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Abstract

Wereport on an emergent dynamical phase of a strongly-correlated light—matter system, which is
governed by dimerization processes due to short-range and long-range two-body interactions. The
dynamical phase is characterized by the spontaneous symmetry breaking of the translational
invariance and appears in an intermediate regime of light—matter interaction between the resonant
and dispersive cases. We describe the quench dynamics from an initial state with integer filling factor
of a finite-sized array of coupled resonators, each doped with a two-level system, in a closed and open
scenario. The closed system dynamics has an effective Hilbert space description that allows us to
demonstrate and characterize the emergent dynamical phase via time-averaged quantities, such as
fluctuations in the number of polaritons per site and linear entropy. We prove that the dynamical
phase is governed by intrinsic two-body interactions and the lattice topological structure. In the open
system dynamics, we show evidence about the robustness of dynamical dimerization processes under
loss mechanisms. Our findings can be used to determine the light-matter detuning range, where the
dimerized phase emerges.

1. Introduction

The development of technology encompasses a broad range of opportunities to harness quantum phenomena.
For instance, it is possible to manipulate light—matter quasiparticles or polaritons which have new properties
such as stimulated scattering [ 1, 2], lasing [3—5], parametric amplification [6—8], and superfluidity [9, 10]. These
characteristics can be used to enhance the experimental realization of polaritonic devices, such as
semiconductor microcavities, where the coupling between quantum-well excitons and cavity photons gives rise
to hybrid light-matter quasiparticles [11]. In the microwave regime, superconducting circuits based on
Josephson junctions also allow us to harness light—matter interaction for simulating strongly correlated
phenomena with light [12-22]. The underlying physics of light—matter based quantum simulators is governed
by the Jaynes—Cummings—Hubbard (JCH) model [23—25] which describes the dynamics of coupled-resonator
arrays (CRAs), each doped with a two-level system (TLS). In this case, the manipulation of polaritonic
excitations locally depends on the detuning between the light and matter frequencies but also is largely
influenced by the lattice structure. As the detuning increases from the resonant to the dispersive regime, the
system transits from the Mott-insulating state characterized by the hybridization of light and matter states to a
superfluid phase of photons [23-30].

In this work, we demonstrate by using numerical calculation and an analytic model that during the phase
transition from the Mott-insulating to superfluid state, a dynamical dimerization phase (DDP) emerges, which
is characterized by the spontaneous symmetry breaking of the translational invariance. As dynamical
dimerization, we refer to the dynamics of a finite-sized Jaynes—Cummings (JC) lattice that exhibits resonances
related to the two-sites JClattice. In order to identify the new regime of DDP, we analyze the purely unitary
quench dynamics of few-body JC lattices. In particular, we consider a quantum quench from an initial state with
integer filling factor in a JC dimer, which has been proven useful to simulating second-order like phase
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Figure 1. Schematic representation of a Jaynes—Cummings—Hubbard lattice. Each resonator supports a single mode of frequency w,
which interacts with a two-level system of frequency wy. This interaction is represented by the coupling strength g. The interaction
between cavities is characterized by the hopping parameter J.

transitions from the Mott-insulating to superfluid phase [31]. Here, we introduce an effective Hilbert space in
the two-excitations subspace using the criterion of discarding higher energy polaritonic states, which are out-of-
resonance over the evolution [27, 32]. This description allows us quantitative explanations for time-averaged
quantities such as fluctuations in the number of polaritons per site and linear entropy. Besides, the
computational cost is substantially diminished by using a reduced effective Hilbert space. As we extend the
quench dynamics to complex finite-sized CRAs, we demonstrate the emergence of DDP, which is governed by
intrinsic two-body interactions in the JClattice. In the open system scenario, our numerical results show
evidence about the robustness of dynamical dimerization processes under loss mechanisms, so our work may
find inspiration for the observation of DDP within state-of-the-art quantum technologies such as
superconducting circuits [15, 17] and trapped ions [33, 34].

This paper is organized as follows. In section 2, we introduce the JCH model and the polariton mapping. In
section 3, we describe the quench protocol for the closed JCH dimer. Here, we provide analytical expressions for
time-averaged order parameters using an effective Hilbert space. In section 4, we highlight the emergence of a
DDP as we extend the one-dimensional JC lattice to three and four sites. Here, section 4.1 describes DDP in a
closed system, while in section 4.2, we introduce loss mechanisms in the JC lattice and discuss their effects on the
dynamical phase transition. Finally, in section 5, we present our concluding remarks.

2. The model

The JCH model [23-25] describes a lattice of L interacting coupled QED resonators, each supporting a single
mode of the electromagnetic field which interacts with a TLS. This situation is schematically shown in figure 1.
The JCH Hamiltonian reads (A = 1)

Hicu = Y HI = 3" Jj(alaj + alay), e
i (i)
where a;(a l-T) is the annihilation (creation) bosonic operator at the ith lattice site, J;; is the photon—photon
hopping amplitude which takes values J;; = Jif two sites of the lattice are connected and J;; = 0 otherwise. Also,
HiIC = wafai + wooi oy + g(gia; + o’i’a;) is the JC Hamiltonian [35] where & (o) is the raising (lowering)
operator acting on the ith TLS eigenbasis {||);, |T);}, and w, wy, and g are the resonator frequency, TLS
frequency, and light-matter coupling strength, respectively.

In the resonant regime, A = wy, — w = 0, the hybridization of the light—matter yields to localized polariton
excitations (Mott-insulator phase), while in the dispersive regime, A >> g, the system is dominated by photonic
excitation behavior (superfluid phase) [23, 24]. This phase transition can also be described as a transition driven
by the photon blockade effect from the Mott-insulator phase, where the intersite polariton exchange is
forbidden, so effectively J;; = 0, to a superfluid phase dominated by a uniform photon hopping J;; = J,in both
cases, there is no cavity-embedded effect involved. As we demonstrate in section 4, the intermediate regime of
light—matter interaction, which we define in therange 1 < A/g < 10, can be identified by the parameter
ki=J& V) / L with L the number of nonlinear coupled resonators, J the hopping parameter, and v; the
connectivity of node j. Notice that k; = 0 for the resonant case and k; = J for the dispersive case. This way, the
origin of translational symmetry breaking can be explained by introducing a local order parameter of yth phase
U, with = (I, IL, III) represents the resonant, intermediate, and dispersive case, respectively. Indeed,

Ul(k;) = U!(0),and UH'(k;) = W(J), which means that in the resonant and dispersive regimes there is
translational invariance. Since the order parameter shows a spatial dependence in an intermediate regime
WU(k;), then translational symmetry is broken. As a consequence, a DDP will happen due to intrinsic two-body
interactions and the connectivity of each lattice site.

The Hamiltonian (1) preserves the total number excitations (polaritons) described by the operator
N =St (ala; + ofo;). Theith node of the lattice in figure 1 is described by the JC Hamiltonian H/ whose
eigenstates define the upper (+) and lower (—) polaritonic basis |, £); = ~,_||,n) + p,.|1T,n — 1); with
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energies E;” = nw + A/2 + x(n). Here, x(n) = | A?/4 + ¢’n, p,, = cos(6,/2), 7, = sin(6,/2),
P = — V> Yo = Pus> tan b, = 2¢/n /A, and the detuning parameter A = wy, — w. Also, one introduces
the ith polaritonic creation operators as P/ ™ = |n, a); (0, —|, where « = & and weidentify |0, —) = |],0)
and |0, +) = |@) being a ket with all entries equal to zero, that is, it represents an unphysical state. These
identifications imply yo— = 1and Yo+ = por = 0.

Using the above defined polaritonic basis, the Hamiltonian (1) can be rewritten as [23, 27]

i=ln=la=%+ (i,j) nm=1la,a’,3,0'=+

L oo 0
H= ZZ 2 E];q;j(n,u)a(n,a) _ Z]ijI: Z z trfwc trgﬁ PiT(n—l,u)Pi(n,a )P]"r(m,‘d)P](‘mfl,d) + hel, Q)

where the matrix elements t° = /7 Y yaYar T N1 = 1P 1y0 Puer- The first term in equation (2) stands
for the local polaritonic energy with an anharmonic spectrum and gives rise to an effective on-site polaritonic
repulsion. This is analog to the on-site photon repulsion in the Bose—Hubbard model [36]. The last term in
equation (2) represents the polariton hopping between resonators. This interaction also allows the interchange
of polaritonic species of one or both sites involved [23, 27, 32], leading to a quite involve quantum dynamics.

A detailed understanding of the equilibrium properties of the JCH model (2) resorts on approximated
analytical solutions [37] or numerical approaches such as density matrix renormalization group [38—41]. In
nonequilibrium situations, one can understand the underlying physics using the time-evolving block
decimation algorithm [42—44], or simplifying the description using effective Hilbert spaces [32, 45-49]. The
latter is particularly appropriate for studying the quench protocol presented in this article, as we consider the
closed system scenario.

3. Quench dynamics in a JCH dimer

In this section, we introduce a sudden quench protocol [31] and its effects on the quantum dynamics of the JCH
dimer. Also, we provide quantitative explanations of time-averaged quantities such as fluctuations in the
number of polaritons per site and linear entropy using an effective Hilbert space. In section 4, we will show that
the underlying physics of the quench dynamics allows us to understand the emergent DDP. We stress that DDP
occurring in the JCH lattice happens in the frequency regime Jn < g/t < wn [23], where the rotating wave
approximation holds.

For each detuning A, we set the initial condition as the lowest energy state with integer filling factor of one
excitation per site, thatis, |[1)o) = QL |1, —); (L is the number of lattice sites) which corresponds to a Mott-
insulating state at hopping rate ] = 0. Then, at time ¢ = 0, the parameter Jis suddenly quench to a new value
J = 0such that the Hamiltonian has changed to H = Hjcn(Jp. Hence, the JCH lattice dynamics is described by
the state |90y (t)) = e H|a)y) (h = 1) which leads to nonequilibrium phenomena. In order to characterize DDP,
we compute time-averaged order parameters such as the variance of the number of polaritons per site
Var(n;) = % fOT dt((n?) — (n;)*),where n; = aja; + o'o;,and 7 = J ', or thelinear entropy

E= % j(; T des p (1), where S, (t) = 1 — Tr(pf), and p, the reduced density matrix of the leftmost or rightmost
site of the JC dimer.

The quench protocol described above allows us to simulating second-order like phase transition captured
via the Var(n;), see [31], which is analog to the adiabatic dynamics studied in [23]. Also, the simulated phase
transitions in a JCH lattice can be characterized via linear entropy, as shown in this article, which implies that the
observation of the emergent DDP is independent of the choice of the order parameter.

Effective Hilbert space for a closed system.—In order to introduce an effective description of the system
dynamics, it is useful to consider the JCH Hamiltonian written in the polaritonic basis, see equation (2). Starting
from the initial state [1)g) = |1, —);|1, —);, the JCH Hamiltonian (2) may lead to processes such as the exchange
of polaritonic species, or the interchange of polaritonic species of one or both sites involved (i, j). In this case, the
full quantum dynamics should involve all states within the two-excitations subspace, which we define as
{Itho) =1, =YL, =) 13 )i =12, £)10, =), [¥3); =10, =)il2, )5 Wi =11, +)l1, =), ¥ =
[1, =)il1, 4+)j> 197 ) =11, +)i|1, +); }. However, interchange of polaritonic excitations can be neglected under
the conditions {|E,” — 2E; |, |2E;" — E; |, |E;" + E; — E;|} > ], which results in fast oscillating
contributions, and we can apply the rotating-wave approximation [23, 27, 32]. Figure 2 shows that the
interchange of polaritonic species is suppressed over the evolution. Here we plot the populations of above
defined states as a function of time. We identify populationsas Py = |(1o|¢)()) I, P3i = [ (510 ()) %,

P = i (¢ () P and Pf = [ (¢ |4 (2)) > Due to the symmetry of the JC dimer, it is cleat that szj? =
i (Y319 ()P = P5;and P = |j (¢ 1) P = P (notshown in figure 2). In this work, we carry out
numerical calculations with the quantum toolbox in Python QuTiP [50, 51].
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Figure 2. Populations of states |t)o), |13 );, [ )i» and ¢ );, defined in the main text, as a function of time. The dimer is initialized in
the state [t)y), parameters are g = 102w, ] = 10~ *w, where wis the resonator frequency, and we consider up to 5 Fock states per
resonator. (a) A = 5g,(b) A = 50g. Horizontal dotted lines have been added as a guide to the eye.

Since the interchange of polaritonic species is suppressed over the evolution, we can introduce an effective

Hilbert space involving states of the lower polaritonic branch H; = {[t/o), 13 );, |17 );} for describing the
quench dynamics. In this case, the effective Hamiltonian reads (& = 1)

abbd
Her =1b ¢ 0} ©)]
b 0 ¢
wherea = 2E;,b = —Jt; t, ,c= E;,andt; t; = cos(f; /2)(N2 cos(8,/2)cos(0,/2) +
sin(#; /2)sin(6, /2)). Thus, the full dynamics can be solved analytically by diagonalizing the above 3 x 3 matrix.
Starting from the initial condition [¢)y) = |1, —)i|1, —);, the wave function at time  reads

[ (1)) = co(®)|tbo) + (D7) + c3i(D)|47)) )

where the probability amplitudes are

1 . .
() = —— (e — ae ), (50)
oy — -

cﬂﬂz@mza—igaﬁh—fmx 5b)

.-

and we define the coefficients Ay = (a + ¢ + +/8b*> + (a — ¢)? )/2, oy = (a—c+ /8> + (a — ¢)? )/2b.
Time-averaged order parameters.—Given the wave function (4), we can analytically compute time-averaged

order parameters such as the variance of the number of polaritons per site Var(n;) = % fo ! ((n?) — (m)*)dt,

where n; = a;(a,- + o o7, orthelinear entropy E = % fOT Sy (t)dt, where S, (t) = 1 — Tr(pf), and p; the
reduced density matrix of the leftmost or rightmost site of the JC dimer. Thus, the time-averaged variance reads

4b? J . [
V. )=—|1— —sin|—||, 6
ar(n ) é [ ) S1 ( ] ):| ( )

where we define 0, = /8b% + (a — ¢)?.

Figure 3(a) shows the behavior of Var(;) as a function of log;o(A/g) calculated from the full numerics (red
diamonds) and the analytical prediction (continuous blue line) in equation (6). We see a good agreement
between both predictions as the relative error shows in figure 3(b). Also, equation (6) allows us to predict the
asymptotic behavior of Var(n;) as the detuning increases, A /g — 0. In this case, the spectrum of the lower
(upper) polaritonic branch becomes harmonic with eigenenergies E, ~ nwg (E,” ~ nwp + A), where
wr = w— ¢/ A, thus allowing the resonance condition E;” — 2E; = 0 (a = ) (see figure 2(b)). Also,
|b] = 2] and Qo = 4], so the asymptotic value of Var(n;) reads
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Figure 3. (a) Time-averaged order parameter Var(#;) as a function oflog;o(A/g). (b) Comparison between the analytical and
numerical predictions of Var(1;) (see equation (6)). We use parameters g = 10 2w, ] = 10~ *w, where wis the resonator frequency.

lim Var(n;) = l(1 _ 1 sin 4) = 0.5946. 7
A/g—00 2 4

Itis worth mentioning that the analytical result (6) represents the hallmark for the dimer dynamics. In
section 4, we will prove that as one increases the number of lattice sites, the time-averaged variance (6) allows us
to identify resonances due to intrinsic short- and long-range two-body interactions, which govern the DDP.

On the other hand, one can also characterize the dimer dynamics via the linear entropy of the reduced
density matrix as mixedness measure [52]. First, notice that the quantum state (4) is already in its Schmidt
decomposition, which leads to a diagonal reduced density matrix

l;(OP 0 0
=] 0 P 0 | ®)
0 0 leu(t)P

In this case, the linear entropy as a function of time is given by S, (t) = 1 — (|co(t) [* + 2|y (H)]*), and the
time-averaged linear entropy reads

2
E= %[29093 — 403 sin(%) — 30y sin(zTQO)], 9)

0

where Q) = /7b% + 2(a — ¢)? and Q, = /2b? + (a — ¢)?. Figure 4(a) shows the behavior of E as a function
of log;0(A/g) calculated from the full numerics (red diamonds) and the analytical prediction (continuous blue
line) in equation (9). We see a good agreement between analytical and numerical predictions as shown in

figure 4(b). We can also estimate the asymptotic value of the time-averaged entropy as one increases the ratio
A/g,itreads

lim E = 0.4616. (10)
A/g—0o0
In what follows, we will use the time-averaged variance (6) for demonstrating the existence of DDP in the
intermediate regime of light—matter interaction. This choice establishes the physical framework for the
subsequent discussion, but a similar analysis with the linear entropy leads to the same conclusion about DDP.

4. Dynamical dimerization phase

4.1. Closed system

Emergent dynamical critical phenomena following a quantum quench have experienced much interest in recent
years [53—75]. Here, we demonstrate an emergent DDP as we extend the JC lattice to three (trimer) and four
(tetramer) sites (see figure 1), and in an intermediate regime of light—matter coupling strength, thatis, 1 <

A/g < 10. We define the concept of dimerization as the dynamical process where short-range and long-range
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Figure 4. (a) Time-averaged linear entropy E as a function of log;o(A/g). (b) Comparison between the analytical and numerical
predictions of E (see equation (9)). We use parameters g = 10~ “w, ] = 10~ *w, where w s the resonator frequency.

two-body interactions govern the quantum dynamics. Here, short-range (long-range) two-body interaction is
due to the direct (mediated) exchange of polaritons. We will prove that the connectivity associated with each
node of the lattice plays a crucial role to define DDP.

Let us start the discussion with a three-sites JC lattice initialized in the state [¢)y) = |1, —)i[1, —);i|1, =)
where the subindexes 7, j, and k refer to the leftmost, center, and rightmost lattice site, respectively. If we let the
system evolves according to the quantum quench described is section 3, one should impose the conditions for
neglecting interchange of polaritonic species between nearest-neighbor sites, thatis, {|E;" — 2E, |, |2E;" — E, |,
|E;" + E; — E5|,|E;" — E{ |,|Es” — E; — E; |,|Ess — E5 |, |ES" + E; — E; — E;|} > . Asfor the dimer,
only the lower polaritonic branch will be activated and the dimension of the effective Hilbert space (H) is given
by(N+d — 1)!/NI(d — 1)!, where N is the number of excitations that should be distributed into d lattice sites.
Inourcase, N = 3andd = 3 resultsin dim(H) = 10. Attime t, the wave function may be written as alinear
combination of states belonging to the three-excitations subspace, that is

[V (1)) = co(®) [Yho) + csils))
+ i) (3i) + [Ysi))
+ 0ij(O) () + [Pjax)
+ igj () ([Y1ij) + [¥2518)
+ i@ (Vaik) + 1¥1i2k)s (11)

where we define states [t)9) = [1, —)i|1, —);|1, =) [¥3:) =13, —)il0, —);|0, =), [103j) =10, —)il3, —)il0, — )
[¢36) =10, =)il0, —=)il3, =) |9201j) = 125 —=)ilL, =)il0s =) [P1jar) =10, = )ill, —)il2, — )i [9h1i2j) =

|1) 7>i|2’ 7>j|0> 7>k) |w2j1jk> = |0> 7>i|2’ *>j|1’ *>k’ |w2i1k> = |2’ 7>i|0> 7>j|1’ *>k) and |w1i2k> =

[1, —)il0, —);|2, — ). Notice that some probability amplitudes are equal due to symmetry of the trimer with
respect to the lattice center (7). Here, the state (11) will be computed via full numerics.

Figure 5 shows the ratio between the absolute value of the time-averaged nearest-neighbor correlation
function Cj; (next nearest-neighbor correlation function Cy) of the trimer, and the dimer variance (6). Two-
point correlation functions are Cjj) = % fOT dt ((ninju) — (i) (nj@))), where T = J~'. Here, we identify two
critical values of detuning, vertical dashed lines, A /g = (2.43, 2.73) within the intermediate regime of light—
matter interaction, 1 < A/g < 10. At these critical points the trimer experiences dynamical dimerization
processes, where short-range correlations rule the dynamics at A /g = 2.43, whileat A /g = 2.73 a combination
of both short- and long-range correlations govern the dynamics. The resonances shown in figure 5 demonstrate
that the intrinsic dimer dynamics, characterized by the time-averaged variance (6), governs the quench
dynamics of the trimer. Furthermore, the dimer variance allows us to identify short-range and long-range two-
body interactions. The former is a consequence of direct cavity-cavity coupling of sites (i, k), while the latter
results from an indirect interaction between sites (i, k) mediated by the center lattice site j. Notice that figure 5
also exhibits an anti-resonance at A = 1.82g(continuous vertical line). At this point, no dynamical
dimerization happens, and the JClattice remains approximately in the Mott insulating state.
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Figure 5. Ratio between the absolute value of time-averaged nearest-neighbor correlation function Cj; (next nearest-neighbor
correlation function Cy) of the trimer, and the dimer variance in equation (6). Vertical dashed lines, from left to right, indicate critical
values of detuning A /g = (2.43,2.73) where dynamical dimerization processes happen. Continuous vertical line stands for the anti-
resonance. We use parameters g = 102w, ] = 10~ *w, where wis the resonator frequency, and we consider up to 5 Fock states per
resonator.
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Figure 6. Ratio between the absolute value of time-averaged two-point correlation functions Cj, Cj, C; of the tetramer (four-sites JC
lattice), and the dimer variance in equation (6). Vertical dashed lines, from left to right, indicate critical values of detuning A /g =
(2.43,2.73) where dynamical dimerization processes happen. Continuous vertical line stands for the anti-resonance. We use
parameters g = 10w, ] = 10~ *w, where wis the resonator frequency, and we consider up to 5 Fock states per resonator.

Let us discuss the results for the tetramer. Figure 6 shows the ratio between the absolute value of time-
averaged two-point correlation functions Cjj, Cy, Cj; of the tetramer, and the dimer variance in equation (6). We
order the lattice sites from left to the right according to indexes (3, j, k, [). It is noticeable that a larger JClattice also
exhibits resonances at critical values of detuning A /g = (2.43, 2.73) (vertical dashed lines), and the anti-
resonance at A = 1.82g(continuous vertical line). Moreover, the two-point correlation function Cj;, associated
with edges of the lattice, has the same resonance (A = 2.43¢) as compared with nearest-neighbor correlation
function Cj;. The latter suggests that for a finite one-dimensional JC lattice of L sites, the number of resonances
associated with dimerization processes corresponds to a universal number of different connectivities of the
lattice, that is, connectivity v = 1 for lattice edges, and connectivity v = 2 for bulk lattice sites. These results are
a consequence of the broken translational symmetry.

4.2. Open system
A realistic implementation of a strongly-correlated light—matter system should consider the system-bath
interaction which leads to loss mechanisms in the initial state preparation and along the dynamics, e.g. if we
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consider a experimental realization based on superconducting circuits [15, 17]. In these experiments, the
dissipative dynamics is described by a Markovian Lindblad master equation (7 = 1)

dp . L — z

i —i[Hjen, pl + > (vLloi1p + wLloilp + kLlailp), (12)

i=1
where the Liouvillian operator reads L[ O] p = OpOf — %{ OO, p}. We consider the same loss mechanisms
for each lattice site including energy relaxation, dephasing; and photon losses at rates v, v, and , respectively.
In order to prepare the initial state, we propose to include an ancillary TLS on each lattice site, which

interacts with the cavity mode. In this case, the Hamiltonian describing a single lattice site reads

Hi = Hjc + wyohoa + g4 (0hai + 0a)), (13)

where wy is the ancilla frequency, g4 the ancilla-cavity coupling strength, and ch the JC Hamiltonian of site i.

The initialization protocol makes use of Gaussian and Stark pulses as described in [76]. First, we let the
system to cold down to its ground state [1)g) = ®F_1]0, —);|])4.- Second, we apply individual Gaussian 7 pulses
acting upon each ancilla TLS in order to prepare the state Q- |0, —);|1) 4, Third, a Stark pulse is applied to
each ancilla TLS bringing it into resonance with its respective lattice site, i.e. wy = E; , duringa time interval
AT = 7w/(2gat; ). In this way, the strong lattice site-ancilla interaction governed by equation (13) yields the
desired initial state [1) = &% 1|1, —);|| )4, Notice that one should satisfy the condition |E;" — E; | > g,.The
latter avoids unwanted population of the state % |1, +);|| ) a,- Then, the ancilla-site interaction is suppress by
applying a Stark pulse tuning w, below the frequency E|”. We stress that Stark pulses can be implemented by
means of external magnetic fluxes applied upon superconducting quantum interference devices that form a
transmon qubit [77, 78].

We have numerically calculated the initial state preparation and the sudden quench using the equation (12),
using physical parameters taken from state-of-the-art circuit QED setups [15, 17, 78, 79]. Figures 7(a), (b) shows
the ratio (Cjj)rimer /Var(#1;)pimer as a function of A /g, where (Cij)imer Stands for the absolute value of the time-
averaged correlation function, and Var(#;) pimer corresponds to the variance of the dimer. As seen in figure 7(a),
we identify resonances corresponding to the critical values A /g = (2.57, 3.08), vertical dashed lines, within the
intermediate regime of light—matter interaction, 1 < A/g < 10. In the same way, as in the closed system
dynamics 4.1, the trimer experiences dynamical dimerization processes, where short- and long-range
correlations dominate over dissipation. As we increase the energy relaxation and dephasing rates of TLSs,
resonance peaks are spreading throughout to a wider detuning range, see figure 7(b). These results show
evidence about the stability of dynamical dimerization processes that happen in a finite-sized JC lattice, and
allow us to establish a parameter threshold for the appearance of DDP in the dissipative case.

In the numerical calculations we use v, = 5 GHz (cavity frequency), g = 200 MHz, J; = 2 MHz,

k = 225 KHz,y = 35 KHz (T, = 28 us),andy, = 45 KHz (T, = 22 us) [79] for figure 7(a), and v = 530 KHz
(T, = 1.87 ps), and vy, = 450 KHz (T, = 2.22 us) [78] for figure 7(b).

5. Conclusions

In summary, we have reported on the emergence of a DDP in a finite-sized JC lattice as a result of a quantum
quench from an initial state with integer filling factor. We have thoroughly analyzed the quench dynamicsina
close two-sites JC lattice, which allows us to obtain analytical results for time-averaged order parameters such as
the local variance of the number of polaritons, and the linear entropy. Further, these order parameters can be
used to analyze and predict the resulting quenched dynamics for more complex architectures. When comparing
the dimer variance with two-point correlation functions of the trimer and tetramer, it allows us to determine
critical values for the detuning where dynamical dimerization processes happen. Recognizing resonances and
anti-resonance for detuning values, in turn, allow controlling what kind of correlation dominates over the
dynamics be short-range or a combination of both short- and long-range, and may also allow controlling
polariton propagation along the lattice. We stress that the intrinsic dimer dynamics, characterized by the time-
averaged variance (6), governs the quench dynamics of closed finite-sized JClattices, and we expect similar
results as one increases the number of lattice sites.

In arealistic situation, it is necessary to include dissipative mechanisms in the state preparation and over the
quench dynamics. Considering parameters of state-of-the-art circuit QED technology, permit numerical results
to show that as one increases the coherence times of TLSs and cavities, two sharp resonance peaks become more
evident. These results demonstrate that DDP remains in the dissipative case. We conjecture that for a finite one-
dimensional JC lattice of L sites, the number of resonances associated with dimerization processes corresponds
to the number of different connectivities of the lattice, that is, connectivity v = 1 for lattice edges, and
connectivity v = 2 for bulk lattice sites. Our findings could be tested with state-of-the-art quantum
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Figure 7. Ratio between the absolute value of time-averaged nearest-neighbor correlation function Cj; (next nearest-neighbor
correlation function Cy) of the trimer, and the dimer variance. (A) Vertical dashed lines, from left to right, indicate critical values of
detuning A /g = (2.57, 3.08) where dynamical dimerization processes happen. Here, we use parameters v, = 5 GHz (cavity
frequency), ¢ = 200 MHz, Jy = 2 MHz, k = 225 KHz,y = 35 KHz (T = 28 ps),and v = 45 KHz (T, = 22 us). (B) Vertical
dashed lines, from left to right, indicate critical values of detuning A /g = (2.57,3.08). We use y = 530 KHz (T} = 1.87 pus),and

s = 450 KHz (T, = 2.22 ps), other parameters remain the same. In these numerical calculations we consider up to 4 Fock states per
resonator.

technologies. For instance, in trapped ions technology, the JCH model has been theoretically proposed in [33]
and physically implemented in [34]. In superconducting circuits, the JC dimer has been implemented in [15]. In
this case, homodyne signal detection may allow measuring the local variance of photon number, which can also
be used as an order parameter.
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