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Abstract
We report on an emergent dynamical phase of a strongly-correlated light–matter system,which is
governed by dimerization processes due to short-range and long-range two-body interactions. The
dynamical phase is characterized by the spontaneous symmetry breaking of the translational
invariance and appears in an intermediate regime of light–matter interaction between the resonant
and dispersive cases.We describe the quench dynamics from an initial state with integerfilling factor
of afinite-sized array of coupled resonators, each dopedwith a two-level system, in a closed and open
scenario. The closed systemdynamics has an effectiveHilbert space description that allows us to
demonstrate and characterize the emergent dynamical phase via time-averaged quantities, such as
fluctuations in the number of polaritons per site and linear entropy.We prove that the dynamical
phase is governed by intrinsic two-body interactions and the lattice topological structure. In the open
systemdynamics, we show evidence about the robustness of dynamical dimerization processes under
lossmechanisms.Ourfindings can be used to determine the light–matter detuning range, where the
dimerized phase emerges.

1. Introduction

The development of technology encompasses a broad range of opportunities to harness quantumphenomena.
For instance, it is possible tomanipulate light–matter quasiparticles or polaritonswhich have newproperties
such as stimulated scattering [1, 2], lasing [3–5], parametric amplification [6–8], and superfluidity [9, 10]. These
characteristics can be used to enhance the experimental realization of polaritonic devices, such as
semiconductormicrocavities, where the coupling between quantum-well excitons and cavity photons gives rise
to hybrid light–matter quasiparticles [11]. In themicrowave regime, superconducting circuits based on
Josephson junctions also allowus to harness light–matter interaction for simulating strongly correlated
phenomenawith light [12–22]. The underlying physics of light–matter based quantum simulators is governed
by the Jaynes–Cummings–Hubbard (JCH)model [23–25]which describes the dynamics of coupled-resonator
arrays (CRAs), each dopedwith a two-level system (TLS). In this case, themanipulation of polaritonic
excitations locally depends on the detuning between the light andmatter frequencies but also is largely
influenced by the lattice structure. As the detuning increases from the resonant to the dispersive regime, the
system transits from theMott-insulating state characterized by the hybridization of light andmatter states to a
superfluid phase of photons [23–30].

In this work, we demonstrate by using numerical calculation and an analyticmodel that during the phase
transition from theMott-insulating to superfluid state, a dynamical dimerization phase (DDP) emerges, which
is characterized by the spontaneous symmetry breaking of the translational invariance. As dynamical
dimerization, we refer to the dynamics of afinite-sized Jaynes–Cummings (JC) lattice that exhibits resonances
related to the two-sites JC lattice. In order to identify the new regime ofDDP,we analyze the purely unitary
quench dynamics of few-body JC lattices. In particular, we consider a quantumquench from an initial state with
integerfilling factor in a JC dimer, which has been proven useful to simulating second-order like phase
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transitions from theMott-insulating to superfluid phase [31]. Here, we introduce an effectiveHilbert space in
the two-excitations subspace using the criterion of discarding higher energy polaritonic states, which are out-of-
resonance over the evolution [27, 32]. This description allows us quantitative explanations for time-averaged
quantities such asfluctuations in the number of polaritons per site and linear entropy. Besides, the
computational cost is substantially diminished by using a reduced effectiveHilbert space. Aswe extend the
quench dynamics to complex finite-sized CRAs, we demonstrate the emergence ofDDP,which is governed by
intrinsic two-body interactions in the JC lattice. In the open system scenario, our numerical results show
evidence about the robustness of dynamical dimerization processes under lossmechanisms, so ourworkmay
find inspiration for the observation ofDDPwithin state-of-the-art quantum technologies such as
superconducting circuits [15, 17] and trapped ions [33, 34].

This paper is organized as follows. In section 2, we introduce the JCHmodel and the polaritonmapping. In
section 3, we describe the quench protocol for the closed JCHdimer.Here, we provide analytical expressions for
time-averaged order parameters using an effectiveHilbert space. In section 4, we highlight the emergence of a
DDP aswe extend the one-dimensional JC lattice to three and four sites. Here, section 4.1 describes DDP in a
closed system,while in section 4.2, we introduce lossmechanisms in the JC lattice and discuss their effects on the
dynamical phase transition. Finally, in section 5, we present our concluding remarks.

2. Themodel

The JCHmodel [23–25] describes a lattice of L interacting coupledQED resonators, each supporting a single
mode of the electromagnetic fieldwhich interacts with a TLS. This situation is schematically shown infigure 1.
The JCHHamiltonian reads (ÿ=1)

( ) ( )† †å å= - +
á ñ

H H J a a a a , 1
i

i
i j

ij i j j iJCH
JC

,

where ( )†a ai i is the annihilation (creation) bosonic operator at the ith lattice site, Jij is the photon–photon
hopping amplitudewhich takes values Jij=J if two sites of the lattice are connected and Jij=0 otherwise. Also,

( )† †w w s s s s= + + ++ - + -H a a g a ai i i i i i i i i
JC

0 is the JCHamiltonian [35]where ( )s s+ -
i i is the raising (lowering)

operator acting on the ith TLS eigenbasis {∣ ∣ }ñ ñ,i i , andω,ω0, and g are the resonator frequency, TLS
frequency, and light–matter coupling strength, respectively.

In the resonant regime,Δ=ω0−ω=0, the hybridization of the light–matter yields to localized polariton
excitations (Mott-insulator phase), while in the dispersive regime,Δ?g, the system is dominated by photonic
excitation behavior (superfluid phase) [23, 24]. This phase transition can also be described as a transition driven
by the photon blockade effect from theMott-insulator phase, where the intersite polariton exchange is
forbidden, so effectively Jij=0, to a superfluid phase dominated by a uniformphoton hopping Jij=J, in both
cases, there is no cavity-embedded effect involved. Aswe demonstrate in section 4, the intermediate regime of
light–matter interaction, whichwe define in the range 1<Δ/g<10, can be identified by the parameter

( )n= åk J Li j j with L the number of nonlinear coupled resonators, J the hopping parameter, and νj the
connectivity of node j. Notice that ki=0 for the resonant case and ki=J for the dispersive case. This way, the
origin of translational symmetry breaking can be explained by introducing a local order parameter ofμth phase
Ym

i , withμ=(I, II, III) represents the resonant, intermediate, and dispersive case, respectively. Indeed,

( ) ( )Y = Yk 0i i
I I , and ( ) ( )Y = Yk Ji i

III III , whichmeans that in the resonant and dispersive regimes there is
translational invariance. Since the order parameter shows a spatial dependence in an intermediate regime

( )Y ki i
II , then translational symmetry is broken. As a consequence, aDDPwill happen due to intrinsic two-body

interactions and the connectivity of each lattice site.
TheHamiltonian (1) preserves the total number excitations (polaritons) described by the operator

( )† s s= å +=
+ - a ai

L
i i i i1 . The ith node of the lattice infigure 1 is described by the JCHamiltonian Hi

JC whose
eigenstates define the upper (+) and lower (−) polaritonic basis ∣ ∣ ∣g rñ =  ñ +  - ñ n n n, , , 1i n i n i with

Figure 1. Schematic representation of a Jaynes–Cummings–Hubbard lattice. Each resonator supports a singlemode of frequencyω,
which interacts with a two-level systemof frequencyω0. This interaction is represented by the coupling strength g. The interaction
between cavities is characterized by the hopping parameter J.

2

New J. Phys. 22 (2020) 033034 RPeña et al



energies ( )w c= + D E n n2n . Here, ( )c = D +n g n42 2 , ( )r q=+ cos 2n n , ( )g q=+ sin 2n n ,
ρn−=−γn+, γn−=ρn+, q = Dg ntan 2n , and the detuning parameterΔ=ω0−ω. Also, one introduces
the ith polaritonic creation operators as ∣ ∣†( ) a= ñ á -aP n, 0,i

n
i

, , whereα=± andwe identify ∣ ∣-ñ º  ñ0, ,0
and ∣ ∣+ñ º Æñ0, being a ket with all entries equal to zero, that is, it represents an unphysical state. These
identifications imply γ0−=1 and γ0+=ρ0±=0.

Using the above defined polaritonic basis, theHamiltonian (1) can be rewritten as [23, 27]

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ( )†( ) ( ) †( ) ( ) †( ) ( )åå å å å å= - +

a

a a a

a a b b

aa bb a a b b

= =

¥

= á ñ =

¥

¢ ¢=

¢ ¢ - ¢ - ¢H E P P J t t P P P P h.c , 2
i

L

n
n i

n
i
n

i j
ij

n m
n m i

n
i
n

j
m

j
m

1 1

, ,

, , 1 , , ,

1, , , 1,

where thematrix elements ( ) ( )g g r r= + -aa
a a a a

¢
- ¢ - ¢t n n 1n n n n n1 1 . Thefirst term in equation (2) stands

for the local polaritonic energywith an anharmonic spectrum and gives rise to an effective on-site polaritonic
repulsion. This is analog to the on-site photon repulsion in the Bose–Hubbardmodel [36]. The last term in
equation (2) represents the polariton hopping between resonators. This interaction also allows the interchange
of polaritonic species of one or both sites involved [23, 27, 32], leading to a quite involve quantumdynamics.

A detailed understanding of the equilibriumproperties of the JCHmodel (2) resorts on approximated
analytical solutions [37] or numerical approaches such as densitymatrix renormalization group [38–41]. In
nonequilibrium situations, one can understand the underlying physics using the time-evolving block
decimation algorithm [42–44], or simplifying the description using effectiveHilbert spaces [32, 45–49]. The
latter is particularly appropriate for studying the quench protocol presented in this article, as we consider the
closed system scenario.

3.Quench dynamics in a JCHdimer

In this section, we introduce a sudden quench protocol [31] and its effects on the quantumdynamics of the JCH
dimer. Also, we provide quantitative explanations of time-averaged quantities such asfluctuations in the
number of polaritons per site and linear entropy using an effectiveHilbert space. In section 4, wewill show that
the underlying physics of the quench dynamics allows us to understand the emergent DDP.We stress thatDDP
occurring in the JCH lattice happens in the frequency regime   wJn g n n [23], where the rotatingwave
approximation holds.

For each detuningΔ, we set the initial condition as the lowest energy state with integer filling factor of one
excitation per site, that is, ∣ ⟩ ⨂ ∣ ⟩y = -= 1,i

L
i0 1 (L is the number of lattice sites)which corresponds to aMott-

insulating state at hopping rate J=0. Then, at time t=0, the parameter J is suddenly quench to a new value
¹J 0f such that theHamiltonian has changed toH=HJCH(Jf). Hence, the JCH lattice dynamics is described by

the state ∣ ( ) ∣y yñ = ñ-t e Ht
0

i
0 (ÿ=1)which leads to nonequilibriumphenomena. In order to characterizeDDP,

we compute time-averaged order parameters such as the variance of the number of polaritons per site
( ) ( )ò= á ñ - á ñ

t

t
n t n nVar di i i

1

0

2 2 , where † s s= + + -n a ai i i i i , and τ=J−1, or the linear entropy

( )ò=
t

t
rE tS td1

0 i
, where ( ) ( )r= -rS t 1 Tr i

2
i

, and ρi the reduced densitymatrix of the leftmost or rightmost

site of the JC dimer.
The quench protocol described above allows us to simulating second-order like phase transition captured

via theVar(ni), see [31], which is analog to the adiabatic dynamics studied in [23]. Also, the simulated phase
transitions in a JCH lattice can be characterized via linear entropy, as shown in this article, which implies that the
observation of the emergent DDP is independent of the choice of the order parameter.

EffectiveHilbert space for a closed system.—In order to introduce an effective description of the system
dynamics, it is useful to consider the JCHHamiltonianwritten in the polaritonic basis, see equation (2). Starting
from the initial state ∣ ∣ ∣y ñ = -ñ -ñ1, 1,i j0 , the JCHHamiltonian (2)may lead to processes such as the exchange
of polaritonic species, or the interchange of polaritonic species of one or both sites involved (i, j). In this case, the
full quantumdynamics should involve all states within the two-excitations subspace, whichwe define as
{∣y ñ0 = ∣ ∣ ∣y-ñ -ñ ñ1, 1, ,i j i2 = ∣ ∣ ∣yñ -ñ ñ2, 0, ,i j j2 = ∣ ∣ ∣y-ñ ñ ñ+0, 2, ,i j i1 = ∣ ∣ ∣y+ñ -ñ ñ+1, 1, ,i j j1 =
∣ ∣ ∣y-ñ +ñ ñ+1, 1, ,i j ij1 = ∣ ∣ }+ñ +ñ1, 1,i j . However, interchange of polaritonic excitations can be neglected under

the conditions {∣ ∣ ∣ ∣ ∣ ∣} - - + -+ - + - + - -E E E E E E E J2 , 2 ,2 1 1 2 1 1 2 , which results in fast oscillating
contributions, andwe can apply the rotating-wave approximation [23, 27, 32]. Figure 2 shows that the
interchange of polaritonic species is suppressed over the evolution.Here we plot the populations of above
defined states as a function of time.We identify populations as ∣ ∣ ( ) ∣y y= á ñP t0 0

2, ∣ ∣ ( ) ∣y y= á ñ P ti i2 2
2,

∣ ∣ ( ) ∣y y= á ñ+ +P ti i1 1
2, and ∣ ∣ ( ) ∣y y= á ñ+ +P tij ij 1

2. Due to the symmetry of the JC dimer, it is cleat that =P j2

∣ ∣ ( ) ∣y yá ñ = t Pj i2
2

2 and ∣ ∣ ( ) ∣y y= á ñ =+ + +P t Pj j i1 1
2

1 (not shown infigure 2). In this work, we carry out
numerical calculations with the quantum toolbox in PythonQuTiP [50, 51].
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Since the interchange of polaritonic species is suppressed over the evolution, we can introduce an effective
Hilbert space involving states of the lower polaritonic branch {∣ ∣ ∣ }y y y= ñ ñ ñ- - , ,I i j0 2 2 for describing the
quench dynamics. In this case, the effectiveHamiltonian reads (ÿ=1)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )=H

a b b
b c
b c

0
0

, 3eff

where = -a E2 1 , = - -- --b Jt t1 2 , = -c E2 , and
-- --t t1 2 = ( )( ( ) ( )q q qcos 2 2 cos 2 cos 21 1 2 +

( ) ( ))q qsin 2 sin 21 2 . Thus, the full dynamics can be solved analytically by diagonalizing the above 3×3matrix.
Starting from the initial condition ∣ ∣ ∣y ñ = -ñ -ñ1, 1,i j0 , thewave function at time t reads

∣ ( ) ( )∣ ( )∣ ( )∣ ( )y y y yñ = ñ + ñ + ñ- - - -t c t c t c t , 4i i j j0 0 2 2 2 2

where the probability amplitudes are

( ) ( ) ( )
a a

a a=
-

-l l

+ -
+

-
-

-+ -c t a
1

e e , 5t t
0

i i

( ) ( ) ( ) ( )
a a

= =
-

-l l- -

+ -

- -+ -c t c t b
1

e e , 5i j
t t

2 2
i i

andwe define the coefficients ( ( ) )l = +  + - a c b a c8 22 2 , ( ( ) )a = -  + - a c b a c b8 22 2 .
Time-averaged order parameters.—Given thewave function (4), we can analytically compute time-averaged

order parameters such as the variance of the number of polaritons per site ( ) ( )ò= á ñ - á ñ
t

t
n n n tVar di i i

1

0

2 2 ,

where † s s= + + -n a ai i i i i , or the linear entropy ( )ò=
t

t
rE S t td1

0 i
, where ( ) ( )r= -rS t 1 Tr i

2
i

, and ρi the

reduced densitymatrix of the leftmost or rightmost site of the JC dimer. Thus, the time-averaged variance reads

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( )=

W
-

W
W

n
b J

J
Var

4
1 sin , 6i

2

0
2

0

0

wherewe define ( )W = + -b a c80
2 2 .

Figure 3(a) shows the behavior of Var(ni) as a function of log10(Δ/g) calculated from the full numerics (red
diamonds) and the analytical prediction (continuous blue line) in equation (6).We see a good agreement
between both predictions as the relative error shows infigure 3(b). Also, equation (6) allows us to predict the
asymptotic behavior of Var(ni) as the detuning increases,D  ¥g . In this case, the spectrumof the lower
(upper) polaritonic branch becomes harmonic with eigenenergies w»-E nn R ( w» + D+E nn R ), where
ωR=ω− g2/Δ, thus allowing the resonance condition - =- -E E2 02 1 (a=c) (seefigure 2(b)). Also,
∣ ∣ =b J2 andΩ0=4J, so the asymptotic value of Var(ni) reads

Figure 2.Populations of states ∣y ñ0 , ∣y ñ i2 , ∣y ñ+ i1 , and ∣y ñ+ ij1 , defined in themain text, as a function of time. The dimer is initialized in
the state ∣y ñ0 , parameters are g=10−2ω, J=10−4ω, whereω is the resonator frequency, andwe consider up to 5 Fock states per
resonator. (a)Δ=5g, (b)Δ=50g. Horizontal dotted lines have been added as a guide to the eye.
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⎜ ⎟⎛
⎝

⎞
⎠( ) ( )= - =

D ¥
nlim Var

1

2
1

1

4
sin 4 0.5946. 7

g
i

It is worthmentioning that the analytical result (6) represents the hallmark for the dimer dynamics. In
section 4, wewill prove that as one increases the number of lattice sites, the time-averaged variance (6) allows us
to identify resonances due to intrinsic short- and long-range two-body interactions, which govern theDDP.

On the other hand, one can also characterize the dimer dynamics via the linear entropy of the reduced
densitymatrix asmixednessmeasure [52]. First, notice that the quantum state (4) is already in its Schmidt
decomposition, which leads to a diagonal reduced densitymatrix

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

∣ ( )∣
∣ ( )∣

∣ ( )∣
( )r =

-

-

c t

c t

c t

0 0

0 0

0 0

. 8i

j

i

2
2

0
2

2
2

In this case, the linear entropy as a function of time is given by ( ) (∣ ( )∣ ∣ ( )∣ )= - +r
-S t c t c t1 2 i0

4
2

4
i

, and the
time-averaged linear entropy reads

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )=

W
W W - W

W
-

W
E

b
J

J
b J

J

2
2 4 sin 3 sin

2
, 9

2

0
5 0 1

2
2
2 0 2 0

where ( )W = + -b a c7 21
2 2 and ( )W = + -b a c22

2 2 . Figure 4(a) shows the behavior ofE as a function
oflog10(Δ/g) calculated from the full numerics (red diamonds) and the analytical prediction (continuous blue
line) in equation (9).We see a good agreement between analytical and numerical predictions as shown in
figure 4(b).We can also estimate the asymptotic value of the time-averaged entropy as one increases the ratio
Δ/g, it reads

( )=
D ¥

Elim 0.4616. 10
g

Inwhat follows, wewill use the time-averaged variance (6) for demonstrating the existence ofDDP in the
intermediate regime of light–matter interaction. This choice establishes the physical framework for the
subsequent discussion, but a similar analysis with the linear entropy leads to the same conclusion aboutDDP.

4.Dynamical dimerization phase

4.1. Closed system
Emergent dynamical critical phenomena following a quantumquench have experiencedmuch interest in recent
years [53–75]. Here, we demonstrate an emergentDDP aswe extend the JC lattice to three (trimer) and four
(tetramer) sites (see figure 1), and in an intermediate regime of light–matter coupling strength, that is, 1<
Δ/g<10.We define the concept of dimerization as the dynamical process where short-range and long-range

Figure 3. (a)Time-averaged order parameter Var(ni) as a function of log10(Δ/g). (b)Comparison between the analytical and
numerical predictions of Var(ni) (see equation (6)).We use parameters g=10−2ω, J=10−4ω, whereω is the resonator frequency.
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two-body interactions govern the quantumdynamics. Here, short-range (long-range) two-body interaction is
due to the direct (mediated) exchange of polaritons.Wewill prove that the connectivity associatedwith each
node of the lattice plays a crucial role to defineDDP.

Let us start the discussionwith a three-sites JC lattice initialized in the state ∣ ∣ ∣ ∣y ñ = -ñ -ñ -ñ1, 1, 1,i j k0 ,
where the subindexes i, j, and k refer to the leftmost, center, and rightmost lattice site, respectively. If we let the
system evolves according to the quantumquench described is section 3, one should impose the conditions for
neglecting interchange of polaritonic species between nearest-neighbor sites, that is, {∣ ∣-+ -E E22 1 , ∣ ∣-+ -E E2 1 2 ,
∣ ∣+ -+ - -E E E1 1 2 , ∣ ∣-+ -E E1 1 , ∣ ∣- -+ - -E E E3 2 1 , ∣ ∣-+ -E E2 2 , ∣ ∣} + - -+ + - -E E E E J2 1 2 1 . As for the dimer,
only the lower polaritonic branchwill be activated and the dimension of the effectiveHilbert space () is given
by (N+ d−1)!/N!(d−1)!, whereN is the number of excitations that should be distributed into d lattice sites.
In our case,N=3 and d=3 results in ( ) =dim 10. At time t, thewave functionmay bewritten as a linear
combination of states belonging to the three-excitations subspace, that is

∣ ( ) ( )∣ ∣
( )(∣ ∣ )
( )(∣ ∣ )
( )(∣ ∣ )
( )(∣ ∣ ) ( )

y y y
y y
y y
y y
y y

ñ = ñ + ñ

+ ñ + ñ
+ ñ + ñ

+ ñ + ñ

+ ñ + ñ

t c t c

c t

c t

c t

c t , 11

j j

i i k

i j i j j k

i j i j j k

i k i k i k

0 0 3 3

3 3 3

2 1 2 1 1 2

1 2 1 2 2 1

2 1 2 1 1 2

wherewe define states ∣y ñ0 = ∣ ∣ ∣-ñ -ñ -ñ1, 1, 1,i j k, ∣y ñi3 = ∣ ∣ ∣-ñ -ñ -ñ3, 0, 0,i j k, ∣y ñj3 = ∣ ∣ ∣-ñ -ñ -ñ0, 3, 0,i j k,
∣y ñk3 = ∣ ∣ ∣-ñ -ñ -ñ0, 0, 3,i j k, ∣y ñi j2 1 = ∣ ∣ ∣-ñ -ñ -ñ2, 1, 0,i j k, ∣y ñj k1 2 = ∣ ∣ ∣-ñ -ñ -ñ0, 1, 2,i j k, ∣y ñi j1 2 =
∣ ∣ ∣-ñ -ñ -ñ1, 2, 0,i j k, ∣y ñj jk2 1 = ∣ ∣ ∣-ñ -ñ -ñ0, 2, 1,i j k, ∣y ñi k2 1 = ∣ ∣ ∣-ñ -ñ -ñ2, 0, 1,i j k, and ∣y ñi k1 2 =
∣ ∣ ∣-ñ -ñ -ñ1, 0, 2,i j k. Notice that some probability amplitudes are equal due to symmetry of the trimerwith
respect to the lattice center ( j). Here, the state (11)will be computed via full numerics.

Figure 5 shows the ratio between the absolute value of the time-averaged nearest-neighbor correlation
functionCij (next nearest-neighbor correlation functionCik) of the trimer, and the dimer variance(6). Two-
point correlation functions are ( )( ) ( ) ( )ò= á ñ - á ñá ñ

t

t
C t n n n ndij k i j k i j k

1

0
, where τ=J−1. Here, we identify two

critical values of detuning, vertical dashed lines,Δ/g=(2.43, 2.73)within the intermediate regime of light–
matter interaction, 1<Δ/g<10. At these critical points the trimer experiences dynamical dimerization
processes, where short-range correlations rule the dynamics atΔ/g=2.43, while atΔ/g=2.73 a combination
of both short- and long-range correlations govern the dynamics. The resonances shown infigure 5 demonstrate
that the intrinsic dimer dynamics, characterized by the time-averaged variance (6), governs the quench
dynamics of the trimer. Furthermore, the dimer variance allows us to identify short-range and long-range two-
body interactions. The former is a consequence of direct cavity-cavity coupling of sites (i, k), while the latter
results from an indirect interaction between sites (i, k)mediated by the center lattice site j. Notice that figure 5
also exhibits an anti-resonance atΔ=1.82g (continuous vertical line). At this point, no dynamical
dimerization happens, and the JC lattice remains approximately in theMott insulating state.

Figure 4. (a)Time-averaged linear entropy E as a function of log10(Δ/g). (b)Comparison between the analytical and numerical
predictions ofE (see equation (9)).We use parameters g=10−2ω, J=10−4ω, whereω is the resonator frequency.
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Let us discuss the results for the tetramer. Figure 6 shows the ratio between the absolute value of time-
averaged two-point correlation functionsCij,Cik,Cil of the tetramer, and the dimer variance in equation (6).We
order the lattice sites from left to the right according to indexes (i, j, k, l). It is noticeable that a larger JC lattice also
exhibits resonances at critical values of detuningΔ/g=(2.43, 2.73) (vertical dashed lines), and the anti-
resonance atΔ=1.82g (continuous vertical line).Moreover, the two-point correlation functionCil, associated
with edges of the lattice, has the same resonance (Δ=2.43g) as comparedwith nearest-neighbor correlation
functionCij. The latter suggests that for afinite one-dimensional JC lattice of L sites, the number of resonances
associatedwith dimerization processes corresponds to a universal number of different connectivities of the
lattice, that is, connectivity ν=1 for lattice edges, and connectivity ν=2 for bulk lattice sites. These results are
a consequence of the broken translational symmetry.

4.2.Open system
A realistic implementation of a strongly-correlated light–matter system should consider the system-bath
interactionwhich leads to lossmechanisms in the initial state preparation and along the dynamics, e.g. if we

Figure 5.Ratio between the absolute value of time-averaged nearest-neighbor correlation functionCij (next nearest-neighbor
correlation functionCik) of the trimer, and the dimer variance in equation (6). Vertical dashed lines, from left to right, indicate critical
values of detuningΔ/g=(2.43, 2.73)where dynamical dimerization processes happen. Continuous vertical line stands for the anti-
resonance.We use parameters g=10−2ω, J=10−4ω, whereω is the resonator frequency, andwe consider up to 5 Fock states per
resonator.

Figure 6.Ratio between the absolute value of time-averaged two-point correlation functionsCij,Cik,Cil of the tetramer (four-sites JC
lattice), and the dimer variance in equation (6). Vertical dashed lines, from left to right, indicate critical values of detuningΔ/g=
(2.43, 2.73)where dynamical dimerization processes happen. Continuous vertical line stands for the anti-resonance.We use
parameters g=10−2ω, J=10−4ω, whereω is the resonator frequency, andwe consider up to 5 Fock states per resonator.
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consider a experimental realization based on superconducting circuits [15, 17]. In these experiments, the
dissipative dynamics is described by aMarkovian Lindbladmaster equation (ÿ=1)

[ ] ( [ ] [ ] [ ] ) ( )år
r g s r g s r k r= - + + +f

=

-  
t

H a
d

d
i , , 12

L
z

JCH
i 1

i i i

where the Liouvillian operator reads [ ] { }† †r r r= -     ,1

2
.We consider the same lossmechanisms

for each lattice site including energy relaxation, dephasing; and photon losses at rates γ, γf, andκ, respectively.
In order to prepare the initial state, we propose to include an ancillary TLS on each lattice site, which

interacts with the cavitymode. In this case, theHamiltonian describing a single lattice site reads

( ) ( )†w s s s s= + + ++ - + -H H g a a , 13i
i

A A A A A i A iJC i i i i

whereωA is the ancilla frequency, gA the ancilla-cavity coupling strength, and H i
JC the JCHamiltonian of site i.

The initialization protocolmakes use ofGaussian and Stark pulses as described in [76]. First, we let the
system to cold down to its ground state ∣ ⨂ ∣ ∣y ñ = -ñ ñ= 0,i

L
i A0 1 i

. Second, we apply individual Gaussianπ pulses
acting upon each ancilla TLS in order to prepare the state ⨂ ∣ ∣-ñ ñ= 0,i

L
i A1 i

. Third, a Stark pulse is applied to
each ancilla TLS bringing it into resonancewith its respective lattice site, i.e. w = -EA 1 , during a time interval
Δτ=π/(2gAt

−−
1 ). In this way, the strong lattice site-ancilla interaction governed by equation (13) yields the

desired initial state ∣ ⨂ ∣ ∣y ñ = -ñ ñ= 1,i
L

i A0 1 i
. Notice that one should satisfy the condition ∣ ∣ -+ -E E gA1 1 . The

latter avoids unwanted population of the state ⨂ ∣ ∣+ñ ñ= 1,i
L

i A1 i
. Then, the ancilla-site interaction is suppress by

applying a Stark pulse tuningωA below the frequency -E1 .We stress that Stark pulses can be implemented by
means of externalmagnetic fluxes applied upon superconducting quantum interference devices that form a
transmon qubit [77, 78].

We have numerically calculated the initial state preparation and the sudden quench using the equation (12),
using physical parameters taken from state-of-the-art circuitQED setups [15, 17, 78, 79]. Figures 7(a), (b) shows
the ratio ( ) ( )C nVarij jTrimer Dimer as a function ofΔ/g, where (Cij)Trimer stands for the absolute value of the time-
averaged correlation function, andVar(nj)Dimer corresponds to the variance of the dimer. As seen infigure 7(a),
we identify resonances corresponding to the critical valuesΔ/g=(2.57, 3.08), vertical dashed lines, within the
intermediate regime of light–matter interaction, 1<Δ/g<10. In the sameway, as in the closed system
dynamics 4.1, the trimer experiences dynamical dimerization processes, where short- and long-range
correlations dominate over dissipation. Aswe increase the energy relaxation and dephasing rates of TLSs,
resonance peaks are spreading throughout to awider detuning range, see figure 7(b). These results show
evidence about the stability of dynamical dimerization processes that happen in a finite-sized JC lattice, and
allowus to establish a parameter threshold for the appearance ofDDP in the dissipative case.

In the numerical calculationswe use νc=5 GHz (cavity frequency), g=200MHz, Jf=2MHz,
κ=225 KHz, γ=35 KHz (T1=28 μs), and γf=45 KHz (T2=22 μs) [79] forfigure 7(a), and γ=530 KHz
(T1=1.87 μs), and γf=450 KHz (T2=2.22 μs) [78] forfigure 7(b).

5. Conclusions

In summary, we have reported on the emergence of aDDP in afinite-sized JC lattice as a result of a quantum
quench from an initial statewith integerfilling factor.We have thoroughly analyzed the quench dynamics in a
close two-sites JC lattice, which allows us to obtain analytical results for time-averaged order parameters such as
the local variance of the number of polaritons, and the linear entropy. Further, these order parameters can be
used to analyze and predict the resulting quenched dynamics formore complex architectures.When comparing
the dimer variancewith two-point correlation functions of the trimer and tetramer, it allows us to determine
critical values for the detuningwhere dynamical dimerization processes happen. Recognizing resonances and
anti-resonance for detuning values, in turn, allow controllingwhat kind of correlation dominates over the
dynamics be short-range or a combination of both short- and long-range, andmay also allow controlling
polariton propagation along the lattice.We stress that the intrinsic dimer dynamics, characterized by the time-
averaged variance (6), governs the quench dynamics of closed finite-sized JC lattices, andwe expect similar
results as one increases the number of lattice sites.

In a realistic situation, it is necessary to include dissipativemechanisms in the state preparation and over the
quench dynamics. Considering parameters of state-of-the-art circuitQED technology, permit numerical results
to show that as one increases the coherence times of TLSs and cavities, two sharp resonance peaks becomemore
evident. These results demonstrate thatDDP remains in the dissipative case.We conjecture that for afinite one-
dimensional JC lattice of L sites, the number of resonances associatedwith dimerization processes corresponds
to the number of different connectivities of the lattice, that is, connectivity ν=1 for lattice edges, and
connectivity ν=2 for bulk lattice sites. Ourfindings could be testedwith state-of-the-art quantum
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technologies. For instance, in trapped ions technology, the JCHmodel has been theoretically proposed in [33]
and physically implemented in [34]. In superconducting circuits, the JC dimer has been implemented in [15]. In
this case, homodyne signal detectionmay allowmeasuring the local variance of photon number, which can also
be used as an order parameter.
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