 265�100 58�570 01:24:58 – –
28931 01:24:28 253�080 31�120 01:24:58 243�250 46�430
3598 01:24:28 234�190 40�090 01:24:58 253�220 45�060
3598 01:25:35 283�130 46�010 01:25:55 305�070 41�340
19650 01:25:35 327�440 43�280 01:25:55 – –
18586 01:34:43 301�280 10�270 01:35:13 300�030 24�300
20663 01:40:52 267�400 45�420 01:41:22 282�340 27�400
33500 01:40:52 322�350 49�310 01:41:22 310�330 34�590
20663 01:41:57 293�380 7�220 01:42:27 – –
33500 01:41:57 300�380 15�200 01:42:27 294�330 �0�100
9023 01:45:53 299�490 4�290 01:46:23 305�580 17�060
9023 01:45:53 320�310 38�540 01:46:23 331�410 48�500
27386 02:27:12 252�130 49�530 02:27:42 262�180 37�240

Table 4
Space Objects coordinates measured after applying our pipeline considering the fusion stage. (–) means that this point is outside the FOV of the image.

NORAD ID t0 RA DEC tf RA DEC

19650 01:23:16 – – 01:23:46 296�220 7�200
19650 01:24:28 304�580 22�140 01:24:58 312�090 32�440
31211 01:24:28 273�560 48�280 01:24:58 – –
28931 01:24:28 253�250 30�060 01:24:58 243�420 46�050
3598 01:24:28 232�150 40�040 01:24:58 252�270 45�070
3598 01:25:35 281�360 45�490 01:25:55 301�200 41�570
19650 01:25:35 322�570 43�290 01:25:55 – –
18586 01:34:43 300�380 10�500 01:35:13 298�390 24�510
20663 01:40:52 267�000 46�170 01:41:22 281�440 28�310
33500 01:40:52 324�410 50�300 01:41:22 311�210 35�490
20663 01:41:57 293�120 8�430 01:42:27 – –
33500 01:41:57 300�490 16�060 01:42:27 294�350 1�280
9023 01:45:53 299�080 4�220 01:46:23 305�260 16�280
9023 01:45:53 321�050 38�310 01:46:23 332�460 48�190
27386 02:27:12 252�120 49�370 02:27:42 262�160 36�490
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covers, the magnitude of these objects could be estimated
by known methods such as differential photometry
(Young et al., 1991; Robinson et al., 1995). It should be
noted that due to the fusion step, the apparent magnitude
of the objects increases.
4. Conclusions

Detection of SOs has many important applications, such
as detecting debris that could become hazards for satellites
or space missions in Low-Earth orbits. In this paper we
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described a pipeline able to detect SOs automatically in
images acquired with an all-sky camera and a large FoV.
The pipeline is flexible in the sense that it is composed of
several blocks that can be added or eliminated for image
processing to improve the detection process.

The proposed pipeline includes the following main steps:
image distortion correction, filtering for noise reduction,
generation of a background model for subtraction, star
elimination using a star catalog, local-based contrast
enhancement, and, finally, for automatic SO detection,
two methodologies were developed to detect line segments.
The first one uses a Canny edge detector and a Progressive
Probabilistic Hough Transform, while the second is based
on the Radon Transform to detect line segments.

The method was applied to a dataset of 22 � 3 images
obtained from the OmniSSA at the Georgia Institute of
Technology. The OmniSSA has 3 sensors able to capture
high-resolution images simultaneously (3352 � 2532 pixels)
with wide FoV for each camera, and fusing images from
those sensors improved the ISN and the visualization during
the detection stage.

A ground-truth was obtained from a well-known data-
base and was marked in the images by human experts to
validate the results of the pipeline considering information
from the coordinates that were estimated using the results
of Astrometry.net. Results showed that 15/16 SOs were
correctly detected by the pipeline using the Radon Trans-
form methodology.

Finally, the best results were obtained with the combina-
tion BS-FU-SR-CSZ for the image enhancement stage, and
the Radon Transform methodology for the detection stage.
For future work, parallelizing part of the code should
improve computational times.
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