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1. Introduction 

In the classical theory of nonlinear elasticity 1 , in the particular case of considering incompressible bodies, there exist

some controllable deformations that are called universal solutions (see, for example, Saccomandi (2001) and Section 57 of

Truesdell and Noll (2004) ). Such solutions of the boundary value problem (in the quasi-static case) are valid for any consti-

tutive equation within the class of equations for which they are obtained. A list of such solutions can be found, for example,

in Section 57 of Truesdell and Noll (2004) (see also ( Ericksen, 1954, 1955 ) and Section A of Volume I in Barenblatt & Joseph,

1997 ). An important element to find such solutions is the use of the scalar function p associated with the constraint of

incompressibility, which is used to simplify the structure of the equations. 

In the recent years some new classes of constitutive theories have been proposed for elastic bodies, which cannot be

classified as Cauchy nor Green elastic bodies ( Rajagopal, 20 03, 20 07, 2011a, 2011b; Rajagopal & Srinivasa, 20 07, 20 09 ). One

of such relatively new class of constitutive equation corresponds to the case of having the linearized strain tensor ε as a

function of the Cauchy stress tensor T , i.e., ε = g (T ) (see ( Rajagopal, 2011b ) and Section 4 of Bustamante and Rajagopal

(2019) ). That constitutive equation has potential uses in the modelling of concrete, some metal alloys, rock and in fracture

mechanics, see ( Buli ̆cek, Málek, Rajagopal, & Walton, 2015; Bustamante & Rajagopal, 2018; Devendiran, Sandeep, Kannan, &

Rajagopal, 2017; Grasley et al., 2015; Kulvait, Málek, & Rajagopal, 2017 ) and Section 5 of Bustamante and Rajagopal (2019) .

The aim of the present paper is to analyse if the constraint of incompressibility can be used to simplify the boundary value

problem, in order to obtain universal solutions similar to the case of the classical nonlinear elasticity theory. It was found

that indeed the use of such constraint allows for the simplification of the problem and exact implicit universal solutions are

found. The results presented in this communication correct some comments about this problem presented in Section 6.1.3

of Bustamante and Rajagopal (2019) . 
E-mail address: rogbusta@ing.uchile.cl 
1 In this paper by the classical theory of nonlinear elasticity we mean the theory based on assuming that the stresses T are functions of the strains (or 

the left Cauchy-Green tensor B ), i.e., T = f (B ) , which in the case of incompressible bodies becomes T = −pI + f (B ) , where p is a scalar field related with 

the constraint of incompressibility. 
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This paper is divided in the following sections: In Section 2 some basic relations and equations concerning the theory

of elasticity are shown. In Section 3 the constitutive equation ε = g (T ) is studied for the case of incompressible bodies. In

Section 4 a summary of the classical problem of the inflation and extension of a cylindrical annulus is presented within

the context of the classical nonlinear elasticity theory, in order to compare the exact solution found in that theory with

the solution (in implicit form) found in the case of ε = g (T ) . In Section 5 two more examples of universal solutions are

presented. In Section 6 some final comments are given. 

2. Basic equations 

For a body B the reference and current configurations are denoted κr (B) and κt (B) , respectively. The positions of a point

X ∈ B in the reference and current configurations are denoted X and x , respectively, and it is assumed that there exists a

one-to-one function χ such that x = χ(X , t) . The deformation gradient, the left Cauchy-Green tensor, the displacement field

and the linearized strain tensor are defined as 

F = 

∂χ

∂X 

, B = FF T , u = x − X , ε = 

1 

2 

(
∂u 

∂X 

+ 

∂u 

∂X 

T 
)

, (1)

respectively, where J = det F > 0 and the body it is said to be incompressible if J = 1 for any deformation. 

The Cauchy stress tensor is denoted T and for the remaining of this paper we assume quasi-static deformations, therefore,

the stress T must satisfy the equation of equilibrium 

div T + ρb = 0 , (2) 

where ρ is the density of the body and b represents the body forces, which for the boundary value problems studied in

Sections 4 and 5 are assumed to be zero. 

In Sections 4 and 5 some problems are studied considering cylindrical and spherical coordinates, therefore, ( 1 4 ) and

(2) are listed for such systems of coordinates here. In the case of ( 1 4 ) in cylindrical coordinates ( r, θ , z ) we have 

ε rr = 

∂u r 

∂r 
, ε θθ = 

1 

r 

∂u θ

∂θ
+ 

u r 

r 
, ε zz = 

∂u z 

∂z 
, (3) 

ε rθ = 

1 

2 

(
1 

r 

∂u r 

∂θ
+ 

∂u θ

∂r 
− u θ

r 

)
, ε rz = 

1 

2 

(
∂u r 

∂z 
+ 

∂u z 

∂r 

)
, ε θz = 

1 

2 

(
∂u θ

∂z 
+ 

1 

r 

∂u z 

∂θ

)
, (4) 

and in spherical coordinates ( r, θ , φ) we have 

ε rr = 

∂u r 

∂r 
, ε θθ = 

1 

r sin φ

∂u θ

∂θ
+ 

u r 

r 
+ 

u φ

r 
cot φ, ε φφ = 

1 

r 

∂u φ

∂φ
+ 

u r 

r 
, (5) 

ε φθ = 

1 

2 

(
1 

r sin φ

∂u φ

∂θ
− u θ

r 
cot φ + 

1 

r 

∂u θ

∂φ

)
, ε φr = 

1 

2 

(
1 

r 

∂u r 

∂φ
− u φ

r 
+ 

∂u φ

∂r 

)
, (6) 

ε θ r = 

1 

2 

(
∂u θ

∂r 
+ 

1 

r sin φ

∂u r 

∂θ
− u θ

r 

)
. (7) 

In the case of (2) in cylindrical coordinates that equation becomes 

∂T rr 

∂r 
+ 

1 

r 

∂T rθ
∂θ

+ 

∂T rz 

∂z 
+ 

1 

r 
(T rr − T θθ ) + ρb r = 0 , (8) 

∂T rθ
∂r 

+ 

1 

r 

∂T θθ

∂θ
+ 

∂T θz 

∂z 
+ 

2 

r 
T rθ + ρb θ = 0 , (9) 

∂T rz 

∂r 
+ 

1 

r 

∂T θz 

∂θ
+ 

∂T zz 

∂z 
+ 

1 

r 
T rz + ρb z = 0 , (10) 

while in spherical coordinates we have 

∂T rφ

∂r 
+ 

1 

r 

∂T φφ

∂φ
+ 

1 

r sin φ

∂T θφ

∂θ
+ 

3 

r 
T rφ + 

cos φ

r sin φ
(T φφ − T θθ ) + ρb φ = 0 , (11) 

∂T rθ
∂r 

+ 

1 

r 

∂T φθ

∂φ
+ 

1 

r sin φ

∂T θθ

∂θ
+ 

3 

r 
T rθ + 

2 

r 

cos φ

sin φ
T φθ + ρb θ = 0 , (12) 
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∂T rr 

∂r 
+ 

1 

r 

∂T φr 

∂φ
+ 

1 

r sin φ

∂T θ r 

∂θ
+ 

cos φ

r sin φ
T rφ + 

1 

r 
(2 T rr − T φφ − T θθ ) + ρb r = 0 . (13)

More details about the kinematics of continuum media and the equations of equilibrium can be found, for example, in

( Truesdell & Toupin, 1960 ). 

Let us end this section showing the constitutive equation for an incompressible isotropic Green elastic body (see, for

example, Section 49 of Truesdell & Noll (2004) ): 

T = −pI + α1 B + α2 B 

2 , (14)

where p is a scalar function and −pI is the part of the stress that does not do any work with any deformation compatible

with the constraint, and α1 , α2 are scalar functions that depend on the invariants of B , and for Green elastic bodies are

given in terms of derivatives of the energy function. 

3. An incompressible body that is not Green elastic 

In a series of relatively recent papers Rajagopal and co-workers have proposed some implicit constitutive theories,

wherein in general the stresses cannot be expressed explicitly in terms of the strains (see, for example, Rajagopal, 2003;

Rajagopal, 2007; Rajagopal & Srinivasa, 2007; Rajagopal & Srinivasa, 2009 ). One of such relations is F (T , B ) = 0 . In the case

it is assumed that the gradient of the displacement field is small 
∣∣ ∂u 
∂X 

∣∣ ∼ O (δ) , δ � 1 we have that B ≈ 2 ε + I , and from the

above implicit relation the following constitutive equation has been found (see, for example, Rajagopal, 2011b ) ε = g (T ) . In

the particular case we assume there exists a scalar potential 	 = 	(T ) such that g (T ) = 

∂	
∂T 

, if 	 is an isotropic function

then 	 = 	(I 1 , I 2 , I 3 ) , where I 1 = tr T , I 2 = 

1 
2 tr (T 2 ) and I 3 = 

1 
3 tr (T 2 ) and we obtain the representation (see Bustamante,

2009; Bustamante & Rajagopal, 2015a ) 

ε = 

∂	

∂T 

= 	1 I + 	2 T + 	3 T 

2 , (15)

where 	i = 

∂	
∂ I i 

, i = 1 , 2 , 3 . 

In Bustamante and Rajagopal (2016) studied the case of considering (15) when modelling incompressible bodies. If the

gradient of the displacement field is small the incompressibility constraint is 

tr ε = 0 . (16)

Using (15) in (16) we obtain the first order linear partial differential equation 

3	1 + 	2 I 1 + 2	3 I 2 = 0 , (17)

whose solution is (see Bustamante & Rajagopal, 2016 , see also Section 6.1.3 of Bustamante & Rajagopal (2019) ) 

	 = 	̄(I D 2 , I D 3 ) , (18)

where 

I D 2 = 

1 

2 

tr (T 

2 
D ) , I D 3 = 

1 

3 

tr (T 

3 
D ) , (19)

where I D k , k = 2 , 3 are invariants of the deviatoric stress T D that is defined as 

T D = T − tr (T ) 

3 

I . (20)

The stress tensor can be written as 

T = −σS I + T D where σS = − tr (T ) 

3 

(21)

is the spherical stress. Using (18) in ε = 

∂	
∂T 

we obtain 

ε = −2 I D 2 
3 

∂ 	̄

∂ I D 3 
I + 

∂ 	̄

∂ I D 2 
T D + 

∂ 	̄

∂ I D 3 
T 

2 
D = ϑ 0 I + ϑ 1 T D + ϑ 2 T 

2 
D , (22)

where ϑ i = ϑ i (T D ) , and where ϑ 0 = − 2 
3 I D 2 

∂ ̄	
∂ I D 3 

, ϑ 1 = 

∂ ̄	
∂ I D 2 

and ϑ 3 = 

∂ ̄	
∂ I D 3 

. From (22) it is possible to see that ε (T ) = ε (T D ) ,

i.e., the strain is only affected by the deviatoric stress. The case of obtaining linearized constitutive equations from (22) has

been studied in Section 3.3 of Bustamante and Rajagopal (2016) . 

4. Universal solutions, two examples 

In this section we review a well known exact solution obtained within the context of the classical theory of nonlinear

elasticity, and then we compare with a similar solution found considering (22) . 
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4.1. The inflation and expansion of a cylindrical annulus within the context of the classical theory of nonlinear elasticity 

Let us review the problem of the inflation and expansion of a cylindrical annulus within the context of the classical

theory of nonlinear elasticity, as it was done in Section 6.1.3 of Bustamante and Rajagopal (2019) . We do this in order

to have some concepts to compare what happens with the solutions obtained considering the constitutive Eq. (14) , with

what it is found using (22) . In the reference configuration in cylindrical coordinates the annulus is defined by R i ≤ R ≤ R o ,

0 ≤ � ≤ 2 π , 0 ≤ Z ≤ L . 

Following Rivlin (see Chapter A of Volume I in Barenblatt & Joseph (1997) and also Section 57 of Truesdell and Noll

(2004) ), let us study how p in (14) helps to find exact solutions for the boundary value problem. For the problem of inflation

and extension of a cylindrical annulus, the deformation x is assumed to be of the form 

r = f (R ) , θ = �, z = λZ, (23) 

where λ is a constant. From (23) and (1) 1 we have 

F = f ′ (R ) e r � E R + 

f (R ) 

R 

e θ � E � + λe z � E Z , (24)

where from the application of the constraint of incompressibility det F = 1 we obtain 

r = f (R ) = 

√ 

R 

2 − R 

2 
i 

λ
+ r 2 

i 
, (25) 

where r i is the inner radius of the annulus in the current configuration. 

If the notation 

˜ T = α1 B + α2 B 

2 is used, from (24) it is possible to see that ˜ T only depends on the radial position, because

α1 , α2 depend on B that only depends on the radial position. The stress T only has normal components. From (8) –(10) and

(14) we obtain that p = p(r) = p(R ) and 

d ̃

 T rr 

d r 
− d p 

d r 
+ 

1 

r 
( ̃  T rr − ˜ T θθ ) = 0 , (26) 

which can be solved easily for p ( r ). 

Now, if we assume that on the inner surface of the annulus there is a traction P , and that on the outer surface the

annulus is traction free, from (26) we obtain 

P = 

∫ r o 

r i 

1 

ξ

[
˜ T θθ ( ξ ) − ˜ T rr ( ξ ) 

]
d ξ , (27) 

where r o = 

√ 

R 2 o −R 2 
i 

λ
+ r 2 

i 
is the outer radius in the current configuration. 

Let us examine some characteristics of the above exact solution for that boundary value problem. From (25) we have an

exact and explicit solution for f ( R ) up to a constant r i . That constant must be found from (27) for a given P , and in general

it is not possible to solve (27) exactly for r i . Regarding the components of T , we can easily obtain p from (26) and from

(14) we can have explicit solutions for T rr , T θθ and T zz . Finally the solution (25) is valid for any α1 and α2 , therefore, (25) is

a universal solution. 

4.2. The inflation and extension of a cylindrical annulus for an incompressible body that is not Green elastic 

In the case of solving boundary value problems for the class of constitutive Eq. 22 using the semi-inverse method, it is

convenient to assume simplified expressions for the stresses and the displacement field 

2 (see, for example, Bustamante &

Rajagopal, 2015b ). Let us consider the problem of a cylindrical annulus 3 r i ≤ r ≤ r o , 0 ≤ θ ≤ 2 π , 0 ≤ z ≤ L , where the stress

tensor is assumed to be 

T = T rr (r) e r � e r + T θθ (r) e θ � e θ + T zz (r) e z � e z . (28)

We suppose that the above stress causes the displacement field 

u = f (r) e r + (λ − 1) ze z , (29) 
2 In this paper in order to solve boundary value problems with the inverse method, we assume simplified expressions for the stresses 28 and the 

displacement field 29 . This technique has been already used in some previous works by this author and his co-workers, in particular within the context 

of unconstrained elastic bodies (see, for example, Bustamante & Rajagopal (2015b,c) ). On the other hand, if we assume some simplified expressions for 

the stresses, we could use the compatibility equations to find solutions of the problem without assuming from the beginning any especial form for the 

displacement field, as it is done in the classical theory of linear elasticity when using the stress potential. However, as discussed by Rajagopal and Srinivasa 

(2015) , it is not necessary or mandatory to consider such compatibility equations if one uses from the beginning the displacement field as one of the 

main variables of the problem (along with the stresses). In Bustamante and Rajagopal (2010) (see Eq. (36) therein) the interested reader can see the rather 

complex structure of the final equation that appear when we use the compatibility equation and ε = h (T ) for plane problems. In the case of assuming 

stresses that depend on one variable, the use of such compatibility equations has been explored in Bustamante and Rajagopal (2011) . 
3 In this case because of the assumption of small deformations, the inner and outer radii in the current configuration are very similar to the radii in the 

reference configuration. 
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where λ is a constant. Using (29) in (3) and (4) we obtain 

ε = f ′ (r) e r � e r + 

f (r) 

r 
e θ � e θ + (λ − 1) e z � e z , (30)

and using this in (16) we have the differential equation f ′ (r) + 

f (r) 
R + λ − 1 = 0 , whose solution is 

f (r) = 

(1 − λ) 

2 

r + 

C 

r 
, (31)

where C is a constant. 

Let us decompose the stress in a spherical and a deviatoric part as indicated in (20), (21) , then from (28) we have 

T rr = −σS + T D rr 
, T θθ = −σS + T D θθ

, T zz = −σS + T D zz 
. (32)

From now on we work with σ S and T D rr 
, T D θθ

and T D zz 
as the basic variables for the problem. 

Using (30) and (32) in (22) (recalling (31) ) we obtain 

f ′ (r) = ϑ 0 + ϑ 1 T D rr 
+ ϑ 2 T 

2 
D rr 

, (33)

f (r) 

r 
= ϑ 0 + ϑ 1 T D θθ

+ ϑ 2 T 
2 

D θθ
, (34)

λ − 1 = ϑ 0 + ϑ 1 T D zz 
+ ϑ 2 T 

2 
D zz 

. (35)

Regarding (28) from (8) –(10) we obtain 

d T rr 
d r 

+ 

1 
r (T rr − T θθ ) = 0 , which from (32) becomes 

−d σS 

d r 
+ 

d T D rr 

d r 
+ 

1 

r 
(T D rr 

− T D θθ
) = 0 , (36)

whose solution is 

σS (r) = T D rr 
(r) − T rr (r i ) + 

∫ r 

r i 

1 

ξ
[ T D rr 

(ξ ) − T D θθ
(ξ )] d ξ , (37)

where T rr ( r i ) is the radial component of the stress on the inner surface of the annulus. Let us assume again that on the inner

surface of the annulus we apply a traction P , so T rr (r i ) = −P, then from (32) and (37) we obtain T rr (r) = −P + 

∫ r 
r i 

1 
ξ

[ T D θθ
(ξ ) −

T D rr 
(ξ )] d ξ . If on the outer surface of the annulus there is no external traction then 

P = 

∫ r o 

r i 

1 

ξ
[ T D θθ

(ξ ) − T D rr 
(ξ )] d ξ . (38)

Finally, if we obtain T zz ( r ) from the above expressions, we can obtain the total axial load that is necessary to produce the

displacement field (29) as 

N = 2 π

∫ r o 

r i 

r T zz (r ) d r. (39)

Let us study the above solution and compare with the classical case described in Section 4.1 . From (29) and (31) we

have an explicit solution for the displacement field up to a constant C . Let us assume that C and λ are known, then from

(33) –(35) we can obtain T D rr 
, T D θθ

and T D zz 
implicitly, i.e., they are exact solutions in implicit forms (which in general should

be obtained numerically). Such solutions will depend in particular on the constant C , and such constant should be found

numerically from (38) . The above solution is valid for any 	̄, therefore, it is also a universal solution. Regarding σ S , if C and

T D rr 
, T D θθ

are known, then from (37) that function σ S can also be obtained, and from (32) we can find T rr , T θθ and T zz . 

In the Appendix some results are presented for this boundary value problem, for a special expression for 	̄ where we

have a strain limiting behaviour. 

5. Other examples 

Two additional problems are studied in this section, where we use the constraint of incompressibility to obtain implicit

solutions for the boundary value problem, following the method presented in the previous section. 

5.1. The inflation, extension, torsion, circumferential shear, telescopic shear and closure of a cylindrical opened annulus 

In this section the same problem presented in Section 6.1.2 of Bustamante and Rajagopal (2019) is examined, namely

the inflation, axial extension, torsion, circumferential shear, telescopic shear and closure of the radially opened cylindrical

annulus r ≤ r ≤ r o , 0 ≤ θ ≤ 2 π − α. For such an annulus let us assume there is a stress distribution of the form 
i 
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T = T rr (r) e r � e r + T θθ (r) e θ � e θ + T zz (r) e z � e z + T rθ (r)(e r � e θ + e θ � e r ) 

+ T rz (r)(e r � e z + e z � e r ) + T θz (r)(e θ � e z + e z � e θ ) . (40) 

In such a case (8) –(10) become 

d T rr 

d r 
+ 

1 

r 
(T rr − T θθ ) = 0 , 

d T rθ
d r 

+ 

2 

r 
T rθ = 0 , 

d T rz 

d r 
+ 

1 

r 
T rz = 0 . (41)

Eqs. (41) 2,3 can be solved exactly and we find 

T rθ (r) = T rθi 

(
r i 
r 

)2 

, T rz (r) = T rz i 

r i 
r 

, (42) 

where T rθi 
and T rz i are constants. 

From (21) 2 and (40) we obtain 

σS = − [ T rr (r) + T θθ (r) + T zz (r)] 

3 

, (43) 

and the deviatoric stress is given by 

T D = T D rr 
(r) e r � e r + T D θθ

(r) e θ � e θ + T D zz 
(r) e z � e z + T rθ (r)(e r � e θ + e θ � e r ) 

+ T rz (r)(e r � e z + e z � e r ) + T θz (r)(e θ � e z + e z � e θ ) . (44) 

It is assumed that the annulus deforms as 

u = f (r ) e r + [ kr θ + g(r ) + τo rz] e θ + [(λ − 1) z + h (r)] e z , (45)

where k > 0, τ o and λ are constants. In the especial case that g(r) = 0 and τo = 0 , it is possible to define k as k = 

α
2 π−α ,

where α is the opening angle of the annulus, and in such a case u θ = krθ, which means that the annulus is closing com-

pletely. From (3) and (4) considering (45) we obtain 

ε = f ′ (r) e r � e r + 

[
k + 

f (r) 

r 

]
e θ � e θ + (λ − 1) e z � e z + 

1 

2 

[
g ′ (r) + 

g(r) 

r 

]
(e r � e θ

+ e θ � e r ) + 

h 

′ (r) 

2 

(e r � e z + e z � e r ) + 

τo r 

2 

(e θ � e z + e z � e θ ) . (46) 

Using (46) in (16) we have f ′ (r) + k + 

f (r) 
r + λ − 1 = 0 , whose solution is 

f (r) = (1 − λ − k ) 
r 

2 

+ 

C 

r 
, (47) 

where C is a constant. 

Replacing (46) and (44) in (22) we have 

f ′ (r) = ϑ 0 + ϑ 1 T D rr 
+ ϑ 1 (T 2 D rr 

+ T 2 rθ + T 2 rz ) , (48) 

k + 

f (r) 

r 
= ϑ 0 + ϑ 1 T D θθ

+ ϑ 1 (T 2 rθ + T 2 D θθ
+ T 2 θz ) , (49) 

λ − 1 = ϑ 0 + ϑ 1 T D zz 
+ ϑ 2 (T 2 rz + T 2 θz + T 2 D zz 

) , (50) 

1 

2 

[
g ′ (r) − g(r) 

r 

]
= ϑ 1 T rθ + ϑ 2 (T D rr 

T rθ + T rθ T D θθ
+ T rz T θz ) , (51) 

h 

′ (r) 

2 

= ϑ 1 T rz + ϑ 1 (T D rr 
T rz + T rθ T θz + T rz T D zz 

) , (52) 

τo r 

2 

= ϑ 1 T θz + ϑ 2 (T rθ T rz + T D θθ
T θz + T θz T D zz 

) . (53) 

Eqs. (51) and (52) can be solved exactly obtaining 

g(r) = 2 r 

∫ r 

r i 

{ 

1 

ξ
[ ϑ 1 (T D (ξ )) T rθ (ξ ) + ϑ 2 (T D (ξ )) { T D rr 

(ξ ) T rθ (ξ ) + T rθ (ξ ) T θθ (ξ ) + T rz (ξ ) T θz (ξ ) } ] 
} 

d ξ + 

g i r 

r i 
, (54) 

h (r) = 2 

∫ r 

r 

{ ϑ 1 (T D (ξ )) T rz (ξ ) + ϑ 2 (T D (ξ ))[ T D rr 
(ξ ) T rz (ξ ) + T rθ (ξ ) T θz (ξ ) + T rz (ξ ) T D zz 

(ξ )] } d ξ + h i , (55) 

i 
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where g i and h i are constants. 

Therefore, considering (48) –(50) and (53) (recalling (47) ), we have four equations to find T D rr 
, T D θθ

, T D zz 
and T θz in terms

of f ( r ), k, λ and τ o . The system of Eqs. (48) –(50) are implicit solutions for such components of the deviatoric stress. From

(41) 1 we obtain the same expression for σ S as in (37) . 

Regarding the boundary conditions, the surfaces of the annulus where we need to analyze the boundary conditions are

r = r i , r o , θ = 0 , θ = 2 π − α, z = 0 and z = L : 

Surfaces r = r i , r = r o : Let us use the notation 

ˆ t i for the external traction on the surface r = r i , we have 

T rr (r i ) = −ˆ t i r , T rθ (r i ) = T rθi 
= −ˆ t i θ , T zr (r i ) = T rz i = −ˆ t i z . (56)

If the notation 

ˆ t o is used for the external traction on r = r o , then 

T rr (r o ) = 

ˆ t o r , T rθ (r o ) = T rθo 

(
r i 
r o 

)2 

= 

ˆ t o θ , T zr (r o ) = T rz i 

r i 
r o 

= 

ˆ t o z . (57)

From (41) 1 considering (56) 1 and (57) 1 we have 

ˆ t o r + ̂

 t i r = 

∫ r o 

r i 

1 

ξ
[ T D θθ

(ξ ) − T D rr 
(ξ )] d ξ . (58)

The above equation can be used to obtain, for example, the constant C (see (47) –(51), (53) ) as a

function of ˆ t r o + ̂

 t r i . If ˆ t r o = 0 and 

ˆ t r i = P we obtain the same Eq. (38) . 

Surfaces θ = 0 , θ = 2 π − α: For these surfaces it is possible to calculate the total moment in the axial direction z that

is denoted M , and the total shear forces S 1 (in the plane ( r, θ )) and S 2 (in the plane ( θ , z ))

that are necessary to produce the displacement field as 

M = L 

∫ r o 

r i 

r T θθ (r ) d r, S 1 = L 

∫ r o 

r i 

T rθ (r) d r = T rθi 

r i 
r o 

L (r o − r i ) , (59)

S 2 = L 

∫ r o 

r i 

T θz (r) d r. (60)

Surfaces z = 0 , z = L : For these surfaces it is possible to calculate the total axial force N (in the direction z ), and the total

shear forces S 3 (in the plane ( θ , z )) and S 4 (in the plane ( r, z )) as 

N = (2 π − α) 

∫ r o 

r i 

rT zz (r) d r, S 3 = (2 π − α) 

∫ r o 

r i 

rT θz (r) d r, (61)

S 4 = (2 π − α) 

∫ r o 

r i 

rT rz (r) d r = (2 π − α) T rz i r i (r o − r i ) . (62)

5.2. The inflation of a sphere 

In this section we study briefly the problem of the inflation of an incompressible sphere (see Bustamante & Rajagopal,

2015 ). Let us consider the sphere r i ≤ r ≤ r o , 0 ≤ θ ≤ 2 π , 0 ≤ φ ≤ π , where the stress tensor is assumed to be 

T = T rr (r) e r � e r + T θθ (r) e θ � e θ + T φφ(r) e φ � e φ. (63)

From (11) it is easy to see that T φφ = T θθ . 

Let us assume that the displacement field is 

u = u r (r) e r , (64)

then from (5) –(7) we obtain 

ε = f ′ (r) e r � e r + 

f (r) 

r 
(e θ � e θ + e φ � e φ ) . (65)

From (16) we obtain f ′ (r) + 2 f (r) 
r = 0 , from where we have 

f (r ) = 

C 

r 2 
, (66)

where C is a constant. 

From (21) 1 we have 

T rr (r) = −σS (r) + T D rr 
(r ) , T θθ (r ) = −σS (r) + T D θθ

(r ) , T φφ(r ) = −σS (r) + T D φφ
(r) , (67)
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and the equilibrium Eqs. (11) –(13) become 

−d σS 

d r 
+ 

d T D rr 

d r 
+ 

2 

r 
(T D rr 

− T D θθ
) = 0 . (68) 

Using (65) and (67) in (22) we have 

−2 

C 

r 3 
= ϑ 0 (T D ) + ϑ 1 (T D ) T D rr 

+ ϑ 2 (T D ) T 
2 

D rr 
, (69) 

C 

r 3 
= ϑ 0 (T D ) + ϑ 1 (T D ) T D θθ

+ ϑ 2 (T D ) T 
2 

D θθ
, (70) 

from where we can obtain T D rr 
(r) and T D θθ

(r) that depend implicitly in C . 

As in Section 4 we can assume that for the surfaces r = r i and r = r o we have the boundary conditions T rr (r i ) = −P and

T rr (r o ) = 0 , and from (68) that implies (compare with (27) ) 

P = 

∫ r o 

r i 

2 

ξ

[
T D θθ

( ξ ) − T D rr ( ξ ) 
]

d ξ . (71) 

Using T D rr 
(r) and T D θθ

(r) obtained from (69), (70) , from (71) we can find C as a function of P , as in the case of the boundary

value problems presented in Sections 4 and 5.1 . 

6. Final comments 

In the present communication some exact universal solutions have been obtained for a class of constitutive equation,

where the linearized strain is a nonlinear function of the stresses (22) . Unlike the universal solutions that have been ob-

tained in the classical theory of nonlinear elasticity, where we have explicit expressions for the deformation and the stresses

(14) , in the present case we obtained solutions, where we have explicit expressions for the displacement field, but where the

stresses (the deviatoric part of the stress) must be found (implicitly) by solving a system of nonlinear algebraic equations

(see, for example, (33) –(35) ). 

In order to solve boundary value problems considering 15 or 22 with the semi-inverse method, we assumed expressions

for the stresses and the deformation field (see, for example, (28) and (29) ). It is possible that for some expressions for 	

or 	̄, non-unique solutions can be found. This is particularly clear when one sees the systems of algebraic Eqs. (33) –(35),

(48) –(50), (53) and (69), (70) . Moreover, we assumed that real solutions existed for the components of the deviatoric stress

tensor from (33) –(35), (48) –(50), (53) and (69), (70) , but in general it would be necessary to impose some restrictions on 	̄

to assure existence of real solutions from such equations. In the present work we do not study those problems. 

The methodology to obtain such exact universal solutions presented in this paper, can be easily extended to the case

of large deformations, where some measure of the strains (large strains) is assumed to be a function of the stresses. That

analysis will be part of a future work. 

In the case of the universal solutions that have been obtained in the classical theory of nonlinear elasticity (see Section

57 of Truesdell & Noll (2004) ), in general some constants must be found using numerical methods (such as is the case of

r i that is the inner radius of the annulus in (25) ), for which we need specific expressions for the functions α0 and α1 in

(14) . For the class of constitutive equation studied here 22 , some constants must also be found solving numerically some

algebraic equations (see, for example, (38) ), but the stresses (the deviatoric components of the stress) must also be found

numerically solving some algebraic equations (see, for example, (33) –(35), (48) –(50), (53) and (69), (70) ). So the structure of

the universal solutions in the case of (22) is more complex than in the case of (14) . Nevertheless, even if we need to solve a

system of algebraic equations such as (33) –(35) , that is in general much better and simpler than to solve the original system

of ordinary differential and algebraic Eqs. (1) 4 , (2) and (15) (see, for example, Bustamante & Rajagopal, 2015a, 2015b ). 
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Appendix. A numerical example 

In this Appendix some numerical results are presented concerning in particular with the solutions of (33) –(35) . The

results depend on an specific expression for 	̄. First let us consider some simple problems with homogeneous deformations

and stresses for a cylinder and a slab. 

Homogeneous tension/compression of a cylinder: For the cylinder 0 ≤ r ≤ r o , 0 ≤ θ ≤ 2 π , 0 ≤ z ≤ L , let us assume that

the it deforms due to the homogeneous stress distribution T = σe z � e z (where σ is constant). The spherical stress (21) 2 is

given as σS = − σ
3 , and as a results the non-zero components of the deviatoric stress (20) are T D 1 = T D 2 = − σ

3 and T D 3 = 

2 σ
3 .

From (19) we have I D 2 = 

σ 2 

3 , I D 3 = 

2 σ 3 

27 . Let us assume the following simplified expression for 	̄: 

	̄(I D 2 , I D 3 ) = �(I D 2 ) + �(I D 3 ) , (72) 

https://doi.org/10.13039/501100010751
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Fig. 1. Results for some homogeneous distributions of stresses and strains. (a) Uniaxial tension and compression of a cylinder (see 73 ). (b) Simple shear of 

a slab (see (74) ). (c) Shear and compression of a slab (see (75) and (76) ), components ε11 and ε22 of the strain tensor for the following cases: (1) σ = 10 8 , 

(2) σ = 5 × 10 7 , (3) σ = 10 7 , (4) σ = 5 × 10 6 , (5) σ = 10 6 . (d) Shear and compression of a slab component ε12 of the strain. All the stresses are in Pa. 

 

 

 

 

 

 

 

 

then from (22) we obtain 

ε rr = ε θθ = −σ 2 

9 

d�

d I D 3 
− σ

3 

d�

d I D 2 
, ε zz = 

2 σ 2 

9 

d�

d I D 3 
+ 

2 σ

3 

d�

d I D 2 
. (73)

Simple shear: For the slab L i ≤ x i ≤ L i , i = 1 , 2 , 3 let us assume that this slab deforms due to the presence of the

simple homogeneous shear stress T = τ (e 1 � e 2 + e 2 � e 1 ) . In this case from (19) we have I D 2 = τ 2 , I D 3 = 0 , and considering

(72) from (22) we obtain 

ε 11 = ε 22 = 

τ 2 

3 

d�

d I D 3 
(0) , ε 33 = −2 τ 2 

3 

d�

d I D 3 
(0) , ε 12 = τ

d�

d I D 3 
(I D 2 ) . (74)

Homogeneous shear plus compression/tension: In this final case let us consider the same slab described previously,

but now deforming due to the application of the homogeneous distribution of stresses T = σe 1 � e 2 + τ (e 1 � e 2 + e 2 � e 1 ) .

In this case from (19) we obtain I D 2 = 

σ 2 

3 + τ 2 , I D 3 = 

σ
3 ( 

2 σ 2 

9 + τ 2 ) , and on the other hand (72) from (22) we have 

ε 11 = 

1 

3 

(τ 2 − σ 2 ) 
d�

d I D 3 
− σ

3 

d�

d I D 3 
, ε 22 = 

τ 2 

3 

d�

d I D 3 
+ 

2 σ

3 

d�

d I D 3 
, (75)

ε 33 = −1 

3 

(σ 2 + 2 τ 2 ) 
d�

d I D 3 
− σ

3 

d�

d I D 3 
, ε 12 = τ

(
d�

d I D 3 
+ 

σ

3 

d�

d I D 3 

)
. (76)
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Fig. 2. Behaviour of the constant C [m 

2 ] (see (31) and (38) ) as a function of P [Pa]. 
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Fig. 3. Behaviour of σ S and the nonzero components of T D and T as functions of r for a specific value for P . The stresses are given in Pa, the radial position 

is in metres. 

 

 

 

Numerical example: Let us consider the following expressions for the functions � and � presented in (72) 

�(I D 2 ) = 

γ

ι

√ 

1 + 3 ιI D 2 , � = 0 , (77) 

where γ = 10 −10 1/Pa, ι = 10 −15 1/Pa 2 . If the above specific expressions for � and � are used in (73) –(76) we obtain a strain

limiting behaviour for the simple problems presented previously as depicted in Fig. 1 . 

If (77) is used in (33) –(35) , from (38) we can obtain, for example, the behaviour of C as a function of P as presented in

Fig. 2 (under the assumption that λ = 1 ). 

For the maximum magnitude for P = 2 . 106 × 10 7 Pa we have C = 2 . 7 × 10 −5 m 

2 , and in such a case the behaviour of the

non-zero components of T and T and σ are depicted in Fig. 3 . 
D S 
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